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Abstract
Domain-specific knowledge graph is an effective way to represent complex domain knowl-
edge in a structured format and has shown great success in real-world applications. Most
existing work on knowledge graph construction and completion shares several limitations in
that sufficient external resources such as large-scale knowledge graphs and concept ontolo-
gies are required as the starting point. However, such extensive domain-specific labeling
is highly time-consuming and requires special expertise, especially in biomedical domains.
Therefore, knowledge extraction from unstructured contexts with minimum supervision is
crucial in biomedical fields. In this paper, we propose a versatile approach for knowledge
graph construction with minimum supervision based on unstructured biomedical domain-
specific contexts including the steps of entity recognition, unsupervised entity and relation
embedding, latent relation generation via clustering, relation refinement and relation assign-
ment to assign cluster-level labels. The experimental results based on 24,687 unstructured
biomedical science abstracts show that the proposed framework can effectively extract 16,192
structured facts with high precision. Moreover, we demonstrate that the constructed knowl-
edge graph is a sufficient resource for the task of knowledge graph completion and new
knowledge inference from unseen contexts.
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1 Introduction

Knowledge graph is an effective way for representing semantical real-world facts in a struc-
tured form. A knowledge graph is a collection of triplets among which each indicates a piece
of fact in the form of “head entity–relation–tail entity”. Large-scale knowledge graphs are
built by leading institutes containing enormous facts such as YAGO3 [21], DBpedia [19] and
Freebase [8]. Knowledge graphs have been widely adopted and shown promising benefits in
a wide range of applications such as information retrieval, question & answering and knowl-
edge reasoning. In addition, facts extracted from specific domains convey domain knowledge
which is usually only accessible to experts in such areas. For example, biomedical knowl-
edge graphs have been beneficial to decision making and information inference in the areas
of biomedical domain and healthcare by adding the domain knowledge [5,13] and improv-
ing the end-to-end healthcare applications [5,38] by embedding the domain knowledge as
external constrains into existing systems. Therefore, the construction of knowledge graphs
conveying domain knowledge, especially for biomedical science and healthcare, is of great
significance to the success of many domain-specific real-world applications.

Conventional methods of knowledge graph construction consist of two perspectives:
manual construction and automatic or semiautomatic methods. The manually curated or col-
laborative constructions of knowledge graphs such asWordNet1 and concept ontologies such
as Unified Medical Language System (UMLS) Metathesaurus,2 are highly time-consuming.
On the other hand, most of the automatic construction approaches are pipeline-based pro-
cesses which include entity recognition and relation extraction, among which the entity
recognition in general is a well-explored task. Biomedical entity recognition is special in
that conventional NLP approaches yield inaccurate performance without the help of exter-
nal resources such as UMLS compared with the supervised approaches which consider the
task as a classification problem, distant supervision approaches generate the training labels
heuristically before applying the classifications to avoid the cost of extensive human anno-
tation. Both supervised and distant supervised approaches require sufficient labeled training
samples or an external knowledge base to begin with, and highly depend on the hand-crafted
language patterns and features predefined by the domain experts. Additionally, biomedi-
cal domain-specific knowledge graph construction is different in that: (a) biomedical entity
recognition is difficult for conventional Name Entity Recognition (NER) algorithms without
adopting domain-specific resources such as UMLS, (b) the learning of semantic embeddings
for biomedical entities has to be generated from domain-specific corpus, (c) none large-scale
biomedical knowledge graph exists based on which knowledge graph completion or dis-
tant supervision can be performed and (d) large-scale labeling for a manual construction is
time-consuming and requires extensive expertise.

To overcome these limitations, we propose a versatile framework with minimum supervi-
sion for domain-specific knowledge graph construction with open-ended relations extracted
from unstructured biomedical science articles. No extensive labeling, predefined relations or
language patterns are required by the workflow. The proposed process includes biomedical
entity recognition, unsupervised entity and relation embedding based on skip-gram [23],
latent relation generation by clustering based on relation embeddings, and a relation refine-
ment on the automatic generated latent (noisy) labels based on a convolutional neural network
(CNN) with attention model. All the previous steps are conducted without any human anno-
tations. In the end, the semantical relations are assigned manually only on a cluster-level

1 https://wordnet.princeton.edu/.
2 https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/.
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Fig. 1 An example of the constructed biomedical knowledge graph

(per cluster) instead of being evaluated per sample. In this way, we achieve the objective of
constructing a domain-specific knowledge graph with minimum supervision. Our approach
should certainly work in friendlier and none domain-specific cases when the labels are easier
to obtain; nonetheless, we focus on the biomedical domain because the limited resources
in the specific domain motivate approaches with minimum supervision and would lead to a
higher real-world impact.

For evaluation purposes,we have collected 24,687 autism spectrumdisorder-related article
abstracts from PubMed3 related to the areas of medical, healthcare, etc. In our experiments,
6827 entities are extracted from the collected dataset and form into entity pairs based on their
co-occurrence as candidate facts. All the candidates are then categorized into 20 clusters
with kmeans++ [2]. In the end, 16,192 facts under six strong relations are extracted from
the collected dataset, with a precision of 83.3% for the top-10 and 59.3% for the top-50
most confident facts averaged over all relation categories on a testing set consisting of 1000
manually evaluated samples (50 per cluster). Selected examples in the constructed knowledge
graph are shown in Fig. 1. Additionally, we demonstrate the capability of inferring new facts
from unseen texts based on the constructed knowledge graph with very promising results.

Our contributions are summarized as follows:

– We propose a novel approach to constructing biomedical domain-specific knowledge
graphs. It is capable of capturing open-ended relations without extensive labeling, requir-
ing special expertise, or the help of existing knowledge graphs. This versatile approach
can be potentially applied to other domains that share the similar limitations.

– We evaluate the correctness of the constructed biomedical knowledge graphs and their
ability to extract new knowledge from unseen contents.

– We construct knowledge graphs efficiently from a large-scale set of unstructured biomed-
ical abstractswith high precision. The domain knowledge implied in the knowledge graph
is beneficial to real-world applications such as disease diagnosis andmedical information
retrieval.

2 Related work

Knowledge graph construction approaches are generally categorized as follows: manual con-
struction in a curated or collaborative approach and supervised or semisupervised modeling

3 https://www.ncbi.nlm.nih.gov/pubmed.
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[24]. Manual knowledge graph construction in a curated way highly depends on experts and
can result in a high accuracy, but lacks in scalability and velocity, which is usually adopted
for domain-specific problems such as biomedical-related applications, for example, UMLS.
Knowledge graphs constructed and evaluated collaboratively by open groups have a better
velocity but are still far from satisfaction, such as Freebase [8]. Consequently, probabilis-
tic approaches are drawing more attention in order to build large-scale and highly accurate
knowledge graphs. For example, YAGO3 [21] is evaluated to achieve a precision of more
than 95% constructed from Wikipedia Infoboxes. However, as opposed to unstructured for-
mats, semistructured data only cover a limited fraction of the knowledge despite how large
the number is of the facts extracted from them. Probabilistic approaches such as DeepDive
[25] are designed to work on unstructured data (Internet data) via learned linguistic features
and self-defined statistical rules [1].

More specifically, automatic and semiautomatic knowledge graph construction work-
flow includes entity recognition and relation extraction. For relation extraction task, recent
approaches take the advantages of the probabilistic or deep learning algorithms in order to
remove the limitations of applying hand-crafted features. For example, previous work such
as TransE and its extensions TransH and TransR considered the relations between entities as
a translation in the vector space [9,34]. More recently, [39] and [20] constructed a CNN with
piecewised max-pooling and enhanced the performance by adding a sentence-level attention
model to reduce the side effects raised by noisy labels. Xie et al. [35] utilized entity type
information and the hierarchies of entity types for knowledge representation learning. In
cases of lacking labeled data, distant supervision takes advantages of the existing knowledge
graphs to heuristically generate noisy training data [4,16,27,28]. Distant supervision incor-
porated with multi-instance learning has shown to be effective for relation extraction [20,33]
to reduce the side effects of applying noisy labels.

Domain knowledge acquisition in biomedical domain from texts has been an active field
where most previous studies on conceptual ontologies rely highly on the annotations from
domain experts entirely or as a starting point. For example, UniProt is a large-scale dataset
of protein sequences and annotations constructed based on manual annotation and collabora-
tively rule-based completion relying on the expert-curated knowledge [11]. Gene Ontology
is constructed in a similar collaborative way [3] and contains logical structure of the biolog-
ical functions and their relationships.4 Compared with studies on ontologies such as Gene
Ontology, knowledge graph is more general purposed, with open-ended relations, focusing
less on the logical structure and more on the contents and rich semantics. For biomedical
knowledge acquisition, previous studies such as Bio2RDF [6] aimed to link related concepts
and articles. More similar work to ours is SemRep which extracts hypernymic propositions
using linguistic feature (sentence structure) under predefined categories such as drugs and
chemicals where existing ontology is also required [29]. Knowlife applied seed facts of
13 relations to extract sentence-level and document-structure patterns for knowledge graph
construction and achieved high precisions with typing and mutual-exclusion constrains for
pruning out invalid candidate facts [13]. Compared with the studies discussed above, we
are aiming to extract open-ended relations between entities without predefining relations or
requiring large-scale manual labeling.

Since a domain-specific knowledge graph conveys domain knowledge in a structured form
which can fill in the gap between expertise and the crowds and is essential for the success
of a wide range of real-world applications. Google powers its health-related searches with

4 http://www.geneontology.org/page/introduction-go-resource.
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Fig. 2 The framework ofminimally supervised biomedical knowledge graph construction: aEntity recognition
and entity pairing from biomedical documents, b entity & relation embedding, and kmeans++ clustering for
latent label generation, c relation refinement on multi-instance attention-based CNN, d cluster-level relation
assignment and e relation inference on unseen documents as an application of the constructed knowledge
graph

carefully curated medical knowledge graphs by a team of experts,5 and successful examples
also have been shown in discoveringmiss-diagnosis [5], linking implicitly related biomedical
entities and more accurate domain-driven information retrieval in academia [5,12].

3 Methodology

In this work, we propose to construct a domain-specific knowledge graph with minimum
supervision which can generate open-ended relations from unstructured biomedical science
articles. A domain-specific knowledge graph construction shares the limitations with conven-
tional methods as well as its own constrains. Therefore, we argue that a minimally supervised
construction of biomedical domain-specific knowledge graph which is capable to extract
open-ended relations is desired.

3.1 Framework

Unstructured biomedical articles are collected from PubMed and are input to the proposed
knowledge graph construction framework (Fig. 2) including the following steps:

PreprocessingNon-English characters and punctuations are removed from the unstruc-
tured text contents. To prepare data for later steps, we applied Standford CoreNLP to
parse the texts into sentences [22].
Entity recognition Biomedical entities are extracted from PubMed documents by Min-
Hash lookup [10] method based on the UMLS [32]. Two entities are assumed to have
explicit or implicit relations if they frequently co-occur in one sentence. An entity pair
is defined by linking such entities and considered as a candidate fact (Fig. 2a).
Entity and relation embedding Skip-gram [23] is applied for entity embedding, and
the subtraction of the two entity vectors for each entity pair is used as the vector
representation of their relation (Fig. 2b).
Latent label generation Given the relation vector for each entity pair, kmeans++ [2]
is then used for categorizing the entity pairs with similar relations to the same cluster
where the latent labels are used as weak labels for relation refinement (Fig. 2b).

5 https://googleblog.blogspot.com/2015/02/health-info-knowledge-graph.html.
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Relation refinement The latent labels generated are considered to be noisy. We apply a
sentence-level attention model over multi-instance learning on a piecewise CNN [20]
for relation refinement by reducing the attentions on the noisy instances (Fig. 2c).
Relation assignment The learning and construction process is unsupervised till the label
assignment. Semantical relations are obtained by a cluster-by-cluster manual labeling,
which is considered to be far less costly than evaluating every single extracted entity
pair (Fig. 2d).
Relation inference The constructed biomedical domain-specific knowledge graph
conveys domain knowledge which can be applied for relation inference on unseen
documents by using the same step of relation refinement with the labels generated in
relation assignment (Fig. 2e).

3.2 Entity recognition

Biomedical entity recognition is an essential component in biomediscal knowledge graph
construction which is adopted early in the construction workflow, and special in that conven-
tional NLP approaches yield inaccurate performance without the help of external recourses
such as UMLS because it provides the largest thesaurus and the semantical ontology of
biomedical concepts (referred as entities in knowledge graph). The entities which are no
longer than five words and one hundred characters are selected to build the vocabulary
from the latest version of UMLS knowledge sources including lexical variations of the
concepts such as verb conjugations and different word orders. A MinHash [10] is applied
[32] for fast lookup where an entity e is expressed in the form of a set se of character
trigrams, and the probability of two entities falling into the same bucket equals to their
Jaccard similarity. Each trigram set representing a possible entity or an entity in the vocab-
ulary is hashed by concatenating the minimums of the hashing results by a set of functions
{π1, π2, . . . , πn} among which each π maps the trigram set into an integer set. The Min-
Hash [10] of an entity e is [min(π1(se)),min(π2(se)), . . . ,min(πn(se))]. For each hashing
function πi , i ∈ [1, 2, . . . , n], the probability of two entities se1 and se2 falling into the same
bucket is described in Eq. 1 [32]:

p
[
min(πi (se1)) = min(πi (se2))

] = J (se1 , se2) (1)

where J (se1 , se2) denotes the Jaccard similarity between the two entity trigram sets. Entity
disambiguation is handled in two ways: First, entity mentions (namely entity candidates) are
generated from consecutive words with length from one to five, and undesirable candidates
are discarded heuristically; Second, a set of unambiguous entities is constructed consisting
of Medical Subject Headings (MeSH) terms6 (which is considered unambiguous) and enti-
ties with only one UMLS match, based on which heuristics such as singular/plural forms,
linguistic semantic patterns and co-occurring semantic types are applied remove ambiguities
based on the anchors [31]. A recognized entity can be a single word, a multi-word phrase,
or a phrase abbreviation. After the entity recognition, we consider each multi-word phrase
as one single-word entity by tagging it with underlines in between and reprocess the input
documents.

6 https://www.nlm.nih.gov/mesh/.

123

https://www.nlm.nih.gov/mesh/


Constructing biomedical domain-specific knowledge graph… 323

3.3 Entity and relation embedding

Previous word embedding approaches such as skip-gram [23] and knowledge graph
embedding algorithms [9] consider the relation representations of entity pairs as a trans-
lation between entities in the vector space. For example, the calculation stands as
vec(“Madrid”)−vec(“Spain”)+vec(“France”)≈ vec(“Paris”). Intuitively, the relation vec-
tor is calculated as a subtraction between the entity vectors for each entity pair to represent its
relation. Other word embedding approaches follow the similar ideas such as [7,26]. Since our
focus is not on evaluating word embedding models, the discussion between different word
embeddingmodels is beyond the scope of this paper andwe selected the commonly used skip-
gram. Given a word set T including words {w1, w2, . . . , wT }, the vector ri, j representing
the relation between wi and w j is defined as:

ri j = wi − w j (2)

where wi and w j denote the word vectors for word wi and w j , respectively. The objective
of the skip-gram model is to predict the surrounding words of the current word by learning
a word vector. Given a window size c, the objective function is to maximize the average log
probability within the window size of the current word:

1

|T |
|T |∑

t=1

∑

−c≤ j≤c, j �=0

log p
(
wt+ j |wt

)
(3)

where the conditional probability is defined by the softmax function. Alternatively, hierar-
chical softmax and negative sampling are applied instead of the softmax function for better
computational efficiency.

3.4 Latent relation label generation

Since relations of the same category are expected to share similar embedding vectors, we
apply kmeans++ [2], a variation of kmeans algorithm with careful center seedings, to cate-
gorize the relations into latent labels (latent relation types). Since at this stage, we have no
knowledge of howmany relation categories exit, we run the kmeans++ with different config-
urations and calculate the Silhouette Coefficient [30] to validate the parameter settings. After
clustering, each entity pair is assigned with a latent label (relation category) ri indicating that
it belongs to the i-th cluster.

Entity ordering Relations can be asymmetric (only one-direction is considered correct)
or symmetric. For asymmetric relations, we expect two or more clusters formed by each
asymmetric relation because no fixed order is preserved to tell whether an entity is the head
entity or the tail entity based only on the contexts and the relation vectors under the same
latent label may have opposite-directed embeddings in the vector space. For example, the
entity pair (autism, poor_social_interaction) and (learning_disabili t y, autism) both
represents the relation is_Symptom_of, however, the relation vectors are likely to be negative
with each other rather than equal due to the order issue. Consequently, we intentionally
increase the number of clusters by an empirical choice based on the Silhouette Coefficient,
and later during the manual relation assignment for each cluster, we assign them as one
relation and obtain the correct ordering for each cluster. The manual work is per cluster
which is not difficult. Additionally, since the number of clusters is set more than the number
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of relations, we assume there are clusters contains nonexistent relations and discard these
clusters during the label assignment.

Mining strong relevance Discovering entities with strong relevance is a related area to
building concept ontologies and knowledge graph. Existing work needs predefined entity
types or relations. For example, entities fall into the “Disease–Drug” category potentially
carries the relation of “treat” [5,17]. In our approach, the latent labels are generated by
unsupervised clustering instead of assigned with explicit categories, which provided us with
the flexibility of discovering open-ended relation, or implicit relevance regardless of the
entity categories. The entities are considered to have strong relevance if the corresponding
entity pair is categorized into the cluster which are not discarded in the later process with a
high confidence.

3.5 Relation refinement and inference

Although the latent relation labels have been generated through clustering, the labels are
considered to be noisy because the process of entity relation embedding and latent label
generation are both based on unsupervised learning methods. Therefore, we perform a
pseudo-supervised classification based on the piecewise CNN model [20] for a relation
refinement. In order to avoid the “garbage-in garbage-out” situation, a sentence-level atten-
tionmodel onmulti-instance learning is used to reduce the weights of noisy labels [20]. Since
studies have shown that the corresponding contexts to the entities of interests contain useful
information to reduce the semantic ambiguity [37,39], we embed both of the targeted entities
and their contexts in order to achieve a context-aware embedding. The inputs of the model
include the entity pair, the contexts where they co-occur and the latent relation label with no
semantics. After training themulti-instancemodel, the noisy latent labels are refined by using
the trained model to generate more robust labels on the same share of data. Human supervi-
sion is only involved when assigning the cluster-level semantical relations. Entity pairs are
considered to have no relation if no consensus is reached for its cluster, or the confidence of
relation prediction output by the CNNmodel is below the threshold. Additionally, the trained
model can be used to infer new knowledge from unseen data.

The model structure is shown in Fig. 2c. To deal with the wrong label issues, the
model performs on multi-instance instead of a single instance. Given a set S of sentences{
s1, s2, . . . , s|S|

}
and the corresponding entity pairs, the model predicts the probability of the

relation ri in a relation set R = {
r1, r2, . . . , r|R|

}
for these entity pairs. Each sentence si is

embedded into a fix-length vector representation vi by a sentence encoding process including
word and position embedding, a convolution layer, a piecewise max-pooling and a nonlinear
layer. After the vector representation of each sentence is learned, an attention model over the
set S is applied to selectively extract information from the sentences with the correct labels.

Sentence embedding In addition to the entity embedding, the embedding of the corre-
sponding contexts and the entity positions contains complementary semantic information
and potentially alleviates the entity and relation ambiguity by achieving a context-aware
semantic embedding. Each word in a sentence s is represented in a vector consists of the cor-
responding word vector learned from the skip-gram model and the relative distance between
the current word and the two target entities as the position information. The vectors are then
concatenated and fed into a convolutional layer followed by a piecewise max-pooling and a
nonlinear layer (tan h). Max-pooling ensures a fixed-length vector learning for each sentence.
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The piecewise max-pooling is a variation of max-pooling in that for each convolutional filter,
it returns three maximums of the sentence segments determined by the two target entities
other than returning a single maximum for the whole sentence [20]. The output features from
all the filters with piecewise max-pooling are concatenated as a sentence vector v in the end.

Attention on multi-instanceA vectorV denotes the learned representation for the sentence
set S:

V =
|S|∑

i=1

αivi (4)

where αi indicates the attention weights calculated by the softmax over ei defined by the
product of vi, a weighted diagonal matrix A and relation vector r:

αi = exp(ei )
∑|R|

j=1 exp(e j )
(5)

Let r denotes the relation between the target entities, θ denotes all parameters and o
denotes the final output of the neural network. The conditional probability is thus defined as:

p (ri |S, θ) = exp(oi )
∑|R|

j=1 exp(o j )
(6)

Therefore, given all sentence sets {S1, S2, . . . , Sn}, the objective function is defined using
cross-entropy:

J (θ) =
n∑

i=1

log p (ri |Si , θ) (7)

4 Experiments

We evaluate our approach of constructing biomedical knowledge graph on a selective subset
of PubMed science article abstracts and validate the knowledge graph in terms of the quality
of associating entities with strong relevance, the integrity of open-ended relation extraction
and the capability of new knowledge inference on unseen contexts.

4.1 Data collection and annotation

Autism Spectrum Disorder (ASD) is a general classification for a broad range of disorders
with a variety of issues stemming from complications with neurological development with
a high incidence of 1 out of 68 individuals. No consensus has been reached about the exact
cause of ASD, and the fact that the ASD diagnosis procedure is extremely complex and time-
consuming makes it a topic worth more investigation. Aiming to extract domain knowledge
on ASD related abstracts and further utilize it for practical applications such as automatic
ASD diagnosis, we worked with doctors and gathered ASD related queries such as autism,
autistic, pervasive developmental disorder, pdd, asperger, kanner syndrome. Pubmed articles
were collected based on the queries, and we kept those with available abstracts published
during the recent 10years (2007–2017) and removed duplicates, bad links or non-English
articles. In the end, we collected 24,687 English biomedical article abstracts about ASD.
After data preprocessing, entity extraction and entity pairing based on co-occurrence, we
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Table 1 Relevance discovery for
top-n entity pairs

Tasks Hits@10 Hits@20 Hits@50

Relevance 0.908 0.846 0.817

empirically selected the minimum co-occurrence to be 5, resulting in a total number of
63,330 candidate entity pair out of 6827 entities for further analysis. The data annotation for
evaluating the constructed knowledge graph (relations between entities) was done by three
graduate students under the supervision of therapists specialized in behavioral pediatrics and
clinical psychology.

4.2 Mining strong relevance

During the clustering process,we selected a relatively large number of clusters (20 in our case)
based on the Silhouette Coefficient. With more clusters than the actual types of relations, it is
reasonable to assume that more than one clusters can share the same relation and one or more
clusters consist of entity pairs without any relation. After the step of assigning semantical
relations to the output classes by the CNN model, we discarded the entity pairs if they are
with low confidence scores, or under the clusters where no explicit semantical relations could
be assigned. The remainder of the entity pairs are then considered to have strong relevance
between its entity components.We evaluated the correctness of relevance discovered between
entities in Table 1 by calculating the precisions on top-n samples from each cluster ranked by
their closeness to the cluster centers denoted as Hits@n, resulting in a total of 1000 labeled
entity pairs for evaluation. We achieved a high precision on entity relevance mining averaged
for all clusters on the top-n entity pairs. We are not able to provide recall due to the same
issue as recommendation system evaluations that it is not feasible to measure howmany facts
or good recommendations exist.

4.3 Relation extraction and refinement

Based on the testing results, we assigned 6 strong semantical relations to the 20 clusters gen-
erated from kmeans++ among which seven of them are discarded because of the nonexistent
relations and lack of consensuses on one specific relation. The 6 relations we extracted are as
follows: is_Symptom_of, Experimental, Causes, Affects, is_Related_to, and Belongs_to. The
is_Related_to relation is assigned when an implicit relation exists instead of an explicit one.
For example, repetitive_behaviors and hypersensitivity are assigned as is_Related_to because
both entities are considered as a symptomor an indicator ofObsessive_Compulsive_Disorder.
The is_Experimental relation is between an approach or analysis and a subject, such as west-
ern_blot and immunogenetics. The Affects relation occurs between a type of disease and
organs or genes such as ASD and RAI1. The Belongs_to is defined as the combination of
is_a and is_part_of because in our experiments the entity pairs with these two relations are
always embedded into the same cluster. To evaluate the knowledge graph we constructed, we
validated the performance of our approach on the same 1000 manually labeled entity pairs
we obtained on Sect. 4.2.
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Table 2 Relation extraction on
top-n relations

Methods Hits@10 Hits@20 Hits@50 Hits@100

MCNN & ONE 0.90 0.85 0.80 0.72

MCNN & ATT 1.00 0.75 0.70 0.73

PCNN & ONE 1.00 0.85 0.76 0.70

PCNN & ATT 1.00 1.00 0.82 0.75

4.3.1 Baselines andmodel selection

The baseline selections are subject to the constrains on the applications and the resources
required by the selectedmethods. From the applicationwised perspective,methods that extract
predefined relations are not suitable to compare directly with the proposed approach which
features in open-ended relation extraction. From the resourcewised perspective, collaborative
construction methods which require external ontologies as inputs such as UniPro and Gene
Ontology do not align with the objective of this work either because the proposed framework
does not imply such requirement, which is more practical that not all biomedical-related
subfields have similar resources like genes and proteins. Additionally, we only have the
resources to label relations on a subset (1000 in total) of the samples since manual annotation
is highly time-consuming and requires expertise. The limited sample size and the lack of
external resources make it unfeasible train supervised and distantly supervised approaches.
Such limitations motivate our work to solve the problem with minimum supervision.

Therefore, we evaluated the performance of four different models: MCNN denotes the
CNN model with normal max-pooling and PCNN is the piecewise CNN; ATT denotes the
attention model and ONE is a special case where the attention weights α are binary as
described in Eq. 4. We trained the models with our entire dataset and tested their robustness
to noisy labels on the same 1000 labeled entity pairs. To be clear, the input labels to these
models are latent labels such as r1, r2, etc., and the models are expected to refine the noisy
labels although the entity pairs may be tagged with wrong labels with selective attention on
multi-instance learning. We measured the precisions on the top-100 most confident relations
extracted from each model in Table 2. The PCNNmodel with selective attention consistently
outperformed the other models indicating the attention model with piecewise max-pooling
can benefit the classification performance. Therefore, we selected the PCNN&ATT model
for further experiments to achieve the optimal performance.

4.3.2 Relation refinement

The kmeans++ is used to evaluate the performance on the relation embedding and the effec-
tiveness of relation refinement as a component analysis. We calculated the precisions for the
top-10, 20 and 50 entity pairs of each cluster ranked by their closeness to the cluster center in
the embedding space. For the clusters which are assigned with the same semantical relation
category, we averaged the numbers and results are shown in Table 3. The precisions generally
decreased slowly with the number of entity pairs evaluated increased, indicating a consis-
tent performance over more entity pairs. The precisions of Belongs_to and is_Related_to
increased on top-20 or top-50 because these two relations are difficult to separate using
kmeans++ and some of the top entity pairs are false positives while true positives are ranked
low. The performance of Belongs_to is a sign of insufficient domain knowledge extracted
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Table 3 Relation clustering on
top-n entity pairs

Relations Hits@10 Hits@20 Hits@50

is_Symptom_of 0.80 0.65 0.50

is_Experimental 0.90 0.95 0.88

Causes 0.50 0.48 0.42

Affects 0.57 0.58 0.52

is_Related_to 0.33 0.32 0.49

Belongs_to 0.15 0.33 0.26

Table 4 Relation refinement on
top-n entity pairs

Relations Hits@10 Hits@20 Hits@50

is_Symptom_of 0.90 0.80 0.50

is_Experimental 0.90 0.90 0.70

Causes 0.85 0.78 0.66

Affects 0.93 0.95 0.74

is_Related_to 0.87 0.68 0.66

Belongs_to 0.55 0.35 0.30

Average 0.83 0.74 0.59

under such relation which results in an inconsistent performance on the knowledge graph
construction and further completion tasks.

As observed in Table 3, the performance of relation clustering is non-perfection and indi-
cates that the latent relations generated by kmeans++ are noisy labels. Table 4 shows the
precisions of the 6 semantical relations following the same experiment setting based on the
PCNN&ATT model. Compared with the performance before relation refinement (Table 3),
a significant gain is observed on the overall performance indicating the necessity of rela-
tion refinement. The precisions of is_Related_to and Belongs_to improved showing that the
PCNN&ATT model is capable of extracting expressive information from the noisy labels.
The performance of is_Experimental dropped on the top-20 and top-50 results, but still
yielded a decent performance. The average precisions on top-10, top-20 and top-50 are
83.3%, 74.3% and 59.3%, respectively. Additionally, entity pairs under symmetric relations
tend to form more clusters while entity pairs under asymmetric relations tends to form less
which is as discussed in previous sections. For example, entity pairs under is_Experimental
and is_Symptom_of form only one cluster for each relation implying that entities belong to
such relations usually occur in a preserved order in biomedical articles, while entity pairs of
the other relations preserve no such order which makes it difficult for rule-based knowledge
extraction of such relations.

4.3.3 Qualitative analysis

Since it is not feasible to compare our algorithmdirectlywith other approaches as discussed in
Sect. 4.3.1, we conducted qualitative analysis with the existing relation extraction framework
SemRep [29] at a volume level. Although in the initial work, SemRepwas proposed to extract
one relation (i.e., hypernymic proposition), we were able to extract multiple relations with
its current implementation.7 We used the collected PubMed abstracts as input corpus, and

7 https://skr3.nlm.nih.gov/index.html.
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Table 5 Volume level
comparison with SemRep

Algorithms Entities Relations Triplets

Semrep 6720 90 21,764

Semrep_Com – 11 17,263

Semrep_Uncom – 63 1259

MinSup (Ours) 6827 6 16,192

the statistics of obtained results are shown in Table 5 where our algorithm is denoted as min-
imum supervision (MinSup). We further broke down the relations extracted by SemRep into
common relations each of which contains over 500 triplets and uncommon relations which
contains only less than 100 triplets each, denoted as SemRep_Com and SemRep_Uncom,
respectively. We further observe the following differences:

Entity recognition The number of entities extracted by the proposed framework based
on MinHash [31,32] are on pair with the number generated by SemRep. SemRep tends to
extract both biomedical entities and general entities, while our approach focuses more on the
biomedical entities. For example, triplets such as “is_a(Israel, country)” and “is_a(length,
size)” are extracted by SemRep, which are certainly considered as valid facts though not
biomedical domain-specific. There are 837 different entities among the two results, most of
which are caused by errors in entity normalization and word segmentation, but overall both
approaches yield decent results.

NegationRelation could be changed due to one negation in the context which makes nega-
tion an important factor to consider in constructing knowledge graphs. In SemRep, negations
are aggregated as new relations such as “NEG_process_of ” and “NEG_associated_with”.
Admittedly, negated relations are very important since such relations sometimes contain use-
ful facts. Knowlife considers negation as an additional linguistic pattern [13] and not included
as types of relations. Since we apply contextual semantics during relation extraction (sen-
tence embedding), negation information is embedded for the later classification. In this way,
the negated samples are thus categorized as “none” relation with other candidate facts that
fall below the threshold.

Relation extractionAs shown in Table 5, SemRep is able to extract more fine-grained and
less common relations from the corpus, and our proposed framework extracts coarse-grained
common relations only. Such limitation of our work and potential solution is discussed in
details in Sect. 4.5. The top-5 most common relations extracted by SemRep are: Process_of,
Location_of,Affects,Coexist_with andPart_of. Among all the 90 relations, 63 relations occur
in less then 100 triplets (1259 in total), and 55 relations occur in less than 50 triplets (630
in total), which suggests that approaches with human supervision (rule-based or supervised)
such as SemRep is able to detectweak signals for fine-grained relation extraction.On the other
hand, the proposed algorithm is only able to detect common relations if trainedwithminimum
supervision. The number of extracted triplets under common relations by SemRep is in a
similar scale with our results. Additionally, we compare the semantical relations extracted
from both systems. In our approach and also in Knowlife [13], we consider is_Symptom_of
as one relation, but it is categorized as one kind of is_a relation. The Causes and Affects
relations exit in both approaches. The is_Related_to relations in our approach are comparable
to the Associated_with relations from SemRep. We thus randomly selected 50 triplets from
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Table 6 Hits@50 of relation extraction on comparable relations

Relations Hits@50

SemRep MinSup (Ours) SemRep MinSup (Ours)

Causes Causes 0.72 0.66

Affects Affects 0.80 0.74

Associated_with is_Related_to 0.84 0.66

each comparable relation in SemRep and manually evaluated the precisions (Hits@50) as
demonstrated in Table 6. Our evaluation on SemRep is similar to the results (an averaged
precision of 0.77) reported on SemMed [18] on multi-relation extractions. The precisions on
SemRep are very close to the precisions on top-20 of our configuration and higher than the
precisions on top-50of our proposed approach. In general, ourminimally supervised approach
demonstrated comparable and promising results. One thing to note is that we excluded the
1000 testing samples from training the PCNN model, and the performance is expected to
improve on other test sets if these samples are included in the training since these samples
are closest to the cluster centers and contain strong relation information. However, we need
to use them as test set in order to conduct a fair comparison and show the effectiveness of
relation refinement process.

4.4 Knowledge inference

An important perspective of the knowledge graph evaluation is its capability of conveying
sufficient domain knowledge for new knowledge inference, i.e., knowledge graph comple-
tion. We constructed a biomedical knowledge graph with a high precision and explored its
application to infer new knowledge with the PCNN&ATT model. In this experiment, we left
out all the documents containing the manually labeled entity pairs as the testing set and fed
the kmeans++ clustering and PCNN&ATT model with the remainder of the entity pairs and
their contexts as training data with only latent labels. Testing results are shown in Table 7. The
numbers are averaged for the relations over the number of clusters associated each relation.
The overall performance for inferring relations including is_Experimental, Causes, Affect
and is_Related_to is decent with high precisions testing on the top-50 samples, suggest-
ing that the constructed knowledge graph is a sufficient source for knowledge inference of
certain types of relations and can be enriched after the initial construction. The precision
of is_Symptom_of dropped on top-50 and the overall performance of Belongs_to was low
which indicates insufficient information is left in the training set whenwe removed the top-50
entity pairs from each cluster for testing which are assumed to contain the distinguishable
information for accurate relation extraction.

4.5 Discussion

As our previous experiments demonstrate promising performances in tasks of relation clas-
sification and inference, we further analyze the proposed pipeline system in the following
aspects:
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Table 7 Relation inference on
top-n entity pairs

Relations Hits@10 Hits@20 Hits@50

is_Symptom_of 0.70 0.70 0.38

is_Experimental 0.80 0.70 0.54

Causes 0.75 0.65 0.52

Affects 0.73 0.85 0.72

is_Related_to 0.77 0.78 0.66

Belongs_to 0.20 0.15 0.28

Domain-specific characteristics Although our approach should certainly work in gen-
eral purposed knowledge extraction where less limitations exist, the two main steps
involving domain-specific characteristics, which are entity recognition and entity &
relation embedding, contribute to solving this more challenging problem in biomed-
ical domain. Empirically we have compared the general-purposed NER tools such
as Standford NER [14] with domain-specific tools [13,32], and the results indicate
that domain-specific knowledge is necessary (such as UMLS). Additionally, the entity
embeddings and relation embeddings are extracted and derived from domain-specific
corpus, which are scientific articles in ASD in our case. The corpus conveys domain
knowledge and generates semantical meaning for the entities and relations through
embedding vectors. As a demonstration, we further cluster the entities based on the
embeddings learned from skip-gram and observe that clusters mostly consist of entities
with same types. For example, we find clusters consist of symptoms such as erythema,
social phobias, hyperphagia and agrammatism; proteins related entities such as P38
mitogen-activated protein kinases, Granulocyte-macrophage colony-stimulating factor
and anandamide; and organ related entities such as thalamic, cerebrum and ventricles.
Component analysis According to the experimental results in Sect. 4.3, improvements
are obtained incrementally by adding model schemes in relation extraction and denois-
ing through relation refinement. Because there is no supervision (manual annotation)
involved during the training process, results generated by skip-gram embedding and
clustering are noisy and unreliable. Therefore, a step of relation refinement is necessary
and multi-instance learning scheme is appropriate to work with weak labels for that
purpose. Additionally, we obtain the optimized neural network during our model selec-
tion (Table 2) by adding piecewise max-pooling. The combination of multi-instance
learning with attention mechanism demonstrates significant improvements and obtains
a robust performance by comparing Tables 3 and 4.
LimitationsDespite we show promising results in both relation extraction (after refine-
ment) and relation inference tasks, there are mainly two limitations we observe both
results from theunsupervised trainingprocess: (1) the proposed framework is only capa-
ble of generating coarse-grained relations and (2) relations with similar semantics are
difficult to distinguish. Since all relations are initialized based on the clustering results,
the only factor we control that has an impact on generating relations is the number of
clusters. However, weak signals from the relations with only a few observed samples
(uncommon relations) cannot form a cluster of their own and are overwhelmed by the
relations with much more samples. Additionally, it is difficult to distinguish closely
related relations because the relation embeddings are also derived from unsupervised
learning. As we have discussed in Sect. 4.3 that the relation is_a is too semantically
similar to is_part_of in the embedding space that the relation vectors from both rela-
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tions are always mixed within clusters and cannot be distinguished. For example,
right_fusiform_gyrus is a brain_region while insular_cortex is in the brain but they
are embedded into the same cluster. A potential solution to these limitations caused by
the lack of supervision is to integrate one-shot learning relation extraction [37] where
only one or a few samples of the uncommon relations are needed in order to capture
the weak signals and obtain fine-grained relations, and the framework remains in a
minimally supervised fashion.
Potential improvementsWepropose this approach toworkunder the extremecasewhere
neither large-scale relation annotations nor external knowledge such as ontology or
knowledge graph exist. On the other hand, the framework can potentially benefit from
external domain knowledge if available. For example, if the targeted domain is protein
and the targeted corpus matches the domain knowledge, UniProt ontology in this case,
then it can be used either as a source of distant supervision [4], or to provide relation
anchors for relation linking [15]. If large-scale relation annotations are available, it
is more intuitive to formulate the problem in a supervised fashion where knowledge
graph embedding approaches can be used to extract initial features. However, this is not
likely the case in practical especially in biomedical domain. Additionally, progressive
process has shown benefits in handling classification tasks with weak labels [36],
which indicates potential improvements in our approachby adopting statistical drop-out
mechanism and iteratively training themodelwith refined labels. Similarly, consistency
constrains such as entity and relation typing check are effective to filter out candidate
facts with mismatched entities as discussed in [13], which is potentially helpful in our
case to further refine the false predictions caused by weakly supervision.

5 Conclusion and future work

In this paper, we have proposed a minimally supervised approach for biomedical knowledge
graph construction. It is capable of extracting open-ended relations with high precisions and
can be extended to other domains such as psychology. A relation refinement process based
on a piecewise CNN with selective attention and multi-instance learning shows a significant
improvement in the overall performance over the noisy labels generated from kmeans++
clustering. The proposed approach is shown to be accurate and effective for knowledge
graph construction and the constructed knowledge graph is sufficient for further knowledge
graph completion supported by the experimental results. In the future, we are interested in
taking advantage of the domain knowledge embedded in the constructed knowledge graph
and exploring its real-world applications, such as fine-grained medical retrieval enrichment,
robust disease diagnosis, and amore interpretable representation learning on electronic health
records (EHR) by a joint embedding with the constructed knowledge graph.
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