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Abstract
Frequent episode discovery is a popular framework in temporal data mining with many
applications. An episode is a partially ordered set of nodes with each node associated with
an event-type. The episodes literature has seen different notions of frequency and a variety
of associated discovery algorithms under these different frequencies when the associated
partial order is total (serial episode) or trivial (parallel episode). Recently an apriori-based
discovery algorithm for mining episodes where the associated partial order has no restriction
but the node to event-type association is one–one (general injective episodes) was proposed
based on the non-overlapped frequency measure. This work pointed out that frequency alone
is not a sufficient indicator of interestingness in the context of episodes with general partial
orders and introduced a newmeasure of interestingness called bidirectional evidence (BE) to
address this issue. This algorithm discovers episodes by incorporating both frequency and BE
thresholds in the level-wise procedure. In this paper, we extend this BE-based algorithm to a
much larger class of episodes that we call chain episodes. This class encompasses all serial
and parallel episodes (injective or otherwise) and alsomany other non-injective episodes with
unrestricted partial orders. We first discuss how the BE measure can be generalized to chain
episodes and prove the monotonicity property it satisfies in this general context. We then
describe our candidate generation step (with correctness proofs) which nicely exploits this
new monotonicity property. We further describe the frequency counting (with correctness
proofs) and BE computation steps for chain episodes. The experimental results demonstrate
the effectiveness of our algorithms.
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1 Introduction

Frequent episode discovery [18] is a popular framework for mining temporal correlations
in event sequences with applications in several domains like manufacturing [28], telecom-
munication [18], WWW [16], biology [8,20], finance [19], intrusion detection [17,29], text
mining [14], composable conveyor systems [13], etc. In this framework, the data is a single
long time-ordered sequence of events. The temporal patterns of interest called episodes are
small, partially ordered collections of nodes, with each node associated with a symbol (called
event-type). The partial order in the episode constrains the time-order in which events con-
stituting an occurrence of the pattern appear in the data. The task is to unearth all episodes
whose frequency in the data exceeds a user-defined threshold.

Over the years, in the episodes context, a variety of discovery algorithms are proposed.
Most of these algorithms have restricted their attention to only serial episodes (where the par-
tial order is a total order) or only parallel episodes (where the partial order is trivial) [1,3]. The
class of methods can be broadly categorized into breadth-first search [3,14,15,18] and depth-
first search [4,12] approaches based on their search strategies. Choice of frequency thresholds
in pattern mining is typically arbitrary. There has been considerable work towards assessing
interestingness of patterns based on sound statistical ideas under different episode frequen-
cies [2,7,22–24]. Another important issue in pattern discovery is to be able to mine online
streams. There has been some recent work in this direction in the episodes context [10,11,21].

Even though the original episodes framework is almost two decades old, algorithms for
discovering episodes under general partial orders have been proposed only in the last couple
of years. Apriori-based discovery algorithms to mine injective episodes1 with general partial
orders based on the non-overlapped frequency was proposed in [5]. Another level-wise algo-
rithm for discovering frequent episodes with general partial orders under the windows-based
and non-overlapped frequency is proposed in [25,27]. They consider a class of episodes with
general partial orders that they call strict episodes. They mine for frequent closed (strict)
episodes which is a compressed version of the set of all frequent episodes. Tatti and Cule
[26] proposes an interesting depth-first approach for episode mining of general episodes. We
elaborate more on the related work in Sect. 7 after describing our work in detail.

In this paper, we extend the apriori-based discovery algorithm for injective episodes,
presented in [5], to a bigger class of episodes with general partial orders. This class is same
as what was termed strict episodes in [25,27]. This class of episodes was independently
proposed in [1,6] where the class has been called chain episodes. For this reason, we would
call these episodes as chain episodes in this paper. However, we emphasize that the terms
strict episodes and chain episodes are synonymous. The class of chain episodes includes
all (injective and non-injective) serial and parallel episodes. It also includes many other
non-injective episodes with general partial orders.

For instance, consider multi-neuronal spike train data from a neural tissue as an example
event sequence where each event corresponds to the identity of the neuron firing and the
associated time of firing. The episode pattern is useful in capturing the underlying functional
circuits or dependencies present in the tissue. Injective episode graphs can be useful when the
underlying functional circuits involve distinct neurons.However,when the underlying circuits
have feedback relationships, injective episodes do not suffice and the need for mining beyond
injective episodes with general partial orders becomes important. Consider a relationship
where firing of neuron A results in two other distinct neurons B and C firing within a certain
delay. Further if B and C firing almost synchronously in-turn triggers neuron A, this kind of

1 An episode is injective if the associated node to event-type map is one to one.
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a cyclic dependency is evidently not capturable by general injective episodes. It can neither
be captured by serial or parallel non-injective episodes. This simple example motivates the
need for mining patterns in the bigger class of chain episodes considered in this paper.

In [5], it was pointed out that, for general partial order mining, frequency alone is not
a sufficient indicator of interestingness and the authors introduced a new measure called
bidirectional evidence (BE) which is used, along with frequency, to properly assess interest-
ingness of an injective episode. The algorithm we propose here is an apriori-style level-wise
procedure for discovering in the space of chain episodes which use both frequency and
bidirectional evidence to assess interestingness. We note that unlike in this paper, the other
existing works like [25,27] discover chain episodes using frequency alone as a measure of
interestingness. Our specific contributions in this paper are as follows:

– We introduce the class of chain episodes2 which nicely subsumes all (injective or other-
wise) serial and parallel episodes and all injective episodes with general partial orders.

– We extend the notion of BE (introduced earlier for injective episodes in [5]) to chain
episodes.We identify and prove a newmonotonicity property satisfied by the BEmeasure
in the context of chain episodes.

– Towards the design of an apriori-style algorithm, we present a novel candidate generation
method that exploits the abovemonotonicity property.We formally prove that themethod
generates all interesting episodes without any duplication. This proposed method turns
out to be a neat but non-trivial extension of the injective episode candidate generation
proposed earlier in [5]. On the other hand, the proposed method is very different from
the existing candidate generation employed in the levelwise procedure of [25].

– The proposed candidate generation also has some intelligent modifications (compared to
[5]) in a step that checks for transitive closure. These checks when applied to the injective
episode candidate generation algorithm of [5] make it more efficient.

– We propose algorithms for counting non-overlapped as well as minimal occurrence-
based frequencies of chain episodes which are relatively straightforward extensions of
the counting schemes proposed in [5].We also provide novel proofs of correctness of these
counting schemes3 which were not discussed even in the context of injective episodes
in [5].

– We also present an algorithm for computing BE of chain episodes while frequency count-
ing. This has some important differences when compared to the corresponding algorithm
in the case of injective episodes [5].

– We demonstrate the efficacy of our method in detail on synthetic data traces.

The rest of this paper is organized as follows. Section 2 briefly reviews the formalism
of episodes. We introduce the class of chain episodes in Sect. 3 and places our contribution
in context of the current literature. Section 4 describes bidirectional evidence, an additional
measure of interestingness for general partial order episodes, in the context of chain episodes
and the monotonicity property it satisfies. Section 5 describes the candidate generation step
incorporating this new monotonicity property in detail. The computational aspects of both
frequency and bidirectional evidence are described in Sect. 6. We discuss related work in
Sect. 7. Section 8 illustrates the effectiveness of our algorithms through simulations. In Sect. 9,
we provide concluding remarks.

2 The class was originally introduced in [6] while the term “Chain Episodes” was explicitly used for the first
time in [1].
3 The correctness proof for chain episode counting we present here is a minor extension of the correctness
proofs for injective episodes first reported in [1]. An alternate correctness proof for chain episode counting is
given in [25] which appeared after [1].
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2 Episodes in event sequences

In the frequent episode framework [18], the data, referred to as an event sequence, is denoted
by D = 〈(E1, t1), (E2, t2), . . . (En, tn)〉, where n is the number of events in the data. In each
tuple (Ei , ti ), Ei denotes the event-type and ti the time of occurrence of the event. The Ei ,
take values from a finite set, E . The sequence is ordered so that ti ≤ ti+1 for i = 1, 2, . . ..
Each event here is instantaneous and we make a further assumption that two events of the
same event-type do not occur at the same instant. As this is the case in most applications
encountered in practice, we assume that at any given time t , an event of a given type can
occur only once. However, at a given time there can be more than one event (of different
types) which is why we allow for ti+1 = ti .

The event-types denote some information regarding nature of each event and they are
application-specific. For example, event sequence could contain information about spikes or
firing of action potentials by individual neurons in a neural tissue [9,22]. Each event is now
represented by the identity of a neuron and its time of firing. Another example of an event
sequence could be a sequence of fault alarms in an assembly line in amanufacturing plant [28]
and the event-types represent some codes that characterize each such fault-reporting event.
The objective is to analyse such sequential data to unearth interesting temporal patterns that
are useful in the context of applications. In the above two applications, we may be interested
in temporal patterns that enable us to unearth the functional dependencies between interacting
neurons or to diagnose the root-cause for some fault alarm that is currently seen. The temporal
patterns that we may wish to represent and discover are called episodes which we formally
define below.

Definition 1 [18]An N -node episodeα, is a tuple, (Vα,<α, gα),whereVα = {v1, v2, . . . , vN }
is a collection of nodes, <α is a (strict) partial order4 on Vα and gα : Vα → E is a map that
associates each node with an event-type from E .

In other words, an episode is a multiset of event-types with a partial order on it. When
<α is a total order, α is referred to as a serial episode and when <α is empty, α is referred
to as a parallel episode. An example of a 3-node episode could be α = (Vα,<α, gα), where
v1 <α v2 and v1 <α v3, and gα(v1) = B, gα(v2) = A, gα(v3) = C . This is shown in Fig. 1a.
We denote this using a simple graphical notation as (B → (AC)), because it captures the
essence of the temporal pattern represented by this episode, namely B is followed by A and
C in any order. Similarly, we represent a serial episode capturing the pattern A followed by
B followed by C as (A → B → C). A parallel episode involving the event-types A, B and
C is represented as (A B C). Figure 1 gives a variety of example episodes with their compact
graphical notation. This compact graphical notation omits transitively closed edges and is
used throughout the paper to refer to episodes succinctly.

The episode patterns defined above represent some kind of temporal dependencies involv-
ing a set of event-types. The same pattern can mean different things depending on the
application. For example, in the manufacturing plant context discussed before, suppose an
event-type C represents a major type of fault. If the underlying causative chain resulting in
C’s occurrence is such that faults of type B and A occurring in either order sufficiently close
together trigger C , then the episode pattern ((B A) → C) aptly captures this correlation.

4 Given any set V , a relation R over V (which is a subset of V × V ) is said to be a strict partial order if
it is irreflexive (i.e. for all v ∈ V , (v, v) /∈ R), asymmetric (i.e. (v1, v2) ∈ R implies that (v2, v1) /∈ R,
for all distinct v1, v2 ∈ V ) and transitive (i.e. ∀v1, v2, v3 ∈ V , (v1, v2) ∈ R and (v2, v3) ∈ R implies that
(v1, v3) ∈ R).
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(a) (b) (c) (d)

Fig. 1 Example episodes

(a)

(b)

Fig. 2 Some occurrences of (B → (A(B → C)))

(a) (b) (c) (d) (e) (f)

Fig. 3 Example subepisodes of ((E F) → (F D) → E) (Fig. 1d)

In the multi-neuronal context, the episode pattern ((B A) → C) can capture the functional
connectivity among 3 neurons, namely neurons B and A when firing close together in any
order causes C to fire.

Definition 2 [18] Given an event sequence, 〈(E1, t1), . . ., (En, tn)〉 and an episode α =
(Vα,<α, gα), an occurrence ofα in the event sequence is a one–onemap h : Vα → {1, . . . , n}
such that gα(v) = Eh(v) ∀v ∈ Vα , and ∀v,w ∈ Vα , v <α w, we have th(v) < th(w).

An occurrence of an N -node episode α is basically a subset of N events from the event
sequence which conform to the underlying partial order <α . From the h-map point of view,
this subset of N events corresponds to the range of the h function. Figure 2a, b shows four
occurrences of (B → (A(B → C))), with all events constituting each occurrence marked
with the same colour. This episode is shown in Fig. 1b.

Definition 3 [18] Episode β = (Vβ,<β, gβ) is said to be a subepisode of α = (Vα,<α, gα)

(denoted β � α) if there exists a 1−1map fβα : Vβ → Vα such that (i) gβ(v) = gα( fβα(v))

∀v ∈ Vβ , (ii) ∀v,w ∈ Vβ with v <β w, we have fβα(v) <α fβα(w) in Vα .

Thus, (B → A), (B → C) and (AC) are 2-node subepisodes of (B → (AC))while (BAC) is
3-node subepisode of it. Figure 3 gives a number of subepisodes of ((E F) → (F D) → E),
which is the episode shown in Fig. 1d. The importance of the notion of subepisode is that
if β � α, then every occurrence of α contains an occurrence of β [18]. We say β is a strict
subepisode of α if β � α and α 	= β.

Given an event sequence, the data mining task is to discover all interesting episodes.
In most of the episode discovery algorithms, this is same as discovering episodes whose
frequencies exceed a given threshold. Frequency is some measure of how often an episode
occurs. As mentioned earlier, the frequency of episodes can be defined in many ways [3]. In
this paper, we concentrate on the non-overlapped frequency only.While describing frequency
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(a)

(b)

Fig. 4 Minimal occurrences of (B → (A(B → C))): two are shown in a and one in b

counting, wewill also touch upon the closely related frequencymeasure based on theminimal
occurrences [18]. We now explain both these measures.

Definition 4 [18] A minimal window of α in an event sequence D is a time-window which
contains an occurrence of α, such that no proper sub-window of it contains an occurrence
of α. An occurrence in a minimal window is called a minimal occurrence. The minimal
occurrence-based frequency of α in D (denoted fmi ) is defined as the number of minimal
windows of α in D.

In the event sequence of Fig. 4, there exists 3 minimal windows of (B → (A(B → C))),
namely [1, 4], [6, 9] and [7, 11] and the occurrences indicated are minimal occurrences from
each of these windows.

Definition 5 [15] Two occurrences h1 and h2 of α are said to be non-overlapped in D if
either maxi th1(vi ) < min j th2(v j ) or maxi th2(vi ) < min j th1(v j ). A set of occurrences is said
to be non-overlapped if every pair of occurrences in the set is non-overlapped. A set H , of
non-overlapped occurrences of α inD, ismaximal if |H | ≥ |H ′|, where H ′ is any other set of
non-overlapped occurrences of α in D. The non-overlapped frequency of α in D (denoted
as fno) is defined as the cardinality of a maximal non-overlapped set of occurrences of α in
D.

For example, occurrences marked in Fig. 4a form a maximal set of non-overlapped occur-
rences of (B → (A(B → C))). This means its non-overlapped frequency is 2. This
paper primarily concerns discovery algorithms under non-overlapped frequency. Minimal
occurrence-based frequency is considered only in Sect. 6. Hence, in the rest of the paper, by
frequency, we mean non-overlapped (unless otherwise specified).

3 Chain episodes

Wefirst define injective episodes and then consider chain episodes. Injective episodes exactly
capture the first-cut intuitive notion of an episode being a set of event-types with a partial
order on it.

Definition 6 An episode α = (Vα,<α, gα) is an injective episode if the corresponding gα

map is one to one. An injective episode α can also be viewed as a partially ordered set of
event-types (Xα, Rα)where Xα is the range of the gα map and Rα is the partial order induced
on Xα by <α .

Basically, injective episodes are a set of non-repeated event-types with a partial order on
it. Injective episodes represent a fairly rich class of episodes with general partial orders and
there are efficient algorithms to discover frequent injective episodes [5]. Themethod reported
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in [5] is one of the first methods that can discover episodes with unrestricted partial orders.
The assumption of injectiveness on the gα map implies that no event-types can repeat in an
episode. For example, consider themulti-neuronal spike train data when episodes can capture
functional circuits in the neuronal tissue. In such a scenario, many types of functional circuit
graphs can be represented by injective episodes as long as all the participating neurons
are distinct. However, when there is feedback or cyclic relationships, then the underlying
temporal dependencies cannot be captured by injective episodes. Such cyclic dependencies
exist in many other application domains also, e.g. fluctuations in share prices. In this paper,
we introduce a class of episodes that we call chain episodes which is a generalization of
injective episodes where certain kinds of repetition of event-types would be possible. Before
defining chain episodes, we define the standard notion of a chain.

Definition 7 Given a partial order (Vα,<α), a chain is a totally ordered subset of Vα under
the partial order <α .

Definition 8 An episode α = (Vα,<α, gα) is a chain episode if any set of nodes which map
to the same event-type under the map gα forms a chain under <α .

One can immediately see that any injective episode is (vacuously) a chain episode. When
<α is a total order, any gα map satisfies Definition 8. Thus all serial episodes (injective or
otherwise) are chain. We define notion of equivalent episodes, which will be useful in the
rest of section.

Definition 9 We define two episodes β and β ′ to be equivalent if they share the same set of
occurrences in any event sequence.

We now show how a non-injective parallel episode too can be cast as a chain episode.
Consider, for example, α = (AABBB), a non-injective parallel episode. By the definition
of a parallel episode, α = (Vα,<α, gα) has a representation where Vα = {v1, v2, v3, v4, v5},
<α= {}, gα(v1) = gα(v2) = A and gα(v3) = gα(v4) = gα(v5) = B, which does not satisfy
Definition 8 and hence is not a chain episode. But consider the following episodeα′ = ((A →
A)(B → B → B)). That is, α′ = (Vα′ ,<α′ , gα′), where Vα = {v1, v2, v3, v4, v5}, <α=
{(v1, v2), (v3, v4), (v4, v5), (v3, v5)} and gα(v1) = gα(v2) = A and gα(v3) = gα(v4) =
gα(v5) = B. One can see that this is a chain episode. Recall from Sect. 2 that event sequences
considered here contain instantaneous events. Also, at any given time tick t , a specific event-
type can occur at most once (though multiple events of different event-types can occur at the
same time instant). In such event sequences, every occurrence of α is also an occurrence of
α′ and conversely and hence are equivalent as per Definition 9. Even though α and α′ are
different discrete structures, they are indistinguishable episodes in terms of their occurrences.
In general, an episode β having an equivalent representation β ′ satisfying Definition 8 is also
a chain episode. Hence, in this sense, α is a chain episode. From this example, one can see
that every non-injective parallel episode will have an equivalent representation in the class of
chain episodes, and hence every (non-injective) parallel episode is indeed a chain episode.

Remark 1 Generalizing from the above non-injective parallel episode case, we can conclude
that episodes that apparently do not satisfy Definition 8 can still be chain episodes as long
as they have an equivalent representation (as per Definition 9) that satisfies Definition 8. To
summarize, an episode (as per Definition 1) which also satisfies Definition 8 is certainly a
chain episode. However, an episode β (as per Definition 1) which does not satisfy Definition 8
may still be a chain episode as long as it has an equivalent representation β ′ (as per Definition
9) that satisfies Definition 8.
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(a) (b) (c)

Fig. 5 Illustration of why ((A → B)(A)) is a chain episode

Based on this crucial observation, we briefly explore the space of episodes in the order
of increasing size (number of nodes) for genuine non-chain episodes. By genuine, we mean
episodes which don’t have an equivalent representation satisfying Definition 8. At the 2-node
level, we find only serial or parallel episodes. Hence every episode of size 2 is a chain episode.

One can show that every 3-node episode is also chain. For example, consider β = ((A →
B)(A)) (Fig. 5a), which does not satisfy Definition 8. Nevertheless, β ′ = (A → (AB))

(Fig. 5b) which satisfies Definition 8 is an equivalent representation of β. Hence, β is a chain
episode.

We got an equivalent chain representation β ′ = (A → (AB)) by adding the edge (v1, v2)
to <β as indicated in Fig. 5b. On the other hand, if we had tried to generate a chain rep-
resentation by adding the edge (v2, v1) to <β , this would have induced an edge (v2, v3)
to maintain transitivity as shown in Fig. 5c. Let β ′′ denote this new discrete structure. The
important thing to observe is that v2 and v3 are associated with different event-types under
the gβ map. Hence, β and β ′′ do not share the same set of occurrences and are not equivalent.
Specifically, A followed by B followed by A would be an occurrence of β but not of β ′′.
From this example, we make a crucial observation.

Remark 2 If by adding an edge between two nodes mapped to the same event-type of an
episode α, an edge is induced between two nodes mapped to different event-types (as per
α) to maintain transitivity in the newer episode α′, then α and α′ are clearly not equivalent
as α′ is more constrained. In general, given an episode that does not satisfy Definition 8,
to ascertain if its still a genuine chain episode OR if it has an equivalent representation
satisfyingDefinition 8, one can do the following.We introduce edges between nodesmapping
to the same event-type and eventually impose a total order on every group of nodes (cluster)
mapped to the same event-type. This in principle can be done in multiple ways. For each
such (total order based) addition of edges within a cluster, we ask if the transitive closure
operation tomaintain transitivity introduces any new edges between nodesmapped to distinct
event-types. If it introduces such an edge for every combination of total orders possible
on every cluster of nodes mapped to the same event-type, then the episode cannot be a
chain episode. For example α = ((B → A)(B → C)), as discussed further cannot be a
chain episode. If there exists a total order imposition on each cluster of nodes such that the
subsequent transitive closure does not introduce any edge across clusters, then we have found
an equivalent chain episode representation and hence the original episode is genuinely chain.
The episode β = ((A → B)(A)) discussed above is a case in point here.

Proposition 1 Every 3-node episode is chain.

Proof At the 3-node level, for an episode α, the underlying <α can have either 0, 1, 2 or 3
edges. If the number of edges is 0, it is a parallel episode and if the number of edges is 3,
it is a serial episode. For both of these cases, we already know that α is a chain episode.
We now show for the remaining two cases. (i) 1 edge in <α: <α= {(v1, v2)} is graph
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(a) (b) (c)

Fig. 6 Illustration of why ((B → A)(B → C)) is not a chain episode

isomorphic to the other possibilities of <α . For this <α , α can be non-chain in two ways, (a)
gα(v1) = gα(v3) and (b) gα(v2) = gα(v3). For (a), addition of (v1, v3) shows that α has an
equivalent chain episode representation as explained in the example of Fig. 5. Similarly for
(b), addition of (v3, v2) makes α a chain episode. (ii) 2 edges in <α: There are essentially
two possibilities for <α here (up to graph isomorphisms), (a) <α= {(v1, v2), (v1, v3)} and
(b) <α= {(v1, v3), (v2, v3)}. Under (a), α can be non-chain if gα(v2) = gα(v3). By adding
either (v3, v2) or (v2, v3) to <α , we have an equivalent chain episode representation. Under
(b), α can be non-chain if gα(v1) = gα(v2). By adding either (v1, v2) or (v2, v1) to <α , we
have an equivalent chain episode representation. This completes the proof that every 3-node
episode is chain. �

Next, consider the following 4-node episode α = ((B → A)(B → C)), shown in Fig. 6a,
which does not satisfy Definition 8. We now show that there does not exist an equivalent
representation for α in the class of chain episodes. There are two ways in which one can try
to generate a chain representation for α. We add either (v1, v2) or (v2, v1) to <α to make α a
chain episode. If we add (v1, v2) to <α , then to maintain transitivity an extra edge (v1, v4)

has to be added to <α (see Fig. 6b). Since v1 and v4 are associated with different event-
types under the gα map, from Remark 2, we would not get an equivalent episode. Similarly,
adding the edge (v2, v1) to <α induces the edge (v2, v3) (see Fig. 6c). Again, v2 and v3 are
associated with A and B (distinct event-types), respectively, in α because of which the new
episode will not share the same occurrences as that of α. This shows that this is a 4-node
episode that does not have an equivalent representation in the class of chain episodes.

3.1 Representation of chain episodes

Even if one restricts to episodes satisfying Definition 8 (chain episodes), there exists an
inherent ambiguity in the representation of the episode pattern as given by Definition 1. To
tackle this issue, we first assume a lexicographic ordering on E and restrict the g-map such
that g(v1), g(v2), . . . g(v�) obey this lexicographic order. For example, suppose we have a
5-node episode with 3 of the nodes mapped to A and the remaining 2 mapped to B. Then,
g(vi ) must be A for i = 1, 2, 3 and B for i = 4, 5. Further, since chain episodes are such
that the nodes mapped to the same event form a chain, we further impose a special restriction
on <α to avoid further ambiguity. Suppose vi , vi+1, . . . vi+m are mapped to the same event-
type E . There are (m + 1)! total orders possible among these nodes, each of which would
represent the same episode pattern. To avoid this redundancy, we restrict <α to be such that
vi <α vi+1 <α · · · vi+m . Table 1 gives 3 examples to illustrate this unique representation. In
actual implementations, a chain episode is stored using an array α.g and the adjacencymatrix
α.e. α.g[i] is assigned the value gα(vi ). The partial order <α , associated with the episode
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Table 1 Some example episodes: first row—(Vα, <α, gα) notation

Second row—graphical notation. Third row—array of event-types, α.g, which can have repeated event-types.
Fourth row—adjacency matrix, α.e corresponding to <α . Last row shows the episode graphically with nodes
placed in order. This representation is very useful in explaining candidate generation as we see next

is stored as a binary adjacency matrix, where α.e[i][ j] = 1 iff vi <α v j . Table 1 also gives
details of the array α.g and matrix α.e for the episodes considered.

4 Bidirectional evidence

The notion of bidirectional evidence was introduced in [5] for injective episodes. Recall from
Definition 6, an injective episode α can be viewed as a partially ordered set of event-types
(Xα, Rα). Given this simplified representation, an episode pattern specifies two kinds of
pairs of event-types: (a) related under Rα (b) unrelated under the Rα . The occurrence of
any episode α by definition (and hence its frequency) captures evidence for only pairs of
event-types from Xα which are related under Rα . This is in the sense that for any pair of
event-types Ei , E j ∈ Xα such that (Ei , E j ) ∈ Rα , any occurrence of α assures that the Ei

precedes E j in time. The time order between pairs of event-types that are unrelated could
be anything. Hence, frequency alone does not capture any evidence in the data for unrelated
pairs of event-types in an injective episode. This aspect of frequency also manifests itself
as a combinatorially explosive number of (partial order) patterns being frequent in spite of
being uninteresting as explained in the beginning of Sect. 7.

The notion of bidirectional evidence tackles this issue. The BE-based threshold for injec-
tive episodes not only filters such explosive number of uninteresting patterns but also makes
mining more efficient. It captures evidence in the data for pairs of unrelated event-types from
the episode at hand. The way it does so is as follows. For every pair of unrelated event-
types, among the episode occurrences contributing to the frequency it demands the unrelated
event-types to occur in either order sufficiently often, as a mark of evidence for the absence
of any edge between the two event-types. For instance, for a 3-node injective episode like
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((AB) → C), BE demands that the event-types A and B occur in either order sufficiently
often in the occurrences of ((AB) → C) for the episode to be flagged as interesting in
addition to being frequent. Specifically, the measure is designed such that BE is high when
A and B occur in either order sufficiently often. On the other hand, if the data has mostly
occurrences of event-types A, B and C in the restricted order of A followed by B followed
by C , then even though the frequency of ((AB) → C) may be high in the data, there is
little evidence for an absence of an edge between A and B. In such a case, the BE measure
captures this appropriately by flagging a low BE value.

4.1 Bidirectional evidence for chain episodes

A similar issue exists in the class of chain episodes as well which encompasses the class of
injective episodes, and the notion of bidirectional evidence can be immediately extended to
chain episodes. The idea is for pairs of nodes that are unrelated in the episode, can BE capture
evidence in the data for an absence of edge in the pattern. It would do this by checking if the
associated event-types occur in either order sufficiently often. Note the associated event-types
have to be distinct (by chain episode definition) and hence this check is unambiguous. More
formally, we note that working with the (Xα, Rα) notation is not possible for general chain
episodes, which can be non-injective in general. In the context of chain episodes, given any
episode α = (Vα,<α, gα), frequency only captures evidence (in the data) for pairs of nodes
of Vα that are related as per <α . Support for pairs of nodes that are unrelated as per <α is
not captured by frequency. For any such pair of nodes (vi , v j ), we consider it evidence in
the data for not constraining (vi , v j ) under <α if among the occurrences (h) tracked by the
algorithm, th(vi ) is both less than and greater than th(v j ) sufficiently often. In other words, we
ask for gα(vi ) and gα(v j ) to occur in either order sufficiently often among the occurrences
tracked by the algorithm. This is not ambiguous, as under chain episodes, gα(vi ) and gα(v j )

would be distinct event-types by definition, because vi and v j are not related under <α . For
the sake of completeness, we discuss the notion of bidirectional evidence for general chain
episodes now for the case of data with one event per time tick.

Let Gα = {(i, j) : i, j ∈ {1, 2 . . . N }, i 	= j,
(
(vi , v j ), (v j , vi ) /∈<α

)} for an N -node
episode α. Let f α denote the number of occurrences (i.e. frequency) of α counted by our
algorithm and let f α

i j denote the number of these occurrences where th(vi ) is less than th(v j ).
Let pα

i j = f α
i j / f

α . Note that pα
j i = 1 − pα

i j , ∀ (i, j) ∈ Gα . We would want pα
i j to be close

to pα
j i for all (i, j) ∈ Gα . It is intuitive to expect that closer both pα

i j and pα
j i are to 0.5, the

more the evidence for no edge between vi and v j . The more this holds for every i, j ∈ Gα ,
higher the evidence for the interestingness of the entire partial order pattern. As in [5], to
obtain such a figure of merit, (essentially a function of pα

i j which peaks when pi j is close to
1/2), we choose the entropy of the distribution given by (pα

i j , 1 − pα
i j ). Let

Hα
i j = −pα

i j log(p
α
i j ) − (1 − pα

i j ) log(1 − pα
i j ). (1)

The bidirectional evidence of a chain episode α, denoted by H(α), is defined as follows.

H(α) = min
(i, j)∈Gα

Hα
i j . (2)

If Gα is empty (which will be the case for serial episodes) then, by convention, we take
H(α) = 1. This notion of bidirectional evidence for chain episodes nicely generalizes the
existing notion for injective episodes. For event sequences with multiple event-types at a
given time, there would be occurrences of a chain episode where, for a pair of unconstrained
nodes (vi , v j ), th(v j ) = th(vi ). We divide the count of such occurrences equally between pi j
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and p ji for calculating Hα
i j . The idea is that if all occurrences h contributing to the frequency

are such that th(v j ) = th(vi ), then there is maximum evidence in the data for the nodes vi and
v j to be unrelated and the corresponding Hα

i j value must be close to the maximum. In such
a case, our strategy calculates pi j as almost 1/2 and hence Hα

i j is maximum.

4.2 Incorporating Hth level-wise

We begin by defining the notion of a maximal subepisode for a general episode. The notion
is key in understanding the monotonicity property satisfied by the BE measure exploited
further by our candidate generation.

Definition 10 Let α = (Vα,<α, gα) be an �-node episode. If β is an episode obtained by
first restricting <α and gα to a k-node subset of Vα and then suitably renumbering the nodes
from 1 to k, β is called a k-node maximal subepisode of α.

For instance, ifα is as in Fig. 1d, then its subepisodes in Fig. 3a–c are its maximal subepisodes
whereas its subepisodes in Fig. 3d–f are non-maximal. It is easy to verify that maximal
subepisodes of a chain episode will be chain, whereas its non-maximal subepisodes need not
be chain episodes with the subepisode in Fig. 3f as an example.

For injective episodes, it was shown that if an episode α has a BE of H(α) in an event
sequence, then at least in the occurrences of α the BE of any of its maximal subepisodes will
be at least H(α). Further, in the same set of occurrences the BE of each of its non-maximal
subepisodes will be close to zero. This crucial observation was utilized in using BE-based
threshold level-wise. We generated an injective episode α as a candidate at level (� + 1)
only if all its �-node maximal subepisodes were also found to satisfy the frequency and BE
thresholds. While extending this idea to chain episodes, one needs to be slightly careful.

Consider the following non-injective chain episode α = (A → (A B)). Each occurrence
of this episode is basically an A followed by A and B in either order. The 2-node maximal
subepisodes of α are (A → B), (A → A) and (A B). Consider an event sequence consisting
only of occurrences of α. Let f be its frequency and say f /2 of them comes from A followed
by A followed by B and the remaining f /2 come from A followed by B followed by A.
On such a data, consider a simple algorithm which counts occurrences in a non-overlapped
fashion. Such an algorithm would follow a greedy strategy of picking or tracking the earliest
occurrences in a non-overlapped fashion.5 This simple strategywould compute the frequency
of (A B) as f but its BE would be computed to be zero because each occurrence it tracks
would be an A followed by a B. This is because, the algorithm would look for the earliest
A and earliest B, but in the process tracks the A corresponding to v1 in α which precedes
the occurrence of A and B happening in either order. We note that (A B) was obtained by
dropping v1 from α and this ended up in the algorithm aliasing the A corresponding to v1 of
α to the A in (A B). We would have ideally liked the algorithm to track the A (in the event
sequence) corresponding to v2 inαwhile tracking occurrences of (A B). This problemmainly
occurred because v1 was not the last node in α mapped to A. Generalizing this observation,
we have the following important property.

Property 1 For a general (� + 1)-node chain episode α, one can only guarantee that every
�-node maximal subepisode of α, namely β, obtained by dropping a node vi which is the
last node among all nodes in α mapping to gα(vi ), will at least have a BE of H(α) in the

5 We will elaborate later in Sect. 6 on how finite state automata can be used to track occurrences of episodes
and a strategy for counting with expiry time constraints.
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occurrences of α. In any occurrence of α, in case of any ambiguity in the choice of the
occurrence of β, the earliest occurrence of β is considered towards BE computation.

Proof Consider any occurrence hα (a set of events from the input event sequence) of α.
Consider two nodes vi ′ and v j ′ in Vβ with no edge between them as per <β . Since β is also
a chain episode, note that gβ(vi ′) and gβ(v j ′) are distinct event-types. Since β is a maximal
subepisode of α, there exist two associated nodes vi and v j in α (images of vi ′ and v j ′ under
the fβα(.)-map as per Definition 3), which map to the same two event-types under gα-map
with no edge between them in <α . If there were an edge between them in <α , β wouldn’t
be a maximal subepisode of α. Consider the earliest occurrence of β from hα , the set of
event-types constituting the occurrence of α. Let us denote it by hβ . The image of vi ′ and v j ′
under the hβ mapwould be the same two events obtained by applying hα on vi and v j . This is
guaranteed only becauseβ is amaximal subepisode obtained by dropping the last node among
nodes mapping to the same event-type from α. Further, this would mean the contribution of
the constructed occurrence hβ to Hβ

i ′ j ′ would be exactly identical to the contribution of hα

towards Hα
i j . Considering all occurrences of α now, for every (i ′, j ′) ∈ Gβ , there exists an

(i, j) ∈ Gα , such that Hβ

i ′ j ′ = Hα
i j . Using Eq. 2, we finally have H(β) ≥ H(α). �

Any non-maximal chain subepisode β of α obtained by dropping an edge between nodes
vi and v j which are mapped to two different nodes. The BE of such an episode would be
typically low when computed in the occurrences of α. This is because (i, j) now belongs to
Gβ even though is absent from Gα . Suppose the dropped edge is from vi to v j . Then in the

occurrences of α, g(vi ) always precedes g(v j ). This would imply that Hβ
i j is close to zero

and hence H(β) would be close to zero. This would mean such non-maximal subepisodes
on account of having low BE would get eliminated right from the lower levels when BE is
also applied at each level to assess interestingness in addition to frequency.

We note that Property 1 is not a strict but rather a restrictive monotonicity property. In
situationswheremost of themaximal subepisode occurrences of a significant frequent pattern
come from occurrences of the significant parent pattern, this property can be very useful to
employ during candidate generation in the level-wise procedure. Also, from a computational
perspective to combat the inherent combinatorial explosion in partial ordermining employing
a BE-based threshold can help us prune a lot of uninteresting patterns right from the lower
levels. Also in more general real situations, many of the occurrences of lower-sized maximal
subepisodes of an interesting pattern may come up from occurrences outside the interesting
pattern’s occurrences. This could for instance be due to the presence of random occurrences
of events involving the episodes, in which case these small-sized subepisodes tend to have
a high BE and hence will contribute to the potential generation of an interesting pattern
as a candidate. On the other hand, under tight expiry time constraints, the occurrences of
larger sized maximal subepisodes may mostly come from the significant interesting pattern
and hence will also have a high BE (by Property 1) and contribute to the generation of the
significant interesting pattern. Hence, employing BE thresholds in the levelwise search can
be a meaningful and useful strategy. We next describe our novel and non-trivial candidate
generation which fully exploits this monotonicity property.

5 Candidate generation

The candidate generation, at level (� + 1) takes as input F�, the set of �-node frequent chain
episodes and outputs C�+1, a set of (� + 1)-node candidate chain episodes.
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5.1 Steps in candidate generation

Each (�+1)-node candidate in C�+1 is generated by combining two suitable �-node frequent
chain episodes (out of F�). The method involves three main steps:

1. Picking suitable pairs of episodes from F�.
2. Combining each such pair to generate up to three episodes of size � + 1 which we call

potential candidates.
3. Finally constructing C�+1 by retaining only those potential candidates for which each of

their �-node subepisodes are frequent.

The steps in candidate generation for chain episodes resemble the ones proposed in the
context of injective episodes [5] and can be viewed as nice generalizations of the injective
episode case.We comment on similarities and differences between chain episode and injective
episode case at the end of each of the three subsections to follow.

5.1.1 Pairs of �-node episodes that can be combined

Each episode α1 = ({v1, v2, . . . v�},<α1 , gα1) from F� is combined with two types of
episodes. The first of this type of episodes (α2 = ({v1, v2, . . . v�},<α2 , gα2)) are such that
the following hold:

1. gα1(vi ) = gα2(vi ) ∀i = 1, . . . (� − 1),
2. <α1 |{v1,v2,...v�−1} =<α2 |{v1,v2,...v�−1}, that is, the restriction of <α1 on the first (� − 1)

nodes of α1 is same as the restriction of <α2 on the same set. In other words, vi <α1 v j

if and only if vi <α2 v j for i, j = 1, . . . , (� − 1).
3. gα1(v�) < gα2(v�).

Both α1 and α2 are in their respective unambiguous representations. Thus, we combine
α1 and α2 if the subepisodes obtained by dropping v� (their last node) from α1 and α2 are the
same. For example, α1 = (B → A → C → B) and α2 = (B → A → D → B) as shown
in Fig. 7 share the same 3-node subepisode (B → A → B) on dropping their last node v4.
Similarly, the two episodes α1 = (((B → A)D) → B) and α2 = (B → A → (B E))

shown in Fig. 8 share the same 3-node subepisode (B → A → B) on dropping their last
node v4.

Before describing the second type of combinable episodes, we need the following defini-
tion.

Definition 11 The r th node of an �-node episode α is the last node in Vα which maps to an
event-type different from gα(v�).

As an example, for the 5-node serial episode (A → B → B → C → C), the r th node is
v3 (i.e. r = 3). Also note that for an �-node episode r is at most (� − 1).

Given an episode α1, the second type of episodes (α2 = ({v1, v2, . . . v�},<α2 , gα2)) that
can be combined with it are such that the following hold:

1. gα1(vi ) = gα2(vi ) ∀i = 1, . . . (r − 1), gα1(vi ) = gα2(vi−1) ∀i = (r + 1), . . . �, where r
refers to the appropriate node (as per Definition 11) of 1.

2. Consider the restriction of <α1 to {v1, v2, . . . vr , vr+1, . . . v�} and renumber the nodes
vr+1, . . . v� to vr , . . . v�−1 without affecting the order among the nodes. This ordered set
must be identical to <α2 |{v1,v2,...v�−1}. This means the restriction of <α1 on the (� − 1)
nodes of α1 by dropping its r th node is same as the restriction of <α2 on the first (� − 1)
nodes of α2.
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Fig. 7 α2 is of first type: illustration where all 3 combinations come up. α1 = (B → A → C → B) and
α2 = (B → A → D → B)

Fig. 8 α2 is of first type: illustration where 2 combinations come up. α1 = (((B → A)D) → B) and
α2 = (B → A → (B E))

3. gα2(v�) = gα2(v�−1), (= gα1(v�) as well, as per condition 1 above).

The first two conditions above basically means that the subepisode obtained by dropping
the r th node of α1 is identical to the subepisode of α2 obtained by dropping the last node of
α2. As an example, consider α1 = (A(C → C)(E → E)) and α2 = (AC(E → E → E))

as in Fig. 9. Observe that the r th node of α1 is v3 and on dropping v3 from α1 and v5 from
α2, we obtain the same subepisode, namely (AC(E → E)), which is shown highlighted.

Note that if an episode α1 is combined with only the first type of episodes (α1), the
candidate generation exactly boils down to that of injective episodes discussed in [5].
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Fig. 9 α2 is of second type: Illustration where only Y0 combination is valid. α1 = (A(C → C)(E → E))

and α2 = (AC(E → E → E))

5.1.2 Finding potential candidates

Now we explain how to combine α1 with both types of episodes (α2). For the first type
of episodes, we first build an (� + 1)-node episode Y0 = (VY ,<Y0 , gY ) from α1 and α2.
We take VY = {v1, . . . , v�, v�+1}. The partial order relation, <Y0 , on VY is defined as
follows: vi <Y0 v j iff vi <α1 v j for i, j = 1, . . . �. Also, for i = 1, 2 . . . (� − 1), we have
vi <Y0 v�+1 iff vi <α2 v�, and v�+1 <Y0 vi iff v� <α2 vi . The gY map from VY to E is
such that gY (vi ) = gα1(vi ) for i = 1, . . . � and gY (v�+1) = gα2(v�). As an example of this
construction, again consider the two 4-node episodes of Fig. 7. Their Y0 combination is the
5-node episode (B → A → (CD) → B) as indicated in Fig. 7.

We first construct 3 possible episodes from α1 and α2: Y0 (as explained above), Y1 =
(VY ,<Y1 , gY ) and Y2 = (VY ,<Y2 , gY ). Here <Y1=<Y0 ∪(v�, v�+1) and <Y2=<Y0

∪(v�+1, v�). We note here that the three possible episodes Y0, Y1 and Y2 differ only in
the respective partial orders: <Y1 and <Y2 are obtained by adding one new edge each to
<Y0 . An episode (VY ,<Yi , gY ) is generated as a potential candidate iff <Yi is a partial
order. (For the remainder of the section, we refer to (VY ,<Yi , gY ) as the Yi combination
of two combinable chain episodes α1 and α2). Figure 7 demonstrates a case where all the
three combinations are potential candidates. On the other hand, Fig. 8 illustrates an example
where exactly two combinations are potential candidates.

For the second type of episodes, to start off, we again build an (� + 1)-node episode
Y0 = (VY ,<Y0 , gY ) from α1 and α2. We take VY = {v1, . . . , v�, v�+1}. The partial order
relation, <Y0 , on VY is defined as follows: vi <Y0 v j iff vi <α1 v j for i, j = 1, . . . �. Also,
for i = 1, 2 . . . (r − 1), we have vi <Y0 v�+1 iff vi <α2 v�, and v�+1 <Y0 vi iff v� <α2 vi .
Also, for i = (r + 1), . . . �, we have vi <Y0 v�+1 iff vi−1 <α2 v�, and v�+1 <Y0 vi iff
v� <α2 vi−1. The gY map from VY to E is such that gY (vi ) = gα1(vi ) for i = 1, . . . � and
gY (v�+1) = gα2(v�). As an example of this construction, again consider the two 5-node
episodes of Fig. 9. Their Y0 combination is the 5-node episode (A(C → C)(E → E)) as
indicated in Fig. 9.

We again construct 3 possible episodes from α1 and α2: Y0 (as explained above),
Y1 = (VY ,<Y1 , gY ) andY2 = (VY ,<Y2 , gY ). Here<Y1=<Y0 ∪(vr , v�+1) and<Y2=<Y0

∪(v�+1, vr ). We note here that the three possible episodes Y0, Y1 and Y2 differ only in the
respective partial orders:<Y1 and<Y2 are obtained by adding one new edge each to<Y0 . An
episode (VY ,<Yi , gY ) is generated as a potential candidate iff<Yi is a partial order. (For the
remainder of the section, we refer to (VY ,<Yi , gY ) as theYi combination of two combinable
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chain episodes α1 and α2). Figure 9 demonstrates a case where only Y0 combination is a
potential candidate.

To verify that<Yi is a valid partial order, for i = 0, 1, 2we need to check the antisymmetry
and transitivity of each<Yi . For the first type of combination,α1 andα2 share the same (�−1)-
node subepisode by dropping their last node v� and because of the way Y0 is constructed,
antisymmetry of each <Yi is immediate. Recall that in the second type of combination, the
same (� − 1)-node subepisode obtained by dropping the r th-node of α1 and last node of
α2. This fact and the way Y0 is constructed renders each <Yi antisymmetric. For the same
reasons, to check transitivity of each <Yi , it is enough to check transitivity for all size 3-
subsets of VY of the form {v�, v�+1, vi : 1 ≤ i ≤ (� − 1)} for the first type of combination
and {vr , v�+1, vi : i = 1 . . . (r − 1), (r + 1), . . . , �} for the second type of combination.
Hence, the transitivity check is O(�). Since each <Yi differs in at most one edge, one can
check for transitivity of <Yi in a more intelligent way as described in Sect. 5.3.

The 3 combinations proposed here are similar to the 3 combinations considered for can-
didate generation in the case of injective episodes [5]. In the above described procedure, if
we generate potential candidates by only combining an α1 with the first type of episodes
(α2), (at all levels), the candidate generation would be specialized to generate only injective
episodes.

5.1.3 Forming the final candidate episodes

The last step is to decide which of the potential candidates are actual candidates and hence
can be placed in C�+1. Recall from Sect. 4.2 that we generate an (� + 1)-node episode as a
candidate episode if all �-node maximal subepisodes of α obtained by dropping a node vi
which is the last node amongall nodes inαmapping to gα(vi ) are also found to be interesting at
level �. The way we have formed a potential candidate guarantees that the two such maximal
�-node subepisodes of α are already found in F�. Specifically, these two subepisodes are
obtained by dropping a node from the last two set of nodes of α which map to the same
event-type. For example, if {(A (C → C) (E → E → E)} is the potential candidate as on
the right-hand side of Fig. 9, then we already know that the maximal subepisodes obtained
by dropping v6 and v3 are already frequent. Hence in this step, we check for the existence
of the remaining such maximal subepisodes in F� to finally place a potential candidate in
C�+1. For {(A (C → C) (E → E → E)}, we only need to check for the existence of the
subepisode obtained by dropping v1 in F4.

For the injective episodes case, one blindly checks for the existence of all maximal
subepisodes of a potential candidate. The above specialized maximal subepisodes check
when applied to injective episode checks the existence of all maximal subepisodes as every
node maps to a unique event-type in this case. Hence, the checks for forming the final can-
didate episode for chain episodes goes through as it is for injective episodes.

As emphasized earlier, the above proposed candidate generation is very different from
that of the existing apriori-based method [25,27]. Please refer to Appendix A for a detailed
comparison with the existing method.A detailed correctness proof of the proposed candidate
generation is provided next.

5.2 Correctness proof of candidate generation

In this section, we show that: (i)every frequent chain episode is generated by our candidate
generation algorithm. (ii) a given chain episode is generated only once in the algorithm.
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Theorem 1 Every frequent6 chain episode would belong to the set of candidates generated.

Proof We show this by induction on the size of the episode. At level one, the set of candidates
contain all the one node episodes and hence contains all the frequent one node episodes. Now
suppose at level �, all frequent chain episodes of size � are indeed generated as candidates. If
an (�+1)-node chain episodeα = (Vα,<α, gα)) is frequent, then all itsmaximal subepisodes
(obtained by dropping the last node among all nodes mapped to the same event-type) are
frequent. We consider two cases here.

Case (i) gα(v�) < gα(v�+1) : The maximal �-node subepisodes α1 and α2 obtained by
dropping the nodes v�+1 and v�, respectively, are also chain episodes and are frequent and
hence generated at level � (as per the induction hypothesis). The important point to note is
that the (� − 1)-node subepisodes obtained by dropping the last nodes of these two episodes
are the same. Specifically for α1 here, α2 is an episode of type 1 (as explained earlier in
Sect. 5.1.1). Hence, the candidate generation method would combine these two frequent
chain episodes. Any chain episode α with gα(v�) < gα(v�+1) would be either a Y0, Y1 or
Y2 combination of its two maximal subepisodes α1 and α2 obtained by dropping the last and
last but-one nodes, respectively.

Case (ii) gα(v�) = gα(v�+1) : The maximal �-node subepisodes α1 and α2 obtained by
dropping the nodes v�+1 and the r th node of α, respectively, are also chain episodes and
are frequent and hence generated at level � (as per the induction hypothesis). Note that the
(� − 1)-node subepisode obtained by dropping the last node of α2 and the r th node of α1

are the same. Further in this case since gα2(v�) = gα2(v�−1) (condition 3 for episode α2

of type 2 as per Sect. 5.1.1) is satisfied. Hence, in this case for episode α1, α2 is of type 2
(as explained in Sect. 5.1.1), which means the candidate generation method would combine
these two frequent episodes. Even in this case, the chain episode α would be either a Y0, Y1

or Y2 combination of its two maximal subepisodes α1 and α2 obtained by dropping the last
and the r th node of α, respectively.

In both the above cases, <α is also a valid partial order.
Hence in either case α would be a potential candidate. Further, since all its appropriate

�-node maximal subepisodes are frequent and chain, they would all be generated at level � by
induction hypothesis. Hence α would be finally output in the set of final candidates generated
by our method. �
Theorem 2 The candidate generation algorithm does not generate any duplicate discrete
structures.

Proof It is easy to see from our candidate generation method that episodes generated from
a given pair (α1, α2) of �-node episodes are all different. This is because under the case
when gα(v�) < gα(v�+1) the three possible combinations differ with respect to the way v�

and v�+1 are related and hence are different. When gα(v�) = gα(v�+1), the three possible
combinations differ with respect to the way vr and v�+1 are related and hence are different.
Hence we need to consider the case when the same candidate is generated from two different
pairs of episodes.

Let α and α′ represent the two generated episodes from two distinct pairs (α1, α2) and
(α′

1, α
′
2), respectively. Suppose α and α′ generate the same candidate. We have four possi-

bilities here depending on whether α2 and α′
2 are of type 1 or type 2. If one of α2 and α′

2 is
of type 1 and the other of type 2, then we now show the two generated episodes α and α′ are
distinct. Suppose they are same, then we have gY = g′

Y . Without loss of generality, let us

6 By frequent here, we mean episodes which satisfy both the frequency and BE thresholds.
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assume, α2 is of type 1 and α′
2 is of type 2. Then, we have gY (v� < gY (v�+1) (∵ α2 is of type

1). Also, because α′
2 is of type 2, we have many equalities coming ahead. Since r is at most

(� − 1), we have gα′
1
(v�) = gα′

2
(v�−1). Further, condition 3 for a type 2 combination says

gα′
2
(v�−1) = gα′

2
(v�). We also have gα′

2
(v�) = g′

Y (v�+1) and gα′
1
(v�) = g′

Y (v�). Combining
the preceding 4 inequalities, we have g′

Y (v� = g′
Y (v�+1). But this contradicts the equality

of gY and g′
Y and hence the generated episodes must be distinct.

Let us consider the case of both α′
2 and α2 being of type 2. Let r1 and r ′

1 denote the r th
node of α1 and α′

1, respectively. We now show that if r1 and r ′
1 are distinct then the generated

episodes will also be distinct. Suppose r1 and r ′
1 are different and α and α′ are same. This

means gY = g′
Y . By the way episodes are combined, we have gα1 = gα′

1
. Without loss of

generality, let us assume r1 < r ′
1. By the defn. of r1, we have ∀i > r1, gα1(vi ) maps to the

same event-type. On the other hand, the defn of r ′
1 implies that gα′

1
(vi ) maps to the same

event-type, say E , ∀i > r ′
1. For i s.t. r1 < i ≤ r ′

1, each gα′
1
(vi ) maps to an event-type

different from E . This clearly contradicts gα1 = gα′
1
and hence if r1 and r ′

1 are different, α
and α′ must be distinct. Hence now we are left with the proof of unique candidates being
generated under that subcase of r1 = r ′

1. However, the proof of this subcase is very similar
to the last case of both α′

2 and α2 being of type 1. Therefore, we next present the proof of
only the last case.

For the generated episodes to be the same, both of them should come up as some Yi

combination. Without loss of generality, we consider the case when both these candidates
come up as Y0 combination. We have α = (VY ,<Y0 , gY ) and α′ = (VY ,<′

Y0
, g′

Y ), where
VY = {v1, v2, . . . v�+1}, <Y0 , <′

Y0
, gY and g′

Y are as explained in Sect. 5.1.2. Since the
generated candidates α and α′ are the same, we have (i)gY = g′

Y and (ii)<Y0=<′
Y0
.

Recall from the conditions for forming candidates that for i = 1, . . . , (� − 1), gY (vi ) =
gα1(vi ) = gα2(vi ). The second equality is because the restriction of gα1 and gα2 on their first
(� − 1) nodes are identical. Also, gY (v�) = gα1(v�) and gY (v�+1) = gα2(v�). An analogous
thing holds for g′

Y , gα′
1
, gα′

2
. This, along with gY (vi ) = g′

Y (vi ) for i = 1, . . . , � + 1 ((i)
above) would mean gα1 = gα′

1
and gα2 = gα′

2
. Thus if the pairs (α1, α2) and (α′

1, α
′
2) are to

be different, then the partial orders have to be different.
We have vi <α1 v j ⇐⇒ vi <Y0 v j ⇐⇒ vi <′

Y0
v j ⇐⇒ vi <α′

1
v j for

i = 1, . . . , �. The first and last equivalence come from the conditions for forming Y0.
The second equivalence is because <Y0=<′

Y0
((ii) above). This implies that <α1=<α′

1
. For

i = 1, . . . , (� − 1), we have vi <α2 v j ⇐⇒ vi <α1 v j ⇐⇒ vi <α′
1

v j ⇐⇒ vi <α′
2

v j .
The first and last equivalence is because the restriction of the partial orders of two combinable
�-node episodes on their first (� − 1) nodes are same. The second equivalence is from what
we have just concluded, that <α1=<α′

1
. Also for i = 1, . . . , (� − 1), we have vi <α2 v�

⇐⇒ vi <Y0 v�+1 ⇐⇒ vi <′
Y0

v�+1 ⇐⇒ vi <α′
2

v�. The first and last equivalences are
from the conditions for forming Y0. The second equivalence is because of (ii) above. We can
similarly show that v� <α2 vi ⇐⇒ v� <α′

2
vi for i = 1, . . . , (�−1). This altogether would

now imply that <α2=<α′
2
.

From the preceding two paragraphs, we have come to a point where α1 = α′
1 and α2 = α′

2.
This means the pairs of episodes we started off with are not distinct which is a contradiction.
Using similar arguments, we can show that no Y1 (or Y2) combination of two distinct pairs
of combinable chain episodes can give the same episodes. The case of both α2 and α′

2 being
to type 2 with r1 and r ′

1 being the same can be handled on very similar lines.
This completes the proof that every candidate chain episode is uniquely generated. Thus

we can see that our algorithm does not generate any candidate twice. �
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Table 2 The naive checks for transitivity

Check id Type of transitivity check Y0 Y1 Y2

(a) (v�, v�+1), (v�+1, z) ∈ <Yi
�⇒ (v�, z) ∈ <Yi

No Yes No

(b) (v�, z), (z, v�+1) ∈ <Yi
�⇒ (v�, v�+1) ∈ <Yi

Yes No Yes

(c) (v�+1, v�), (v�, z) ∈ <Yi
�⇒ (v�+1, z) ∈ <Yi

No No Yes

(d) (v�+1, z), (z, v�) ∈ <Yi
�⇒ (v�+1, v�) ∈ <Yi

Yes Yes No

(e) (z, v�), (v�, v�+1) ∈ <Yi
�⇒ (z, v�+1) ∈ <Yi

No Yes No

(f) (z, v�+1), (v�+1, v�) ∈ <Yi
�⇒ (z, v�) ∈ <Yi

No No Yes

Some of them are redundant which is indicated by ’no’ in the appropriate column

Table 3 Classification of the nodes in α

Sl. no. Node type for z Relation with v� and v�+1

1 (1) (v�, z) and (z, v�+1) belong to <Y0

2 (1′) (v�+1, z) and (z, v�) belong to <Y0

3 (2) (v�, z) ∈ <Y0 , no edge between z and v�+1

4 (2′) (z, v�) ∈ <Y0 , no edge between z and v�+1

5 (3) (v�+1, z) ∈ <Y0 , no edge between z and v�

6 (3′) (z, v�+1) ∈ <Y0 , no edge between z and v�

7 (4) (z, v�+1) and (z, v�) belong to <Y0

8 (4′) (v�+1, z) and (v�, z) belong to <Y0

9 (4′′) Neither connected to v� nor v�+1

5.3 Efficient checks for transitivity

We will describe these efficient checks for the first type of combinations where α1 and α2

share the same subepisode on dropping their last nodes. The checks for the second type of
combination is just a minor modification of the first type which will be indicated at the end
of this subsection. As seen in the previous section, to check for the transitivity of Y0, Y1

and Y2 combinations of two combinable frequent episodes, we need to check only for all
size-3 subsets of VY that are of the form {v�, v�+1, vi : 1 ≤ i ≤ (� − 1)}. This would mean
performing 6 checks for every tuple (v�, v�+1, vi ), i ∈ {1 . . . (�− 1)} as listed in Table 2 and
as adopted in [5]. One can check for transitivity of all the three combinations, Y0, Y1 and
Y2 more efficiently mainly because these combinations differ with respect to only one edge
among themselves. The more efficient algorithm for transitivity check to be presented now
also has worst case complexity O(�). However, the actual number of checks would be less
thus contributing to the efficiency of candidate generation.

Recall thatα1 andα2 share the same subepisode on dropping their respective last nodes.We
denote this common (�−1)-node episode as α. We note that α is the subepisode obtained by
dropping v� and v�+1 fromY0 combination of α1 and α2. Our efficient procedure constructs a
Y0 combination and does some special checks on the first (�−1) nodes in Y0 (or the nodes in
α) based on their edge relationships with v� and v�+1 and outputs all the potential candidates
(among the possible three) that can be generated from α1 and α2.
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Algorithm 1: GetPotentialCandidates(α1, α2)
Input: Patterns, α1 and α2, both of size �

Output: P , potential candidates from α1 and α2
1 Initialize P ← φ;
2 if ∃ a node of type 1 in α then P = {Y1}; return;
3 if ∃ a node of type 1′ in α then P = {Y2}; return;
4 else
5 Add Y0 to P ;
6 if � nodes of type 2′ and 3 in α then Add Y1 to P ; ;
7 if � nodes of type 2 and 3′ in α then Add Y2 to P ; ;
8 return;

For purposes of easier understanding and illustration of this algorithm, we classify the
nodes in α based on its relation with v� and v�+1. A node z ∈ α (and hence z 	= v�, z 	= v�+1)
is one of the 9 types described in Table 3.

GetPotentialCandidates() function (listed as Algorithm 1) describes our more
efficient procedure (in comparison with a naive procedure which performs the 6 checks
enlisted in Table 2 for every node z = vi , where i = 1, 2, . . . (� − 1)) based on the node
type in α, as explained in Table 3. It takes two combinable episodes α1 and α2 as input and
returns P , the set of potential candidates obtained by combining them. We can summarize
the working of Algorithm 1 as follows. If a node of type (1) exists in α, then Y1 is the only
generated candidate (line 2). Similarly, if a node of type (1′) exists , then Y2 is the only
generated candidate (lines 3). Suppose neither nodes of the type (1) nor (1′) exist, then Y0 is
a sure candidate (line 5). Further, Y1 is generated iff nodes of type (2′) and (3) do not exist
in α. If the algorithm finds a node of one of these types, it decides against adding Y1 to P
(line 6). Similarly, Y2 is generated iff nodes of type (2) and (3′) do not exist in α (line 7).
Even though nodes of type (4), (4′) and (4′′) are not used in the algorithm, we provide them
in Table 3 for a complete classification of the nodes in α.

Illustration via an example The Y0 combination of the episodes in Fig. 10 has a node v3 of
type (1). Transitivity demands the existence of the edge (v4, v5)which is absent in theY0 and
Y2 combinations. Hence Y0 and Y2 violating transitivity here is immediate. Our procedure
concludes, without any more checks, that Y1 is a potential candidate. Theorem 3 shows the
correctness of this step. Analogously, Y2 is the only potential candidate when a node of type
(1′) exists in α. In our efficient procedure, we have considered the cases of nodes of type (1)
and (1′) existing separately. The procedure in this sense is unambiguous as nodes of type (1)
and (1′) cannot coexist as shown later in Lemma 1. Continuing our illustration, Fig. 11 gives
an example of a Y0 combination where no nodes of type (1) or (1′) exist. Accordingly, Y0 is
a potential candidate which will be shown below. Also nodes of type (2) (v3 in Fig. 11) and
(3′) (v2 in Fig. 11) exist in α. Transitivity of <Y2 demands the existence of edges (v5, v3)

and (v2, v4) which are absent in <Y2 (indicated as dashed lines in the figure) and hence <Y2

violates transitivity. Finally α in this example does not contain nodes of type (2′) or (3) and
hence Y1 is a potential candidate which will be proved in Theorem 3.

Computational savingsWe now explain a few immediate computational savings that our
efficient procedure achieves over the procedure which performs the 6 checks listed in Table 2
on every node in α for each of the three Yi combinations. From Table 2, the first thing to
notice is that for any given node, not all of these six checks are actually necessary to check
transitivity of a particular Yi combination. Specifically, it is easy to see that checks (b) and
(d) are sufficient to check transitivity of a Y0 combination. Similarly it is not hard to see that
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Fig. 10 Illustration of a case when node of type (1) exists

Fig. 11 Illustration of a case when neither nodes of type (1) and (1′) exists

checks (a), (d) and (e) checks are sufficient for transitivity check of a Y1 combination while
(b), (c) and (f) checks are sufficient for transitivity check of a Y2 combination. As we show
below, our efficient procedure performs even lesser checks than this first-cut optimization.

For <Y0 , performing the necessary checks (b) and (d) is equivalent to asking for the
absence of nodes of type (1) and (1′), respectively. This is exactly the first set of checks
carried out by our efficient procedure. As per this, Y0 is generated iff neither of the nodes of
type (1) and (1′) exist in α. Also, as per this algorithm, if a node of type (1) exists, then it
is immediately seen that Y2 violates transitivity. So one does not have to check for (b), (c)
and (f) separately (as given in Table 2). Further, the algorithm also concludes that Y1 is a
potential candidate and hence we don’t have to perform checks (a), (d) and (e) on each node
in α. An analogous computational saving happens when a node of type (1′) exists in α.

Similarly in the last part of the algorithm, the two checks are enough to ascertain the
validity of Y1 or Y2 instead of three as per the first-cut optimization procedure explained
earlier. We summarize the computational saving that our efficient procedure provides while
combining two �-node episodes. The naive procedure would need to carry out 3 ∗ 6 ∗ (�− 1)
checks in the worst case to ascertain the validity of each Yi . Therefore, it would need a total
of 54(� − 1) checks in the worst case. On the other hand, our intelligent procedure would
need only up to 2(� − 1) checks if a node of type (1) exists in α, which is the best case
scenario for the algorithm. If α contains a node of type (1′), it would need up to 4(� − 1)
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checks. If neither of (1) or (1′) exist, then it would need up to 12(� − 1) checks which is the
worst case scenario for the procedure.

To show the correctness, we first make an important observation regarding the kind of
nodes that are allowed to coexist in α.

Lemma 1 In Y0, if a node of type (1) exists, there cannot exist nodes of type (1′), (2′) and
(3). Similarly, if a node of type (1′) exists, there cannot exist nodes of type (1), (2) and (3′).

Proof Given that a node z0 of type (1) exists in α, we will show by contradiction that
no nodes of type (1′), (2′) and (3) can exist. Suppose a node z1 of type (1′) exists. Then
(z1, v�) ∈ <Y0 and hence (z1, v�) ∈ <α1 . Since z0 is of type (1), (v�, z0) ∈ <Y0 and hence
(v�, z0) ∈ <α1 . By the transitivity of <α1 , it follows that (z1, z0) ∈ <α1 . Also, since z0 is
of type (1), we have (z0, v�+1) ∈ <Y0 �⇒ (z0, v�) ∈ <α2 . Likewise, since z1 is of type
(1′), (v�+1, z1) ∈ <Y0 �⇒ (v�, z1) ∈ <α2 . Hence, the transitivity of <α2 tells us that
(z0, z1) ∈ <α2 . This means we have two nodes z0 and z1 (neither of these being v� or v�+1 of
Y0) both belonging to α1 and α2, but related in opposite ways. This contradicts the condition
that α1 and α2 share the same maximal subepisode on dropping their last nodes.

Suppose a node z2 of type (2′) exists, then (z2, v�) ∈ <Y0 �⇒ (z2, v�) ∈ <α1 . Also
(v�, z0) ∈ <α1 since z0, a node of type (1) also exists. Transitivity of <α1 tells us (z2, z0) ∈
<Y0 . Since both z0 and z2 belong to α, (z2, z0) ∈ <α2 . We also have (z0, v�+1) ∈ <Y0 �⇒
(z0, v�) ∈ <α2 . Transitivity in <α2 now implies (z2, v�) ∈ <α2 and hence is in <Y0 . But this
edge must be absent as z2 is of type (2′). A similar contradiction arises for a node of type (3).

On similar lines, we can show that if a node of type (1′) exists in <Y0 , there cannot exist
nodes of type (1), (2) and (3′). �

Since <Y1 or <Y2 differ from <Y0 in only one edge involving v� and v�+1, these coexis-
tence results hold good for<Y1 and<Y2 also. We will now show that this efficient procedure
generates all potential candidates.

Theorem 3 The procedure described in Algorithm 1 generates only those combinations (out
of the three possible combinations Y0, Y1 and Y2) that satisfy transitivity.

Proof To find potential candidates, it is enough to (efficiently) perform the transitivity checks
as described earlier in Table 2. We consider the various conditions under which the algorithm
operates.

Condition(i) A node z of type (1) exists in α : We have already shown that <Y0 and <Y2

are not transitively closed here. We need to prove the transitivity of <Y1 .
To prove this, we need to check (a), (d) and (e) in Table 2. If hypothesis of (a) is true, and

(v�, z) /∈ <Y1 , then either there exists an edge (z, v�) ∈ <Y1 or there exists no edge between
z and v�. In the first case, z must be of type (1′) which cannot exist from Lemma 1. In the
second case z must be of type (3) which also cannot exist from Lemma 1. This proves (a).
The hypothesis of (d) indicates the existence of a type (1′) node in Y1 which is not possible
from Lemma 1. Correctness of (e) is similar to that of (a). If hypothesis of (e) is true, and
(z, v�+1) /∈ <Y1 , then either there exists an edge (v�+1, z) ∈ <Y1 or there exists no edge
between z and v�+1. In the first case, zmust be of type (1′)which cannot exist from Lemma 1.
In the second case, z must be of type (2′)which also cannot exist from Lemma 1. This proves
(e).

Condition(ii) A node of type (1′) exists in α: This is analogous to condition(i).
Condition(iii) neither a node of type(1) nor type (1′) exists : First we need to show that

<Y0 satisfies transitivity, for which showing (b) and (d) (Table 2) is enough. We have already
seen that this is same as the absence of nodes of type (1) and (1′).
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Further, we show that<Y1 is transitive iff no nodes of type (2′) and (3) exist in α.We prove
the contra-positive of the forward implication. If a node z of type (2′) exists, then we have
(z, v�), (v�, v�+1) ∈ <Y1 but there is no edge between z and v�+1. This violates transitivity
of <Y1 . similarly, if a node z of type (3) exists, then we have (v�, v�+1), (v�+1, z) ∈ <Y1 ,
but there is no edge between z and v�. This violates transitivity of <Y1 .

For the converse, suppose no nodes of type (2′) and (3) exist. To show the transitivity of
<Y1 , it is enough to show (a), (d) and (e). If hypothesis of (a) is true, and (v�, z) /∈ <Y1 ,
then either there exists an edge (z, v�) ∈ <Y1 or there exists no edge between z and v�. In
the first case, z must be of type (1′) which cannot exist here (condition (iii)). In the second
case, z must be of type (3) which also cannot exist from the hypothesis. This proves (a). The
hypothesis of (d) demands the existence of nodes of type(1) and (1′) which cannot exist here
(condition (iii)). If hypothesis of (e) is true, and suppose (z, v�+1) /∈ <Y1), then either there
exists an edge (v�+1, z) ∈ <Y1 or there exists no edge between z and v�+1. In the first case
z must be of type (1′) which cannot exist here (condition (iii)). In the second case, z must be
of type (2′) which also cannot exist from the hypothesis. This proves (e).

Further, we show that <Y2 is transitively closed iff no nodes of type (2) and (3′) exist in
α. The proof of this is analogous to that of <Y1 . This completes the proof of Theorem 3. �
Remark 3 Till now we considered the case of α1 being combined with the first type of
episodes. For the second type of combination, we have the same subepisode obtained by
dropping vr and v�+1 from the Y0 combination. For this case, we just need to work with this
common subepisode α and Algorithm 1 goes through as it is for this case.

Remark 4 The transitivity checks we propose here can also be applied to the injective episode
candidate generation algorithm of [5]. As one can easily see, these checks will enhance the
efficiency of the candidate generation algorithm of [5].

5.4 Implementation issues in candidate generation

In this section, we explain how for a given episode, one can efficiently search for combinable
episodes. Similar in spirit to the procedure adopted for injective episodes [5], the candi-
date generation procedure for chain episodes is such that the episodes which share the same
subepisode on dropping their last nodes appear consecutively in the generated list of candi-
dates, at each level. Episodes which share the same subepisode by dropping their respective
last nodes are referred to as a block. Let F�[i] denote the i th episode of F�, the set of all
�-node frequent episodes. At level 1 (i.e. � = 1),F1 is ordered according to the lexicographic
ordering on the set of event-types E . Suppose F1 consists of the frequent episodes B and
C , then we have F1[1] = B and F1[2] = C . At level 1, we combine an episode with itself
and with all other episodes below it in F1. Accordingly, we first combine B with itself to
form (B → B). When two distinct episodes are combined, there are three possibilities. For
example, B would be combined with C to form (B C), (B → C) and (C → B). Finally, C
would be combined with itself to form (C → C). Observe that the first four candidates in C2
here share the same 1-node episode, namely B on dropping their last node. In fact they were
obtained by combining a particular episode in F1 namely B with all combinable episodes
below it in F1. Generalizing this observation, the block information of C�+1 can be naturally
obtained during its construction itself. Also our procedure is such that at each level, episodes
in every block are ordered lexicographically with respect to the array of event-types α.g.

Thepseudocode for the chain episode candidate generation,GenerateCandidates(),
is listed in Algorithm 2. The input to Algorithm 2 is F�, a set of �-node frequent episodes
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Algorithm 2: GenerateCandidates(F�)
Input: Sorted array, F�, of frequent episodes of size �

Output: Sorted array, C�+1, of candidates of size (� + 1)
1 Initialize C�+1 ← φ and k ← 0;
2 if � = 1 then
3 for h ← 1 to |F�| do F�[h].blockstart ← 1;
4 for i ← 1 to |F�| do
5 currentblockstart ← k + 1;
6 if r th node of F�[i] exists then
7 Search for the block of episodes B in F� which matches the subepisode obtained by dropping

the r th node of F�[i];
8 foreach β ∈ B s.t. β.g[�] = β.g[� − 1] = F�[i].g[�] do
9 P ← GetPotentialCandidates(F�[i], β);

10 P ′ ← MaxSubepisodeCheck(P);
11 foreach α ∈ P ′ do
12 k ← k + 1;
13 Add α to C�+1;
14 C�+1[k].blockstart ← currentblockstart ;
15 else
16 α ← (� + 1)-node serial episode with α.g[ j] = F�[i].g[1] ∀ j ;
17 Add α to C�+1;
18 C�+1[k].blockstart ← currentblockstart ;
19 for ( j ← i + 1; F�[ j].blockstart = F�[i].blockstart; j ← j + 1) do
20 if F�[i].g[�] 	= F�[ j].g[�] then
21 P ← GetPotentialCandidates(F�[i], F�[ j]);
22 P ′ ← MaxSubepisodeCheck(P);
23 foreach α ∈ P ′ do
24 k ← k + 1;
25 Add α to C�+1;
26 C�+1[k].blockstart ← currentblockstart ;
27 return C�+1

(where, F�[i] denotes the i th episode in the collection). In F�, the episodes are organized
as blocks. To store the block information of every episode, we use an array F�.blockstart .
F�.blockstart[i] essentially points to the first element of the block to which F�[i] belongs
to. It holds a value k such that F�[k] is the first element of the block to which F�[i] belongs
to. The algorithm output is C�+1, the set of candidate episodes of size (� + 1). Initially, C�+1

is empty and, when � = 1, all (1-node) episodes are assigned to the same block (lines 1–3,
Algorithm 2). Themain loop runs over all the episodes inF� (starting on line 4, Algorithm 2).
Recall from Sect. 5.1.1 that the algorithm tries to combine an episode, F�[i], with two types
of episodes. In the pseudocode, F�[i] and F�[ j] correspond to α1 and α2 that was used to
describe the procedure earlier. We first try to combine F�[i] with second type of episodes
(lines 7–14). Episodes of this type would necessarily not belong to the block in which F�[i]
resides. We would need to search for such episodes in blocks further down in F�. The notion
of an r th node does not exist for all 1-node episodes. Among episodes with more than 1 node,
this can happen only when the episode is a serial episode with all � nodes mapped to the
same event. In this scenario, we form an (�+1) node serial episode with all nodes mapped to
the same event (lines 16–18). We note that this corner case was not mentioned in Sect. 5.1.1.
We next combine F�[i] with episodes of the first type which would all be stored in the same
block below it (lines 19–26).

It is very important to combine a given episodeF�[i] with the second type of episodes first
followed by the first type. This order of combination ensures episodes within the same block
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are lexicographically ordered with respect to the array of event-types at each level. We can
see this via induction. The way we combine episodes at level 1, this property holds for level
2 episodes. For instance, episodes (A → A), (A B), (A → B), (A → B), (AC) and so on
will be stacked one below the other. They all belong to the same block corresponding to the
common 1-node subepisode (A). Note that they are lexicographically ordered with respect to
the array of event-types. At any higher level say �, an episode F�[i] contributes to a block of
episodes in C�+1 all of which on dropping their last node share the same subepisode namely
F�[i]. The first combination of F�[i] is with an episode of type 2, which means all (� + 1)-
node episodes constructed with this combination will have their last (� + 1)th event-type as
F�[i].g[�]. This follows from the third condition that defines combinable episodes of type 2.
Further, combination with episodes of first type will yield (� + 1)-node episodes with their
last ((� + 1)th) nodes progressively greater than F�[i].g[�] as per the lexicographic order on
E . This ensures that episodes within the same block in C�+1 are lexicographically ordered.

The strategy of combining with the second type of episodes first has further advantages.
It further ensures that given an episode F�[i], the associated first type of episodes are all
below it in the same block and the associated second type of episodes are in a block further
down and in turn makes the search more efficient. This also ensures that while searching for
existence of certain maximal subepisodes to retain a potential candidate formed byF�[i] and
F�[ j], one could search for all these subepisodes in at most one pass over all the frequent
episodes below F�[ j].

GetPotentialCandidates() function takes F�[i] and F�[ j] as input and returns
the set, P , of potential candidates corresponding to them as described in Algorithm 1 in
Sect. 5.3. The MaxSubepisodeCheck() function (listed in Algorithm 3) takes as input
a set of potential candidates P and returns those candidates (set denoted as P ′), all whose
maximal subepisodes of the type described earlier in the section are also in F�. For each
potential candidate,α ∈ P , this function constructs an �-node (maximal) subepisode (denoted
as β in the pseudocode) by dropping a node (which is the last node among nodes mapped
to the same event-type) at a time from α. If all such �-node maximal subepisodes of α are
found to be frequent, then α is added to P ′.

Algorithm 3:MaxSubepisodeCheck(P)
Input: P , a set of 1 to 3 potential candidates of size � + 1
Output: P ′, candidates from P all whose suitable maximal subepisodes are in F�.

1 Initialize P ′ = φ.;
2 foreach α ∈ P do
3 f lg ← TRUE;
4 for (i ← � − 1; i ≥ 1 and f lg =TRUE; i − −) do
5 if α.g[i] 	= α.g[i + 1] then
6 for x ← 1 to i − 1 do
7 Set β.g[x] = α.g[x];
8 for z ← 1 to i − 1 do β.e[x][z] ← α.e[x][z];
9 for z ← i to � do β.e[x][z] ← α.e[x][z + 1];

10 for x ← i to � do
11 β.g[x] ← α.g[x + 1];
12 for z ← 1 to i − 1 do β.e[x][z] ← α.e[x + 1][z];
13 for z ← i to � do β.e[x][z] ← α.e[x + 1][z + 1];
14 if β /∈ F� then f lg ← FALSE;
15 if f lg = TRUE then
16 Add α to P ′;
17 return P ′
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6 Counting

In this section, we present algorithms for counting minimal windows and non-overlapped
frequency of a set of candidate episodes through one pass over the data. For counting, we
use finite state automata (FSA) to track occurrences. The FSA construction procedure for
injective episodes [5] can be generalized to chain episodes as follows. For ease of exposition,
we consider event sequences with at most one event-type per time tick. The ideas presented
can be readily extended to general event sequences.

Definition 12 FSA Aα , used to track occurrences of episode α = (Vα,<α, gα) in the event
sequence is defined as follows. Each state, i , in Aα , is represented by a pair of subsets of
Vα , namely (Qα

i ,Wα
i ). Qα

i contains those nodes in Vα whose associated event-types (under
gα) are accepted by the time FSA came to state i andWα

i contains those nodes in Vα whose
associated event-types can be accepted by FSA in state i . The initial state, namely state 0,
is associated with the subsets pair, (Qα

0 ,Wα
0 ), where Qα

0 = φ and Wα
0 is the collection of

minimal7 elements in Vα with respect to <α . Let i be the current state of Aα . Aα remains in
state i on seeing any event from (E \ gα(Wα

i )). If the next event is of type gα(v) for some
v ∈ Wα

i , then Aα accepts it and transits into a state j , with:

Qα
j = Qα

i ∪ {v} (3)

Wα
j = {v′ ∈ (Vα \ Qα

j ) : πα(v′) ⊆ Qα
j } (4)

where πα(v) is the subset of nodes in Vα that are less than E (with respect to <α). When
Qα

j = Vα , (and Wα
j = φ), j is the final state of Aα .

From (4), it is clear that no two elements vk and vm in any Wα
j are related (under <α).

Since we are dealing with chain episodes, the contra-positive of the chain episode definition
implies that gα(vk) and gα(vi ) are distinct. This would mean no two state transitions from
any given state happen on seeing the same event-type. Hence, the FSA as per Definition 12
is deterministic for chain episodes. Figure 12 illustrates the FSA for the episode (F →
(E G) → F). We note here that, in view of (4), Qα

j alone is sufficient to characterize state
j . However, maintaining the redundant information in the form ofWα

j in the state makes the
counting algorithm simpler to describe.

The algorithm description is conceptual and involves manipulation of automata described
above. We then discuss an important issue in BE computation for chain episodes. We discuss
in Appendix C the implementation aspects of counting.

6.1 Algorithm description

In this sectionwedescribe the counting schemes for trackingminimalwindows and amaximal
set of non-overlapped occurrences. We also introduce the important notion of an earliest
transiting occurrence for chain episodes useful in the algorithm illustration and the correctness
proofs.

The span of an occurrence h is defined as the time difference between the first and last
events constituting the occurrence. Inmany applications, onewould be interested in only those
occurrences whose span is below some user-defined threshold. We call such a constraint on
span as an expiry-time constraintwhich is specified by a threshold, TX . Such a time constraint

7 An element in Vα is minimal if there is no other element less than it as per <α . Note that a poset can in
general have multiple minimal elements.
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(a) (b)

Fig. 12 The episode (F → (E G) → F) and its associated finite state automaton

can make discovery more efficient by reducing the search space. Also, events widely spaced
in time may actually not represent any correlated activity and hence expiry-time constraint
would be natural in many applications. Our discovery algorithm presented in this paper can
handle such an expiry-time constraint.

6.1.1 Algorithm for counting minimal occurrences

The algorithm for countingminimal occurrences (denoted asMO-algorithm) uses the general
deterministic FSA described in Definition 12, for tracking chain episodes. The algorithm idea
is similar to theminimal occurrences counting algorithm for serial episodes [3]. The algorithm
takes as input a set of candidate episodes and returns the count of minimal windows of all the
episodes. To start with, for each episode we will have one automaton of that episode (as per
Definition 12) waiting in the start state. Then we move on the event sequence and for each
event in the data, affect state transitions for all automata that can make a state transition on
that event-type. Whenever an automaton moves out of its start state on seeing an appropriate
event in the event sequence, we initialize a new automaton (of that episode) in the start state.
In this process two automata (of an episode) can come to the same state. In this eventuality, we
only retain the latest initialized automaton among the two automata. This is mainly because
from now on, these multiple automaton will make identical state transitions, and hence, the
earlier initialized automata cannot contribute to the minimal window frequency. Following
this process, the automata that reach final state track all minimal windows. With an expiry-
time constraint of TX , one needs to only countminimalwindows tracked by theMOalgorithm
which satisfy the expiry-time constraint.

6.1.2 Algorithm for counting non-overlapped occurrences

To obtain the algorithm for computing the non-overlapped frequency under expiry constraint
TX (denoted as NO-X), we need to modify the MO algorithm as follows. Whenever an
automaton reaches final state, we check whether the occurrence tracked satisfies the expiry
constraint, that is, span of the occurrence is less than TX . If it does not, we continue the
algorithm on the lines of MO. If it does, then we increment the frequency and retire all the
existing automata except the one in the start state and continue. All such automata would
have tracked some partial occurrences overlapped with the current occurrence. Since we are
tracking non-overlapped occurrences, we retire these automata.
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Fig. 13 Maximal set of non-overlapped occurrences of (F → (E G) → F) with TX = 4

6.1.3 Illustration

We illustrate the algorithm on an example event sequence. For this, and the proof of cor-
rectness to follow, we need the important notion of earliest transiting (ET) occurrences of
chain episodes. Before introducing this, we discuss an unambiguous and simple represen-
tation for an occurrence of an episode that we use here. Given any N -node episode, α, one
can also represent an occurrence, h, by the range set of the map h (which is one–one),
namely h(Vα) = {h(v1), h(v2), . . . h(vN )} consisting of exactly N integers. This means
h can be unambiguously represented as a vector of integers ordered in increasing order,
[h̄(1) h̄(2) . . . h̄(N )], where h̄(i) < h̄(i +1), i = 1, . . . , (N −1). Consider the non-injective
chain episode (F → (EG) → F). Consider its occurrence 〈(F, 3), (G, 6), (E, 10), (F, 11)〉
in event sequence D1 of Fig. 13. It can also be represented as a vector of integers [3 5 8 9]
(since (F, 3), (G, 6), (E, 10), (F, 11) are the third, fifth, eighth and the ninth events in
D1. Since our illustrations are using event sequences with at most one event per time-tick
here, we can use another more intuitive representation, which is, the vector of times rep-
resentation. That is, we can use [th̄(1) . . . th̄(N )] to represent an occurrence. For example,
〈(F, 3), (G, 6), (E, 10), (F, 11)〉 would be represented as [3 6 10 11] in this representation.

We denote byH the set of all occurrences of an episode α in a event sequence D. On this
set, there is a ‘natural’ lexicographic order (to be denoted as <�) which is formally defined
below.

Definition 13 The lexicographic ordering on H, the set of all occurrences of α, is defined
as: for any two different occurrences h1 and h2, of α, h1 <� h2 if the least i for which
h̄1(i) 	= h̄2(i) is such that h̄1(i) < h̄2(i). This is a total order on the set H.

6.1.4 Earliest transiting occurrences

The basic idea of an ET occurrence is that once an occurrence starts, it tries to include the
earliest possible events into its fold without violating the definition of an occurrence. Once
it starts, it essentially performs earliest possible transitions. We define this formally below.

Definition 14 Given an occurrence h of α, let vh1 denote that node in Vα such that h̄(1) =
h(vh1 ). An occurrence h of a chain episode α in an event sequence D (where at most one
event-type occurs at a time-tick) is said to be an ET occurrence if ∀vi 	= vh1 the following
hold. (a) if πα(vi ) = φ, then th(vi ) is the time of the first occurrence of the event-type Eh(vi )

after th̄(1). (b) if πα(vi ) 	= φ, th̄(i) is the first occurrence time of the event-type Eh̄(i) after the
occurrence of all events associated with πα(vi ) (a subset of Vα) as per the h-map.

We denote by He the set of all earliest transiting occurrences of a given chain episode α.
We denote the i th occurrence (as per the lexicographic ordering of occurrences) inHe as hei .
Recall from Definition 12 that Wα

0 represents the set of minimal elements of Vα . From the
above definition, one can easily check that starting from each event in the event sequence
whose corresponding event-type belongs to gα(Wα

0 ), there exists a unique ET occurrence.
There are 6 ET occurrences of the chain episode (F → (EG) → F) (shown in Fig. 12a)

in D1 which is the event sequence in Fig. 13. The 6 ET occurrences are: he1 = [1 2 4 8],
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he2 = [3 4 6 8], he3 = [8 9 10 11], he4 = [11 13 15 17], he5 = [12 13 15 17] and
he6 = [14 15 16 17]. As a negative example, the occurrence 〈(F, 3), (E, 4), (G, 6), (F, 11)〉
of (F → (EG) → F), (that is, the occurrence [3 4 6 11]) in D1, is not ET. This is
because th(v3) = t9 = 11 is not the time of the first occurrence of the event-type Eh(v3) =
E9 = F after the occurrence of all events associated with πα(v3) = {v1, v2, v4}, namely
{(F, 3), (E, 4), (G, 6)}. The first such event is (F, 8).

For any chain episode α, the associated deterministic FSA as per Definition 12 (suitably
initialized) can bemade to track any ET occurrence. Specifically, given any ET occurrence hei
of an episode, an automaton for the episode initialized in the start state just before processing
the event at thei (1), would exactly track hei by undergoing state transitions on seeing events
constituting hei .

ET occurrences tracked by MO In the MO algorithm described earlier, the first initialized
automaton would exactly track he1. On seeing the first relevant event, this automaton moves
out of its start state and the MO algorithm would accordingly initialize a new automaton in
the start state which would exactly track he2 and so on. Hence, the MO algorithm for chain
episodes searches in the space of ET occurrences only. However, as explained earlier, when
two automaton come to the same state we retain only the newer automaton as, from now on,
both these automatonmake the same state transitions. For example, after processing (G, 6) in
D1, both the first and second initialized automaton associated with β = (F → (E G) → F)

are in the same state, namely ({v1, v2, v4}, {v3}), for the first time.We drop the first automaton
and continue. On processing the next event (F, 8), the second initialized automaton reaches
final state and tracks he2 completely. If we define the window of an occurrence h of an N -
node episode as [th̄(1), th̄(N )], then it is easy to see that the window of he2 in D1 is minimal.
Continuing like this, it is easy to see that the MO algorithm ultimately tracks he2, h

e
3 and he6

whose windows exactly correspond to the minimal windows of β in D1.
ET occurrences tracked by NO-X Figure 13 shows the occurrences tracked by the NO-X

algorithm for a TX = 4. The first automaton that reaches final state as per NO-X tracks
he2 completely in D1. This is because it exactly mimics the MO-algorithm until it finds an
occurrence satisfying expiry-time. As he2 violates expiry for TX = 4, we continue and the next
ET occurrence completely tracked is he3 which satisfies expiry.We accordingly increment the
frequency. We now retire all the existing automata except the one in start state and continue.
The next minimal occurrence tracked is he6 which satisfies expiry and hence, frequencywould
be incremented. Please refer to Appendix C for details on implementation issues of counting.

6.2 Correctness proofs

We start off by showing the correctness of the MO algorithm on event sequences where at
most one event-type occurs per time-tick. The idea of the correctness proof is broadly along
the lines of that of serial episodes [3]. We need two important properties of ET occurrences
of chain episodes for further analysis. The proof of the second follows immediately from the
first. We state the two properties here and give the proof of the first property in Appendix D.

Property 2 Given a chain episode α and data stream D, consider an ET occurrence h and
another occurrence h′ of α in D such that h′ starts on or after th̄(1). Let D j denote the first j
events of D. For every j , the set of all nodes in Vα whose associated events under h occur in
D j is a superset of the set of all nodes in Vα whose associated events under h′ occur in D j .

Property 3 Suppose h is an ET occurrence of an N-node chain episode α. If h′ is any other
occurrence such that th̄(1) ≤ th̄′(1), then h̄(i) ≤ h̄′(i) ∀i = 1, 2, . . . N.
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Another interesting consequence of Property 2 useful in the proofs is as follows.

Remark 5 If for j > i , h̄ei (k) = h̄ej (k) for some k, 1 < k ≤ N , then h̄ei (k
′) = h̄ej (k

′) for
every k′ ≥ k. This is because, from Property 2, on the event sequence till th̄ei (k)

(Dh̄ei (k)
),

the set of all nodes in Vα whose associated events occurring in Dh̄ei (k)
under h̄ei and h̄ej are

identical. This would in turn mean that the associated automata which can track hei and hej
would be in the same state just after th̄ei (k)

, as a state here encodes all nodes of Vα whose
associated event-types have been seen till now. From now on, since the two automata make
identical transitions, we have h̄ei (k

′) = h̄ej (k
′) for every k′ ≥ k. Also, from Property 2, we

can see that, if two automata tracking ET occurrences have accepted the same number of
event-types, then they must be in the same state.

6.2.1 Proof of correctness of MO-algorithm

After showing the two relevant properties, we now try to characterize all minimal windows
in terms of ET occurrences. Any minimal window of a chain episode is also a window of
some ET occurrence of the episode. Specifically, the earliest occurrence of the episode in the
minimal window would be the concerned ET occurrence. Hence, it is enough to search for
minimal windows in the space of ET occurrences. The following lemma characterizes the
set of ET occurrences whose windows are minimal.

Lemma 2 The window w of an earliest transiting (ET) occurrence hei , of an N-node chain
episode α, is not a minimal window if and only if th̄ei (N ) = th̄ei+1(N ).

Proof Let w = [ts, te]8= [th̄ei (1), th̄ei (N )] denote the time-window of hei . Since there can exist
atmost oneEToccurrence starting at a time-tick,wehave th̄ei (1)

< th̄ei+1(1)
. If th̄ei (N ) = th̄ei+1(N ),

then the timewindow of h̄ei+1 is a proper sub-window ofw. Hencew is not aminimal window.
For the converse, if w is not a minimal window, we need to show that h̄ei (N ) = h̄ei+1(N ).

Sincew is not a minimal window, one of its proper sub-windows contains an occurrence, say,
h, of α. If the time window of h starts at ts , it has to end strictly before te because the time
window of h is a strict sub-window of w. This means we have an occurrence h starting at ts
and ending before te. This contradicts the fact that hei is an ET occurrence (cf. Property 3).
Thus, the window of h has to start beyond th̄ei (1)

and hence we have th̄(1) > th̄ei (1)
. This means,

by Property 3, since hei is ET, we have h̄ei (N ) ≤ h̄(N ). Since the window of h has to be
contained inw (the window of hei ), we thus have th̄ei (N ) = th̄(N ). By definition, h

e
i+1 will start

at the earliest possible position after thei (1). Since there is an occurrence starting with th̄(1)
(> th̄ei (1)

), we must have th̄ei+1(1)
≤ th̄(1). Now, again from Property 3, since hei+1 is ET, we

have h̄ei+1(N ) ≤ h̄(N ). Since hei+1 starts beyond th̄ei (1)
and since hei is ET, from Property 3,

we have h̄ei (N ) ≤ h̄ei+1(N ). Therefore combining the last three deductions, we have (since
h̄1(N ) < h̄2(N ) implies th̄1(N ) < th̄2(N ))

th̄ei (N ) ≤ th̄ei+1(N ) ≤ th̄(N ) = th̄ei (N ). (5)

Thus, we have th̄ei (N ) = th̄ei+1(N ). This completes proof of lemma.

8 In te , subscript e denotes the end time of the window. In hei , superscript e refers to earliest transiting.
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Remark 6 This lemma shows that any ET occurrence hei such that th̄ei (N ) < th̄ei+1(N ) is a

minimal occurrence (or the window of hei is a minimal window) and conversely. Thus we
can track all minimal windows if we track all ET occurrences hei such that th̄ei (N ) < th̄ei+1(N ).

The MO algorithm initializes a new automaton (of the type described in definition 12)
once an existing automaton moves out of its start state. In the process, the i th initialized
automatonAα

i would track hei , the i th ET occurrence. However, not every automaton results
in increase in frequency; when an automaton comes into a state already occupied by an older
automaton, the older one is removed. If we can prove the automatonAα

i results in increment
of frequency if and only if hei , the occurrence tracked by it is such that th̄ei (N ) < th̄ei+1(N ), then,
the proof of correctness of MO algorithm is complete. This is done in the lemma below.

Lemma 3 In the MO algorithm, the i th automaton that was initialized for α, referred to as
Aα

i , contributes to the frequency count iff th̄ei (N ) < th̄ei+1(N ).

Proof

Aα
i does not contribute to the frequency.

�⇒ Aα
i is removed by a more recently initialized automaton.

�⇒ ∃ Aα
k , k > i, which transits into a state already occupied byAα

i .

�⇒ ∃k, j s.t . k > i, 1 < j ≤ N and h̄ei ( j) = h̄ek( j).�⇒ ∃ j 1 < j ≤ N s.t . h̄ei ( j) = h̄ei+1( j).
follows from Property 3 applied on (hi , hk), (hi+1, hk) and (hi , hi+1)

�⇒ h̄ei (N ) = h̄ei+1(N ).

�⇒ th̄ei (N ) = th̄ei+1(N ).

The last but one step in the forward argument follows from Remark 5.
Conversely, we have

Aα
i contributes to the frequency.

�⇒ no automata initialized later than Aα
i comes into a state occupied by Aα

i .

�⇒ for 1 < j ≤ N , h̄ei ( j) < h̄ei+1( j).
�⇒ h̄ei (N ) < h̄ei+1(N ).

�⇒ th̄ei (N ) < th̄ei+1(N ).

The second deduction can be shown by contradiction. Suppose, ∃ j, 1 < j ≤ N such that
h̄ei ( j) = h̄ei+1( j). The MO algorithm dynamics is such that there exists some automata Aα

k
with k ≥ (i+1)which accepts (Eh̄ei+1( j)

, th̄ei+1( j)
) as its j th event. SinceAα

i contributes to the

frequency, Aα
i accepts (Eh̄ei ( j)

, th̄ei ( j)
) which is equal to (Eh̄ei+1( j)

, th̄ei+1( j)
). Hence, we have

a situation where both Aα
i and Aα

k accept (Eh̄ei ( j)
, th̄ei ( j)

) as their j th event. From Remark 5,
bothAα

i andAα
k must be in the same state after seeing (Eh̄ei ( j)

, th̄ei ( j)
). By the MO algorithm,

Aα
i must be knocked off now, which contradicts the fact thatAα

i contributes to the frequency.
This completes proof of the lemma. �

With the completion of the proof of Lemma 3, correctness proof of MO is also complete.
Once we prove the correctness of the MO algorithm the correctness proof of NO-X follows
by viewing it as a minor modification of the MO.
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6.2.2 Proof of correctness of NO-X algorithm

Since all automata in NO-X algorithm also make state transitions as soon as they are pos-
sible, till the first time an automata reaches its final state, the NO-X and MO algorithm are
identical. Hence, the first occurrence tracked by NO-X is its first minimal occurrence. If
this satisfies expiry-time constraint, then the NO-X algorithm retires all automata and starts
afresh. If not, continues in the MO-mode. Thus NO-X initially searches for the first mini-
mal occurrence satisfying expiry-time constraints. After this, it looks for the next immediate
minimal occurrence non-overlapped with the first one (satisfying expiry constraint) and also
satisfying expiry constraint and so on.

Let HnX = {hnX1 , hnX2 . . . hnXf } denote the sequence of occurrences of an N -node episode
tracked by the NO-X algorithm. Then the following property of HnX is obvious.

Property 4 hnX1 is the earliest minimal occurrence satisfying expiry time constraints. For
any i , hnXi is the first minimal occurrence (of the N-node episode) after h̄nXi−1(N ) satisfying
expiry time constraint. There is no minimal occurrence satisfying expiry time constraints
which starts after h̄nXf (N ).

Theorem 4 HnX is a maximal non-overlapped sequence satisfying expiry time constraints.

Proof Consider any other set of non-overlapped occurrences satisfying expiry constraints:
H ′ = {h′

1, h
′
2 . . . h′

l} ordered such that h′
i <� h′

i+1. Let m = min{ f , l}. To show the
maximality of HnX , we first show the following.

h̄nXi (N ) ≤ h̄′
i (N ) ∀i = 1, 2, . . .m. (6)

Thiswill be shownby induction on i .Wefirst show it for i = 1. Suppose h̄′
1(N ) < h̄nX1 (N ).

Then there exists a minimal occurrence within the window of h′
1. Since h

′
1 satisfies expiry, we

have found a minimal occurrence satisfying expiry constraints ending before hnX1 which con-
tradicts the first statement of Property 4. Hence h̄nX1 (N ) ≤ h̄′

1(N ). Suppose h̄nXi (N ) ≤ h̄′
i (N )

is true for some i < m. We show that h̄nXi+1(N ) ≤ h̄′
i+1(N ). By Property 4, hnXi+1 is the first

minimal occurrence ofα satisfying expiry time constraints in the data streambeyond h̄nXi (N ).
Suppose h̄′

i+1(N ) < h̄nXi+1(N ). Then, very similar to the i = 1 case, there exists a minimal
occurrence of α whose window is contained in that of h′

i+1. h
′
i+1 is non-overlapped with

hnXi from the inductive hypothesis. Hence, we have found a minimal occurrence satisfying
constraints starting after h̄nXi (N ) ending before hnXi+1 which contradicts the second statement
of Property 4.

Now from Eq. (6), we can conclude that l ≤ f , i.e. any sequence of non-overlapped
occurrences can at most have f occurrences. This is because if H ′ is such that l > f , then
from Eq. (6), h′

f +1 is an occurrence that starts beyond h̄nXf (N ). As before we can construct
a minimal occurrence of α satisfying expiry constraints in the window of h′

f +1, which con-
tradicts the last statement of Property 4 that there is no minimal occurrence satisfying expiry
beyond h̄nXf (N ). Hence |HnX | ≥ |H ′| for every non-overlapped sequence H ′ satisfying
expiry constraints. Hence, HnX is maximal and f = fnX . �

6.3 Bidirectional evidence computation

For a given candidate episode, it is very convenient if one can also compute BE along with
frequency when going down the event sequence. In fact, this was the strategy used in [5] for
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(a)

(b)

(c)

Fig. 14 Illustration of why BE computation with innermost (minimal) occurrences would fail

BE computation and we stick to it here. The idea was to create a binary matrix (initialized
to zero) for each automaton that is spawned and update the CountMatrix suitably as events
constituting the tracked ET occurrence are encountered. If h is the occurrence tracked, then
the (i, j)-entry in the binary matrix should be 1 if and only if th(vi ) < th(v j ). If a spawned
automaton reaches the final state, then the associated (completely updated) binary matrix
contributes to the BE of the episode. Many of the spawned automata get knocked off (when
two automata reach the same state) and its only the automata that reach the final state which
influence the final BE. Recall from Fig. 13, that such automata basically track the innermost
ET occurrence among a set of ET occurrences that end together.

However, while discovering non-injective chain episodes, this strategy of computing BE
using innermost ET occurrences causes problems. Let us illustrate this with an example.
Consider the episode α = ((DC) → C → B). Consider the data sequence in Fig. 14a
which has two non-overlapped occurrences of α. As is easy to see, events in any occurrence
of α can happen in one of two ways captured by the two highlighted occurrences of Fig. 14a.
The bidirectional evidence of α = ((DC) → C → B) here is 1 and on running discovery
with a frequency threshold of 2, it is natural to expect α to be output. For α to be output,
we need 3 of its maximal subepisodes to be frequent at level 3. Of these, let us concentrate
on β = ((DC) → B) obtained by dropping v3 in α. It has a count of 2 but if one uses
its innermost (or minimal)) occurrences (highlighted in Fig. 14b) to compute its BE, we
obtain an unexpected value of 0. This would ultimately result in algorithm totally missing an
interesting pattern like α. Note this problem does not arise in the context of injective episodes
and is happening again because of some form of aliasing (discussed earlier in Sect. 4.2). For
instance, the innermost occurrence tracking strategy for β resulted in the aliasing of the event
(C, 15) corresponding to the node v3 of α, by the C in β, which essentially corresponds to
v2 of α.

Given this crucial issue, we propose to circumvent it by looking at the leftmost ET occur-
rence ending at the same event as the innermost occurrence (tracked by NO-X) and also
satisfying the expiry constraint. With a TX of about 5, the leftmost non-overlapped occur-
rences of β are shown in Fig. 14c. In this set of occurrences, the BE value of β is 1. Hence to
incorporate this, we slightly modify NO-X (the counting strategy described in the previous
subsection) as follows. Whenever two or more automata come to the same state, we don’t
blindly retire the older one as before.We thus allow multiple automata in the same state and
retain only those automata which can potentially still track an occurrence satisfying TX . This
would lead to a slight increase in the space complexity but is not a problem in practice for
reasonable expiry thresholds. When one or more automata reach the final state, we incre-
ment the frequency count as before. However, for BE computation, we use the binary matrix
associated with the oldest automaton only whose tracked occurrence satisfies expiry. Our
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simulations indicate that this strategy is indeed effective. A pseudo-code providing details of
this procedure is given in Appendix B.

7 Related work

There is an inherent combinatorial explosion in partial order mining as pointed out in all
existing works pertaining to mining episodes with general partial orders. For instance, con-
sider an event sequence with non-overlapped occurrences of say a 10-node serial episode.
It is reasonable to expect that this 10-node episode is representative of this event sequence.
However, a frequency-based discovery would report all 10-node subepisodes of the serial
episode as also frequent. As one can see, there are also a combinatorially explosive number
of such redundant subepisodes. Tatti and Cule [25–27] tackle this issue by mining closed9

frequent episodes which dramatically compresses the episode output. Unlike itemsets, defin-
ing closure based on frequency is not well defined because in the episodes context one can
havemultiple maximal superepisodes with the same frequency. This makesmining for closed
frequent episodes directly infeasible. To tackle this issue, all these works consider the notion
of what they call instance closure of an episode. The instance closure of an episode is essen-
tially defined as the unique maximal episode which covers (or occurs in) all valid instances
or occurrences of the episode in question. All the closed episode works efficiently mine for
instance closed episodes and finally obtain frequency closed episodes by post-filtering the
set of instance closed episodes. This is feasible because any frequency closed episode is also
instance closed.

As described in the introduction, Tatti and Cule [25,27] propose apriori-based discovery
algorithms for mining chain (or ’strict’ as they call it) episodes by performing a breadth-first
search of the space of all chain episodes. The two mainly differ in the way instance closure
is defined. Tatti and Cule [27] considers instance closure by the addition of edges alone
without addition of new event-types, where as [25] considers instance closure based on both
edges and event-types. In this sense, the algorithm in [25] is a refined version of that of [27].
The algorithm tries to mimic closed itemset mining idea of mining frequent generators10

which first discovers all frequent generators and then taking their closure to obtain frequent
closed episodes. At each step of candidate generation, a potential candidate is generated by
combining two subepisodes of the same size. It further checks for two other conditions: (a)
if all its subepisodes are frequent (including episodes of the same size) and (b) if it does
not lie in the closure of any of its subepisodes (essentially making sure its not a generator).
The frequency of each such generated candidate is now obtained by one pass of the data.
The monotonicity property, and hence, the candidate generation step in these algorithms is
very different from the current proposed method. We will elaborate more on this further in
Appendix A.

Tatti and Cule [26] considers mining in the space of all episodes under the windows-
based frequency [18] even outside the class of chain episodes considered in this paper. Their
approach can be readily extended to the non-overlapped frequency. However, the search
approach in [26] is a depth-first approach. The idea here is to carry the list of all occurrences
satisfying the expiry-time constraints for a given episode. Recursively, the algorithm traverses
the lattice of all episodes in a DFS fashion by making a current episode more specific by
either adding edges or nodes. In case of an addition of an edge, the occurrence list of the

9 An episode is said to be frequency closed if every superepisode has a strictly lower frequency.
10 A generator is an episode whose every subepisode has a strictly greater frequency.
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new episode can be obtained by just dropping some of the invalid occurrences. In the event
of an addition of a node, one needs to suitably combine the current occurrence list with all
the occurrences of the added node (1-node episode) to obtain the occurrence list of the more
specific episode. The frequency computation here is immediate as one is actually carrying
the occurrence list itself. Importantly, one performs an instance-closure of all instances (or
occurrences) which helps bypass redundant counting of many intermediate episodes. It also
makes sure the currently arrived instance closed episode is not already explored via previous
branches and discards the episode if so. This strategy outputs all instance closed episodes
which is a superset of the set of all frequency closed episodes. Consequently, frequency
closed episodes are obtained from a final post-processing step on instance closed episodes.
One possible limitation of the DFS approach for general partial order episodes would be that
one needs to carry all the occurrences of an episode and this can be exponential in general.

As discussed in the introduction, in the context of general injective episodes, Achar et al.
[5] showed there that frequency alone is not a sufficient indicator of interestingness when
dealing with general partial order episodes. To tackle this issue, a new measure of evaluating
interestingness called bidirectional evidence (BE) was also introduced. The final discovery
algorithm incorporated the new measure BE into the level-wise procedure in addition to
frequency. This strategywas found to be extremely effective in not only pruning uninteresting
patterns but also making the discovery efficient. For these reasons, we follow a similar
approach for mining in the larger space of chain episodes.

It was argued in [5] that if an injective episode α has a BE of H(α) in the data, then it is
guaranteed that all its maximal subepisodes11 have a BE of at least H(α) among the occur-
rences of α. This crucial property was exploited for the design of the candidate generation
step for injective episodes. Since BE is important both conceptually and for algorithm design
in the context of partial order episodes, we will first discuss BE in detail in the context of
chain episodes before getting into the algorithm details. Specifically, we will discuss how BE
can be extended to chain episodes and the monotonicity property it satisfies in the context of
chain episodes.

8 Experimental results

We present results of our chain episode-based discovery algorithm on synthetic data. One
advantage of working with synthetic data in general is that one has access to the underlying
ground truth. In our setting, it gives us information of the underlying embedded patterns
that are representative of the generated data. The proposed algorithm is demonstrated to
be effective in unearthing the embedded episodes while keeping a check on the number of
spurious patterns reported. It is also robust enough to scale well with parameters like noise,
data length and number of patterns. We also briefly demonstrate via simulation how our
BE-based breadth-first search (BFS) algorithm can be more effective in pruning spurious
patterns over the BFS-based closed episode miner [25]. The process of our synthetic data
generation is presented next.

11 Recall from Definition 6, an injective episode α can be viewed as a partially ordered set of event-types
(Xα, Rα). (Xβ , Rβ) is a maximal subepisode of an injective episode α if Xβ ⊆ Xα and Rβ is the restriction
of Rα on to Xβ . The notion of a maximal subepisode of a general episode is discussed in the next section.
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8.1 Synthetic data generation

The set of episodes thatwewant to embed in the synthetic data is the input to the data generator.
For convenience of illustration, each ti is chosen from the set of positive integers in this
section. For each episode in the set,we generate an episode event sequencewhich contains just
non-overlapped occurrences of the episode (and no other events). An episode event sequence
for (A → (A B)) would look like 〈(A, t1), (B, t2), (A, t3), (A, t4), (A, t5), (B, t6), . . .〉 for
example. Separately, we generate a noise event sequence 〈(X1, τ1), (X2, τ2), . . .〉 where
Xi ’s take values from the entire alphabet of event-types. All the episode event sequences
and the noise event sequence are merged to generate the final event sequence (by stringing
together all events in all the streams in a time-ordered fashion). There are three important
user-specified parameters associated with the data generation process: η (span parameter), p
(inter-occurrence parameter) and ρ (noise parameter), whose roles are explained below.

To generate an episode event sequence, we generate several occurrences of the episode
successively in a non-overlapped way. For each occurrence (of the episode to be embedded),
we randomly choose one of its serial extensions12 and this fixes the sequence of event-types
that will appear in the occurrence being embedded. The time difference (ti+1 − ti ) between
successive events in an occurrence is chosen to be a geometric distribution with parameter
η (0 < η ≤ 1). The time between end of an occurrence and the start of the next is also
distributed geometrically with (a different) parameter p (0 < p ≤ 1). As one can see, using
serial extensions to embed an episode with geometric inter event times (governed by η) in
the above fashion gives us control over the expected time span of an embedded occurrence.
This information can be useful in readily setting reasonable thresholds on expiry time. η in
conjunction with p (which governs the time between end and start of successive occurrences)
gives an immediate approximate estimate of themean frequency of an embedded pattern for a
given length of data. This in turn aids us in readily choosing reasonable frequency thresholds.

We generate the noise event sequence as follows. For each event-type in the alphabet we
generate a separate sequence of its occurrences with inter-event times distributed geomet-
rically. For all noise event-types, namely event-types that are not in any of the embedded
episodes, the geometric parameter is ρ (0 < ρ ≤ 1) and for all other event-types this
parameter is set to ρ/5. This way, we introduce some random occurrences of the event-types
associated with the embedded partial orders. All these streams are merged to form a single
noise event sequence. Noise stream is generated in this way so that there may be multiple
events (constituting noise) at the same time instant. We note here that the value of ρ alone
does not indicate any percentage of noise. For example, with ρ = 0.05 we expect each noise
event-type to appear once every 20 time-ticks and if there are 40 noise event-types, then (on
the average) there would be two noise events at every time tick. Thus, even small values of ρ

can insert substantial levels of noise in the data owing to the presence of a sufficient number
of noise event-types.

Overall our method for synthetic data generation allows us to control the expected
spans/frequency of embedded episodes independently of the level of noise. The merging
of the various episode event sequences makes sure that the occurrences of different embed-
ded episodes are sufficiently overlapped and possibly sharing some time ticks too. This in
addition to introducing noise especially via some randomoccurrences of the event-types asso-
ciated with the embedded partial orders makes the synthetic data sufficiently challenging for
mining.

12 A serial extension of a chain episode (Vα,<α, gα) is a serial episode β = (Vβ , <β, gβ) where Vβ = Vα

and gα = gβ such that <α⊆<β .
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While presenting our results, in all our tables, we give the values of different parameters
in the table caption. In addition to ρ, p and η, the other parameters are as follows: M denotes
the total number of event-types or the cardinality of E , T represents the number of time ticks
for which data is generated, TX is the expiry-time threshold, fth and Hth are the thresholds
on frequency and bidirectional evidence.

8.2 Effectiveness of mining

To demonstrate the effectiveness of bidirectional evidence-based chain episode mining, we
consider an event sequence with 2 embedded chain episodes (one injective and one non-
injective) α1 = (A → (BCD) → E → F) and α2 = ((J → H) → I → (H(G → J ))).
The event sequence generated consisted of about 25 000 events (using an alphabet of 50 event-
types) with 10 000 time-ticks or distinct event times. One can easily see that the data has about
2.5 event-types on an average per time-tick. The caption of Table 4 gives the other parameters
of data generation. Table 4 shows the results of our chain episode mining algorithm.13 We
show the number of candidates (#Cand) and the number of frequent episodes (#Freq) at
different levels. We show results for three cases: (A) when only a frequency threshold, fth is
applied at each level, to determine the output, (B) when we apply fth as usual, but also use a
threshold, Hth, on bi-directional evidence, H(α), to post-filter the output, and (C) when we
apply fth and Hth at each level (during the level-wise procedure) as explained in Sect. 4.2 to
generate candidates at the next level.

In all three scenarios, both the embedded patterns are reported as frequent. (To keep the
terminology simple, we generally refer to the output as ‘frequent episodes’ even in cases that
use Hth). A variety of patterns are reported frequent when only a frequency threshold is used
(case A). At lower levels (2–4), in addition to the subepisodes of the embedded patterns,
we observe (i) a substantial number of episodes involving one or more noise event-types (or
event-types not part of the embedded episodes) and (ii) Mixed episodes which are purely a
mix of the event-types from the two embedded episodes. At the higher levels (5 and 6), we
do not observe either of these (noisy or the mixed variety) type of episodes reported frequent.
Frequent episodes reported at higher levels involve episodes whose (multi) set of event-types
exclusively match one of the maximal subepisodes of the embedded patterns. For instance at
level 6, in addition to the embedded patterns, the frequent episodes reported typically include
(i) huge number of non-maximal subepisodes of either of the embedded patterns, (ii) a few
superepisodes of either of the embedded patterns and (iii) a considerable number of episodes
which are neither subepisodes or superepisodes of the embedded patterns inspite of sharing
the same g-map, which we refer to in short as Neither.

BE-based level-wise mining is effective in not only pruning most of the non-maximal
subepisodes but also most of the episodes of type Neither. For example, at level 6, out
of the 1989 reported frequent episodes, 2 are the interesting embedded patterns whereas
the remaining 1987 patterns are uninteresting. These uninteresting episodes predominantly
include non-maximal subepisodes of either of the embedded patterns and episodes of type
neither. On filtering these frequent episodes based on their bidirectional evidence (BE) or
H(α) value (case B), almost all such uninteresting patterns get pruned.This is mainly possible
because for both non-maximal subepisodes and episodes of type neither, there exists some
edge present in the corresponding embedded episode but absent in these episodes.This results
in their BE being generally low as per the BE definition. In fact, BE-based thresholds are

13 The source codes have all been written in C++. The experiments have been run on a 2.5GHz Pentium PC
under a Linux operating system.
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Table 4 Results obtained in three
cases: (A) frequency threshold
( fth) only, (B) bidirectional
evidence threshold (Hth) as a
post filter, (C) both fth and Hth
level-wise

Level (A) (B) (C)

#Cand #Freq #Cand #Freq #Cand #Freq

1 50 50 50 50 50 50

2 3725 458 3725 458 3725 458

3 10,958 258 10,958 159 10,958 159

4 2610 592 2610 73 1595 66

5 3323 1453 3323 25 223 19

6 7766 1989 7766 3 47 3

7 10,143 0 10,143 0 5 0

Run time 890s 920s 205s

Patterns: α1 and α2, η = 0.7, ρ = 0.05, p = 0.05, M = 50, fth = 300,
TX = 15, Hth = 0.5

generally effective in pruning non-maximal subepisodes at all levels. In this case, at level 6,
the only non-embedded episode that is reported frequent is a non-maximal subepisode of α1

having a BE close to 0.5. Note the run-time marginally increases because of the additional
H(α) computation and post filtering.

When we additionally use H(α) also in the level-wise procedure, the frequent pattern
output almost remains the same with considerable improvements in run-times. The run-time
improvements are significantly more pronounced as size of the episodes increases similar to
the case of injective episodemining [5].Wewish to reiterate that in case (B), at each level, the
episodes used to generate candidates are the ones that only satisfy the frequency threshold
even though under (# Freq) we report episodes that satisfy both fth and Hth. The results
in Table 4 show that using a level-wise threshold on H(α) makes the mining substantially
efficient without missing important patterns present in the data as in the case of injective
episodes. Hence, this strategy of mining (as also explained earlier in Sect. 4) is adopted in
our subsequent experiments.

8.3 Scaling

The algorithm scales well with noise level, number of embedded patterns, and data length
Tables 5, 6 and 7. In these experiments, the frequency thresholds have been chosen to be
roughly 75%of the expected frequency of the embedded patterns. Further, expiry-time thresh-
olds have been roughly chosen to be twice the expected span of the embedded patterns. The
data in the noise level variation experiments use two 6-node embedded patterns namely
β1 = (B → ((C → B)(D → A)) → C) and β2 = ((DC) → C → ((A → D)B)).
While varying the number of embedded patterns, we use a variety of 8-node episodes inclu-
sive of serial, parallel and general episodes (both injective and non-injective) for embedding
in the data. The data in the data length variation experiments use two 8-node patterns for
embedding, one of them being injective and the other non-injective with neither serial nor
parallel. The run-times given are average values obtained over 10 different runs. In these
tables, the column titled Avg. #Freq gives the number of frequent episodes averaged over
the 10 runs. Column titled Avg. #FN denotes the number of embedded patterns missed by
the algorithm, averaged over 10 trials. Avg. #FP denotes the average (over 10 runs) number
of false positives, i.e. the number of spurious frequent patterns. Both Avg. #FP and Avg.
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Table 5 Run-time as noise level is increased by varying ρ

ρ Noise level (Lns) Run-time (s) Avg. #Freq Avg. #FN Avg. #FP

0.0 0.0 < 5 4.0 0 2.0

0.005 0.33 < 5 4.1 0 2.1

0.01 0.66 < 5 4.0 0 2.0

0.015 1.0 < 5 4.2 0 2.2

0.02 1.33 12 6.3 0 4.3

0.025 1.66 20 9.3 0.1 7.4

0.03 2.00 137 11.1 0.1 9.2

Patterns embedded: β1 and β2, p = 0.033, η = 0.5, M = 50, fth = 375, TX = 20, Hth = 0.4, T = 20 000

Table 6 Run-time as the number
of 8-node embedded patterns is
increased

Nemb Run-time (s) Avg. #Freq Avg. #FN Avg. #FP

4 102 4.5 0 0.5

8 670 9.9 0.8 2.7

12 1810 18.5 1.4 7.9

16 4500 20.2 1.4 5.6

ρ = 0.02, p = 0.05, η = 0.7, M = 200, fth = 290, TX = 17, Hth =
0.35, T = 10,000

#FN indicate the number of frequent episodes at a level equal to the size of the respective
embedded episodes (namely 8 for Table 6 and 6 for the other two tables).

Table 5 describes increase in run-times with noise level Lns, which is the ratio of the
number of noise events to the number of (embedded) episode events in the data. The run
times are pretty reasonable for noise levels as high as about 2.0. Also, note the steady but
tolerable increase in the number of false positiveswith noise level. Similarly, Table 7 describes
the run-time variations with data length (number of events in the event sequence, denoted
as n). We observe that the run-times increase almost linearly with data length. As the data
length is increased, the ratio of fth/T is kept constant, where T denotes the number of time
ticks up to which we carry out the simulation. Table 6 shows the run-time variations with the
number of embedded partial orders (Nemb). We observe that the algorithm scales reasonably
with the density of the embedded patterns. The increase in run-times with the number of
embedded patterns is because of increased number of candidates.We observe that the number
of false negatives are tolerable across tables.We also infer from the Avg. #FP (false positives)
column that there is no blow-up in the number of spurious patterns reported. Thus the mining
algorithm reported here is quite effective in unearthing the embedded patterns.

At low noise the false positives reportedwere few andweremainly superepisodes of one of
the embedded patterns. Specifically, Fig. 15 shows the reported superepisodes of β1, namely
β ′
1 and β ′′

1 . These superepisodes will have a lower frequency but higher BE (by the definition
of BE) than the corresponding embedded pattern (β1 in this case). They are reported as
their frequencies lie in between fth and the embedded pattern’s frequency. Superepisodes of
embedded patterns typically obtained by an addition of a very few edges tend to get mined
because they satisfy the frequency threshold. As noise level increases, the false positives
increase and are contributed to by episodes of type Neither andMixed (involving event-types
from both β1 and β2). Figure 16d illustrates an episode of the Neither type associated with
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Table 7 Run-time as the data length is increased

T Data length (n) Run-time (s) Avg. #Freq Avg. #FN Avg. #FP

10 000 20, 800 55 2.1 0 0.1

40 000 83, 000 278 5.4 0 3.4

70 000 145, 000 478 4.7 0 2.7

100 000 208, 000 671 2.6 0 0.6

fth/T = 0.028, Patterns Embedded: two 8-node episodes, ρ = 0.04, p = 0.05, η = 0.7, M = 50, TX =
20, Hth = 0.5

(a) (b) (c) (d)

Fig. 15 β1 and its associated false positives

Table 8 False positives
comparison as noise level is
increased by varying ρ

ρ Noise level (Lns) BEminer #FP Closedminer #FP

0.0 0.0 2 32

0.005 0.33 2 24

0.01 0.66 2 61

0.015 1.0 2 153

0.02 1.33 2 140

0.025 1.66 2 127

Patterns Embedded: β1 and β2, p = 0.033, η = 0.5, M = 50, fth =
375, TX = 20, Hth = 0.4, T = 20,000

β. Note there is an edge from C to A in β ′′′
1 that is missing in β1 and similarly an edge from

B to A in β1 that is missing in β ′′′
1 .

Given our algorithm’s effectiveness and scaling abilities, we now briefly compare its
pattern output with the other apriori approach of [25]. As discussed in the introduction, Tatti
and Cule [25] proposes an algorithm (indicated as Closedminer in the table) for mining all
frequent and closed chain episodes. Table 8 compares the false positive output of both the
algorithms as the noise level is slowly increased. Figure 16 gives the run-time comparison
of both the algorithms. Even though the Closedminer runs much faster than BEminer, the
runtimes of our method are pretty reasonable for noise levels upto as high as 2, where the
number of noise events is twice the no. of episode events. We note that there were no false
negatives reported by our method (indicated as BEminer in the table) in this experiment. The
false positives here are numbers obtained on a single trial and not averaged over independent
trials as in the previous 3 tables. The 2 false positives reported by the BE miner here are the
superepisodes of β1. On the other hand, false positives reported by the closed miner belong
to the Neither category mostly. They also include the two superepisodes of β1 output by the
BEminer.Table8andFig.16overall clearly demonstrate that ourmethod reports significantly
lower false positives compared to closed episode miner while maintaining reasonable run
times.
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Fig. 16 Runtime comparison
with increase in noise level

9 Conclusion

In this paper, we considered algorithms for discovering episodes with general partial orders
but with a mild restriction on the partial order; the episodes that satisfy this restriction may
be called strict episodes or chain episodes. The notion of bidirectional evidence introduced
in the context of general injective episodes was extended here to chain episodes easily. We
pointed out and proved a new restrictive monotonicity property that this measure satisfies
in the context of chain episodes. This new monotonicity property also nicely generalizes
the existing property known for injective episodes [5]. The overall main contribution of
the paper is a bidirectional evidence-based level-wise discovery algorithm for mining in the
space of chain episodes under the non-overlapped frequency count. Specifically, the candidate
generation step that exploits this new monotonicity property is a non-trivial extension of that
of [5]. This step is also very different from the candidate generation adopted by the apriori-
based closed episode mining approach of [25]. We further gave correctness proofs showing
that the proposed candidate generation generates all frequent chain episodes without any
duplicates. We also presented an intelligent way of performing the transitivity check of
a potential candidate, a key step in the candidate generation. We note that this efficient
algorithm for transitivity check can also be used in candidate generation of injective episodes
and it can improve the efficiency of the algorithm reported in [5]. The counting step employed
an automata-based algorithm which was a natural extension of the counting employed in [5].
We introduced the notion of Earliest Transiting occurrences for chain episodes, using which
novel correctness proofs for counting chain episodeswere provided.We also pointed out some
issues in extending our algorithm to non-chain episodes (please refer to Appendix E). Our
simulation results finally shows the effectiveness and scalability of our discovery algorithm in
detail. We also pointed out the superiority of our method in filtering out more uninteresting
patterns (or false positives) in comparison with the other breadth-first search method for
partial order episode mining in [25].

We extended the BE measure introduced earlier in [5] for injective episodes to chain
episodes. Even though the measure was pretty effective in weeding out lots of uninteresting
patterns in the level-wise procedure, it is not guaranteed to be exactly monotonic. This means
there are instances when the embedded interesting pattern might actually be missed by the
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algorithm. An interesting future direction of work can be in trying to modify this measure
to make it exactly monotonic while retaining its fundamental characteristic of capturing
evidence between pairs of unrelated event-types in a general episode.

A Comparison with the apriori-based closed episodeminer

As stated earlier in Sect. 7, monotonicity property exploited by [27] (or its refined version
[25]) and the one exploited here are different. This makes the candidate generation step
proposed here substantially different from that of [27] or [25]. The algorithm in [25] produces
candidate episodes that are generators of ultimately closed episodes. One needs to ultimately
perform a closure operation on the generators to obtain what are called instance-closed
episodes. The final set of closed episodes are obtained from post-filtering the set of instance-
closed episodes. The main point to note is that [25] generates a potential candidate if all its
subepisodes (including that of the same size) are also frequent. In other words, it exploits the
subepisode structure that exists within episodes of the same size sharing the same g-map.

In this paper, we are using both frequency and BE to prune candidates. The monotonicity
property satisfied by BE is a much weaker condition as compared to that of frequency alone.
An �-node episode is generated as a candidate if and only if all its (� − 1)-node maximal
subepisodes obtained by dropping the last node among all nodes mapped to the same event-
type are found frequent. In fact the BE-based measure does not demand the check for the
existence of subepisodes of the same size as subepisodes of the same size are not guaranteed
to have high BE in spite of the given episode’s high BE. Continuing with the same serial
episode event sequence example, the serial episode has a high BE in this data; however, all
its subepisodes of the same size will have zero BE as they are obtained by dropping one or
more edges from the parent serial episode. For instance, suppose there is an edge from node
i to node j in α. If the edge between node i and j is dropped from α to obtain a β, then Hβ

i j
will be zero because in the occurrences tracked i precedes j always.

More specifically, Tatti and Cule [25] at each level �, first mines for all frequent parallel
episodes of size �. It then starts generating potential candidates by progressively adding one
edge at a time, doing subsequent necessary subepisode existence and closure checks before
counting its frequency andmining for frequent generators. An episodewith an �-node episode
and N edges is constructed as a potential candidate by combining two �-node subepisodes of
(N −1) edges which share (N −2) edges in common. In other words, the �-node subepisode
obtained by dropping an edge from the both the combinable episodes is the same. Note that
the gα map is assumed to be the same among all the above involved episodes. For each such
generated episode, certain intelligent checks for transitive closure are first carried out. This
is followed by checking for the existence of subepisodes (as frequent) obtained by dropping
either an edge or a node. The last check before computing its frequency would be if its a
generator too by making sure its not contained in the closure of any of its subepisodes.

In contrast to this, in the current approach we are constructing a potential candidate of
size (� + 1) by combining two �-node episodes. This is because the BE-based monotonicity
we are exploiting does not guarantee subepisodes of size (�+1) obtained by dropping edges
alone to also have a high enough BE. The (� − 1)-node subepisode obtained by dropping an
appropriate node from the combining �-node episodes is the same. This is what makes the
candidate generation steps fundamentally different in our approach from that of [25] or [27].
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B Computation of BE

Algorithm 4 describes the pseudocode for computing the BE of a given episode. Maintaining
multiple automata is easily done by maintaining two lists in addition to the state information
consisting of : (i)Q, the set of currently accepted nodes (ii)W , the set of nodes an automaton
is waiting for. The first is a list of first state transition times of each automata and the second is
a list of associated binarymatrices. Recall that if h is the occurrence tracked by an automaton,
then by the time the automaton reaches its final state, the (i, j)-entry in the binary matrix
would be 1 if and only if th(vi ) < th(v j ). Both these lists are stored together in TimeMatrixList.
The pseudocode assumes that Q and W store the integer indices of the associated episode
nodes. Lines 6–10 consider the case when the automaton is in its start state. If an automaton
is not in its start state, we first delete all those automaton whose associated occurrences
evidently violate the expiry time constraint (Line 13). After this filtering, if there still exist
automaton (TimeMatrixList being non-empty), we compute the next state, update the binary
matrix of each of these automata. If the next state also happens to be the final state, then
we use the binary matrix of the oldest automaton to update the CountMatrix. By the end of
processing the entire event sequence, the (i, j)th element of the CountMatrix would contain
f α
i j , which can be further utilized to compute H(α) as explained in Sect. 4.

Algorithm 4: CountBE
Input: Episode α of size � (� > 1) and the event sequence D.
Output: BE of episode α.

1 Initialize ListAutomata ← {(φ,Wα
0 , φ)} ;

2 Initialize CountMatri x = 0 (� × � matrix) ;
3 foreach (Ei , ti ) ∈ D do
4 foreach (Q,W, TimeMatrixList) ∈ ListAutomata do
5 if TimeMatrixList == φ then
6 if ∃ j ∈ W s.t . Ei = gα( j) then
7 Compute next state Qnxt using Eq. (3);
8 Compute next state Wnxt using Eq. (4);
9 Modify current (Q,W, TimeMatrixList) to (Qnxt ,Wnxt , (ti , 0)) ;

10 break;
11 else
12 foreach (StartTime, BinaryMatrix) ∈ TimeMatrixList do
13 if (ti − StartTime) > TX then Delete (StartTime,BinaryMatrix) from TimeMatrixList;
14 if TimeMatrixList 	= φ then
15 if ∃ j ∈ W s.t . Ei = gα( j) then
16 Compute next state Qnxt using Eq. (3);
17 Compute next state Wnxt using Eq. (4);
18 Update the current (Q,W) by (Qnxt ,Wnxt );
19 foreach (StartTime, BinaryMatrix) ∈ TimeMatrixList do
20 Bnxt = BinaryMatrix;
21 foreach (k, j) s.t . k ∈ Q do Bnxt (k, j) = 1;
22 Update the current BinaryMatrix by Bnxt ;
23 if |Qnxt | == � then
24 Choose (StartTimeMax, BinaryMatrixMax) from TimeMatrixList such that

StartTimeMax is maximum start time;
25 Add BinaryMatrixMax to CountMatri x ;
26 Remove (Qnxt ,Wnxt , TimeMatrixList) from ListAutomata;
27 Use CountMatri x to compute the BE of α using Eqs. (1) and (2);
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C Implementation issues in counting

As explained earlier in Sect. 3.1, an �-node episode α is represented using two data structures:
an array α.g such that α.g[i] = gα(vi ), i = 1, . . . , � and a binary adjacency matrix, α.e
storing the partial order (<α) information. As in the injective episodes case, to efficiently
count a set of �-node candidates, we use a collection of listswaits(), indexed by the set of all
event-types. Each element in these various lists stores information about the currently active
automata corresponding to the various candidates. A typical element in each of these lists is
of the form (α,q,w, j), where, α is a candidate, q and w essentially represent the state of
an automaton and j is an integer. q and w are �-length binary vectors encoding the two sets
(Qα,Wα), which represent a state in the FSA associated with α. For example, q[ j] = 1 iff
v j ∈ Qα . For an event-type E , if (α,q,w, j) ∈ waits(E), it denotes that an automaton of the
episode α is currently in state (q,w) and is waiting for an event-type E = α.g[ j] = gα(v j )

to make a state transition (with w[ j] = 1). As an example, consider the automaton (Fig. 12)
corresponding to (F → (E G) → F) in a state with Qα = {v2} and Wα = {v1, v4}. Here
we would have (β,q,w, 1) ∈ waits(E) and (β,q,w, 4) ∈ waits(G) where q = [0 1 0 0]
and w = [1 0 0 1].

In the injective episode case [5], since the gα-map is injective, it was convenient to work
with the set Xα = {gα(v1), gα(v2) . . . gα(vN )}while defining states of the associated automa-
ton. Consequently, the binary vectorsq andw coded for certain subsets of Xα as states there. If
instead, q andw coded for subsets of Vα as states, the algorithm (with pseudocode) presented
for injective episodes [5] would still go through (for injective episodes). Generalizing further,
since the resultant FSA for general chain episodes turns out to be deterministic always, the
counting algorithm for general injective episodes with all the implementation details of [5],
would similarly go through for chain episodes also. As explained in Sect. 6.3, the only addi-
tion would be that for each state one maintains multiple automata (unlike injective episodes
where one needs to maintain at most one automata per state). This is easily done by main-
taining the first state transition times of each automata (in a given state) in a list. Hence, for
all the implementation details of the counting step for chain episodes, refer [5].

D Property of ET occurrences

We now prove Property 2 introduced in Sect. 6.2. We restate it here for convenience.

Property 5 Given a chain episode α and data stream D, consider an ET occurrence h and
another occurrence h′ of α in D such that h′ starts on or after th̄(1). Let D j denote the first j
events of D. For every j , the set of all nodes in Vα whose associated events under h occur in
D j is a superset of the set of all nodes in Vα whose associated events under h′ occur in D j .

Proof We show this by induction of j . For any j < h̄(1), the property is obviously true. For
j = h̄(1), where h̄(1) = h(vh1 ), vh1 ∈ Vα , if h′ starts strictly after th̄(1), then the property is

immediate. If h′ also starts at th̄(1), then h′(vh1 ) must be equal to j as we are dealing with
chain episodes. (Recall that all nodes in Wα

0 are unrelated and hence must be mapped to
distinct event-types under gα for a chain episode α.) Let us assume Property 2 is true for
some j > h̄(1). Let Q and Q′ denote the set of all nodes in Vα whose associated events
under h and h′, respectively, occur in D j . By hypothesis, Q′ ⊆ Q. If (E j+1, t j+1) is not a
part of h′, then the property is immediate for j + 1. Suppose (E j+1, t j+1) is a part of h′. For
convenience, we denote h′−1( j + 1) by vk . We now claim that h(vk) is between h̄(1) and
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( j + 1) (both inclusive). Since h′ is a valid occurrence, all parents of vk belong to Q′. Since
Q′ ⊆ Q, we also have seen events associated with all parents of vk (in <α) under h in D j .
Since h is ET (Definition 14), the event associated with vk under h must be (E j+1, t j+1) or
some event in D j before it. Hence, the property continues to hold on D j+1 too. �

E Problems in handling non-chain episodes

The first point we want to make here is that non-chain episodes suffer from the problem
of ambiguity in representation. For example, the 4-node episode ((A → C)(A → B)) is
not a chain episode. This episode has two representations in spite of constraining the g-map
such that (gα(v1), . . . , gα(vN )) is ordered as per the lexicographic ordering on E as shown
in Fig. 17a, d. One can verify that both α (Fig. 17a) and α′ (Fig. 17d) share the same set of
occurrences on any event sequence. This ambiguity creeps in mainly because the nodes which
map to the event-type A are unrelated under<α . This ambiguity also reflects in the equivalent
array of event-types and adjacency matrix notation. As discussed earlier in Sect. 7, Tatti and
Cule [26] considers discovery algorithms to output the most general episodes which includes
((A → C)(A → B)). It also recognizes this issue of inherent ambiguity in representation
for general episodes. The algorithm in [26] does not resolve this ambiguity in representation
for most general episodes. It tackles it by actually comparing every currently generated
(instance) closed episode during the DFS traversal of the space of all episodes, with the
remaining currently discovered set of closed episodes. The comparison actually tests for a
subepisode relationship whose computation can be very involved for non-chain episodes in
general. In fact, it is shown to be NP-hard in general.

There would also be difficulties in counting occurrences of non-chain episodes. Consider
the above non-chain episode α (Fig. 17a). To track an occurrence of such an episode, we
would initially wait for two As and on seeing an A, we would need to accept the A associated
with both v1 and v2. This means on seeing A there is more than one next state possible
as per Definition 12. Generalizing this, one can show that the construction of an FSA for
tracking occurrences of a non-chain episode α as per Definition 12 always leads to a non-
deterministic finite state automaton (NFA). To track occurrences of such an α, one would first
need to convert thisNFA into an equivalentDFA. In the process of this conversion, the number
of states in the equivalent DFA would be larger. In fact it is shown in [26] that checking if
an event sequence contains an occurrence of an episode is an NP-complete problem. Thus,
counting the occurrences is also not straight forward for non-chain episodes in addition to
problems of ambiguous representation.

(a) (b) (c)

(d) (e) (f)

Fig. 17 Illustrates multiple representation problem of non-chain episode ((A → B)(A → C))
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Given these issues, it looks non-trivial to extend apriori-based discovery algorithms to the
class of all episodes.
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