
Vol.:(0123456789)

Knowledge and Information Systems (2019) 61:1209–1240
https://doi.org/10.1007/s10115-019-01340-7

1 3

SURVEY PAPER

In‑memory transaction processing: efficiency and scalability
considerations

Huiqi Hu1 · Xuan Zhou1 · Tao Zhu1 · Weining Qian1 · Aoying Zhou1

Received: 30 March 2018 / Revised: 20 January 2019 / Accepted: 23 January 2019 /
Published online: 13 February 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Traditional disk-resident OLTP systems were mainly designed for computers with rela-
tively small memory. Driven by the advance of hardware, OLTP systems need to be rede-
signed for larger memory and multi-core environments. Compared to disk-resident sys-
tems, in-memory systems have significant performance advantages, from the perspectives
of both transaction throughput and query latency. Their performance is no longer limited
by disk I/Os. Instead, the efficiency and scalability over multi-core CPUs become more
important. In this paper, we survey and summarize a wide spectrum of design and imple-
mentation considerations that may affect the efficiency or scalability of an in-memory
OLTP system. These considerations are concerned with most of the main components of
databases, including concurrency control, logging, indexing and transaction compilation.
For each of the components, we provide some in-depth analysis based on recent research
works. This survey also aims to provide some guidance for designing or implementing
high-performance in-memory OLTP systems.

Keywords Database system · Transaction processing · In-memory database · Concurrency
control

 * Huiqi Hu
 hqhu@dase.ecnu.edu.cn

 Xuan Zhou
 xzhou@dase.ecnu.edu.cn

 Tao Zhu
 zhutao@stu.ecnu.edu.cn

 Weining Qian
 wnqian@dase.ecnu.edu.cn

 Aoying Zhou
 ayzhou@dase.ecnu.edu.cn

1 School of Data Science and Engineering, East China Normal University, Shanghai, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-019-01340-7&domain=pdf

1210 H. Hu et al.

1 3

1 Introduction

Online transaction processing (OLTP) systems have been around, as a dominant tool that
supports automated business, for decades. Traditional disk-resident OLTP database systems
were mainly designed for computers with relatively small memory and a small number of
CPUs. Such a system is typically composed of several functional components, including a
buffer manager, a centralized locking infrastructure adopting a two-phase locking mecha-
nism and a ARIES log manager [1]. These classic structures and mechanisms were quite
successful in processing transactions of traditional enterprises, where the amounts of users
and requests were usually limited. Today, Web applications are faced with much higher
requirements, as they have to serve millions of users at the same time. Alibaba, the largest
Chinese e-commerce platform, is a typical example. According to its reports, when launch-
ing a sales promotion, its back-end has to handle millions of concurrent data accesses per
second, originated from users’ browsing and purchasing requests [2]. Traditional OLTP
systems can barely meet such needs.

Fortunately, OLTP systems are evolving rapidly, by taking advantage of the advance of
hardware technologies over the past decades. Today, a low-end server can be equipped with
256 GB of RAM and 24 physical CPU cores, which yields a cluster of four servers with an
aggregate 1 TB of RAM and a hundred cores. The architecture and functional mechanisms
of traditional OLTP systems have undergone significant improvement, to make the best
of the in-memory and multi-core environment. For instances, we can significantly enlarge
the buffer and let data reside in memory to support much faster data access. Meanwhile,
we can adopt a more lightweight concurrency control mechanism to overcome the perfor-
mance hurdles of centralized locking. Moreover, memory conscious indexes can be used
to further improve the performance. Such new approaches enable in-memory systems to
outperform traditional disk-resident systems by several orders of magnitude. Recently, a
number of in-memory OLTP database products have emerged, such as SAP HANA [3, 4],
VoltDB [5], Hyper [6]. Reports show that they perform much better than traditional data-
bases on standard benchmarks [5].

As the hardware environment has changed dramatically, a simple replacement of the
disk storage with a memory storage cannot utilize the new environment effectively. New
memory-oriented technologies need to be introduced. A significant amount of research
works have been devoted to promote or analyze the new technologies. As the system per-
formance is no longer constrained by disk I/Os, the focus of optimization has shifted to
code efficiency and multi-core scalability. Code efficiency mainly refers to the reduction
in the CPU cycles for transaction execution by optimizing its critical code path. Multi-core
scalability refers the ability of a system to increase throughput by using more CPUs cores.
In this paper, we survey the recent studies of OLTP from these two perspectives.

From the point of view of architecture, the back-end of an in-memory OLTP system
mainly contains four components as illustrated in Fig. 1 (the frontend, e.g., network man-
ager and query parser, is not the focus of our discussion). All of them need to be efficient
and scalable. This paper will review and summarize the technical considerations on these
main components and the possible solutions. The components include:

Concurrency control. Transaction management is the key function of an OLTP system.
The ACID properties guarantee that a transaction is executed atomically without violat-
ing the database’s integrity, consistency and durability. Concurrency control is meant
to enforce isolated execution of concurrent transactions. Many efforts have been made

1211In‑memory transaction processing: efficiency and scalability…

1 3

to improve its efficiency and scalability, by reducing the contention points of concur-
rency control protocols. We summarize the related works on four common CC mecha-
nisms: (i) optimistic concurrency control (OCC); (ii) lock-based concurrency control;
(iii) deterministic transaction execution, which sequences transactions prior to their
execution; (iv) multi-version concurrency control. This part of the survey is presented
in Sect. 2.
Logging and recovery. To preserve atomicity and durability of transactions in face of
system failures, a logging and recovery mechanism is required. We split log manage-
ment into three stages: (i) log generation, (ii) log persistence and (iii) log replay for
recovery. There are several works aiming to improve the degree of parallelism of log
generation and persistence, since its I/O latency can be a serious performance issue to
in-memory systems. Some works even propose to replace disk with non-volatile mem-
ory to eliminate the I/O bottleneck. The related works are summarized in Sect. 3.
– Index and data management. Adopting an in-memory storage can reduce the com-
plexity of data management, as data migration between disk and memory is no longer
a concern. However, there are still efficiency- and scalability-related problems. Exist-
ing works studied memory optimized indexes which aim to maximize the proportion of
cache-friendly data access. They also investigate how to effectively manage the limited
memory space. We summarize them in Sect. 4.
– Transaction compilation. Efficient CPU utilization is critical for an in-memory data-
base system. Transaction compilation (or query compilation) improves CPU utilization
by converting query plans into efficient binary codes. It also exploits transaction seman-
tics to generate better concurrent schedules. This part of works is summarized in Sect. 5.

In addition to the above technologies, distributed transaction management is also a major
concern of today’s transactional systems. By partitioning data over multiple nodes, we can
further enlarge the memory capacity. We discuss the related works on distributed transac-
tions in Sect. 6. Due to the architectural shift of database systems, their behavioral charac-
teristics have also changed. Some studies have analyzed and compared the characteristics
of a number of new in-memory systems. We review those studies in Sect. 7. Besides, we
provide a brief comparison of some popular in-memory OLTP systems in Sect. 8. Further-
more, we identified some important issues of in-memory OLTP that have not been well
recognized or widely discussed. We introduce them in Sect. 9.

Memory

Storage Manager

Index Table
Logs Stable

Storage

Executor

Compiler

Transac�on Engine

Concurrency Control

Log Manager

The front end of an OLTP system

S blStable

Fig. 1 The main components of an in-memory OLTP system

1212 H. Hu et al.

1 3

There have been several recent literature reviews on in-memory database systems,
including the book authored by Faerber et al. [7] and the survey by Zhang et al. [8]. They
mainly present some contemporary memory OLTP systems and their enabling technolo-
gies. While there is some overlap between this article and those reviews, there is more dif-
ference. The existing surveys discuss the design of database components from a relatively
high-level perspective. In contrast, our survey discusses a much wider range of related
research works and provide more details. We made the design and implementation con-
siderations more explicit, so that it can be a guidance for developing future in-memory
OLTP systems. Some of the considerations have been discussed explicitly in the literature,
while the others are based on our own interpretation and conclusion. Taking the optimistic
concurrency control in Sect. 2 as an example, we identify three design considerations: the
efficiency of validation, decentralization of timestamp allocation and the cost of validation.
There is no explicit mention of these three in the literature [7, 8], though there are works
addressing them individually. The purpose of this paper is to identify the critical problems
facing in-memory OLTP system, which the developers of future systems should pay close
attention to.

2 Concurrency control

Concurrency control is an essential component in database systems, and various techniques
have been proposed to improve its efficiency. We classify the techniques into four types
of mechanisms. One is Optimistic Concurrency Control (OCC) which speculates conflicts
through validation (Fig. 2a). One is lock-based concurrency control which pessimisti-
cally utilizes lock to prevent conflicts (Fig. 2b). We summarize the adoption of these two
approaches in in-memory database in Sects. 2.1 and 2.2. OCC and lock-based methods are
non-deterministic, i.e., the order of transactions is not determined until the execution. An
alternative method is to sequence the transactions before execution (Fig. 2c). This is known
as deterministic approaches. We summarize these types of techniques in Sect. 2.3. In prac-
tice, many database systems implements multi-version techniques to increase the degree of
concurrency. The related works are discussed in Sect. 2.4.

write(x)

 validate

write(x)

retry

 validate

T2

T1

T1

T2

(a) OCC

 unlock(x)

 lock(x)
 write(x)

 lock(x)
 write(x)

T1 T2

based

Queue

T2 T1

Queue

T2

T1

T2

(b) Lock- (c) Deter-
minism

Fig. 2 Three concurrency control protocols

1213In‑memory transaction processing: efficiency and scalability…

1 3

2.1 Optimistic concurrency control

OCC was first proposed by Kung et al. [9]. In OCC, transactions are serialized through
an assisted validation phase. During the phase, each transaction compares its read/write
set against the concurrent ones to detect conflicts, and the transaction restarts if its vali-
dation fails. After a transaction is successfully validated, it is allocated with a transac-
tion number that reflects its serial order. The primary argument of OCC is that conflicts
rarely occur under the read-intensive workload. Its main advantage is that it sidesteps
the overhead of maintaining a locking mechanism and the related movements to handle
deadlocks.

It is worth noting that OCC is rarely used in disk-based databases. This is because
OCC is not suitable for workloads containing a lot of conflicts. In a disk-based DBMS,
transaction processing is often blocked by disk I/O. This produces two effects. Firstly,
each transaction lasts longer due to the latency of I/O. Secondly, the system tends to
serve more concurrent requests, so as to saturate the CPUs. As a result, the probabil-
ity of conflicting data access increases vastly. A higher degree of contention implies a
higher rate of validation failures and thus higher overheads. However, OCC is widely
preferred by in-memory databases. As transactions no longer access the disk, they
become much shorter, which leads to a lower degree of contention. Meanwhile, retrying
a transaction is no longer expensive, as it does not involve I/Os. Thus, abortion and retry
are not a big concern to an in-memory database.

Many studies have attempted to optimize OCC under the in-memory environment [6,
10–14]. We classify the existing works according to their goals of optimization:

Efficiency Consideration-I: Optimizing the validation phase [10–12, 15]. The very
first OCC protocol [9] is not always efficient, since it requires a lot of works to vali-
date the read set of a transaction against the write sets of all the concurrent transac-
tions. To this end, Larson et al. [11, 12] adopted a self-validation mechanism for in-
memory database. Instead of comparing the read/write set of concurrent transactions,
it simply checks whether any record in the read set of a transaction has changed during
its conduction. As such a validation method performs well in most cases, it was widely
adopted by many in-memory systems (e.g., [10, 16]). In spite of this, self-validation
is not always optimal in all cases. For instance, Neumann et al. [15] found that it is
expensive for processing read-intensive transactions, because it has to track every single
read access and the resulting read set can be too large. Hence, they proposed precision
locking [17] (PL). Instead of maintaining a detailed read set, PL induces the predicate
spaces of the accessed records (e.g., the records x = {1, 2, 3} can be covered by the pred-
icate space 1 ≤ x ≤ 3). It then verifies the write set of a committing transaction against
the predicate spaces of its concurrent transactions. The two aforementioned validation
methods both have their own application scopes. When designing an in-memory OLTP
system, one should identify a sweet spot of the existing approaches.

Scalability Consideration-I: Improving multi-core scalability by avoiding centralized
transaction number generation [10, 13]. OCC usually requires a global counter to allo-
cate transaction sequence numbers (or commit timestamps), which is a centralized con-
tention point that limits the multi-core scalability, as identified in [10]. There are some
works trying to avoid such centralized allocation. In [10], Tu et al. leveraged an epoch-
based method in their system named Silo. Its major contribution is a new serializable
commit protocol optimized for multi-cores. Different from the common OCC protocols,
its assignment of transaction id is completely distributed without global critical section.

1214 H. Hu et al.

1 3

The transaction id is assigned collectively by a periodically updated global counter and
a thread-local counter. The former only allocates a single number (named as an epoch,
similar to a group id) for transactions committed in the same group. Within each thread,
a local counter generates monotonically increasing numbers for its own transactions.
This method benefits scalability. However, it complicates the durability mechanism,
since the transaction ids do not represent the serial order of transactions. Silo treats
epoches as the durability units, since only epoch numbers strictly reflect the commit
order. This somehow increases the transaction latency of Silo. Meanwhile, since the
transaction ids do not reflect the write-after-read dependency between transactions,
Silo can only rely on value logging instead of command logging for recovery [18]. Yu
et al. [13] proposed a data-driven timestamp management protocol. Instead of assigning
timestamps to transactions, this protocol assigns read and write timestamps to accessed
data items and uses them to compute a valid commit timestamp for each transaction.
Thus, no centralized timestamp allocator is required. Whenever two transactions con-
flict, the generated commit timestamps always correctly reflect the serialization order.

Scalability Consideration-II: Efficient algorithm for retrying failed transactions [14].
OCC consumes extra CPU resources as failed transactions have to be aborted and retried
repeatedly, especially under highly contended workloads. The retrying procedures will
impose a serious impact on scalability. To reduce the overheads, Wu et al. [14] proposed
transaction healing to better schedule a failed transaction. This approach needs to exploit
the programming semantics and analyze the dependency among operations within a trans-
action. After validation fails, a healing phase is invoked to judiciously restore non-serial-
izable operations. It saves CPU cost because only non-serializable operations are retried
instead of all operations.

2.2 Lock‑based concurrency control

Lock-based concurrency control, typically two-phase locking (2PL) [19], is a widely used
concurrency control mechanism in conventional database systems. In a database system,
locks are held to protect shared database contents (e.g., records, indexes, tables or data
partitions) from uncontrolled accesses. Disk-based systems implement two-phase locking
through a centralized lock table. In essence, the lock table’s structure is a hash table, where
conflicting lock requests are placed in the same hash bucket with a linked list. Accessing
the lock table requires looking up the hash table and iterating over a linked lists, which
incurs extra CPU overheads. Besides, it relies on latches to protect the internal structure
of the lock table. In general, a latch is meant to schedule the accesses to an internal data
structure from concurrent operations.1 The lock table uses latches to schedule concur-
rent lock acquisition and releasing operations. Thus, when multiple cores try to acquire
the same latch, it results in race conditions and impairs the multi-core scalability. Such an
implementation has already been proven to be problematic [20, 21] even for the disk-based
systems. The case is worse for the in-memory systems [22], as multi-core parallelism is
more important to their performance. In recent years, a set of new designs are proposed to
improve lock-based concurrency control schemes.

Efficiency Consideration-I: Reducing CPU instructions spent on acquiring/releas-
ing locks [12, 23]. Maintaining a centralized lock manager is costly [22]. Considering

1 Which is not visible at the transactional level.

1215In‑memory transaction processing: efficiency and scalability…

1 3

processing a lock acquisition request, the lock manager should look up the hash table, iter-
ate over a linked list and check whether any granted locking entries conflict with the new
locking request. Compared to a centralized lock table, placing locks on tuples (row lock-
ing) seems more efficient to in-memory databases. Ren et al. [23] proposed a lightweight
locking mechanism for in-memory database. Two lock fields are reserved for each record
and directly stored in the header of the record. Obtaining the lock and retrieving the record
itself can be serviced by a single memory access. Larson et al. [12] introduced a new way
to implement lock-based concurrency control for Hekaton. Similarly, the method preserves
64 bits in the header of each record for storing the locking status. Locking and releasing
the lock can be performed by modifying the 64-bit-sized variable with a simple compare-
and-swap instruction. A side effect, however, is that row locking makes lock inheritance
difficult.

Scalability Consideration-I: Reducing latch contention during lock acquisition/releas-
ing [20, 21]. A centralized lock table usually relies on latches to protect its data structures
from concurrent accesses incurred by lock acquisition and releasing. Latch contention on
the lock manager severely constrains the multi-core scalability. Some in-memory databases
replace the centralized locking scheme with some lightweight decentralized mechanisms,
e.g., by stores locking information in the header of each record [12]. Hence, lock acquisi-
tion and releasing do not access any centralized data structure concurrently. In addition,
latch-free implementation has been adopted to minimize the overheads of contention.

There are also works aiming at improving the multi-core scalability of a centralized lock
table [20, 21]. While these techniques were primarily designed for disk-based systems,
they work for main-memory systems. Jung et al. [21] proposed a new way to implement
the lock manager, which takes advantage of compare-and-swap instructions and barriers
to protect data structures instead of using latches. On the other hand, Johnson et al. [20]
proposed speculative lock inheritance, where frequently acquired locks are passed directly
from one transaction to another, to reduce the number of calls (release and acquire) to the
lock manager. DORA [24] breaks the database into segments and let each segment be ser-
viced by a single thread. Each part uses a thread-local lock table. This helps alleviate the
contention introduced by a centralized lock manager. In addition, a transaction can parallel-
ize its execution if there is no data dependence among the segments.

Scalability Consideration-II: Extracting parallelism by utilizing procedural log-
ics [25–27]. A lock-based scheduler may under-utilize multi-core CPUs when scheduling
workloads of high contention [28]. If too many requests are competing for the same lock,
a lock holder blocks all the others from making process. As a result, the number of active
transactions is reduced [29, 30]. Some work try to extract more concurrency for the lock-
based mechanism [25, 26]. Xie et al. [25] claimed that it is expensive to use a single mech-
anism to ensure ACID properties uniformly across all transactions. They presented modu-
lar concurrency control, which partitions transactions into multiple groups and customizes
concurrency control for each group based on the workload characteristic. Two-phase lock-
ing will isolate concurrent data accesses coming from different groups. For highly con-
tending workload, aggressive mechanisms (e.g., transaction chopping [27]) are applied to
increase concurrency. Narula et al. [26] introduced a new way named phase reconciliation
to handle conflicting data accesses. When contention happens, the algorithm switches to a
split phase to let each transaction operate on a copy of the record in parallel. A reconcili-
ation phase then merges these copies into the global one. Such optimization works when
operations on the contended record satisfy the commutative property (e.g., max, min, add).
That is to say, changing the order of these operands does not change the final results. Over-
all, the above methods attempt to solve the problem of scheduling transactions with high

1216 H. Hu et al.

1 3

contention. They extract more parallelism to access the contending tuples. However, their
use somehow requires that we make the procedural logics of transactions explicit to the
system.

2.3 Deterministic transaction execution

In a disk-based system, a transaction can be blocked by the slow disk access. Thus, concur-
rency control protocol is used to interleave execution of multiple transactions to improve
the CPU utilization. In an in-memory system, slow disk access is no longer a problem.
Stonebraker et al. [31] considered that it is possible to run multiple transactions one-by-one
without interleaving their execution. In other words, instead of scheduling multiple transac-
tions and interleaving their execution on the fly, it is possible to determine their serializa-
tion order before execution. Then, each transaction can be processed entirely without being
interrupted. This is known as deterministic execution.

Efficiency Consideration-I: Eliminating concurrency control itself [5, 32]. The major
advantage of deterministic execution is the complete elimination of concurrency control’s
overhead. VoltDB/H-store [5, 32] firstly proposes the deterministic execution strategy
which uses a single-thread execution engine to process transactions. In the system, incom-
ing transactions are queued and processed one-by-one by a single thread. As a result, the
system neither uses concurrency control to isolate transactions nor maintains latches to
protect the inner data structures.

Efficiency Consideration-II: Improving the performance by lazy execution. Almost all
database systems should have a transaction fully executed before making responses to the
clients. Faleiro et al. [33] proposed a lazy transaction execution engine for the deterministic
database, which returns a commit/abort promise to clients without real transaction execu-
tion. A transaction is processed only when its results would be accessed by others. During
the execution phase, a transaction can only be aborted by its client-defined logic. Thus, the
technique determines whether one transaction is committable by checking all constraints
during its initiation phase. The method increases the overall cache locality, as a repeatedly
accessed record will be brought into CPU cache only once. This also helps to shorten the
critical section, which improves the system’s performance in processing high-contention
workload.

Scalability Consideration-I: Parallelization of deterministic transaction processing [5,
32, 34, 35]. Running all transactions on a single thread cannot utilize the parallelism of
multi-core CPUs. To parallelize, we can follow two patterns, known as “data-wise” and
“transaction-wise” parallelism, respectively. In terms of data-wise parallelism, data are
horizontally partitioned and transactions accessing different partitions are executed in par-
allel. For transaction-wise parallelism, transactions are assigned to a number of execution
threads, which access a shared-data storage concurrently (i.e., each execution thread is
allowed to access all the data). To leverage parallelism for deterministic transaction pro-
cessing, H-store [5] exploits data-wise parallelism and Calvin [34] leverages both.

Basically, H-store partitions the database and assigns each partition to a single core.
Given two transactions A and B that access different partitions, A and B can be executed
concurrently, even though the deterministic order of A is in front of B. Calvin [34] achieves
data-wise parallelism by partitioning the database over multiple nodes. More than that, on
each node it implements transaction-wise parallelism. That is, a sequencer on each node
places concurrent transactions into a global queue. Then, the transactions in the queue are
processed by a pool of execution threads. The transaction executor utilizes a deterministic

1217In‑memory transaction processing: efficiency and scalability…

1 3

locking scheme to guarantee that the serial order specified by the sequencer is followed
by the transactions. The deterministic locking scheme assumes the transactions’ read and
write sets are known in advance. In particular, it utilizes two-phase locking, while trans-
actions have to obtain locks in the order given by the sequencer. A transaction begins its
processing only after it acquires all needed locks. Therefore, multiple transactions can be
processed in parallel only when they have no lock in common.

Scalability Consideration-II: Improving the performance of cross-partition transac-
tions. As mentioned above, deterministic database systems conduct data partitioning to
implement data-wise parallelization. Processing a transaction spanning multiple partitions
will be a problem, as it may block other transactions from advancing. Realizing the limita-
tion, Evan Jones et al. [36] proposed two methods to unlock more concurrency: (i) when a
cross-partition transaction has completed on one partition p1 and is still waiting for other
partitions to complete, it allows single-partition transactions to be speculatively executed
on p1 ; (ii) it only allows deterministic execution when no cross-partition transactions
exists, and uses 2PL to isolate data access. Pavlo et al. [37] proposed to utilize run-time
behaviors of transactions to optimize the execution. For example, if a transaction is known
to access only a single partition, it can be scheduled by determinism execution; otherwise,
it is routed to the partition containing most records to be executed. Distributed commit pro-
tocol is required to coordinate cross-partition transactions [5, 32], which can be expensive.
Calvin et al. [34] make use of determinism to avoid two-phase commit protocols. This will
be investigated in Sect. 6.

2.4 Multi‑version concurrency control

OCC and lock-based methods are treated as two basic methods for concurrency control. In
practice, many database systems integrate a multi-version mechanism into them to enhance
performance. In a multi-version database, updating a record creates a new version instead
of overwriting the existing one. The main advantage of MVCC is that it potentially allows
for greater concurrency by permitting parallel accesses on different versions. For instance,
in a multi-version database, transactions are usually running under snapshot isolation. A
transaction reads the latest version of records created before the start of the transaction.
This design improves the degree of concurrency by isolating reading from writing. As
a result, many in-memory databases are in favor of MVCC (e.g., SAP HANA, Hekaton,
MemSQL). They utilize mechanisms commonly known as MVOCC or MV2PL [38, 39].

Efficiency Consideration-I: Improving the efficiency of MVCC. There is no “standard”
implementation of MVCC despite the fact that many systems utilize it. To compare the
performance of different implementations, Wei et al. [38] made a comprehensive empirical
evaluation. They examined the design considerations of four key components: concurrency
control, version storage, garbage collection and index management. Each component has
multiple design or implementation choices. For example, they classify the storage struc-
tures of versions into three types, known as append-only storage, time-travel storage and
delta storage. The limitations of the different designs and implementation choices are iden-
tified in this work.

They also evaluated some state-of-the-art implementations of MVCC. For instance, they
studied the cooperative garbage collection mechanism used in Hekaton. Garbage collection
is important for MVCC as the system will soon run out of space without it. Many DBMSs
use background threads (called GC threads) that periodically scan the chains of records to
expire out-of-date versions. The method is not very efficient since the system has to put its

1218 H. Hu et al.

1 3

major resources into transaction execution and the number of GC threads is usually lim-
ited. To improve the efficiency, Hekaton [40] use a cooperative mechanism to clean expired
version. In addition to background GC threads, the worker threads running transactions are
also used to identify and remove the expired versions, which naturally balances the work-
load of garbage collection. The implementation of MVCC in an in-memory database is a
fundamental problem, and [38] provides many insights into it.

In addition to the details of implementing MVCC, many works focus on providing seri-
alizable isolation for MVCC. Lowering the isolation levels can benefit the performance,
because it avoids many potential conflicts. For instance, in snapshot isolation (SI), a trans-
action does not need to consider whether its read set has been updated. As a result, the cost
of both detecting and handling conflicts can be saved. However, weaker isolation may fail
to prevent some anomalies (e.g., the write skew anomaly [41]). Therefore, many works
attempted to enable serializable isolation based on the implementation of SI.

Efficiency Consideration-II: Achieving serializable snapshot isolation (SSI) by iden-
tifying non-serializable patterns. To support serializable snapshot isolation [42–47], it is
critical to prevent anomaly such as write skew from happening. To achieve that, Fekete
et al. [42, 43] proposed to use dependency graph to identify non-serializable patterns, and
modify the business logic to achieve serializability by inserting extra update SQLs into
transactions. They created the algorithm called serializable snapshot isolation [44], which
automatically detects and prevents anomalies. Following the theory in [48], it defines the
“dangerous structure” that can cause anomalies. For each transaction T, it maintains two
flags: (i) an in-conflict flag is used to indicate a write-after-read dependency (also known as
the anti-dependency) from T ′ to T; (ii) an out-conflict flag is used to represent a write-after-
read dependency from T to a third transaction T ′′ . Both flags must be set, if a cycle occurs
in the dependency graph [48]. Thus, SSI aborts the transaction T if both its flags are set.
Obviously, this design is coarse-grained and conservative. It sometimes aborts transactions
unnecessarily. For instance, the method is not suitable for processing transactions contain-
ing a lot of reads, because they are likely to be aborted [49]. The inventors of SSI further
improved the algorithm by providing a more precise criterion to perform abortion [45, 47],
and implement the method into a prototype system [49], which is suitable for processing
read-mostly workload.

Scalability Consideration-I: Implementing scalable serializable snapshot isolation. Han
et al. [50] evaluated the implementation of the SSI mechanisms proposed in [44, 45, 47].
They observed poor scalability in a multi-core environment and identified that the imple-
mentation of SSI introduces intensive latch contention when maintaining the dependen-
cies [51]. Therefore, they propose a new multi-core scalable implementation of SSI by
reducing its latch usage. It detects write-after-read dependency among concurrent transac-
tions at run-time, without placing latches on the transaction manager’s internal structures.

3 Logging and recovery

Durability is a critical requirement for transaction processing. It ensures that data loss does
not happen when systems crash. To achieve that, most existing database systems adopt
Write-Ahead Logging [1] (WAL). It maintains undo and/or redo log entries for each trans-
action. Undo entries are used to erase effects made by uncommitted transactions, while
redo entries are used to restore modifications created by committed transactions. Overall,
the implementation of the WAL can be decomposed into three parts: log generation, log

1219In‑memory transaction processing: efficiency and scalability…

1 3

persistence and log replaying. Figure 3 illustrates the whole procedure. Firstly, log gen-
eration creates log entries for each transaction and buffers them in the main memory. Sec-
ondly, log persistence forces generated undo/redo entries into the disk. Lastly, log replay-
ing is invoked after system crashes, and a recovery procedure would replay log entries to
restore the database. All these parts should be implemented carefully, to ensure efficiency
or scalability. For instance, traditional disk-based databases usually keep all log entries in a
centralized buffer before flushing them into the disk. The buffer could become a scalability
bottleneck if too many threads try to fill log entries simultaneously. In the following, we
summarize the recent efforts in improving the performance of these three parts.

3.1 Log generation

Efficiency Consideration-I: Reducing the amount of log entries generated by each transac-
tion [11, 52, 53]. Logging that generates both redo and undo log entries for each trans-
action is time-consuming [22]. In an in-memory system, undo log may not be necessary,
because the system does not need to flush uncommitted data into the durable storage. Thus,
recovery does not need to erase any uncommitted data. In principle, redo log is sufficient
to guarantee recoverability [11]. Malviya et al. [52] proposed a more aggressive command
logging method. It stores neither the undo log nor redo log for transactions. Instead, it only
stores the identity of the invoked transactions and their parameters. In comparison, these
fields consume much less storage space than undo/redo entries. The limitation of command
logging is that it does not support ad-hoc transactions. Besides, only transactions under
serializable scheduling can perform command logging, since all the transactions must be
re-executed in a serial order for recovery. This also increases the cost of recovery.

Scalability Consideration-I: Scaling log generation by reducing latch contention [54,
55]. Since the disk device only supports limited input/output operations per second, it is
costly to run a disk write per log entry. Hence, an important technique named group com-
mit [56] is used to improve disk utility. With group commit, a centralized log buffer will
collect log entries from multiple transactions. A dedicated thread then periodically flushes
the content in the buffer into the disk. Since multiple threads append log entries into the
same buffer, latches are required to isolate concurrent data accesses. As a result, the tech-
nique results in extra latch contention.

The method proposed by Johnson et al. [54] can reduce log buffer contention by short-
ening the critical section on the centralized log buffer. Each transaction releases the mutex
immediately after it occupies a buffer region and transactions which have acquired their
buffer spaces can fill their log records asynchronously. Meanwhile, to guarantee correct-
ness, transactions must release their buffer regions in order, to make sure that there is no
gap in the log. Kim et al. [49] presented a latch-free centralized logging method. Before
appending any entries into the log buffer, each transaction acquires an ordered LSN and

gniyalpergnihsulfnoitareneg failure

 disk

 memory

 memory

T1 T2 T3
 disk

 data

Fig. 3 Log management

1220 H. Hu et al.

1 3

buffer space using a single atomic instruction(fetch-and-add). To ensure that log
records persist in sequence, the central log buffer is divided into multiple segments and
buffer regions are released based on the order of the segments. June et al. also utilized
atomic operations for buffer management. To deal with log gaps (which is called LSN
holes) [57] , a thread is dedicated to maintain LSN (SBL). SBL represents the maximum
LSN number which has no LSN hole before it. It indicates the safe point for log persis-
tence. Two mechanisms, named hopping and crawling, were introduced to advance SBL.
Wang et al. [55] proposed a decentralized log manager built on non-volatile memory
(NVM). A transaction is considered committed once it writes its log entries into a NVM
buffer. By using multiple NVM buffers in parallel, it eliminates the contention on a central-
ized buffer.

3.2 Log persistence

Efficiency Consideration-I: Reducing persistence latency by using advanced durable
device [58, 59]. Persisting log entries in hard disk introduce high I/O latency, making log
persistence the most costly stage for in-memory transaction processing. Some works try to
reduce this part of latency by using more advanced devices. Non-Volatile Memory (NVM)
or Storage Class Memory (SCM) [60] is persistent and byte-addressable. Its access latency
is close to that of DRAM. Therefore, it is a promising hardware for improving the effi-
ciency of logging and recovery.

In 2011, Fang et al. [58] introduced the first NVM-based logging approach. They
showed that NVM-based logging can simplify the logging process, which is beneficial to
both concurrency and latency. However, persistent write on NVM also raises new problems
in handling system crashes. For instance, undo/redo log entries can be partially written into
NVM before the system crashes. A recovery algorithm should identify the unused mem-
ory space and partially written log entries correctly. Huang et al. [59] exploited a variety
of ways to adopt NVM in a database system. Its NV-Logging mechanism stores only log
entries in the NVM, while its NV-disk mechanism uses NVM to store both data and log.
They showed that NV-logging is much more cost-effective than the NV-disk approach.

Scalability Consideration-I: Utilizing multiple log devices [10]. Tu et al. [10] proposed
an epoch-based commit protocol to accomplish parallel log persistence in their high-speed
transaction system Silo, where the concept of the epoch is borrowed from their concur-
rency control protocol (see Sect. 2.1). In their approach, multiple log files are maintained
and each log file is bound with a logging thread and a separate disk. Each logging thread
is responsible for servicing a disjoint subset of working threads. Such a design leverages
multiple log devices to improve transaction throughput.

3.3 Log replaying

Efficiency Consideration-I: Parallel recovery for command logging. Command logging
requires less storage space and has a much lower run-time overhead. It improves the per-
formance of transaction execution at the cost of recovery efficiency, as all the transactions
must be re-executed to restore the database. To reach a middle ground, Yao et al. [53] pro-
posed an adaptive logging approach by combining value logging and command logging,
which can achieve faster recovery while preserving a comparable transaction throughput. It
generates a dependency graph based on the parameters of command logging in the log file
and organizes transactions in groups based on their dependency relationship. Therefore,

1221In‑memory transaction processing: efficiency and scalability…

1 3

groups without inter-dependency can perform their recovery in parallel. However, if the
dependencies among transactions are complex, it may hinder the process of parallel recov-
ery. As a remedy, the approach identifies highly dependent transactions based on a cost
model and applies value logging to them. This further improves the degree of parallelism.
Wu et al. [61] proposed another parallel recovery mechanism for command logging, called
PACMAN. It first analyzes the stored procedures. Then, it detects the dependencies of
SQLs both within and across transactions and decomposes them into multiple conflict-free
units. Thus, units that are not mutually conflicting can be recovered in parallel. To further
increase the parallelism for each unit, it exploits the run-time parameters of stored proce-
dures to generate a more fine-grained parallel execution schedule at the recovery time.

Efficiency Consideration-II: Speeding up recovery with write-behind logging. Arulraj
et al. [62] used NVM as data storage and proposed a new protocol named write-behind log-
ging. In the logging protocol, updated data are flushed to the NVM before recording them
in the log. After system crashes, the updates of all the committed transactions are guaran-
teed to be persistent (as NVM is non-volatile). Thus, data can be restored immediately. As
the changes of uncommitted transactions may be persistent too, the system also persists the
ids of active transactions in NVM. Then, it can simply discard the updates of uncommit-
ted transactions during the recovery procedure. As discarding updates can be performed
much faster than replaying updates, write-behind logging enables instant recovery. Moreo-
ver, since the contents of its logs are more lightweight, write-behind logging does not incur
extra overheads than traditional WAL.

Scalability Consideration-I: Replaying log entries in a scalable way [18]. Apart from
command logging, Zheng et al. [18] built SiloR to improve the scalability of recovery.
SiloR relies on both redo logs and checkpoints to restore a database—correct database
state can be generated by replaying the value logs on the last created checkpoint file. It per-
forms parallel logging and checkpointing by using multiple threads, each of which writes a
disjoint subset of records into a distinct disk. Then, logs on different disks can be replayed
in parallel. In particular, SiloR allows checkpointing of an inconsistent snapshot of a data-
base, that is, the effects of a committed transaction can be partially included in a snapshot.
This enables SiloR to avoid synchronization among parallel checkpointing threads.

4 Index and data management

Traditional database indexes are designed to accelerate query on disk-based databases. In
an in-memory database, the index resides in memory. Many efforts have been made to con-
struct index in memory and to provide high-performance data access. Most of the efforts
focus on tree-structured indexes (typically B-trees [63] and its variants). Compared to other
types of indexes, such as hash, tree-structured indexes are more commonly used, due to its
support for range query. We summarize the existing works as follows.

Efficiency Consideration-I: Reducing cache miss of index access. As indexes are main-
tained in the main memory, cache efficiency becomes more important. The basic unit of
caching is known as cache line, holding recently referenced instructions and data. Modern
CPUs typically have multiple levels of caches with different access speeds and capacities.
The CPU starts to execute instruction only if both the required instruction and data reside
in the cache (called cache hit). Otherwise, the penalty of cache miss comes into play and
the CPU has to wait until they are fetched in the cache. From the perspective of cache effi-
ciency, conventional B-tree styled index is not cache-conscious [64], as their design does

1222 H. Hu et al.

1 3

not consider cache efficiency. Thus, a number of existing works focus on improving the
cache efficiency of index [64–68].

(i) B-tree uses a large portion of index nodes to store child pointers [64]. When travers-
ing from the root to a leaf node, each node access may incur a cache miss. In total,
there can be n cache misses for one lookup operation, where n denotes the depth of
the index. Clearly, n increases when the capacity of a node decreases. As an optimi-
zation, CSB+-tree [64] and CSS-Tree [65] tried to eliminate unnecessary child point-
ers within a node. This enables a cache line to store more children and thus reduce
the height of the tree. For instance, CSB+-tree keeps only one child pointer per node
and the rest of the children can be found by adding an offset to that pointer.

(ii) For conventional B-trees, the procedure of index traversal may not be propitious to
exert instruction pipelines. This can cause another performance issue. Because the
result of a comparison within each index node cannot be predicted easily, instruc-
tion cache misses can be common, which causes additional latency [66, 67]. The
problem can be tackled by leveraging modern hardware architectures. For instance,
the approaches of [66, 67] utilize SIMD to perform multiple comparisons simultane-
ously. Recently, Kraska et al. [69] put forward an idea that indexing can be seen as
a machine learning model to map a key to the position (address) of a record. From
this perspective, if a learned index can predict the position of target correctly, B-tree
traversal is no longer necessary.

(iii) Mao et al. developed Masstree [68], which is a trie-concatenated B+-tree that sup-
ports variable-length keys. Masstree partitions the keys into 8-byte slices and stores
each key slice in a single B+-tree node. Thus, all keys shorter than 8h+8 bytes are
stored at a B+-tree of level h. Note that the 8-byte key slice is represented as a integer
type (defined as uint64_t). Under this design, Masstree can translate the expensive
key comparison of arbitrary data types (e.g., strings) into fast integer comparison.
This is the main reason of its high performance. Besides, design also allows it to
prefetch the cache lines of nodes to improve cache efficiency.

 Efficiency Consideration-II: Designing fast and memory efficient radix index. Some
works focus on memory-based radix index [68, 70]. Radix tree (also known as trie, prefix
tree) [71] is widely used for indexing character strings. It is composed of a set of strings,
each containing m characters. An m-ary tree is used to connect the strings, such that each
string is identified by a unique path from the root to a leaf node. There is also generalized
radix [72] tree that can support arbitrary type of records by encoding bits into strings. Then,
each inner node keeps a 2s-array of pointers to its child, where s is the number of encoded
bits. As a consequence, all operations have O(k / s) complexity where k is the length of the
key. One perceived advantage of radix tree is its search complexity, which only depends
on the length of the keys instead of the number of records in the index. If s is large, the
index will be efficient. This is attractive for indexing extremely large datasets. Some recent
works [70, 73, 74] have indicated that the radix index outperforms B+-trees in many cases.
Nevertheless, a radix index also has a number of disadvantages. One downside is that it
cannot customize key orders by specifying arbitrary comparators, which can limit its scope
of application. Another disadvantage is that its space cost can be high, especially when s is
large and most of its child pointers are null. To address the problem, Leis et al. [70] devel-
oped the adaptive radix tree (ART), which was adopted in the Hyper system [6]. By utiliz-
ing adaptive fanout, it can keep the space usage in control without scarifying the efficiency

1223In‑memory transaction processing: efficiency and scalability…

1 3

of search. In [75], the authors developed a radix index called HOT, featured by its ability
to control the tree height. Reducing the tree height can further improve the efficiency of
tree traversal. The method proposed in [75] further optimizes the node representation of
HOT for better cache efficiency and SIMD utilization. Zhang et al. [76] presents a space-
efficient radix index called fast succinct trie. It supports exact-match filtering (i.e., point
query to identify the existence of a record) and range-filtering at the same time. It utilizes a
LOUDS-based encoding method [77] to organize the index. Thus, the space consumption
is somehow minimized from the perspective of information theory, while its performance
is comparable to standard uncompressed indexes.

Efficiency Consideration-III: Improving space-efficiency by relocating cold data.
Despite the rapid growth of memory capacity, main memory is still expensive in compari-
son with disk and SSD. A method to reduce the consumption of memory is to identify
and relocate cold data. In particular, the patterns of most OLTP workloads are somehow
skewed, and the distinction between hot (frequently accessed) and cold (infrequently or
never accessed) data is somehow clear. Thus, it is usually beneficial to manage hot and
cold record differently. The problem can be further divided into two issues.

(i) Efficient cold data identification. The first step is to identify cold data [78–80]. The
simplest method is to monitor the read/write frequency of data records in each worker
thread. This method obviously has negative impact on performance, due to its over-
head. Thus, several studies have been conducted in attempt to move the monitoring
task away from the critical path of transaction processing. Stoica et al. [78, 80] pro-
posed to perform sampling online and identify hot data by analyzing transaction logs
offline. They [81] also introduced a set of algorithms to estimate access frequencies,
which are more accurate than traditional LRU-k and ARC algorithms [82]. Funke
et al. [79] proposed to use a more efficient hardware-assistant approach, which moni-
tors data accesses by reading the reset-flags within the CPU’s memory management
unit.

(ii) Data migration and compression. After cold data are identified, it will be either com-
pacted or migrated into a secondary storage [78, 79, 83, 84].

 Some works provide methods to migrate cold data. Stoica et al. [78] utilizes the
default paging mechanism of the operating system for this purpose. As all the data
are managed in a unified virtual memory space, it can simply out the cold data swap.
In contrast to the page-level approach [78], the approaches of [80, 83] perform fine-
grained migration at the tuple-level. They execute special transactions that select
tuples and relocate them to the disk. When a transaction requires to use the cold
data, they perform a pre-scan execution to identify the needed tuples and move them
into the memory.

 Cold data can also be compressed to save storage space [79, 84]. Funke et al. [79]
proposed to compress immutable data using the common run-length and dictionary
compression algorithm. Lang et al. [84] proposed a compression format called data
blocks. This advantage is that it does not introduce overhead to data access. It pro-
vides efficient point access and range scan algorithms.

 Index entries also differ in their accessing frequencies [73, 85]. Zhang et al. [73]
argued that memory indexes can be bigger than data itself. They presented a dual-
stage architecture and a transformation procedure to reduce the space consump-
tion of index. The basic approach is to leverage the skewed distribution of data
accesses. Its dynamic stage resides in memory, and all the new entries are added to

1224 H. Hu et al.

1 3

the dynamic stage. Thus, it is most likely that queries to the most recent entries will
be evaluated in memory. The static stage resides in the durable devices (e.g., disk).
As the size of the dynamic stage grows, it periodically moves the older entries to the
static stage. Most popular indexes, such as B+tree, ART [70] and Masstree [68], can
benefit from this design.

 Scalability Consideration-I: Reducing latch usage on indexes. Latches are usually used to
protect critical sections of indexes from concurrent threads. There have been a number of
methods for dealing with concurrency control on B-trees [86, 87]. Early works rely on latch
coupling, which perform latching heavily. The index traversal proceeds from one node to
its child by holding the latch on the node while requesting the latch on a child. Latching
coupling may seriously degrade the scalability due to its inherent cost and the coherence
problem [88]—in a multi-core environment, different processors have to fetch index nodes
into their caches frequently; as the states of latches keep changing, it is well possible that
the states in the caches of different processors are inconsistent.

Several works aim to reduce the usage of latching [68, 85, 88, 89]. Some aim to elimi-
nate latching from read operations. Cha et al. [88] proposed an optimistic concurrency con-
trol scheme that supports latch-free index traversal (read) for B+-tree and its variants. For
each node, it maintains a latch and a version number. Every write operation first obtains
the node latch, and updates the node content. Then, it increases its version number, and
releases the latch. To read a node, it adopts an optimistic strategy by first reading the ver-
sion number of the node before accessing the data. At the end, it verifies whether the node
latch is free and the current version number is equal to the previous one. If both condi-
tions are true, the read operation succeeds. Masstree [68] uses a similar optimistic strategy
to eliminate latching from read operations. It also uses a fine-grained latching scheme to
enable concurrent write operations on different parts of the tree. The approaches in [68,
88] can eliminate latching from lookup operations. To reduce the usage of latch in write
operations, Bw-tree [74, 85] abandons in-place updates and adopts delta updates. It is com-
pletely latch free. Each update on Bw-tree produces a new address in the form of a delta
record attached to an existing page. Updates of records are concurrent, while only one win-
ner can be installed on the index, which is achieved through an atomic compare-and-swap
operation. Moreover, its delta update mechanism is more cache efficient than the in-place
update mechanism, since it can reduce CPU cache invalidation.2 In [74], further optimiza-
tions were conducted to improve the performance of Bw-tree.

The authors of [89] proposed in-memory B+-trees that perform batch operations. Each
batch can contain multiple writes and read operations. Special scheduling is performed
within each batch to avoid concurrency control—all write operations are not executed until
all read operations complete, and conflicting write operations are assembled into different
rounds which are executed sequentially.

5 Transaction compilation

Transaction compilation (or query compilation) aims at generating better execution
codes (or plans) for incoming requests. Transaction compilation is possible when UDF is
used. UDF allows database systems to obtain the transaction logics in advance and avoid

2 For in-place updates, the state of data is likely to be inconsistent in the caches of multiple processors.

1225In‑memory transaction processing: efficiency and scalability…

1 3

client–server interaction during transaction processing. Transaction compilation increases
CPU utilization in two ways: (1) optimized compilation can reduce extra instructions used
in interpreted execution; (2) exploitation of application logics can generate better schedules
with improved concurrency. We summarize them as follows.

Efficiency Consideration-I: Improving code efficiency through just-in-time compila-
tion [11, 90]. The query plan of an SQL statement is an iterator tree, where each node cor-
responds to a physical operator. In the volcano model [91], records flow from the leaves to
the root. Each operator exposes three interfaces: open, next, close, through which a parent
node pulls records from its children. The overheads of such a query execution model are
tremendous, and span several stages, such as data type interpretation, expression evalua-
tion, function invocation, etc [11, 90]. Data interpretation and expression evaluation neces-
sitate a significant amount extra instructions. Function invocation leads to poor instruction
and data locality and more cache misses.

In systems such as Hekaton [11], through UDF query plans are converted into C codes
as a single function. The function calls (i.e., open, next, close) between tree nodes are
translated into goto and label statements. Then, Hekaton leverages the compiler and linker
of Visual C to convert C code to efficient machine code. A C/C++ compiler usually takes
several seconds to compile a query. To save the compiling time, Hyper [90] adopts a dif-
ferent design. It uses a Low-Level Virtual Machine (LLVM) compiler code to translate
a query plan into portable assembler code. Later, a LLVM virtual machine can translate
these codes into machine code. This approach takes only milliseconds to compile a query.
Moreover, Hyper tries to compile multiple operators of a query plan into loop fragments.
Each loop can perform multiple operations before moving each tuple out of CPU registers.
Such a design significantly improves the data and code locality.

Scalability Consideration-I: Extracting more parallelism by exploiting application log-
ics. By analyzing the transaction logic in advance, it is possible to generate specialized
schedules and extract more parallelism from concurrency control.

Several works have exploited program semantics to specialize concurrency control pro-
tocols [14, 92]. For systems adopting 2PL, Yan et al. [92] proposed to automatically reor-
der the operations within a transaction, so as to postpone the execution of operations with
high conflicting probability. This can shorten the critical sections of the transactions that
compete for “hot” locks. This is achievable if we know the procedural logic of the applica-
tion in advance. For systems adopting OCC, Wu et al. [14] proposed to capture depend-
ency among operations within a transaction. Two operations are dependent if the output of
the preceding one is the input of the subsequent one. This enables OCC to retry transac-
tions through a healing phase, as described in Sect. 2.

A second way to improve currency is transaction chopping. The work of [27] proposed
a SC-graph model for performing transaction chopping. In the model, an S-edge connects
two sibling pieces of code from the same transaction, and a C-edge connects two pieces of
codes of different transactions that may potentially conflict. An SC-cycle is a cycle con-
taining both S-edge and C-edge. If no SC-cycle exists, each piece can be treated as an inde-
pendent transaction without violating serializability. The approach in [93] utilizes the SC-
graph model. It automatically splits transactions into fine-grained pieces, which allows for
appearance of SC-cycles, and perform special scheduling on these pieces. IC3 [94] tracks
the dependencies of the pieces online and blocks a piece from processing if its execution
can potentially violate serializability. Compared with [27], these methods can extract more
parallelism by partitioning transactions into smaller pieces. ROCOCO [95] further extends
transaction chopping to distributed concurrency control. Servers firstly track dependen-
cies among concurrent transactions without actually executing them. With the dependency

1226 H. Hu et al.

1 3

information, during the actual execution, the servers know how to schedule the different
pieces cleverly to achieve a serializable order. In general, transaction chopping only works
well for long transactions. It requires a step to analyze program semantics, by either assum-
ing the read/write set of transactions are known in advance or tracking the dependencies
among transactions on-the-fly at the price of extra overhead.

6 Distributed transaction management

As the memory size of a single machine is limited, many systems partition data over mul-
tiple nodes as a way to increase memory capacity [5, 35]. It significantly improves scal-
ability for transactions that access single partition but puts the execution of multi-parti-
tion transactions into a dilemma due to the cost of distributed transaction management.
Note that distributed transaction management is a very broad research topic. The content
is beyond the theme of this survey. Thus, we only discuss several studies investigating in-
memory distributed systems, which include two aspects: (1) data partitioning approaches
that aim to reduce the number of distributed transactions and skew accesses ; (2) new com-
mit methods to replace the conventional two-phase commit protocol.

Scalability Consideration-I: Reducing distributed transactions and skew accesses with
fine-grained partition. A fine-grained partition can reduce the number of distributed trans-
actions, and hence reduce the cost of distributed commit. Several approaches have been
studied for partitioning the data effectively [96–98]. Curino et al. [96] proposed a graph-
based algorithm to minimize the number of distributed transactions when the workload is
known in advance. The graph regards records as nodes and transactions as edges, which
connect records used within the same transaction. Then, it applies a graph-partitioning
algorithm to find balanced partitions that minimize the weight of cut edges. Thus, it also
minimizes the number of distributed transactions.

The skewness of data accesses is another problem for data partitioning as the sys-
tem performance decreases when the load is unbalanced among different nodes. Andrew
et al. [97] took it into consideration and developed a tool to generate data partitions for
deterministic OLTP systems. It selects the best data layout that minimizes the number of
distributed transactions while also reducing the skewness of temporal data accesses. A cost
model is proposed to evaluate the performance of DBMS for different schemes of parti-
tions. The cost is computed based on a sample workload trace without actually deploy-
ing the database. An approximate algorithm is then used to compare the potential parti-
tioning solutions and pick the one with the minimum cost. The works of [96, 97] assume
that workload is aware and static. Taft et al. [98] proposed a reconfiguration system called
E-Store which adjusts data partitioning dynamically for a shared-nothing DBMS. To iden-
tify hot records and their skewed access distribution, E-Store utilizes a two-stage monitor-
ing tool. First, it identifies workload using a lightweight method which collects the OS-
level statistics of CPU utilization for each partition. Once the first phase detects imbalanced
workload, it starts the second phase of tuple-level monitoring over the entire system for a
short period. Then, it uses the collected information to generate a new partitioning scheme,
which may increase or decrease the number of nodes and reorganize the placement of the
data records.

Scalability Consideration-II: Removing the expensive two-phase commit protocol. Many
systems employ an agreement protocol (typically the two-phase commit protocol [99])
among all participating partitions to ensure transaction atomicity and durability. It requires

1227In‑memory transaction processing: efficiency and scalability…

1 3

multiple network round-trips among participant nodes at the commit time. Therefore, a dis-
tributed transaction is much more costly than a local transaction. To deal with the overhead
raised from the agreement protocol, several alternatives to the two-phase commit protocol
were proposed [35, 100].

Lin et al. [100] proposed a scheme to avoid two-phase commit by converting a distrib-
uted transaction into a local transaction. It is motivated as OLTP queries involve only a few
data records. Thus, it is not more expensive to migrate records than to send sub-transactions
to remote nodes. Therefore, before processing a transaction, it figures out which nodes the
required records reside by performing a key-value lookup on a record-owner table. Next,
it performs a migration process to move all the required records to a single machine and
modifies the data ownership in the record-owner table. After the migration, the transaction
is executed locally, and no distributed transactions will be performed. The method is less
friendly when many concurrent partition transactions access the same record as the migra-
tion progress need to be scheduled.

Abadi et al. [35] optimized the commit protocol for Calvin, the partitioned database sys-
tem employing a deterministic transaction execution policy. Calvin maintains replicas for
each node and performs deterministic execution, where multiple replicas reach an agree-
ment on the serial order of transactions in prior to their execution. As a result, a node fail-
ure will not block a transaction from committing, because a replica node is performing the
same sequence of transactions. Thus, the distributed commit protocol of Calvin does not
need to worry about node failures. Each node involved in a transaction only waits for sin-
gle-round committing messages from the other nodes and commits once all are received.
The method only works for system executing deterministic transactions on replicas with
the same scheduling order.

7 System analysis and test

As the database architectures differ dramatically, their system behaviors are also different.
A lot of efforts have been made to analyze the bottlenecks that affect the performance of
the new systems.

CPU-cost analysis. Some studies made breakdown analysis, while the others go deeper
to investigate the micro-behavior.

(i) Experiment study. Stonebraker et al. [22] are the first to realize that the database
architecture has changed due to the advance of hardware. They removed each feature
from a database system one at a time and identified the major components that affect
system throughput. Ren et al. [101] compared deterministic and non-deterministic
transaction execution. They conducted an experimental study to evaluate the advan-
tages and disadvantages of determinism. Results show that a deterministic system
produces extra latency, but it can scale to a higher throughput than non-deterministic
systems.

(ii) Micro-behavior analysis. Some works analyze the in-memory database from the
aspects of their micro-behavior. Ailamaki et al. [102] is the first paper to analyze the
breakdown of execution time in a in-memory database system. It shows that a half of
the execution time is spent in stalls due to L2 data cache misses and L1 instruction
cache misses. Sirin et al. [103] compare the micro-architectural behavior (i.e., the
number of instructions retired per cycle and the number of the misses from each level

1228 H. Hu et al.

1 3

of cache) of in-memory database systems with the behavior of disk-based systems
when running the same OLTP workload. They found that in-memory systems also
under-utilize the micro-architectural features, just as disk-based systems do. Both of
them spend more than half of the CPU cycles in instruction and data stalls, which is a
result of poor L1 cache locality. The study of [104] further analyzes the leading cause
of instruction and data misses. It identifies that the index probe operation is the lead-
ing cause of cache misses.

 Scalability test. Regarding system scalability, Yu et al. [28] regards concurrency con-
trol as a potential bottleneck that limits the scalability of the system under multi-core
environment. It provides an evaluation of the scalability of seven concurrency control
schemes, by scaling up the number of cores to 1024 through a CPU simulator called
Graphite [105]. The results show that all seven concurrency control schemes fail to
scale to a large number of cores, but for different reasons. The work of [106] evaluates
the scalability of several widely used database systems on multi-core architectures.
Results demonstrate that contention over mutex causes the database performance to
drop. As the number of cores increases, the performance decreases instead of increas-
ing in spite of improved computing capacity. Appuswamy et al. [107] evaluated the
impact of system architecture on the scalability of OLTP engines for contended work-
loads. They designed a testbed of main-memory database engine that implemented
four system architectures. Then, they conducted analysis to characterize the interac-
tion between system architectures and concurrency control protocols under contended
workload.

8 In‑memory OLTP system

In this section, we briefly review some existing in-memory database systems. There
are increasing interests from both academia and industry in designing and develop-
ing in-memory database systems. In academia, there are many active research projects
such as H-store [32], HyPer/ScyPer [6, 108] and Silo [10]. Many of them have suc-
cessfully evolved into commercial systems(e.g., H-store and Hyper). In industry, many
practical systems have come into the market, such as SAP HANA [4], Microsoft Hek-
aton [11], Oracle TimesTen [109], IBM solidDB [110], MemSQL [111].

Roughly, we can classify these systems into two categories based on their scale:
non-distributed and distributed systems. Some early systems keep all the data in a sin-
gle machine equipped with large memory. They are known as non-distributed data-
bases (Sect. 8.1). However, their performance can be hindered by the memory capac-
ity, the number of processors or other hardware resources. Distributed systems connect
multiple servers to obtain more hardware resources (Sect. 8.2). We summarize the fea-
tures of those systems in Table 1.

8.1 Non‑distributed system

Hekaton. Hekaton [11] is an in-memory transaction processing engine fully built in Micro-
soft SQL Server. Transaction requests are encoded as stored procedures to make the best
of the concurrency control and compilation mechanisms. Hekaton optimizes performance

1229In‑memory transaction processing: efficiency and scalability…

1 3

Ta
bl

e
1

 C
om

pa
ris

on
 o

f i
n-

m
em

or
y

O
LT

P
sy

ste
m

s

Sy
ste

m
In

de
x,

 st
or

ag
e

C
on

cu
rr

en
cy

 c
on

tro
l

Re
co

ve
ry

M
em

or
y

un
de

ru
til

iz
ed

Q
ue

ry
 c

om
pi

la
tio

n
an

d
tra

ns
-

ac
tio

n
A

PI

H
ek

at
on

 [1
1]

B
w

-tr
ee

 [8
5]

M
V

C
C

, O
C

C
, 2

PL
 [7

4]
W

A
L

Si
be

ria
 [8

0,
 8

1]
C

om
pi

le
d

SQ
L

[1
12

]
Si

lo
 [1

0]
M

as
str

ee
 [6

8]
M

V
C

C
, O

C
C

W
A

L
[1

8]
, e

po
ch

-b
as

ed

pr
ot

oc
ol

 [1
0]

–
St

or
ed

 p
ro

ce
du

re

H
yp

er
 [6

]
H

as
hi

ng
, b

al
an

ce
d

se
ar

ch

tre
e,

 A
RT

 [7
0]

D
et

er
m

in
is

m
, v

irt
ua

l
sn

ap
sh

ot
W

A
L

C
om

pr
es

se
d

co
lu

m
na

r s
to

r-
ag

e
[8

4]
LL

V
M

 [1
13

],
co

m
pi

le
d

SQ
L

[9
0]

so
lid

D
B

 [1
10

]
V

tri
e

[1
14

]
M

V
C

C
, O

C
C

, 2
PL

W
A

L,
 L

og
-b

as
ed

 re
pl

ic
a-

tio
n

[1
15

]
D

is
k-

ba
se

d
en

gi
ne

SQ
L,

 d
ire

ct
 li

nk

Ti
m

es
Te

n
[1

09
]

H
as

hi
ng

, b
itm

ap
 [1

16
]

M
V

C
C

, 2
PL

W
A

L,
 lo

g-
ba

se
d

re
pl

ic
at

io
n

C
ol

um
n

co
m

pr
es

si
on

SQ
L,

 d
ire

ct
 li

nk
, J

D
B

C
/

O
D

B
C

A
lti

ba
se

 [1
18

]
H

as
hi

ng
, r

an
ge

 in
de

x
M

V
C

C
, 2

PL
W

A
L,

 lo
g-

ba
se

d
re

pl
ic

at
io

n
C

ol
um

n
co

m
pr

es
si

on
SQ

L,
 JD

B
C

/O
D

B
C

Pe
lo

to
n

[1
19

, 1
20

]
B

w
-tr

ee
 [7

4]
M

V
C

C
, t

im
es

ta
m

p
or

de
r-

in
g

[1
3]

W
A

L,
 w

rit
e-

be
hi

nd
 lo

g-
gi

ng
 [6

2]
–

SQ
L,

 JD
B

C

H
A

N
A

 [3
]

M
ul

ti-
st

ag
e

sto
ra

ge
 [1

21
],

C
SB

+
-tr

ee
 [6

4]
, e

tc
M

V
C

C
, 2

PL
W

A
L

C
ol

um
n-

sto
re

, c
om

pr
es

si
on

SQ
L

Sc
rip

t,
SQ

L,
 e

tc
, J

D
B

C
/

O
D

B
C

Vo
ltD

B
 [5

]
B

+
-tr

ee
, h

as
hi

ng
, b

in
ar

y
tre

e
D

et
er

m
in

is
m

 [3
6]

C
om

m
an

d
lo

gg
in

g
[5

2]
A

nt
i-c

ac
hi

ng
 [8

3]
St

or
ed

 p
ro

ce
du

re
, r

efl
ec

tio
n

M
em

SQ
L

[1
11

]
H

as
hi

ng
, s

ki
p

lis
ts

M
V

C
C

, 2
PL

W
A

L
C

ol
um

n-
sto

re
, c

om
pr

es
si

on
,

di
sk

 st
or

ag
e

LL
V

M
 [1

13
],

co
m

pi
le

d
SQ

L

1230 H. Hu et al.

1 3

by using latch-free data structures (e.g., Bw-trees [85]) and a multi-version optimistic con-
currency control scheme [12]. It also compiles stored procedure into efficient machine
code [112]. Later, the Siberia component [81] is used to classify records into cold and
hot ones based on access frequencies. It controls memory usage by shifting cold ones into
disk [80]. Durability and recovery are ensured by write-ahead logging and checkpointing.

Silo. Silo [10] is an in-memory database prototype. It supports transactions in the form
of stored procedures and is designed to scale on large multi-core machines. Silo stores
records with Masstree [68] indexes. The key to its good performance is its concurrency
control method. As described in Sect. 2, it combines OCC with an epoch-based commit
protocol. Silo relies on both redo logging and checkpointing to restore the database. Both
logging and checkpointing are parallelized [18]. Checkpoints and logs are written into
different disks of a machine. During recovery, checkpoint files in different disks are first
rebuilt in the memory, followed by log replaying to bring the database to a consistent state.

Hyper. Hyper [6] is the main-memory system designed for hybrid transactional and ana-
lytical workload. For transaction processing, Hyper executes transaction sequentially fol-
lowing the design of determinism database [5, 34] and logically partition the database to
utilize multi-core parallelism. On the other hand, analytical queries execute on a read-only
virtual snapshot generated by the hardware-level copy-on-write mechanism [6]. A virtual
memory snapshot is created by a child process of the OLTP process via the fork() system
call. The snapshot stays in precisely the state that the fork() takes place. To improve query
efficiency, it converts user-input queries into assembly codes using the LLVM [113]. For
data storage, Hyper uses the adaptive radix tree(ART) [70] to achieve both space and time
efficiencies. To reduce memory usage, cold data are stored in a compressed columnar for-
mat, named Data Blocks [84].

solidDB. IBM solidDB [110] supports in-memory storage as well as disk-based storage
for high-performance transaction processing. MVCC and 2PL are used to isolate conflict-
ing data accesses in the memory storage. It uses the index of Vtrie [114] tree to accelerate
data access. To provide durability and availability, solidDB performs both checkpointing
and replication. A failed instance can recover database from either the checkpoint file or its
hot-standby [115]. SolidDB can replicate data to both another solidDB instance and other
data servers. Between solidDB instances, it uses statement-based replication. Between
solidDB and other data servers, log-based replication is used. For query processing, a cli-
ent application can link to the database server routines directly.

TimesTen. ORACLE TimesTen [109] is an in-memory database, which is designed for
both OLTP and OLAP workloads. Its primary database instance is responsible for OLTP
workloads. Data are synchronized into a standby instance handling OLAP workloads. For
concurrency control, it uses a fine-grained locking scheme for update-intensive workloads
and multi-versioning for read-only workloads. It supports hash index, bitmap indexes [116]
and range indexes. The storage engine also offers columnar compression to reduce the
memory usage. It uses write-ahead logging to ensure durability. A multi-partition log
buffer is designed to avoid centralized log generation. For high availability, it uses log-
based replication and provides the 2-safe replication mode [117]. For query processing,
TimesTen supports ODBC and JDBC. It also allows a client to link into the server directly.

Altibase. Altibase is a database provided by the Altibase Corporation [118]. It uses a
hybrid architecture where the high-performance data are stored in an in-memory engine
and the voluminous data are kept in a disk-based engine. Altibase manages concurrency
using MVCC. A lock-based method is utilized over the MVCC to guarantee the ACID. For
data residing in memory, records are organized in pages. Indexes, such as hash indexes,
range indexes, and spatial indexes are supported. Altibase uses fuzzy and ping-pong

1231In‑memory transaction processing: efficiency and scalability…

1 3

checkpointing methods to back up the most recent state of the database and uses write-
ahead logging for recovery [118]. It also employs log-based replication for availability. It
offers ODBC/JDBC and C++ procedure interface to clients.

Peloton. Peloton is an open-source in-memory database system developed by Carnegie
Mellon University [119, 120]. A main feature of the system is that it is autonomous, as
the system can tune itself to optimize performance using artificial intelligence techniques.
Peloton re-implements the latch-free Bw-tree for in-memory data access [74]. For concur-
rency control, Wu et al. [38] have evaluated both OCC and 2PL combined with the MVCC
in the system. It further provides a data-driven timestamp ordering protocol to serialize
transactions [13]. Peloton leverages write-ahead logging when data are stored in memory.
It also supports byte-addressable NVM storage, where data are persistent on NVM devices.
For deployment on NVM, write-behind logging is utilized [62]. For accessing, it offers
JDBC interface.

8.2 Distributed system

HANA. SAP HANA [3, 4] is a distributed, in-memory database system designed for hybrid
OLTP and OLAP workloads. It is able to process relational data, semi-structured and
unstructured data. To achieve that, it implements a multi-tier in-memory storage engine
[3]. The main store is a highly compressed column-orientated storage, which reduces mem-
ory usage and helps in complex query processing. To efficiently support OLTP workloads,
HANA adopts a multi-tier [121] storage. Transactions writes are firstly kept in L1-delta,
a write-optimized row-store; and then propagated into L2-delta in the format of col-
umn-store. At last, the L2-delta structure is periodically merged into the main store. For
concurrency control, it implements MVCC and distributed locking. An optimized two-
phase commit protocol [4] was designed to ensure atomicity and reduce the overhead of
distributed transaction processing. Durability is implemented through write-ahead logging
and checkpointing. In query processing, applications can use SQL (via JDBC/ODBC) or
SQL Script to operate on the system. HANA performs horizontal partitioning to scale out.
It offers an interface for a DBA to directly assign partitions to individual HANA nodes.
Therefore, the DBA can assign all “transactionally hot” partitions on a single server to
avoid distributed transactions.

VoltDB. VoltDB [5] is a distributed, in-memory, deterministic relational database sys-
tem. The database is horizontally partitioned. Each partition binds to a site, where trans-
actions are serially executed by a single thread. Durability is ensured by command log-
ging [52] and checkpointing. VoltDB improves system availability by maintaining replicas
for each data partition on different nodes. Each transaction is sent to all replicas and pro-
cessed in parallel. As its concurrency control is deterministic, multiple replicas do not get
diverged by replicating transaction input. When handling a database larger than the mem-
ory provided, an anti-caching mechanism [83] is used to evict cold records into the disk.
For query processing, transaction requests are expressed in Java stored procedures. The
server invokes stored procedures using the Java reflection mechanism. VoltDB originates
from the H-Store project [32].3 H-Store made innovation on concurrency control [36], dis-
tributed transaction processing [37] and auto partitioning algorithms [97].

3 The project is ended in 2016.

1232 H. Hu et al.

1 3

MemSQL. MemSQL [111] is a distributed, in-memory, shared-nothing relational data-
base system. It was designed for OLTP as well as OLAP workload. MemSQL uses MVCC
for read requests and performs locking for handling write–write conflicts. Records are
organized by latch-free skip lists to support fast random access. Durability is supported
by persisting write-ahead logs and checkpoints into the disk. For query processing, Mem-
SQL adopts Just-In-Time compilation to convert SQL into bytecode and compile them
into machine codes through LLVM [113]. For multi-node scaling, it adopts a two-tiered
clustered architecture with two types of nodes. The leaf node acts as data storage node
responsible for processing queries. The aggregator node routes queries to proper leaf
nodes, aggregates results and responds to clients. Tables are horizontally partitioned over
leaf nodes. For high availability, each data partition has a master and a slave versions on
two leaf nodes. Data are written into the master version and synchronized to the slave using
log-based replication.

Summary Table 1 summarizes these systems and their technologies. As we can see, dif-
ferent main-memory systems have adopted quite different index strategies, while all tradi-
tional disk-based systems tend to use B-tree (B+-tree). For concurrency control, MVCC and
lock-based protocol are widely adopted by many systems. For recovery, write-ahead log-
ging is commonly implemented to avoid data loss in case of system crashes. Only VoltDB
uses a different method, known as command logging. To save memory space, systems usu-
ally rely on data compression or shift cold data into the disk. For query processing, many
systems choose to use Just-In-Time Compiling, which helps to reduce the number of CPU
instructions. At last, horizontal partitioning is mostly used by distributed systems to scale
out.

9 Issues for further research

In this section, we propose some issues, which are not widely discussed and may deserve
more attention from the research community.

Issue I: Interactive transaction processing for in-memory database. To achieve bet-
ter performance, in-memory databases usually assume the one-shot transaction model
(e.g., [5, 10, 12, 27, 35, 93, 95, 122]), where transactions are run as stored procedures
and no client–server interaction is involved. One-shot transactions do not worry about I/O-
related stall between client and server. They keep running to completion if no conflict is
observed. Although one-shot transaction processing can achieve impressive throughput, it
ignores an important kind of workload, interactive transactions. In many real-world cases,
applications operate on databases using SQLs and JDBC/ODBC interfaces. Transactions
are executed by sending SQLs one-by-one to the server. A recent report [123] has shown
that interactive transactions are much more common than one-shot one in real-world appli-
cations. It is reported that 54% responders never or seldom use stored procedure in their
DBMSs. Only 16% responders have more than half of transactions run as stored proce-
dures. The reasons for the situation are twofold [124]: (i) stored procedures are difficult to
maintain and debug; (ii) they lack portability, making it hard to deploy applications on dif-
ferent platforms and databases. We can conclude that the performance issues of the interac-
tive model are: (i) a transaction can be stalled by network I/O, which requires the execu-
tion engine to handle the network I/O efficiently; (ii) a transaction lasts much longer since

1233In‑memory transaction processing: efficiency and scalability…

1 3

network latencies are included, which results in more access conflicts. Such differences
demand an efficient concurrency control mechanism that is different from that of one-shot
transactions.

Issue II: Transaction management with log-based replication. Replication is an effective
mechanism to provide high availability and fault tolerance in database systems. However,
existing schemes, such as eager or lazy (log-based) replication [125], can hardly satisfy
the requirement of both performance and consistency (i.e., data in the primary server and
replicas are consistent). There are many NoSQL databases which utilize replication for
high availability. They ignore the ACID properties of transaction processing. For instance,
Amazon Dynamo [126] and Facebook Cassandra [127] offer “always-on” services, but sac-
rifice the consistency of read. Bailis et al. [128] introduced the concept of Highly Avail-
able Transactions (HATs), a transactional guarantee that does not suffer unavailability or
incurs high network latency during system partitions. He pointed out that transaction pro-
cessing under weak isolation level (e.g., read committed) can achieve high availability in
distributed database systems. However, serializable transactions are not achievable in the
presence of network partitions. Paxos, which is first described by Leslie Lamport in [129,
130], provides us with a compromise. It can tolerate N server faults (e.g., network parti-
tion or system crashes) in a cluster configured with 2N + 1 servers. Therefore, to provide
highly available services, modern database systems often adopt Paxos protocol to repli-
cate data from primary to backup replicas, such as MegaStore [131], Spanner [132] and
Spinnaker[133].

Invoking log-based replication has a significant impact on single-node transaction man-
agement, especially in terms of the transaction commit protocol. In addition to ensuring
log persistence on the primary server, database systems based on Paxos are required to
synchronize each log entry to the majority of replicas. This imposes negative impacts on
the performance of transaction commit. How to reduce the impact on transaction com-
mit is an unsolved problem, which requires more study. One solution is to relax the con-
straints on data consistency. Although some isolation levels (e.g., snapshot isolation) are
weaker than serializability, they are widely used in real-world applications. Therefore, how
to implement a high-performance OLTP system for high availability under these isolation
levels is an important topic. Further, it is common that a cluster of commodity machines
are equipped with new hardware, including NVM and RDMA. Both of them can have a
nonnegligible impact on log-based replication. The former can change the mechanism of
logging (e.g., [62]), while the latter can significantly improve the network I/O between rep-
licas. To this end, the protocol of log-based replication may need to be revisited.

Issue III: The way to monitor and understand the running workload. Many studies have
proven that a database system can perform better if it has knowledge about the workload.
For instance, there are a number of methods designed for read-intensive workload (e.g.,
[15, 49, 88]). And some methods prefer to distinguish hot and cold data (e.g., [25, 73,
98]). A primary problem to leverage these techniques is to understand the workload. Exist-
ing works have provided some ad-hoc solutions. However, we believe there are still many
issues to be resolved. First, we need to choose monitoring the workload outside or inside
of a database system. Many systems trace the log of workload outside of the database (e.g.,
[78–80, 119]). It enables precise analysis but introduces time delay. Online monitoring is
necessary if the workloads of applications are unpredictable. For example, a peak of trans-
action load will appear immediately if a sale promotion is conducted on the Internet. It is
infeasible for the database system to detect those events. Thus, we need an effective mecha-
nism to support and combine both outside and inside monitoring. Second, inside monitor-
ing can cause performance penalty to transaction processing, and inside monitoring with

1234 H. Hu et al.

1 3

high efficiency is very difficult to implement. We can choose different monitoring granular-
ities. Information about workloads can be observed and recorded at the partition-level, the
tuple-level or even to the degree of memory accessing footprints. But how to find a trade-
off between the granularity and its performance penalty is still an open problem. Besides,
there may be some simple tricks. For instance, it is interesting that for OLAP query, many
methods determine whether a query is network consuming by dynamically observing the
sending/dispatching queue of data packets. Maybe it is also possible to leverage the inter-
nal data structure of OLTP to obtain some valuable information about workload.

10 Conclusion

In this paper, we performed an extensive review of in-memory OLTP systems. Most of the
existing methods focus on improving the system’s efficiency or scalability. We summarize
the research considerations based on the core components of an in-memory system, includ-
ing concurrency controller, logging, indexing and transaction compilation. We also briefly
surveyed several popular systems and discussed future research issues.

Acknowledgements This work is supported by National Science Foundation of China under Grant Num-
bers 61702189, 61672232, 61772202 and Youth Science and Technology - Yang Fan Program of Shanghai
under Grant Number 17YF1427800.

References

 1. Mohan C, Haderle D, Lindsay B, Pirahesh H, Schwarz P (1992) Aries: a transaction recovery
method supporting fine-granularity locking and partial rollbacks using write-ahead logging. TODS
17(1):94–162

 2. Alibaba single day record. https ://techc runch .com/2017/11/11/aliba ba-smash es-its-singl es-day-recor
d/. Accessed 2018

 3. Färber F, Cha SK, Primsch J, Bornhövd C, Sigg S, Lehner W (2012) SAP HANA database: data man-
agement for modern business applications. SIGMOD Rec 40(4):45–51

 4. Lee J, Kwon YS, Färber F, Muehle M, Lee C, Bensberg C, Lee JY, Lee AH, Lehner W (2013) SAP
HANA distributed in-memory database system: transaction, session, and metadata management. In:
ICDE. IEEE, pp 1165–1173

 5. Stonebraker M, Weisberg A (2013) The VoltDB main memory DBMS. IEEE Data Eng Bull
36(2):21–27

 6. Kemper A, Neumann T (2011) Hyper: a hybrid OLTP&OLAP main memory database system based
on virtual memory snapshots. In: ICDE. IEEE, pp 195–206

 7. Faerber F, Kemper A, Larson P-Å, Levandoski J, Neumann T, Pavlo A et al (2017) Main memory
database systems. Found Trends Databases 8(1–2):1–130

 8. Zhang H, Chen G, Ooi BC, Tan K-L, Zhang M (2015) In-memory big data management and process-
ing: a survey. IEEE Trans Knowl Data Eng 27(7):1920–1948

 9. Kung H-T, Robinson JT (1981) On optimistic methods for concurrency control. TODS 6(2):213–226
 10. Tu S, Zheng W, Kohler E, Liskov B, Madden S (2013) Speedy transactions in multicore in-memory

databases. In: SOSP. ACM, pp 18–32
 11. Diaconu C, Freedman C, Ismert E, Larson P-A, Mittal P, Stonecipher R, Verma N, Zwilling M (2013)

Hekaton: SQL server’s memory-optimized OLTP engine. In: SIGMOD. ACM, pp 1243–1254
 12. Larson P-Å, Blanas S, Diaconu C, Freedman C, Patel JM, Zwilling M (2011) High-performance con-

currency control mechanisms for main-memory databases. Proc VLDB Endow 5(4):298–309
 13. Yu X, Pavlo A, Sanchez D, Devadas S (2016) TicToc: time traveling optimistic concurrency control.

In: SIGMOD, vol 8, pp 209–220

https://techcrunch.com/2017/11/11/alibaba-smashes-its-singles-day-record/
https://techcrunch.com/2017/11/11/alibaba-smashes-its-singles-day-record/

1235In‑memory transaction processing: efficiency and scalability…

1 3

 14. Wu Y, Chan C-Y, Tan K-L (2016) Transaction healing: scaling optimistic concurrency control on
multicores. In: SIGMOD. ACM, pp 1689–1704

 15. Neumann T, Mühlbauer T, Kemper A (2015) Fast serializable multi-version concurrency control for
main-memory database systems. In: SIGMOD. ACM, pp 677–689

 16. Loesing S, Pilman M, Etter T, Kossmann D (2015) On the design and scalability of distributed
shared-data databases. In: SIGMOD. ACM, pp 663–676

 17. Jordan J, Banerjee J, Batman R (1981) Precision locks. In: SIGMOD. ACM, pp 143–147
 18. Zheng W, Tu S, Kohler E, Liskov B (2014) Fast databases with fast durability and recovery through

multicore parallelism. In: OSDI, pp 465–477
 19. Eswaran KP, Gray JN, Lorie RA, Traiger IL (1976) The notions of consistency and predicate locks in

a database system. Commun ACM 19(11):624–633
 20. Johnson R, Pandis I, Ailamaki A (2009) Improving OLTP scalability using speculative lock inherit-

ance. Proc VLDB Endow 2(1):479–489
 21. Jung H, Han H, Fekete A, Heiser G, Yeom HY (2014) A scalable lock manager for multicores. TODS

39(4):29
 22. Harizopoulos S, Abadi DJ, Madden S, Stonebraker M (2008) OLTP through the looking glass, and

what we found there. In: SIGMOD. ACM, pp 981–992
 23. Ren K, Thomson A, Abadi DJ (2012) Lightweight locking for main memory database systems. In:

VLDB. vol 6, pp 145–156
 24. Pandis I, Johnson R, Hardavellas N, Ailamaki A (2010) Data-oriented transaction execution. Proc

VLDB Endow 3(1–2):928–939
 25. Xie C, Su C, Littley C, Alvisi L, Kapritsos M, Wang Y (2015) High-performance acid via modular

concurrency control. In: SOSP. ACM, pp 279–294
 26. Narula N, Cutler C, Kohler E, Morris R (2014) Phase reconciliation for contended in-memory trans-

actions. In: OSDI, pp 511–524
 27. Shasha D, Llirbat F, Simon E, Valduriez P (1995) Transaction chopping: algorithms and performance

studies. TODS 20(3):325–363
 28. Yu X, Bezerra G, Pavlo A, Devadas S, Stonebraker M (2014) Staring into the abyss: an evaluation of

concurrency control with one thousand cores. Proc VLDB Endow 8(3):209–220
 29. Agrawal R, Carey MJ, Livny M (1987) Concurrency control performance modeling: alternatives and

implications. TODS 12(4):609–654
 30. Thomasian A (1993) Two-phase locking performance and its thrashing behavior. TODS

18(4):579–625
 31. Stonebraker M, Madden S, Abadi DJ, Harizopoulos S, Hachem N, Helland P (2007) The end of an

architectural era: (it’s time for a complete rewrite). In: VLDB. VLDB Endowment, pp 1150–1160
 32. Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A, Zdonik S, Jones EP, Madden S, Stonebraker M,

Zhang Y et al (2008) H-store: a high-performance, distributed main memory transaction processing
system. VLDB 1(2):1496–1499

 33. Faleiro JM, Thomson A, Abadi DJ (2014) Lazy evaluation of transactions in database systems. In:
SIGMOD. ACM, pp 15–26

 34. Thomson A, Abadi DJ (2010) The case for determinism in database systems. Proc VLDB Endow
3(1–2):70–80

 35. Thomson A, Diamond T, Weng S-C, Ren K, Shao P, Abadi DJ (2012) CalvIn: fast distributed transac-
tions for partitioned database systems. In: SIGMOD, pp 1–12

 36. Jones EP, Abadi DJ, Madden S (2010) Low overhead concurrency control for partitioned main mem-
ory databases. In: SIGMOD. ACM, pp 603–614

 37. Pavlo A, Jones EP, Zdonik S (2011) On predictive modeling for optimizing transaction execution in
parallel OLTP systems. Proc VLDB Endow 5(2):85–96

 38. Wu Y, Arulraj J, Lin J, Xian R, Pavlo A (2017) An empirical evaluation of in-memory multi-version
concurrency control. Proc VLDB Endow 10(7):781–792

 39. Weikum G, Vossen G (2001) Transactional information systems: theory, algorithms, and the practice
of concurrency control and recovery. Elsevier, Amsterdam

 40. Diaconu C, Freedman C, Ismert E, Larson P-Å, Mittal P et al (2013) Hekaton: SQL server’s memory-
optimized OLTP engine. In: SIGMOD, pp 1243–1254

 41. Berenson H, Bernstein P, Gray J, Melton J, O’Neil E, O’Neil P (1995) A critique of ANSI SQL isola-
tion levels. SIGMOD Rec 24:1–10

 42. Fekete A, Liarokapis D, O’Neil E, O’Neil P, Shasha D (2005) Making snapshot isolation serializable.
TODS 30(2):492–528

 43. Jorwekar S, Fekete A, Ramamritham K, Sudarshan S (2007) Automating the detection of snapshot
isolation anomalies. In: VLDB, pp 1263–1274

1236 H. Hu et al.

1 3

 44. Cahill MJ, Röhm U, Fekete AD (2009) Serializable isolation for snapshot databases. DMoNH
34(4):20

 45. Revilak S, O’Neil P, O’Neil E (2011) Precisely serializable snapshot isolation (PSSI). In: ICDE.
IEEE, pp 482–493

 46. Ports DR, Grittner K (2012) Serializable snapshot isolation in PostgreSQL. Proc VLDB Endow
5(12):1850–1861

 47. Wang T, Johnson R, Fekete A, Pandis I (2015) The serial safety net: efficient concurrency control
on modern hardware. In: DMoNH. ACM, p 8

 48. Adya A, Liskov BH (1999) Weak consistency: a generalized theory and optimistic implementa-
tions for distributed transactions. Doctoral dissertation, Massachusetts Institute of Technology

 49. Kim K, Wang T, Johnson R, Pandis I (2016) ERMIA: fast memory-optimized database system for
heterogeneous workloads. In: SIGMOD. ACM, pp 1675–1687

 50. Jung H, Han H, Fekete A, Röhm U, Yeom HY (2013) Performance of serializable snapshot iso-
lation on multicore servers. In: DASFAA (2), Lecture Notes in Computer Science. Springer, pp
416–430

 51. Han H, Park S, Jung H, Fekete A, Rohm U, Yeom HY (2014) Scalable serializable snapshot isola-
tion for multicore systems. In: ICDE

 52. Malviya N, Weisberg A, Madden S, Stonebraker M (2014) Rethinking main memory OLTP recov-
ery. In: ICDE. IEEE, pp 604–615

 53. Yao C, Agrawal D, Chen G, Ooi BC, Wu S (2016) Adaptive logging: optimizing logging and
recovery costs in distributed in-memory databases. In: SIGMOD. ACM, pp 1119–1134

 54. Johnson R, Pandis I, Stoica R, Athanassoulis M, Ailamaki A (2010) Aether: a scalable approach to
logging. Proc VLDB Endow 3(1–2):681–692

 55. Wang T, Johnson R (2014) Scalable logging through emerging non-volatile memory. Proc VLDB
Endow 7(10):865–876

 56. Helland P, Sammer H, Lyon J, Carr R, Garrett P, Reuter A (1989) Group commit timers and high
volume transaction systems. In: High performance transaction systems. Springer, pp 301–329

 57. Jung H, Han H, Kang S (2017) Scalable database logging for multicores. PVLDB 11(2):135–148
 58. Fang R, Hsiao H-I, He B, Mohan C, Wang Y (2011) High performance database logging using

storage class memory. In: ICDE. IEEE, pp 1221–1231
 59. Huang J, Schwan K, Qureshi MK (2014) NVRAM-aware logging in transaction systems. Proc

VLDB Endow 8(4):389–400
 60. NVM (2018) https ://en.wikip edia.org/wiki/Non-volat ile_memor y. Accessed 2018
 61. Wu Y, Guo W, Chan C, Tan K (2017) Fast failure recovery for main-memory DBMSs on multi-

cores. In: SIGMOD, pp 267–281
 62. Arulraj J, Perron M, Pavlo A (2016) Write-behind logging. Proc VLDB Endow 10(4):337–348
 63. Comer D (1979) The ubiquitous b-tree. ACM Comput Surv 11(2):121–137
 64. Rao J, Ross KA (2000) Making b+-trees cache conscious in main memory. SIGMOD Rec

29:475–486
 65. Rao J, Ross KA (1999) Cache conscious indexing for decision-support in main memory. In:

VLDB, pp 78–89
 66. Schlegel B, Gemulla R, Lehner W (2009) K-ary search on modern processors. In: Proceedings of

the fifth international workshop on data management on new hardware, DaMoN ’09. ACM, New
York, pp 52–60

 67. Kim C, Chhugani J, Satish N, Sedlar E, Nguyen AD, Kaldewey T, Lee VW, Brandt SA, Dubey
P (2010) Fast: fast architecture sensitive tree search on modern CPUs and GPUs. In: SIGMOD,
ACM, pp 339–350

 68. Mao Y, Kohler E, Morris RT (2012) Cache craftiness for fast multicore key-value storage. In:
EuroSys. ACM, pp 183–196

 69. Kraska T, Beutel A, Chi EH, Dean J, Polyzotis N (2018) The case for learned index structures. In:
SIGMOD, pp 489–504

 70. Leis V, Kemper A, Neumann T (2013) The adaptive radix tree: artful indexing for main-memory
databases. In: ICDE. IEEE, pp 38–49

 71. Tree R. https ://en.wikip edia.org/wiki/trie
 72. Böhm M, Schlegel B, Volk PB, Fischer U, Habich D, Lehner W (2011) Efficient in-memory index-

ing with generalized prefix trees. In: BTW, Germany, pp 227–246
 73. Zhang H, Andersen DG, Pavlo A, Kaminsky M, Ma L, Shen R (2016) Reducing the storage over-

head of main-memory OLTP databases with hybrid indexes. In: SIGMOD. ACM, pp 1567–1581
 74. Wang Z, Pavlo A, Lim H, Leis V, Zhang H, Kaminsky M, Andersen DG (2018) Building a Bw-tree

takes more than just buzz words. In: SIGMOD conference. ACM, pp 473–488

https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/trie

1237In‑memory transaction processing: efficiency and scalability…

1 3

 75. Binna R, Zangerle E, Pichl M, Specht G, Leis V (2018) HOT: a height optimized Trie index for main-
memory database systems. In: SIGMOD, pp 521–534

 76. Zhang H, Lim H, Leis V, Andersen DG, Kaminsky M, Keeton K, Pavlo A (2018) Surf: practical
range query filtering with fast succinct tries. In: SIGMOD, pp 323–336

 77. Jacobson G (1989) Space-efficient static trees and graphs. In: 30th annual symposium on foundations
of computer science, Research Triangle Park, NC, USA, 30 Oct–1 Nov 1989, pp 549–554

 78. Stoica R, Ailamaki A (2013) Enabling efficient OS paging for main-memory OLTP databases. In:
DaMoN, p 7

 79. Funke F, Kemper A, Neumann T (2012) Compacting transactional data in hybrid OLTP&OLAP data-
bases. Proc VLDB Endow 5(11):1424–1435

 80. Eldawy A, Levandoski J, Larson P-Å (2014) Trekking through siberia: managing cold data in a mem-
ory-optimized database. Proc VLDB Endow 7(11):931–942

 81. Levandoski JJ, Larson P-Å, Stoica R (2013) Identifying hot and cold data in main-memory databases.
In: ICDE. IEEE, pp 26–37

 82. Cache replacement. https ://en.wikip edia.org/wiki/cache -repla cemen t-polic ies. Accessed 2018
 83. DeBrabant J, Pavlo A, Tu S, Stonebraker M, Zdonik S (2013) Anti-caching: a new approach to data-

base management system architecture. Proc VLDB Endow 6(14):1942–1953
 84. Lang H, Mühlbauer T, Funke F, Boncz PA, Neumann T, Kemper A (2016) Data blocks: hybrid OLTP

and OLAP on compressed storage using both vectorization and compilation. In: SIGMOD. ACM, pp
311–326

 85. Levandoski JJ, Lomet DB, Sengupta S (2013) The Bw-tree: a b-tree for new hardware platforms. In:
ICDE. IEEE, pp 302–313

 86. Graefe G (2010) A survey of b-tree locking techniques. TODS 35(3):16
 87. Lehman PL et al (1981) Efficient locking for concurrent operations on b-trees. TODS 6(4):650–670
 88. Cha SK, Hwang S, Kim K, Kwon K (2001) Cache-conscious concurrency control of main-memory

indexes on shared-memory multiprocessor systems. In: VLDB, vol 1, pp 181–190
 89. Sewall J, Chhugani J, Kim C, Satish N, Dubey P (2011) PALM: parallel architecture-friendly latch-

free modifications to b+ trees on many-core processors. Proc VLDB Endow 4(11):795–806
 90. Neumann T (2011) Efficiently compiling efficient query plans for modern hardware. Proc VLDB

Endow 4(9):539–550
 91. Graefe G (1994) Volcano: an extensible and parallel query evaluation system. IEEE Trans Knowl

Data Eng 6(1):120–135
 92. Yan C, Cheung A (2016) Leveraging lock contention to improve OLTP application performance. Proc

VLDB Endow 9(5):444–455
 93. Wang Z, Mu S, Cui Y, Yi H, Chen H, Li J (2016) Scaling multicore databases via constrained parallel

execution. In: SIGMOD. ACM, pp 1643–1658
 94. Wang Z, Mu S, Cui Y, Yi H, Chen H, Li J (2016) Scaling multicore databases via constrained parallel

execution. In: SIGMOD, ACM. New York, NY, pp 1643–1658
 95. Mu S, Cui Y, Zhang Y, Lloyd W, Li J (2014) Extracting more concurrency from distributed transac-

tions. In: OSDI, pp 479–494
 96. Curino C, Jones E, Zhang Y, Madden S (2010) Schism: a workload-driven approach to database repli-

cation and partitioning. Proc VLDB Endow 3(1–2):48–57
 97. Pavlo A, Curino C, Zdonik S (2012) Skew-aware automatic database partitioning in shared-nothing,

parallel OLTP systems. In: SIGMOD. ACM, pp 61–72
 98. Taft R, Mansour E, Serafini M, Duggan J, Elmore AJ, Aboulnaga A, Pavlo A, Stonebraker M (2014)

E-store: fine-grained elastic partitioning for distributed transaction processing systems. Proc VLDB
Endow 8(3):245–256

 99. Two-phase commit protocol. https ://en.wikip edia.org/wiki/two-phase -commi t-proto col. Accessed
2018

 100. Lin Q, Chang P, Chen G, Ooi BC, Tan K-L, Wang Z (2016) Towards a non-2pc transaction manage-
ment in distributed database systems. In: SIGMOD

 101. Ren K, Thomson A, Abadi DJ (2014) An evaluation of the advantages and disadvantages of determin-
istic database systems. Proc VLDB Endow 7(10):821–832

 102. Ailamaki A, DeWitt DJ, Hill MD, Wood DA (1999) DBMSs on a modern processor: where does time
go? In: VLDB, pp 266–277

 103. Sirin U, Tözün P, Porobic D, Ailamaki A (2016) Micro-architectural analysis of in-memory OLTP. In:
SIGMOD, Vol. 215922

 104. Tözün P, Gold B, Ailamaki A (2013) OLTP in wonderland: where do cache misses come from in
major OLTP components?. In: DaMoN. ACM, p 8

https://en.wikipedia.org/wiki/cache-replacement-policies
https://en.wikipedia.org/wiki/two-phase-commit-protocol

1238 H. Hu et al.

1 3

 105. Miller JE, Kasture H, Kurian G, Gruenwald C, Beckmann N, Celio C, Eastep J, Agarwal A (2010)
Graphite: a distributed parallel simulator for multicores. In: HPCA-16. IEEE, pp 1–12

 106. Salomie T-I, Subasu IE, Giceva J, Alonso G (2011) Database engines on multicores, why parallelize
when you can distribute? In: EuroSys. ACM, pp 17–30

 107. Appuswamy R, Anadiotis A, Porobic D, Iman M, Ailamaki A (2017) Analyzing the impact of system
architecture on the scalability of OLTP engines for high-contention workloads. Proc VLDB Endow
11(2):121–134

 108. Mühlbauer T, Rödiger W, Reiser A, Kemper A, Neumann T (2013) ScyPer: elastic OLAP throughput on
transactional data. In: DanaC. ACM, pp 11–15

 109. Lahiri T, Neimat M-A, Folkman S (2013) Oracle TimesTen: an in-memory database for enterprise appli-
cations. IEEE Data Eng Bull 36(2):6–13

 110. Lindström J, Raatikka V, Ruuth J, Soini P, Vakkila K (2013) IBM solidDB: in-memory database opti-
mized for extreme speed and availability. IEEE Data Eng Bull 36(2):14–20

 111. MemSQL Inc., MemSQL. http://www.memsq l.com. Accessed 2018
 112. Freedman C, Ismert E, Larson P-Å (2014) Compilation in the Microsoft SQL Server Hekaton engine.

IEEE Data Eng Bull 37(1):22–30
 113. Lattner C, Adve V (2004) LLVM: a compilation framework for lifelong program analysis & transforma-

tion. In: CGO. IEEE, pp 75–86
 114. Fredkin E (1960) Trie memory. CACM 3(9):490–499
 115. Wolski A, Raatikka V (2006) Performance measurement and tuning of hot-standby databases. In: Inter-

national service availability symposium. Springer, pp 149–161
 116. Chan C-Y, Ioannidis YE (1998) Bitmap index design and evaluation. SIGMOD Rec 27:355–366
 117. Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency control and recovery in database systems.

Addison-Wesley, Boston
 118. Altibase. Altibase administrator’s manual release
 119. Pavlo A, Angulo G, Arulraj J, Lin H, Lin J, Ma L, Menon P, Mowry TC, Perron M, Quah I, Santurkar S,

Tomasic A, Toor S, Aken DV, Wang Z, Wu Y, Xian R, Zhang T (2017) Self-driving database manage-
ment systems. In: CIDR. www.cidrd b.org

 120. Peloton. https ://githu b.com/cmu-db/pelot on. Accessed 2018
 121. Sikka V, Färber F, Lehner W, Cha SK, Peh T, Bornhövd C (2012) Efficient transaction processing in SAP

HANA database: the end of a column store myth. In: SIGMOD. ACM, pp 731–742
 122. Wang T, Kimura H (2016) Mostly-optimistic concurrency control for highly contended dynamic work-

loads on a thousand cores. Proc VLDB Endw 10(2):49–60
 123. Pavlo A (2017) What are we doing with our lives? Nobody cares about our concurrency control research.

In: SIGMOD, p 3
 124. Zhu T, Wang D, Hu H, Qian W, Wang X, Zhou A (2018) Interactive transaction processing for in-mem-

ory database system. In: DASFAA, part II, pp 228–246
 125. Gray J et al (1996) The dangers of replication and a solution. SIGMOD Rec 25(2):173–182
 126. Decandia G et al (2007) Dynamo: Amazon’s highly available key-value store. In: SOSP
 127. Cassandra website. http://cassa ndra.apach e.org/. Accessed 2018
 128. Bailis P, Davidson A, Fekete A et al (2013) Highly available transactions: virtues and limitations. Proc

VLDB Endow 7(3):181–192
 129. Lamport L (1998) The part-time parliament. TOCS 16(2):133–169
 130. Lamport L (2001) Paxos made simple. ACM SIGACT News 32(4):18–25
 131. Baker J, Bond C, Corbett JC et al (2011) Megastore: providing scalable, highly available storage for inter-

active services. In: CIDR, pp 223–234
 132. Corbett JC, Jeffrey D et al (2013) Spanner: Googles globally distributed database. TOCS 31(3):8
 133. Rao J, Shekita EJ, Tata S (2011) Using paxos to build a scalable, consistent, and highly available data-

store. In: VLDB, pp 243–254

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://www.memsql.com
http://www.cidrdb.org
https://github.com/cmu-db/peloton
http://cassandra.apache.org/

1239In‑memory transaction processing: efficiency and scalability…

1 3

Huiqi Hu is currently an assistant professor in the School of Data Sci-
ence and Engineering, East China Normal University. He received his
Ph.D. Degree from Tsinghua University. His research interests mainly
include database system theory and implementation, scalable distrib-
uted storage system.

Xuan Zhou is a professor and a vice-dean at the School of Data Sci-
ence and Engineering, East China Normal University (ECNU). He
obtained his B.Sc from Fudan University (China) and his Ph.D from
the National University of Singapore, both in Computer Science. Since
his graduation in 2005, he had worked as a scientist at the L3S
Research Centre (Germany) and the CSIRO ICT Centre (Australia)
until the end of 2010. Before he joined ECNU in 2017, he spent 6
years in Renmin University of China, as an associate professor. Xuan’s
research interests include database system and information retrieval.

Tao Zhu is a Ph.D. student in the School of Data Science and Engi-
neering, East China Normal University, China. His research interests
mainly include database system implementation, transaction process-
ing and distributed system.

1240 H. Hu et al.

1 3

Weining Qian is currently a professor in computer science at East
China Normal University, China. He received his M.S. and Ph.D. in
computer science from Fudan University, China in 2001 and 2004,
respectively. He served as the co-chair of WISE 2012 Challenge, and
program committee member of several international conferences,
including ICDE 2009/2010/2012 and KDD 2013. His research inter-
ests include Web data management and mining of massive data sets.

Aoying Zhou is a professor on computer science at East China Normal
University, China where he is heading the Institute for Data Science
and Engineering. He got his master and bachelor degree in computer
science from Sichuan University, China in 1988 and 1985, respec-
tively, and won his Ph.D. degree from Fudan University, China in
1993. He is now acting as the vice-director of ACM SIGMOD China
and Technology Committee on Database of China Computer Federa-
tion. He is serving as a member of the editorial boards of some prestig-
ious academic journals, such as VLDB Journal, and WWW Journal.
His research interests include Web data management, data manage-
ment for data-intensive computing, and in-memory data analytics.

	In-memory transaction processing: efficiency and scalability considerations
	Abstract
	1 Introduction
	2 Concurrency control
	2.1 Optimistic concurrency control
	2.2 Lock-based concurrency control
	2.3 Deterministic transaction execution
	2.4 Multi-version concurrency control

	3 Logging and recovery
	3.1 Log generation
	3.2 Log persistence
	3.3 Log replaying

	4 Index and data management
	5 Transaction compilation
	6 Distributed transaction management
	7 System analysis and test
	8 In-memory OLTP system
	8.1 Non-distributed system
	8.2 Distributed system

	9 Issues for further research
	10 Conclusion
	Acknowledgements
	References

