
Knowledge and Information Systems (2019) 61:107–136
https://doi.org/10.1007/s10115-018-1305-8

REGULAR PAPER

A graph-basedmeta-model for heterogeneous data
management

Ernesto Damiani1,2 · Barbara Oliboni3 · Elisa Quintarelli4 · Letizia Tanca4

Received: 8 March 2017 / Revised: 28 September 2018 / Accepted: 24 November 2018 /
Published online: 15 December 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
The wave of interest in data-centric applications has spawned a high variety of data models,
making it extremely difficult to evaluate, integrate or access them in a uniformway.Moreover,
many recent models are too specific to allow immediate comparison with the others and do
not easily support incremental model design. In this paper, we introduce GSMM, a meta-
model based on the use of a generic graph that can be instantiated to a concrete data model
by simply providing values for a restricted set of parameters and some high-level constraints,
themselves represented as graphs. In GSMM, the concept of data schema is replaced by
that of constraint, which allows the designer to impose structural restrictions on data in a
very flexible way. GSMM includes GSL, a graph-based language for expressing queries and
constraints that besides being applicable to data represented in GSMM, in principle, can be
specialised and used for existing models where no language was defined. We show some
sample applications of GSMM for deriving and comparing classical data models like the
relational model, plain XML data, XML Schema, and time-varying semistructured data. We
also show how GSMM can represent more recent modelling proposals: the triple stores, the
BigTable model and Neo4j, a graph-based model for NoSQL data. A prototype showing the
potential of the approach is also described.

Keywords Meta-modelling · Heterogeneous data · Graph-based data model · Graph-based
constraints

B Barbara Oliboni
barbara.oliboni@univr.it

1 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

2 Etisalat British, Telecom Innovation Center, Khalifa University of Science and Technology, Abu
Dhabi, United Arab Emirates

3 Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy

4 Dipartimento di Elettronica, Informazione e Bioignegneria, Politecnico di Milano, Milan, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-018-1305-8&domain=pdf
http://orcid.org/0000-0003-4395-0893

108 E. Damiani et al.

1 Introduction

Themass of digital data made available to applications has exploded in the last few years, and
a rich panoply of flexible data modelling techniques, both structured and semistructured1,
have been proposed. Evenmore than volume, data diversity makes it difficult to access data in
a uniformway and to integrate the heterogeneous results obtained from queries. Nevertheless,
simultaneous use of differently prescriptive data representations has become the norm, and
structured data models are often used side by side with semi-structured ones. The result is
a plethora of data sources with no unique schema and, consequently, a possibly irregular,
incomplete or even totally absent structure.

The current wave of interest in flexible data modelling has been largely driven by applica-
tions; in particular, the XML data model [33] has become widespread since the late Nineties
because its hierarchical nature made it suitable to catalog-style applications, including large
bioinformatics repertoires of proteins, genomes and DNA [16]. Later, attention has shifted
to analytics applications (e.g. Web clickstream analysis) where data need to be translated
from the data model used for their collection to others more suitable for analysis; this model
shifting, often called model management, was initially envisaged by Bernstein et al. [7] and
has been later investigated for service interoperability [35].

Today, flexible datamodelling is playing amajor role in the design ofNoSQLdatabases for
BigData applications [12]. All NoSQL databases claim to be schema-less, whichmeans there
is no schema enforced by the databasemanagement systems.However, during data integration
or data exchange, schema-less databases still need a supervised migration, due to the schema
implicitly assumed when accessing the data. For example, migrating the schema of the data
from a document datasource to a target relational database requires that a domain expert
determines an appropriate schema that accurately describes the data, avoiding duplication and
sparsity. Although NoSQL databases have been investigated from a number of viewpoints,
above all scalability and performance, not much has been done in the way of effective
comparison between two different NoSQL systems from the data modelling point of view,
and even less to foster cross-system reuse of semi-structured modelling choices. Individual
comparisons have been attempted in some vertical domains [31], but a general methodology
and formalism for comparing and translating data models, though important during data
integration processes, is still lacking.

We believe that being able to assess and compare data models using precise criteria, like
run-time model revision, has acquired even more importance in the face of the large-scale
storage systems needed for Big Data management. Unfortunately, structured and semistruc-
tured data models are often too specific to allow immediate comparison with each other, and
do not easily support incremental model design; as a consequence, a unified framework to
represent them is mandatory.

In this paper we describe the general semistructured meta-model (GSMM) [19]. A simple
meta-model which accommodates both structured and semistructured information, GSMM
leverages the use of constraints to accommodate all kinds of structures in a truly flexible
way. Thanks to this distinctive feature, GSMM can be applied for the translation of any data
model proposed in the literature into a common formalism, and is useful for easy a priori
comparison and discussion of the features of concrete models, such as allowed sets of values,
handling of object identifiers, relationship representation, and support for run-time model

1 We say that data are semi-structured when, although some structure is present, it is not as strict, regular, or
complete as the one required by the traditional database management systems [1].

123

A graph-based meta-model for heterogeneous data management 109

revisions, e.g. to adapt to new query and access patterns; moreover, it supports effective
inter-model translation and design.

GSMM includes a graph-based language, named General Semistructured Language
(GSL), used to express the queries and the constraints in a concise and unambiguous way,
as suggested by Bekiropoulos et al. [5], and more recently by Fan and Lu [21]. Rather than
being a formal representation of schema-based semistructured data using tree grammars as
formal framework [26], in the wake of the proposals of Atzeni et al. [3] and Bernstein et al. [7]
our highly expressive meta-model and language accommodate semi- or fully structured data,
allowing the representation of intensional information where a rigid schema is not possible.

Indeed, to deal with data that are “schema-less” and “self-describing”, we allow the mod-
eller to impose restrictions on the structure of data by means of constraints graphically
expressed in GSL. In the line of widely accepted standards like XML Schematron [6], our
constraints are not expressed as a part of the schema, but stand by themselves and are directly
applied to the data. In this way, our meta-model provides the data designer with a powerful
tool for enforcing the desired degree of precision of the structure, supporting flexibility at
the data representation level.

Differently fromXMLSchematron and in linewith themost recentDataModelling trends,
we choose the graph paradigm because it is readily understood and widely accepted by data
modellers. Indeed, graphs are a natural formalism to express relationships between concepts
and are enjoying huge popularity among non-specialists, for instance, as a way to represent
social network information (e.g. Twitter, Facebook, and LinkedIn). Also, graph-theoretical
algorithms, such as procedures to compute sub-graph matching, are well understood and
studied in the literature.

GSMM is based on a generic graph that can be instantiated into a number of concrete
models by providing a) values for a restricted set of parameters (labels) and b) some high-
level constraints, themselves represented as graphs. Although our meta-model is entirely
implementation-agnostic, we discuss in detail its application to a number of practical data
models, including the relational model and the graph-based model used by NoSQL databases
like Neo4j [23]. Of course, we cannot show how to apply our meta-model to all possible data
models, but our worked-out examples aim to provide designers with the necessary intuition
of carry out their ownmeta-model-based comparisons between any two of themany available
NoSQL models, including column-family models like BigTable.2

The structure of the paper is as follows: inSect. 2we introduce theGSMMmeta-model, and
in Sect. 2.2 we describe GSL, the graph-based formalism to express queries and constraints
on GSMM data. In Sect. 2.3 we describe different types of constraints, while in Sect. 3 we
apply them in order to represent and compare some well-known semistructured data models
with our unified formalism. In Sect. 3.8 we classify the set of parameters for inter-model
comparison, and in Sect. 4 we report an example of inter-model translation. In Sect. 5 we
describe related work, and in Sect. 6 we sketch some conclusions and possible lines for future
work.

2 Themeta-model and the graph-based constraints

Our self-contained, graph-based meta-model can represent various aspects of (semi)-
structured data, such as static or dynamic information, crisp or fuzzy data; furthermore,
it is general enough that most data models proposed in the literature can be derived from it,

2 Big Table is the model shared by popular NoSQL databases like Apache HBase and Cassandra [13].

123

110 E. Damiani et al.

including the relational model, OEM [29], DOEM [14,15], XML [33], WG-Log [20], and
PSTDM [17], just to name a few.

We will apply GSMM also to represent recent data models inspired by OEM, like Neo4j
(Sect. 3.7), which is graph-based and has proven exceptionally suitable to express (and
explore) local relationships between nodes. Also, we will handle BigTable models, also
called soft schemata [13], which can be seen as a semistructured version of standard relational
schemata. BigTable defines a variable set of columns to be chosen at instantiation time within
a column family and, consequently, allows choosing among multiple structures for each table
entry.

Definition 1 A GSMM graph is a directed labelled graph 〈N , E〉, where N = {n1, . . . , nk}
is a (finite) set of nodes ni , each associated to a tuple of labels Lni , with |Lni | ≥ 0 and
|Lni | = |Ln j |∀i, j ∈ {1, . . . , k} and E = {e1, . . . , ep} is a set of edges e j = 〈(nh, nk), Re j 〉,
with nh and nk in N , and Re j a tuple of labels such that |Re j | ≥ 0 and |Rei | = |Re j |∀i, j ∈
{1, . . . , p}.

In order to represent the data, we must associate graph nodes with content (i.e., a value)
by means of node labels. Simple nodes are nodes whose content label is a value, such as an
integer or a string. Complex nodes have a ⊥ (undefined) value for the content label, showing
that they represent abstract objects. The content of a complex node n is actually the sub-graph
rooted in n.

2.1 Instantiation GSMMparameters

In order to obtain a specific concrete model suitable to represent data in a given context, all
one has to provide is a set of instantiation parameters, which are the node and edge label
cardinalities, and the domains of node and edge labels. In other words, the cardinalities
and domains of the sets of node and edge labels are model-dependent, and fixed: once a
concrete model has been instantiated, all its nodes have the same number of labels, and the
same happens for all its edges. Among the meta-model instantiation parameters are the sets
of base types, used as domains of the content labels of simple nodes. By delegating all the
specific model features to the choice of the instantiation parameters, the comparison between
different concrete models becomes straightforward, since they exactly express the concrete
models. The comparison criteria are listed below:

1. Cardinality of the tuple of node labels. The higher is cardinality, the wider is the set of
properties that can be associated with each node in the concrete model.

2. Cardinality of the tuple of edge labels. The tuple of labels that can be associated to edges
shows the granularity of the concrete model’s representation of semantic relationships
between objects. For example, the OEM model represents only the containment rela-
tionship because a single edge label is actually used to represent the name of the edge
endpoint, whereas the WG-Log model includes an edge label to specify the semantics of
a relationship between two objects, which in turn have their own labels. So the cardinality
of WG-Log edge labels is higher than the one of OEM.

3. Domains of node and edge labels. The sets of node and edge labels, together with their
domains, allow to compare the application contexts of concrete models. In particular,
labels may range over:

– time intervals, allowing the representation of time by associating a temporal label to
the attached item (node or edge);

123

A graph-based meta-model for heterogeneous data management 111

Fig. 1 A simple example of GSMM graph for a temporal database

– the singleton set {isa}, for the representation of specialisation/generalisation rela-
tionships;

– object identifiers, hence the OID label associated to nodes allows explicit OID rep-
resentation;

– simple values (i.e., base types) admitted in the concrete model, e.g. natural numbers,
to be used to represent ordering between the set of children of a chosen node. Thus,
we can compare models with respect to the set of allowed base types;

– simple values/OID pairs, i.e., simple values that are replicas of objects represented
elsewhere. Checking whether this type is supported, we can assess the concrete
model’s degree of capability for de-normalisation, an important flexibility feature.

For example, in temporal applications [28] the node labels in Ln are the object identifier,
the node name (i.e., a string), the node type (Complex or Simple), the content (an elementary
value, e.g. a number, a string), and the temporal element ranging on union of time intervals,
thus |Ln | = 5. The edge labels in Re are the edge name, the edge type (Temporal or Rela-
tional) and the temporal element, so |Re| = 3. In Fig. 1, we report a simple GSMM graph
representing temporal information related to Mega Book Store about the book Harry Potter
and the Prisoner of Azkaban.

Some or all the instances of a particular concrete model will share some additional prop-
erties that depend on the real-world objects they represent or on the semantics of objects and
relations taken into account by the model. In our approach, these properties are represented
by means of GSL constraints, added to the concrete model.

2.2 The GSL language

Classical database constraints are used to impose (semantic) restrictions on data; typically,
they are expressed with reference to a schema of which themselves become a part. In the
case of flexible data models, however, often there is no a priori, and thus a different notion of
constraint is required.GSL is capable of expressing constraints inways that schema languages
cannot. For example, by means of GLS we can require that the content of an element be
controlled by one of its siblings, or impose that the root element of a tree, regardless of what
type it belongs to, must have specific attributes. More importantly, besides being used to
constrain specific values, GSL constraints can be stated for the entire data model we want
to represent, becoming part of the description of what that model can or cannot express. We
start by introducing the general notion of rule, which is either a query or a constraint, to
be applied to instances of GSMM data graphs. In general, our rules are composed by (i) a
graph, which is used to identify the sub-graphs (i.e., the portions of a database where the rule
is to be applied), and (ii) a set of formulae, which dictate the restrictions imposed on those
subgraphs.

123

112 E. Damiani et al.

For the graph part of a rule we use a variant of G-Log [30], a Turing complete complex
object query language. GSL queries are composed of coloured patterns, i.e., graphs whose
nodes and edges are coloured. A GSL rule has three colours: red solid (RS) and red dashed
(RD) indicate, respectively, information that must and must not be present in the instance
where the rule is applied,while green (G) indicates a desired situation in the resulting instance.

UnlikeG-Log [30], inGSLwe express forbidden situations bymeans of negated formulae.
This does not increase the expressive power of GLS, yet it makes rules and rule sets much
more readable; it is easy to prove that the two formalisms are equivalent.

In GSL, the specification of logical formulae associated with rules allows to predicate
on the variable labels that appear in the graph part. In particular, we introduce two sets of
variables VL and VR, used as node labels and edge labels in GSL rules. In general, variables
in VL and VR may range over domains of node and edge labels of the considered concrete
model, or may assume an undefined value (i.e., ⊥) when the label itself does not have a
specific value.

Definition 2 A coloured directed labelled graph is an ordered pair 〈G,Col〉, where G =
〈N , E〉 is a GSMM data graph and Col : N ∪ E → {RS, RD,G} is a total function. For
each subset C of {RS, RD,G}, CGC denotes the part of the coloured graph CG containing
only the colours of C.

For example,CG{RS} represents the red solid part ofCG. Nowwe introduce the construct
we use to specify rules:

Definition 3 A GSL graph G is a pair 〈G,F〉 where G is a coloured directed labelled graph
〈〈N , E〉,Col〉 and F is a set of formulae. Moreover, the following properties hold:

– node labels can be either constants or variables in VL;
– edge labels can be either constants or variables in VR;
– F is a set of Conjunctive Normal Form formulae on the constants and variables of G.
We remark that GSL graphs are not necessarily connected. Examples of GSL graphs are

shown in Figs. 2, 3c, 4 and 5, 3 because the constraint applies to any pair of nodes connected
by an edge, independently of their actual labels; the difference between GSL graphs used to
express queries and those representing constraints is in the semantics of their application on
a given instance (see Definition 9).

Indeed, when we use GSL graphs to express queries, the graph itself is applied to an
instance (that in general does not satisfy it), and its application consists in modifying the
instance, so that the obtained graph is satisfied by the result. In other words, query semantics
is given as a set of pairs of instances (I , I ′), where I ′ ⊇ I is the result of applying the query
to I .

For example, the query in Fig. 2 requires to find all professors who do not teach any
course (note the use of a RD sub-graph for expressing the negation). Its application adds to
the original instance a node labelled “Result” with some outgoing edges pointing to all the
Professor nodes satisfying the requirements specified in the query.

When a GSL graph is used to express a constraint, again, an instance satisfies the rule iff,
whenever the red part is satisfied, also the green part is satisfied. However, in this case we
do not require the input instance I to be modified to satisfy the rule, but only check whether
the rule is satisfied by I itself.

3 In the remainder of the paper we denote constants by means of lowercase words, whereas words denoting
variables start with a capital letter.

123

A graph-based meta-model for heterogeneous data management 113

Fig. 2 A GSL graph representing
a query for finding all professors
who do not teach any course

CourseProfessor
Teaches

Result

Applying queries or constraints is a morphism between graphs representing rules and
graphs representing database instances. We formalise this morphism as embedding [30]:

Definition 4 An embedding i of a labelled graph G0 = 〈N0, E0〉 into another labelled graph
G1 = 〈N1, E1〉, is a total mapping i : N0 → N1 such that:

1. ∀n ∈ N0, Li(n)
.= Ln (where

.= means that if both labels in the same position are
constants, they must be equal, or if in a given position, one of the labels is a variable then
it is mapped on the corresponding constant), and

2. ∀〈〈n1, n2〉, L〉 ∈ E0 : 〈〈i(n1), i(n2)〉, L〉 ∈ E1.

An embedding i is also extended to edges by defining the mapping i(〈〈n1, n2〉, R〉) as
〈〈i(n1), i(n2)〉, R〉.

Thus, a graph is embeddable into another one if they share the same paths and if the
relation between the first and the second graph is a function.

The following two definitions specify the concept of graph matching with respect to the
positive or negative requests represented in coloured graphs.

Definition 5 Let G be a graph, C = 〈〈N , E〉,Col〉 a coloured graph, and C ′ =
〈〈N ′, E ′〉,Col ′〉 a subgraph of C . Let b1 be an embedding between C ′ and G and b2 be
an embedding between C and G. The embedding b2 is an extension of b1 if b1 = b2 | N ′4.

Definition 6 Let G be a graph, C = 〈〈N , E〉,Col〉 a coloured graph, and C ′ =
〈〈N ′, E ′〉,Col ′〉 a subgraph of C . An embedding b between C ′ and G is constrained by
C if either C = C ′, or there is no possible extension of b to an embedding between C and G.

In otherwords,wemay informally say that inGSL (like inG-log) a semistructured instance
satisfies the graph part of a rule, if every embedding of the red solid part of the rule in the
instance that is constrained by the red dashed part, can be extended to an embedding of the
whole solid part (red and green).

Definition 7 Let G be a graph and C = 〈C,F〉 a rule. C is applicable in G if there is an
embedding of C{RS} in G.

Definition 8 Let G be a graph and C = 〈C,F〉 a rule. G satisfies C (G |� C) if either C is
not applicable in G, or, for all embedding b of C{RS} in G that are constrained by C{RS,RD},
b can be extended to an embedding b′ of C{RS,G} in such a way that the set of formulae F is
true w.r.t. the variable substitution obtained from b′.

Consider, for example, the graphs GT and GF and the constraint R in Fig. 3, requiring
that, whenever a b node has a “child”, that child is labelled c. GT satisfies the constraint
R, whereas GF does not satisfy the same constraint because of the subgraph in the dashed
region.

4 The notation b2 | N ′ stands for the restriction of mapping b2 to the nodes in N ′.

123

114 E. Damiani et al.

A

(c)(b)(a)

{ x = C }

B B

C C

A

B B

C D

B

x

GT GF R

Fig. 3 Constraint satisfaction: only the graph GT satisfies the constraint R

Definition 9 Let G = 〈G,F〉 be a GSL graph. Sem(G) is a set of pairs {〈I , v〉}, where:
– I is an instance, and
– each v is a labelled graph I ′ ⊇ I , such that I ′ |� G and I ′ is minimal, if G is a query;
– v ∈ {0, 1}, and v = 1 if I |� G, v = 0 otherwise, if G is a constraint.

We remark that, in order to reduce constraint checking time, one can check violation
instead of constraint satisfaction. Intuitively, there is a constraint violation if there is at
least a subgraph G1 of G matching (with respect to embedding notion) the graph part of
the constraint that does not satisfy the formulae in F . The set F is the conjunction of its
formulae, and thus, there is a violation if at least one is false.

2.3 Constraints

In the next section, we describe the use of GSL for the representation of the constraints that
express restrictions on the structure and types of the data entities supported by a concrete
data model. By comparing the constraints of two different concrete models, we obtain a
qualitative assessment, or even a quantification, of their flexibility.

To start with, however, we shall familiarise with the notation by observing some simple
constraints that hold for a specific database instance, representing information about Profes-
sors, Students and Courses, rather than for an entire data model [10,11].

We consider a database whose model is expressed according to GSMM and represent
some simple constraints in Fig. 4. The constraint of Fig. 4b contains a formula that imposes
restrictions on the possible values of a label. In Fig. 5 we show some cardinality constraints.
The application of both Fig. 5a, b expresses the constraint stating that every Professor Teaches
exactly one Course.

3 Constraints and concrete models

In this section we describe the two types of constraints supported by our meta-model.

– High-level, or “concretisation”, constraints.
Concretisation constraints hold for all instances of a given concrete data model. They

123

A graph-based meta-model for heterogeneous data management 115

Student Student

CourseCourse

SSN

=

AttendsAttends

(a)

xCourse
Teaches

(b)

Student

Attends

(c)

ProfessorProfessor
=

Course

{ x = Professor}

Fig. 4 a A constraint asserting that the SSN of a student functionally determines the courses the student is
taking; b a constraint stating that courses are only taught by professors and requiring (green part) that for each
course there is at least one student attending it; c the constraint forbids two different professors to teach the
same course

CourseProfessor
Teaches

(a)

CourseCourse
=

Professor

(b)

TeachesTeaches

Professor

Course Course CourseCourse

(c)

Teaches
Teaches Teaches

Teaches

===

=

Fig. 5 a Every Professor Teaches at least one Course; b every Professor Teaches at most one Course; c each
Professor must teach exactly three courses

provide a concise representation of the data model’s expressive power.
For example, to characterise the XML data model we can use a concretisation con-
straint stating that each attribute must be connected to its parent element by means of

123

116 E. Damiani et al.

Fig. 6 Content label of
non-terminal nodes must be
undefined

{ content1 = ⊥ }

<tag1, type1, order1, content1>

<tag2, type2, order2, content2>

<etype>

an “attribute-of” edge. For all concrete models supporting a “content” label, we should
also specify the constraint that abstract (i.e., non-terminal) nodes content is undefined
(as anticipated in natural language after Definition 1).
Figure 6 shows this constraint in the XML context. We remark that in this case labels are
composed by variables.

– Low-level, or “domain related”, constraints.
These constraints are defined on instances of concretemodels. The introductory examples
shown in Sect. 2.3 belong to this category. While all the instances of a particular concrete
model must satisfy all the high-level constraints specified for that model, only some of
the instances satisfy a particular low-level constraint.
For example, the low-level constraint of Fig. 11g (on the GSMM temporal instance of
Fig. 11b) dictates that the time interval of a Book must start after the time interval of its
Author.
This constraint makes sense in all the instances representing bookshops information and
actually contributes to the semantics of the “Author_of” relationship. Depending on the
particular concrete model, we may need to represent also dynamic low-level constraints,
defined on temporal semistructured data to impose restrictions on data evolution. For
example, the constraint of Fig. 11g is a dynamic low-level constraint.

We remark that given two models M1 and M2 the way to translate M1 into M2 may not be
unique. For instance, the data designer might be called tomake choices about how to translate
a model where order is supported into an unordered model (e.g. XML versus relational).

We do not provide guidelines to the designers except for the recommendation to be coher-
ent in the choices made within the same system.

Next, we show the use of our meta-model to specify some classic flexible data models.
This exercise will help us to:

1. Show how the features of GSMM allow the expression of many different constraints;
2. Show how to perform an inter-model comparisonw.r.t. themodelling constructs provided

by the different models (Sect. 3.8 and Table 1);
3. Show our meta-model capability of supporting inter-model translation (Sect. 4).

3.1 The relational data model

Mappings between graph-based and relational data models have been deeply investigated
[32]. No wonder that we can represent both a relational schema and its instance by using a
semistructured data graph 〈N , E〉, where:

123

A graph-based meta-model for heterogeneous data management 117

– the cardinality |Ln | of the sets of node labels is 3. Each node ni = 〈oidi , namei , t ypei 〉
has anobject identifieroidi ∈ UID, and the node type t ypei ∈ {DBname,RelationName,
Att, KeyAtt, SetOfAtt, AttValue }.

– the cardinality |Re| of the tuple of edge labels is 0, and each edge e j = 〈(nh, nk)〉 with
nh and nk in N .

An example of a relational database schema, a possible graph-based representation for
the schema and an instance (similar to the one proposed by Virgilio et al. [32]), is reported
in Fig. 7. We also represent the related GSMM graphs.

In Fig. 7e, f we represent a primary key and a foreign key constraint.
Representing instances of a relational schema by using our graph-based data model is a

straightforward application of the same technique, as shown in Fig. 7d.

3.2 The object exchangemodel

The object exchange model (OEM) [29] has been introduced in the context of the seminal
TSIMMIS project carried out at Stanford University, one of the first attempts to support fast
integration of heterogeneous information sources.

OEM is a graph-based data model where the basic idea is that each object has a label that
describes its meaning. The label is used to extract information about objects that represent
the underlying data.

The information that can be extracted is limited to the inclusion/containment relationship;
indeed OEM does not actually represent the semantics of relationships between objects.

An OEM graph is a GSMM rooted graph 〈N , E, r〉, where:
– the cardinality |Ln | of the sets of node labels is 3. Each node ni = 〈oidi , t ypei , contenti 〉

has an object identifier oidi ∈ UID, and the node type t ypei ∈ { Root, Object }.
– the cardinality |Re| of the tuple of edge labels is 1, and each edge e j = 〈(nh, nk), Re j 〉

with nh and nk in N , has a label Re j = 〈ename j 〉, where ename j is actually the name
of the pointed node nk .

Again, r ∈ N is the root of the graph, and the root node has type “Root”. Consequently,
an OEM graph must satisfy the high-level constraints in Fig. 8a, b.

3.3 XML and XML schema

In this section we apply our meta-model to derive a simple concrete model supporting XML
information and XML Schema. XML datasets are often called documents because they can
be serialised as plain text. However, unlike generic text documents, XML documents are not
completely unstructured.

A XML document is a sequence of nested elements, each delimited by a pair of start and
end tags (e.g., < tag > and< /tag >). The sequence is itself enclosed by a root element.
Figure 9 shows a well-formed XML document.

3.3.1 Plain XML

Plain XML documents like the one in Fig. 9 can be represented quite straightforwardly in
our framework: a Plain XML graph is a GSMM rooted graph 〈N , E, r〉, where:
– the cardinality |Ln | of the sets of node labels is 4. Each node ni has as tuple of labels

Lni = 〈tagi , t ypei , orderi , contenti 〉; the type label t ypei indicates whether the node

123

118 E. Damiani et al.

TUPLE

MOVIE(MovieID,Title, Year)

ACTOR(ActorID, Name)

CHARACTER(CharacterID, Name)

CAST(MovieID, ActorID, CharacterID)

TUPLE TUPLETUPLE

Title

MovieIDYear NameActorID NameCharacterIDMovieID CharacterID

Actor-ID

<2, MOVIE, RelationName> <3, ACTOR, RelationName> <4, CHARACTER, RelationName> < 5, CAST, RelationName>

<10, MovieID, KeyAtt>

<11, Title, Att> <13, ActorID, KeyAtt>

<16, Name, Att>

<15, CharacterID, KeyAtt> <17, MovieID, KeyAtt>

<19, CharacterID, KeyAtt>

<18, ActorID, KeyAtt>

<14, Name, Att>

(a)

(b)

(c)

{ name3 <> name4 }

MOVIE ACTOR CHARACTER CAST

DB

TUPLE

TUPLE

TUPLETUPLE

Title

MovieIDYear

Name

ActorID

Name

CharacterID

MovieID CharacterID

ActorID

MOVIE

ACTOR

CHARACTER CAST

DB

TUPLE

MovieID CharacterID

ActorID

TUPLE

Name
CharacterID

TUPLE

Name

ActorID
Harry Potter

Hermione Granger

Char1

Char2
Mov1

Act1
Act2

Mov1

Mov1

Act1

Char1 Act2

Char2

Daniel Radcli e Emma Watson

Harry Potter and the
Philosopher's Stone

2001

<1, DB, DBname>

<7, TUPLE, SetOfAtt>

<12, Year, Att>

<6, TUPLE, SetOfAtt> <8, TUPLE, SetOfAtt> <9, TUPLE, SetOfAtt>

<2, MOVIE, RelationName> <3, ACTOR, RelationName> <4, CHARACTER, RelationName> < 5, CAST, RelationName>

<10, MovieID, KeyAtt>

<21, Harry Potter and the Philosopher's Stone, AttValue>

<13, ActorID, KeyAtt>

<16, Name, Att>
<15, CharacterID, KeyAtt> <17, MovieID, KeyAtt>

<19, CharacterID, KeyAtt>

<18, ActorID, KeyAtt>

<14, Name, Att>

(d)

<1, DB, DBname>

<7, TUPLE, SetOfAtt>

<12, Year, Att>

<6, TUPLE, SetOfAtt> <8, TUPLE, SetOfAtt> <9, TUPLE, SetOfAtt>

<11, Title, Att>

(e) (f)

<20, Mov1, AttValue> <22, 2001, AttValue>

<23, Act1, AttValue>

<24,Daniel Radcli e, AttValue>

<25, Char1, AttValue>

<26,Harry Potter, AttValue>

<27, Mov1, AttValue>

<28, Act1, AttValue>

<29, Char1, AttValue>

<oid1,name1,RelationName>

<oid2,TUPLE,SettOfAtt>

<oid4,name2,KeyAtt>

<oid6,name3,AttValue>

<oid3,TUPLE,SettOfAtt>

<oid5,name2,KeyAtt>

<oid7,name4,AttValue>

<oid1,DB,DBname>

<oid2,ACTOR,RelationName>

<oid4,TUPLE,SettOfAtt>

<oid6,ActorID,KeyAtt>

<oid3,CAST,RelationName>

<oid5,TUPLE,SettOfAtt>

<oid7,ActorID,KeyAtt>

<oid8,name8,AttValue> <oid9,name9,AttValue>

{ name8 = name9 }

Fig. 7 a A relational database schema and its graph-based representation; b graph-based representation of a
relational instance; c the GSMM graph for the relational schema and d corresponding instance; e a primary
key constraint (with the key composed by a unique attribute); f one of the foreign key constraint on theMOVIE
relation

123

A graph-based meta-model for heterogeneous data management 119

(a)

<oid1, type1, content1>

{type2 = Root}

<oid2, type2, content2>

<ename>

(b)

<oid1, type1, content1>

{type2 = Object}

<oid2, type2, content2>

<ename>

Fig. 8 a A node without incoming edges must have type Root; b each node with an incoming edge has as type
Object

<?xml version="1.0" encoding="UTF-8"?>
<computer>

<maker> Toshiba </maker>
<model >

<modelname serialcode = “12303B” > Satellite Pro 4200 </modelname>
<year> 2001 </year>
<description>

A versatile laptop computer product.
</description>

</model>
<plant>

<address> Osaka, Japan</address>
</plant>

</computer>

Fig. 9 A well-formed XML document

is the Root, an Element, Text, Attribute, Processing Instruction or Comment,5 whereas
the label orderi assumes as value a natural number representing the relative order of
the node w.r.t. other children of its parent node, or ⊥ for root, text and attribute nodes.
Moreover, the label contenti can assume PCDATA or ⊥ (undefined) as value.

– The cardinality |Re| of the tuple of edge labels is fixed to 1, where the unique label
represents the edge type. Each edge e j = 〈(nh, nk), R j 〉, with nh and nk in N , has a
label R j = 〈etype j 〉, where the label etype j ∈ {AttributeO f , SubElementO f }. Note
that edges simply represent the “containment” relationship between different items of an
XML document and do not have names.

For Plain XML the following high-level constraints hold: (i) in an XML document the root
node has type label “Root”, (ii) the content label of element nodes is undefined (as shown in
Fig. 6), and (iii) the tag label for text nodes is not explicitly specified.

3.3.2 XML schema

AlthoughXML information can be treated as schema-less data, the notion ofXMLSchema has
been introduced to represent sets of instances sharing the same structure. An XML Schema

5 Plain XML documents may also contain ENTITY nodes, not unlike macro calls that must be expanded
before parsing. We do not consider ENTITY expansion in this paper.

123

120 E. Damiani et al.

is an XML document complying to a standard structure, itself expressed as a schema; for
example, a schema’s root node has always the label “schema” and may have a child of type
namespace [34].

Our representation of XML schemata is twofold:

– An XML schema is a low-level constraint that identifies a set of instances.
– An XML schema is itself an XML document; as such, it is represented as in Sect. 3.3,

and must satisfy a suitable set of low-level constraints.

An XML Schema graph is a GSMM rooted graph 〈N , E, r〉, obtained as an extension of
a Plain XML graph. In particular:

– the cardinality |Ln | of the tuples of node labels is 6. Each node ni has as tuple of labels
Lni the corresponding labels of the Plain XML representation plus the two labels urii ,
representing the resource identifier attached to that node, and namespacei , representing
the node namespace.

– the cardinality |Re| of the tuples of edge labels is 1, where the unique label represents
the edge type as in Plain XML.

This approach is a simple and effective way to characterise XML schemata and all their
instances a priori. Specifically, an XML graph representing a schema must satisfy, among
others, the low-level constraints shown in Fig. 10.

3.4 Time

In this section we apply our high-level data model to the context of temporal applications
(see, for example, TGM [28]) for representing semistructured data dynamics. In this case we
use a time interval to represent when an object exists in the outside world or in the database.

A semistructured temporal graph is a GSMM rooted graph 〈N , E, r〉, where:
– the cardinality |Ln | of the sets of node labels is 5, where each node ni =

〈oidi , namei , t ypei , contenti , timei 〉 has an object identifier oidi ∈ UID, the node
name, the node type in {Complex, Simple}, a time interval timei ∈ V ∪ {⊥}, where V
is a set of time intervals, and the node content.

– The cardinality |Re| of the sets of edge labels is fixed to 3, where each edge e j =
〈(nh, nk), R j 〉, with nh and nk in N , has three labels R j = 〈ename j , etype j , Et j 〉, where
etype j ∈ {Relational, T emporal} is the type of the edge, and the last one Eti ∈ V is
the time interval representing the valid time. Edges of the Relational type are used to
represent classical relationships between two nodes; T emporal edges are used to store
and represent the update of the content of a given node (it allows the representation of
historical values).

Among others, instances of semistructured temporal graphs must satisfy the high-level
constraints in Fig. 11c–f.

In Fig. 11b we show a portion of a semistructured temporal graph containing information
about books and authors. Note that this labelled graph satisfies the high-level constraints
described above. Once an instance of a semistructured temporal graph has been constructed,
low-level constraints may be applied to enforce static or dynamic properties. For example,
with the constraint of Fig. 11g on the instance of Fig. 11b we could enforce that the time
interval of a Book starts after the time interval of its Author.

Note that, in general, the time interval of a relationship is not connected to the time interval
of the related objects. If we represent valid time in the real world, the constraint above must

123

A graph-based meta-model for heterogeneous data management 121

(a) (b)

(c) (d)

(e) (f)

Fig. 10 a The root of the graph has as type root and as tag Schema; b each element node must be a root child
and its label must be ElementType, attribute Type, orDescription; c root must have an attribute with tag XmlNs
as child; d each Element node is a child of either the root, or another Element node; e each Attribute node is a
child of either the root, or an Element node; (f) each attribute Type node is a leaf

be added because it gives semantics to the “Writes” relation: a book can become valid only
after its author was born!

3.5 The triplestore database

A Triplestore dataset allows the storage and retrieval of triples. A triple is a data entity in the
form subject–predicate–object. Example of triples are “Peter is 40” or “The t-shirt is white”.
Triples can be easily managed by using the Resource Description Framework (RDF). The

123

122 E. Damiani et al.

(c)

(b)

(e)

(a)

(d)

(f) (g)

Fig. 11 aA simple TGM instance representing Bookshop temporal database; and b the corresponding GSMM
graph. Some examples of high-level constraints: c simple nodes do not have a time interval; d simple nodes
are leaves; e edges pointing to simple nodes are named “HasProperty”; f temporal edges do not have a name,
neither they have a time interval. A low-level constraint on time: g the time interval of a Book starts after the
time interval of its Author

123

A graph-based meta-model for heterogeneous data management 123

<1, Peter>

< 2, IS >

<3, 40>

Peter is 40
Susan is 35
Peter marries Susan

<4, Susan> <5, 35>

< 7, MARRIES >

< FROM >

< TO >

< TO >

< FROM >
< TO >

< FROM >

(c)

<oid1, name1>

<oid2, name2>

<TO>

(a)

(b)

<oid3, name3>

<FROM>

Fig. 12 a A triplestore database and b its GSMM graph. The high-level constraint: c each node representing
a predicate, i.e., having an incoming edge labelled < T O >, must have also an incoming edge labelled
< FROM >

RDF data model uses triples for expressing statements about resources (in particular web
resources) and supports reification, i.e., the possibility to add properties (e.g. provenance
properties) of a relation/predicate.

We can represent a triple-based database by using a GSMM graph 〈N , E〉, where:
– the cardinality |Ln | of the sets of node labels is 2. Each node ni = 〈oidi , namei 〉 has

an object identifier oidi ∈ UID, which can be an URI for the RDF model, and a string
representing the node label namei . In case we need to represent the RDF Blank Node,
we suppose to have ⊥ as value of namei .

– the cardinality |Re| of the set of edge labels is 1, and each edge e j = 〈(nh, nk), R j 〉 with
nh and nk in N , has a label R j = 〈epredicate j 〉, where epredicate j ∈ {T O, FROM}.
A triplestore dataset is translated intoGSMMby introducing nodes for subjects, predicates

and objects (see Fig. 12b for an example) andmust satisfy the high-level constraint in Fig. 12c
each node having an incoming edge labelled < T O > (i.e., representing a predicate) must
also have a not dangling incoming edge labelled < FROM >. Predicates are modelled as
nodes to support the RDF reification.

123

124 E. Damiani et al.

<1, RelationName1, >

<2, CellName1, CellContent1>

<3, CellName2, CellContent2>

<4, CellName3, CellContent3>

<5, CellName4, CellContent4>

<6, CellName5, CellContent5>

<7, CellName6, CellContent6>

<8, CellName7, CellContent7>

<9, CellName8, CellContent8>

<10, CellName9, CellContent9>

<11, CellName10, CellContent10>

<12, CellName11, CellContent11>

(a)

<oid1, name1, >

<oid2, name2, content2>

=

<oid3, name3, content3>

<oid4, name4, content4>

<oid5, name5, content5>

(b)

Fig. 13 a The GSMM graph of a table in the BigTable data model; b the maximum cells per row constraint
for n = 3

3.6 BigTable

Under the BigTable data model, each table is a collection of rows composed of an arbitrary
number of cells, and uniquely identified by a key. BigTable rows are often called wide rows,
because the columns cells belong to are not pre-defined as in relational databases.

GSSM can represent a BigTable database by defining a graph node per cell. The property
ID and the property value of each cell are stored in the value of the corresponding GSSM
node. Each GSSM node gets its set of outgoing edges via the BigTable row containing the
corresponding cell’s adjacency list (often called adjacency row). We remark that according
to this construction each outgoing edge is represented individually, expressing the fact that
in BigTable each element of the adjacency list has its own cell in the adjacency row. The
GSSM representation (see Fig. 13a) shows us that, compared to other concrete data models,
BigTable supports efficient insertions and deletions. Themaximumnumber n of cells allowed
per row in a concrete BigTablemodel can be represented by specifying aGSSL concretisation
constraint over the maximum degree of nodes in the GSSM graph that represents it. As an
example, in Fig. 13b, we report the constraint specifying that the maximum cells per row
must be n = 3.

We can represent a triple-based data model by using a GSMM rooted graph 〈N , E, r〉,
where:

– the cardinality |Ln |of the sets of node labels is 3. Each nodeni = 〈oidi , namei , contenti 〉
has an object identifier oidi ∈ UID, a string as namei and a content contenti that could
be ⊥.

– the cardinality |Re| of the tuple of edge labels is 0.

If a given BigTable model backend supports key order, the outgoing edges will be ordered
by the ID of their endpoint. Again, the GSSM representation allows one to assess the concrete
model’s runtime flexibility: ease of updating node IDs means that nodes which are frequently
co-accessed can easily be assigned IDs with small absolute difference at run-time.

123

A graph-based meta-model for heterogeneous data management 125

(a)

(b)

Fig. 14 a A Neo4j graph and b its corresponding GSMM graph

3.7 The Neo4j graph database

Neo4j is an open-source and graph-based database that stores data structured in graphs rather
than in tables [23].

Graph-based data models allow the representation of connections and make available
information by using navigation operations. This issue is becoming very important in the
information management context, since nowadays there are no isolated pieces of informa-
tion: as an example we can consider the Internet of Things (IoT) where every data source
is connected and huge amounts of data correspond to even larger amounts of links express-
ing relations among them. For this reason, graph-based models are often used as a general
description of Big Data.

In Neo4j data are stored in form of nodes and relationships (edges). Nodes and edges can
have zero or multiple properties, each associated with a value. Moreover, a given node can
also be labelled with multiple labels: each node label indicates a name of the node itself; each
edge can be labelled with a type label (see Fig. 14a for an example). Differently from the
other data models we have dealt with, Neo4j allows one to use multiple (and not predefined)
labels, thus, in our translation into GSMM each label or property will be considered a node.

A Neo4j graph is a GSMM graph 〈N , E〉, where:

123

126 E. Damiani et al.

– the cardinality |Ln | of the sets of node labels is 3. Each node ni = 〈oidi ,
label/propertyi , propertyvaluei 〉 has an object identifier oidi ∈ UID, the node name
label/propertyi which assumes values in the string domain and represents the name
(label) or the property of the node, and the propertyvaluei , which indicates either the
value of the property or can assume as value ⊥ in case the label/propertyi represents
a property.

– the cardinality |Re| of the tuple of edge labels is 1. Each edge e j = 〈(nh, nk), Re j 〉
with nh and nk in N , has a label Re j =< etype j > with etype j ∈ {T O,

FROM, has_property, has_label}.
Similarly to the high-level constraint specified for the Triplestore model (see Fig. 12c),

also in the translation of Neo4j, each node having an incoming edge labelled < T O > (i.e.,
representing an edge in the original Neo4j graph) must also have a not dangling incoming
edge labelled < FROM >.

3.8 Parameters

Instantiation parameters shown in Table 1 are the cardinality of node labels (named |Ln |),
the cardinality of edge labels (named |Re|), the domain of node labels (named Node Label
Domain), and the domain of edge labels (named Edge Label Domain), for the six concrete
models described above.6 By inspecting Table 1, we can carry out fast “a priori” comparison
of the models. For example, OEM only distinguishes two kinds of nodes, while OEM edges
are labelled with a single label (actually, this label corresponds to the name of the pointed
node, and edges represent the containment relation). The XML Infoset is quite similar to
OEM, though it has a wider repertoire of node types and uses an enumeration type rather
than a generic string for the edge label value. Intuitively, a model that uses enumeration
values as edge labels can support design rules, saying when attribute rather than element
containment should be used. Note that all the XML-based models represent order between
node children, while OEM and TGM do not. Plain XML is the one model that does not
provide object identifiers.

4 Inter-model translation

Ourmeta-model canbeused for inter-model comparisons and translation aswell. In particular,
given two or more concrete models expressed by means of the GSMM formalism, we would
like to be able to translate instances from one model to another one.

The translation task is mainly based on the following steps:

– for each node and edge label of the source model, try to find a corresponding label in the
destination model. Whenever this basic translation is not possible, try to express each
node or edge label of the source model, which does not have a corresponding label into
the destination model, with a construct (e.g. a label, an additional node or edge) available
in the destination model.

– to each label of the destination model that is not useful to express components of the
instances of the source model assign an undefined value.

Next, we show how our technique can facilitate the inter-model translation process by
considering TGM and plain XML as examples of concrete models.

6 For the sake of conciseness Table 1 does not explicitly consider Base Types, because they may be very large.

123

A graph-based meta-model for heterogeneous data management 127

Ta
bl
e
1

In
st
an
tia
tio

n
of

m
et
a-
m
od
el
pa
ra
m
et
er
s
fo
r
so
m
e
co
nc
re
te
m
od
el
s

C
on

cr
et
e
m
od

el
|L

n
|

|R
e|

N
od

e
la
be
ld

om
ai
n

E
dg

e
la
be
ld

om
ai
n

R
el
at
io
na
l

3
0

O
ID

Se
t
×

N
od

e
N
am

e
Se

t
×{

D
B
na

m
e,

R
el
at
io
n
N
am

e,
A
tt
,

K
ey

A
tt
,
Se

tO
f
A
tt
,
A
tt
V
al
u
e}

O
E
M

3
1

O
ID

Se
t
×

{R
oo

t,
ob

je
ct

}×
(O

E
M

B
as
e
T
yp

es
∪{

⊥}
)

N
od

eN
am

eS
et

Pl
ai
n
X
M
L

4
1

T
ag

Se
t
×

{R
oo

t,
A
tt
ri
bu

te
···

}×
N

∪{
⊥}

×
(
P
C
D
A
T
A

∪{
⊥}

)
{S
u
be
le
m
en

tO
f,

A
tt
ri
bu

te
O
f}

X
M
L
Sc
he
m
a

6
1

U
R
I

×
N
am

eS
pa

ee
Se

t
×

T
ag

Se
t×

{R
oo

t,
E
le
m
en

t,
T
ex

t,
A
tt
ri
bu

te
···

}×
N

∪{
⊥}

×
(
X
M
L
B
as
eT

yp
es

∪{
⊥}

)

{S
u
be
le
m
en

tO
f,

A
tt
ri
bu

te
O
f}

T
G
M

5
3

O
ID

Se
t
×

N
od

eN
am

eS
et

×
{C

om
pl
ex

,
Si
m
pl
e)

×
(T

G
M
B
as
eT

yp
es

∪{
⊥}

)
×

V

E
d
ge

N
am

eS
et

×
{R

el
at
io
na

l,
T
em

po
ra

l}×
V

T
ri
pl
es
to
re

2
1

O
ID

Se
t
×

(N
od

e
N
am

eS
et

∪{
⊥}

)
{T

O
,
F
R
O
M

}
B
ig
Ta
bl
e

3
0

O
ID

Se
t
×

N
od

eN
am

eS
et

×
(
B
ig
T
ab

le
B
as
eT

yp
es

∪{
⊥}

)

N
eo
4j

3
1

O
ID

Se
t
×

N
od

e
N
am

eS
et

×
(N

eo
4
jB

as
eT

yp
es

∪{
⊥}

)
{T

O
,
F
R
O
M
,
ha

s_
pr
op

er
ty
,
ha

s_
la
be
l}

123

128 E. Damiani et al.

<oid, name, type, te, content> <name, XMLtype, , content>

<id, attribute, , oid>

subelement−ofattribute−of

<oid, name, type, te, content>

<name, type, te>

<name, type, te>

<edgetype, attribute, , type>

subelement−of

subelement−of

subelement−of

attribute−of

<idref, attribute, , oid>

subelement−of

<edge2name, element, , >

attribute−of

<edgename, attribute, , name>

<temporalelement, element, , te>

<temporalelement, element, , te>

attribute−of

Node Translation

Edge Translation

Fig. 15 Translating TGM into plain XML

4.1 Translating TGM into XML

We start from a TGM instance G translated into the corresponding GSMM graph G =
〈N , E, r〉.

In order to obtain another GSMM graph G ′ = 〈N ′, E ′, r ′〉 related to an XML document,
which represents the information originally contained in G, we have to apply the primitives
represented in Fig. 15:

1. for each n ∈ N , with n = 〈oid, name, t ype, te, content〉, transform it in a subtree of
G ′ composed by three nodes n1, n2, and n3.
The first node n1 has as tag label name, as type label root if n = r , element otherwise,
an undefined order label, and content as content label (note that content is a defined
value only for simple nodes of the TGM graph).
The two children of n1, named n2 and n3 have the labels 〈id, attribute,⊥, oid〉 and
〈temporalelement, element,⊥, te〉, respectively.
Note that the edge connecting n1 to n2 is labelled attribute−of , whereas the edge from

123

A graph-based meta-model for heterogeneous data management 129

n1 to n3 is labelled subelement − of . Moreover, we do not use the order label of Plain
XML because TGM does not consider an order relation between the children of a given
node.

2. For each edge e = 〈(m1,m2), Re〉 ∈ E , with Re = 〈name, t ype, te〉, we transform it
into a subtree of four nodes n1, n2, n3, and n4.
The node n1 is an element with tag edge2m2

7 (and undefined order and content labels)
which has three children: n2 is an element which has as tag temporalelement and as
content te, n3 is an attribute with tag edgetype and value t ype, n4 is an attribute with
tag edgename and value name.

3. TGM instances are modelled as DAGs, whereas XML documents can be represented in
a graphical way by means of trees.
The third primitive of Fig. 15 is introduced in order to solve this distinction between the
two concrete models we are considering.
If the original graphG contains a node n with more than one incoming edge, we translate
one path to n as explained in the previous two steps, and we consider all the other edges
to n as elements with an idre f attribute whose value is the object identifier of the pointed
node.

4.1.1 An algorithm for translating TGM into XML

The above considerations allow us to formalise a depth-first algorithm for translating a TGM
graph represented with the GSMM formalism into plain XML code.

TGM2XML(set of nodes N, set of edges E, node r)
{

for all nodes n in N
paint n white

TGM2XMLCODE(N,E,r)
}

TGM2XMLCODE(set of nodes N, set of edges E, node n)
{

paint n grey
if (n = <oid,nodename,type,contentvalue,t> is a complex node)
{

write:‘‘<nodename id=‘‘oid’’>
<temporalelement> t </temporalelement>’’

for all outgoing edges e_i=((n,x_i),<Ename_i,relational,Et_i>)
pointing to a white node x_i
{

write:‘‘<edge2x_i edgename=‘‘Ename_i’’ type=‘‘relational’’>
<temporalelement> Et_i </temporalelement>’’

TGM2XMLCODE(N,E,x_i)
write:‘‘</edge2x_i>’’

}
for all outgoing edges e_i=((n,x_i),<Ename_i,relational,Et_i>)

pointing to a black node x_i
{

write:‘‘<edge2x_i edgename=‘‘Ename_i’’
type=‘‘relational’’ idref=‘‘objx_i’’>

7 An edge pointing to m2.

123

130 E. Damiani et al.

<temporalelement> Et_i </temporalelement>’’
write:‘‘</edge2x_i>’’

}
paint n black
write:‘‘</nodename>’’

}
else
{

write:‘‘<nodename id=‘‘oid’’> contentvalue ’’
if (n has a temporal outgoing edge to x_j)

write:‘‘<edge2x_j edgename=‘‘Temporal’’ type=‘‘temporal’’>
</edge2x_j>’’

write:‘‘</nodename>’’
paint n black

}
}

Consider the TGM instance reported in Fig. 11a and its translation intoGSMMof Fig. 11b.
The XML code produced by TGM2XML is the following:

<BookShop id = 1>
<TimeInterval> [01/01/1980,now) </TimeInterval>
<Edge2Name edgename = HasProperty type = relational>

<TimeInterval> [01/01/1980,now) </TimeInterval>
<Name id = 2> Mega Book Store </Name>

</Edge2Name>
<Edge2IndAuthors edgename = Authors type = relational>

<TimeInterval> [01/01/1980,now) </TimeInterval>
<IndAuthors id = 3>

<TimeInterval> [01/01/1980,now) </TimeInterval>
<Edge2Author edgename = Contains type = relational>

<TimeInterval> [01/01/1990,now) </TimeInterval>
<Author id = 4>

<TimeInterval> [01/01/1990,now) </TimeInterval>
<Edge2Name edgename = HasProperty type = relational>

<TimeInterval> [01/01/1990,now) </TimeInterval>
<Name id = 5> J.K. Rowling </Name>

</Edge2Name>
<Edge2Book edgename = Writes type = relational>

<TimeInterval> [01/01/1999,now) </TimeInterval>
<Book id = 6>

<Edge2Price edgename = HasProperty type = relational>
<TimeInterval> [01/01/1999,now) </TimeInterval>
<Price id = 7> 7.99 </Price>

</Edge2Price>
<Edge2Title edgename = HasProperty type = relational>

<TimeInterval> [01/01/1999,now) </TimeInterval>
<Title id = 8>

Harry Potter and the Prisoner of Azkaban
</Title>

</Edge2Price>
</Book>

</Edge2Book>
</Author>

123

A graph-based meta-model for heterogeneous data management 131

Fig. 16 a A tool for translating TGM graphs into XML document; b the XML translation of a TGM graph; c
a tool for translating an XML document into a TGM graph; d the visualisation of the resulting TGM graph

</Edge2Author>
</IndAuthors>

</Edge2IndAuthors>
<Edge2Book edgename = Sells type = relational idref = 6>

<TimeInterval> [01/01/1999,now) </TimeInterval>
</Edge2Book>

</BookShop>

4.2 A software translator

Note that the element Edge2Book has an idref attribute, because the node labelled Book
in the graph of Fig. 11b has two ingoing edges.

We have developed a software tool for translating TGM graphs into XML documents and
viceversa. Figure 16a, b shows how the textual representation of a TGM graph reporting
information about Books is translated into an XML document. In the bottom part of Fig. 16,
we show the reverse step: the XML document about Books which is produced by the previous
translation (Fig. 16c) is coded into the TGM graph depicted in Fig. 16d.

123

132 E. Damiani et al.

5 Related work

Our meta-model’s main goal is the uniform representation of flexible data models; it can
be applied to inter-model comparison and translation, aimed at mediation between hetero-
geneous data sources. An early approach to this problem was a unified framework for the
management and the exchange of semistructured data [4], described according to a variety
of formats and models. In particular they consider various schema definition languages for
XML, OEM and a model to store Web data, and show that the primitives adopted by all of
them can be classified into a rather limited set of basic types. On these basic types, they define
a notion of “meta-formalism” that can be used to describe, in a uniform way, heterogeneous
representations of data, and give the definition of an effective method for the translation
between heterogeneous data representations. The main difference between this early pro-
posal and our meta-model is related to schemata: Atzeni et al. [4] assumes that a schema is
available for each data source, whereas we do not require to have the schema in advance, but
rather consider schemata as constraints that can be specified if needed. Another early effort
is the hypergraph data model (HDM) [27], a simple low-level modelling language based on
a hypergraph data structure together with a set of associated constraints. Here the constraint
specification language is not formalised; the authors define a small set of transformations as
schemata expressed in HDM,which are used for inter-model transformation. Again, the main
difference between this proposal and our meta-model is related to schemata translation. Our
work focuses on flexible models which may be schemaless thus, we do not target schemata
translation, but provide a very general graph-based formalism allowing the representation of
different aspects of data. Our inter-model translation, as shown by example in Sect. 4, relies
on the generality of nodes and edge labels, which can be specialised to the labels allowed
by the source and destination models. Moreover, while the meta-model by McBrien et al.
[27] provides some basic primitives whereof the basic constructs of models can be built, ours
provides a high level, general formalism whose specialisations are the models themselves.
Other early proposals ([8,9], and [25]) dealing with inter-model translation do not propose
a unifying meta-model but focus on the possibility to translate information from a model to
another. Bernstein et al. provide a generic framework that can be used to merge models in
different contexts [8]. Bowers et al. proposed an approach to represent, in a uniform way,
information coming from different models [9]. They use RDF and provide a mapping for-
malism for inter-model translation. With the advent of NoSQL data models and systems,
some researchers pointed out the need of analysing these new systems for a data modelling
point of view [22], while others noticed that small differences in data modelling features may
have a huge impact on performance of NoSQL systems [2] However, we are not aware of
any attempt to provide a comprehensive meta-model and a comparison framework like our
own. Rather, recent research has focused on one-on-one data model comparison in vertical
domains. Lee et al. identify a set of informal expressive power criteria that lead to choos-
ing the XML Infoset over the relational model as a concrete data representation for patient
data [24]. Unfortunately, lack of formalisation of their criteria prevents them for providing a
rigorous assessment methodology.
When choosing a NoSQL data model, the computer scientist is faced with the contrast-
ing requirements of dealing with data whose structure is not easily captured by traditional
approaches, and allowing for fast revisions of representational choices at run-time. The use
of GSMM and GSL marks a step forward towards a rigorous treatment of the fundamental
issues of flexible data modelling and querying. For example, GSMM provides a way for
a posteriori schema derivation: intuitively, a schema represents an instance if it contains

123

A graph-based meta-model for heterogeneous data management 133

its skeleton while disregarding multiplicities and values. Given a database instance, we can
obtain a schema by drawing a constraint that defines the structure of the document [18]. In
particular the constraint specifies, by means of first-order formulae, all the possible paths
starting from the root node, and sets also the admitted labels of nodes and edges. We claim
that such schematamay play an important role in assessing similarity and differences between
individual data representations.

6 Conclusions and future work

We have presented a graph-based meta-model (GSMM) and a language (GSL) aimed at
bringing flexible data model properties into a unified framework. In our future work, we will
define flexibility metrics on concrete data models based on their GSSM representations. We
expect to be able to establish benchmarks supporting a priori assessment of data models,
guiding adoption decisions. Another line of investigation concerns the use of GSL as a
language for those models where no language is defined. As an example, consider the Unified
ModellingLanguage (UML),where schemata (models, inUMLnotation)may be specified by
means of different notations, at different levels of detail (e.g. class diagrams). A specification
based on GSMM could allow the expression of constraints to be associated to a UML class
diagram or to any UML diagram. Moreover, constraints expressed in GSL may easily be
transformed from more general to more specific representations of the same information by
means of different UML notations.

References

1. Abiteboul S (1997) Querying semi-structured data. In: Proceedings of the international conference on
database theory, vol 1186. Lecture notes in computer science, pp 262–275

2. Angles R (2012) A comparison of current graph database models. In: Proceedings of the 2012 IEEE
28th international conference on data engineering workshops, ICDEW ’12. IEEE Computer Society,
Washington, DC, pp 171–177

3. Atzeni P, Cappellari P, Torlone R, Bernstein PA, Gianforme G (2008) Model-independent schema trans-
lation. VLDB J 17(6):1347–1370

4. Atzeni P, Torlone R (2001) A unified framework for data translation over the web. In: Proceedings of
the 2nd international conference on web information system engineering. IEEE Computer Society, pp
350–358

5. Bekiropoulos K, Keramopoulos E, Beza O, Mouratidis P (2010) A list of features that a graphical xml
query language should support. Comput Syst Sci Eng 25(5):13–21

6. Benda S, Klímek J, Nečaský M (2013) Using schematron as schema language in conceptual modeling
for xml. In: Proceedings of the ninth Asia-Pacific conference on conceptual modelling, vol 143, APCCM
’13. Australian Computer Society, Inc., Darlinghurst, pp 31–40

7. Bernstein PA, Halevy AY, Pottinger RA (2000) A vision for management of complex models. SIGMOD
Rec 29(4):55–63

8. Bernstein PA, Pottinger R (2003) Merging models based on given correspondences. Technical report
UW-CSE-03-02-03. University of Washington

9. Bowers S, Delcambre L (2000) Representing and transformingmodel-based information. In: Proceedings
of International workshop on the semantic web at the 4th European conference on research and advanced
technology for digital libraries (SemWeb)

10. Bunemann P, Fan W, Siméon J, Weinstein S (2001) Constraints for semistructured data and XML. SIG-
MOD Rec 30:47–54

11. Bunemann P, Fan W, Weinstein S (1998) Path constraints on semistructured and structured data. In:
Proceedings of 17th symposium on principles of database system. ACM Press, pp 129–138

12. Cattell R (2011) Scalable SQL and NoSQL data stores. SIGMOD Rec 39(4):12–27

123

134 E. Damiani et al.

13. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE
(2008) Bigtable: a distributed storage system for structured data. ACMTrans Comput Syst 26(2):4:1–4:26

14. Chawathe SS, Abiteboul S, Widom J (1998) Representing and querying changes in semistructured data.
In: Proceedings of the fourteenth international conference on data engineering. IEEE Computer Society,
pp 4–13

15. Chawathe SS, Abiteboul S,Widom J (1999)Managing historical semistructured data. Theory Pract Object
Syst 5(3):143–162

16. Chen L, Oughtred R, Berman HM, Westbrook J (2004) Targetdb: a target registration database for struc-
tural genomics projects. Bioinform Appl Notes 20(16):2860–2862

17. Combi C, Oliboni B, Quintarelli E (2012) Modeling temporal dimensions of semistructured data. J Intell
Inf Syst 38(3):601–644

18. Cortesi A, Dovier A, Quintarelli E, Tanca L (2002)Operational and abstract semantics of a query language
for semi-structured information. Theor Comput Sci 275(1–2):521–560

19. Damiani E, Oliboni B, Quintarelli E, Tanca L (2003) Modeling semistructured data by using graph-based
constraints. In: OTM workshops proceedings. Lecture notes in computer science. Springer, Berlin, pp
20–21

20. Damiani E, Tanca L (1997) Semantic approches to structuring and querying web sites. In: Proceedings
of 7th IFIP working conference on database semantics (DS-97)

21. FanW,LuP (2017)Dependencies for graphs. In: Proceedings of the 36thACMSIGMOD-SIGACT-SIGAI
symposium on principles of database systems, PODS ’17. ACM, pp 403–416

22. Indrawan-Santiago M (2012) Database research: Are we at a crossroad? reflection on NoSQL. In: Pro-
ceedings of the 2012 15th international conference on network-based information systems, NBIS ’12.
IEEE Computer Society, Washington, DC, pp 45–51

23. Kaur K, Rani R (2013) Modeling and querying data in NoSQL databases. In: Proceedings of the IEEE
international conference on Big Data, pp 1 – 7

24. Lee KK-Y, Tang W-C, Choi K-S (2013) Alternatives to relational database: comparison of NoSQL and
XML approaches for clinical data storage. Comput Methods Progr Biomed 110(1):99–109

25. Levy AY, Rajaraman A, Ordille JJ (1996) Querying heterogeneous information sources using source
descriptions. In: Proceedings of the twenty-second international conference on very large databases.
VLDB Endowment, Saratoga, Calif., Bombay, India, pp 251–262

26. Makoto M, Lee D, Mani M, Kawaguchi K (2005) Taxonomy of XML schema languages using formal
language theory. ACM Trans Internet Technol 5(4):660–704

27. McBrien P, Poulovassilis A (1999) A uniform approach to inter-model transformations. In: Conference
on advanced information systems engineering, pp 333–348

28. Oliboni B, Quintarelli E, Tanca L (2001) Temporal aspects of semistructured data. In: Proceedings of the
eighth international symposium on temporal representation and reasoning (TIME-01). IEEE Computer
Society, pp 119–127

29. Papakonstantinou Y, Garcia-Molina H, Widom J (1995) Object exchange across heterogeneous informa-
tion sources. In: Proceedings of the eleventh international conference on data engineering. IEEEComputer
Society, pp 251–260

30. Paredaens J, Peelman P, Tanca L (1995) G-Log: a declarative graphical query language. IEEE Trans
Knowl Data Eng 7(3):436–453

31. Vicknair C, Macias M, Zhao Z, Nan X, Chen Y, Wilkins D (2010) A comparison of a graph database
and a relational database: a data provenance perspective. In: Proceedings of the 48th annual southeast
regional conference, ACM SE ’10. ACM, New York, NY, pp 42:1–42:6

32. Virgilio RD, Maccioni A, Torlone R (2014) Graph-driven exploration of relational databases for efficient
keyword search. In: Candan KS, Amer-Yahia S, Schweikardt N, Christophides V, Leroy V (eds) Proceed-
ings of the workshops of the EDBT/ICDT 2014 joint conference (EDBT/ICDT 2014), Athens, Greece,
March 28, 2014, Vol. 1133 of CEUR workshop proceedings, CEUR-WS.org, pp 208–215

33. W3C (1998) World wide web consortium. Extensible Markup Language (XML) 1.0. http://www.w3C.
org/TR/REC-xml/

34. W3C (2001) World wide web consortium. XML schema. http://www.w3C.org/TR/xmlschema-1/
35. Zang T, Calinescu R, Kwiatkowska MZ (2011) Metamodel-driven SOA for collaborative e-science appli-

cation. Comput Syst Sci Eng 26(3):215–226

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.w3C.org/TR/REC-xml/
http://www.w3C.org/TR/REC-xml/
http://www.w3C.org/TR/xmlschema-1/

A graph-based meta-model for heterogeneous data management 135

Ernesto Damiani is a Professor of computer science at the University
of Milan, where he leads the SEcure Service-oriented Architectures
Research (SESAR) Lab. He is the Founding Director of the Center on
Cyber-Physical Systems at Khalifa University, in the UAE. He received
an honorary doctorate from Institut National des Sciences Appliques
de Lyon, France (2017), for his contributions to research and teaching
on Big Data analytics. He is the Principal Investigator of the H2020
TOREADOR project on Big data as a service. His research spans
Cyber-security, Big Data and cloud/edge.

Barbara Oliboni is assistant professor at the Department of Com-
puter Science of the University of Verona. She received the Ph.D.
degree in Computer Engineering by the Politecnico of Milan. Her main
research interests are related to the database field, with an empha-
sis on semistructured data, temporal information, business processes
management, and clinical information management. She is member of
the AIME (Artificial Intelligence in MEdicine) board. She is part of
the Program Committee of International Conferences, and reviewer for
International Journals.

Elisa Quintarelli obtained her Ph.D. in Computer and Automation Engi-
neering at Politecnico di Milano where is now an Associate Professor.
She is the author of about 80 papers and her research interests are
in databases, with a focus on semistructured data, intentional query
answering, data mining and context-based personalisation. She is part
of the Program Committee of International Conferences, and reviewer
for International Journals.

123

136 E. Damiani et al.

Letizia Tanca received a PhD in Applied Mathematics and Computer
Science in 1988 and now is a full professor at Politecnico di Milano.
She is the author of about 150 papers on databases and database theory,
deductive and active databases, graph-based languages, semantic-web
information management, and more recently on context-aware knowl-
edge management and Big Data analytics.

123

	A graph-based meta-model for heterogeneous data management
	Abstract
	1 Introduction
	2 The meta-model and the graph-based constraints
	2.1 Instantiation GSMM parameters
	2.2 The GSL language
	2.3 Constraints

	3 Constraints and concrete models
	3.1 The relational data model
	3.2 The object exchange model
	3.3 XML and XML schema
	3.3.1 Plain XML
	3.3.2 XML schema

	3.4 Time
	3.5 The triplestore database
	3.6 BigTable
	3.7 The Neo4j graph database
	3.8 Parameters

	4 Inter-model translation
	4.1 Translating TGM into XML
	4.1.1 An algorithm for translating TGM into XML

	4.2 A software translator

	5 Related work
	6 Conclusions and future work
	References

