
Knowledge and Information Systems (2019) 61:431–462
https://doi.org/10.1007/s10115-018-1300-0

REGULAR PAPER

MH-DAGMiner: maximal hierarchical sub-DAGmining in
directed weighted networks

T. M. G. Tennakoon1 · Richi Nayak1

Received: 12 June 2017 / Revised: 17 September 2018 / Accepted: 24 November 2018 /
Published online: 14 December 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
With the easy availability of network data, there is an increasing need for extracting the
compact and meaningful directed acyclic graph (DAG) patterns from network databases.
There exists no specific method of sub-DAG pattern mining from the network databases with
cyclic graphs. This paper presents a novel method, MH-DAGMiner, for mining maximal
hierarchical sub-DAG patterns from a directed and weighted network database. To avoid
the exhaustive steps of candidate generation, frequency counting and non-maximal patterns
pruning, we propose a novel and effective FP-DAG structure based on edge grouping. We
propose the optimum branching method to identify the vertex hierarchy within each maxi-
mal edge group generated from FP-DAG, and discover the maximal hierarchical sub-DAG
patterns. The effectiveness of MH-DAGMiner is tested using several real-world network
datasets and synthetic graph datasets. We analyzed the quality of MH-DAGMiner in compar-
ison with a Naive-DAGMiner method which mines DAG patterns from a preprocessed cyclic
graph (DAG) database. MH-DAGMiner is found to be more effective than Naive-DAGMiner
with lower average information loss. MH-DAGMiner is also found to be more effective than
the state-of-the-art benchmarking algorithms such as gSpan, FP-GraphMiner, and MFSH-
TreeMiner where maximal hierarchical DAG patterns are identified with a post-processing
step.

Keywords Maximal subgraph mining · Hierarchical sub-DAG mining · Graph mining ·
DAG mining · Frequent pattern mining

1 Introduction

Frequent pattern mining has been successfully applied to various applications presenting
diverse sources of data [1,13]. Frequent subgraph mining is popular in unstructured data
domains such as bioinformatics, cheminformatics, and the web [1,11,13]. The majority of

B T. M. G. Tennakoon
gayani.mudiyanselage@hdr.qut.edu.au

Richi Nayak
r.nayak@qut.edu.au

1 School of Electrical Engineering and Computer Science, Science and Engineering Faculty, Queensland
University of Technology (QUT), Brisbane, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-018-1300-0&domain=pdf
http://orcid.org/0000-0002-7819-1332

432 T. M. G. Tennakoon, R. Nayak

existing research in frequent subgraphs relates to undirected graph and ignores the edge
directionality [9,11,18,22]. However, an undirected graph representation loses the knowledge
about the network flow and dependencies/authorities of objects. This knowledge can be
vital in applications like social network hierarchy mining [7], influence maximization [15],
workflow analysis [23], web navigational pattern discovery [4] and many more. There exist
only a couple of frequent subgraph mining algorithms applicable to directed graphs, but they
are limited to specific patterns such as rooted graph patterns [19] or abstract vertex-labeled
patterns [17].

The directed acyclic graph (DAG) patterns are highly effective in applications (represent-
ing a graph data) which require the knowledge about hierarchical organization of objects.
A DAG data structure presents information in a concise manner compared to sequences and
trees and is not as complex as directed cyclic graphs. It is not possible to define a single
hierarchy within a directed cyclic graph because cycles can lead to multiple hierarchies as
shown in Fig. 1. The sequence and tree data models are found limited for representing the
hierarchy, activity and information flow. A DAG, which is a compact representation of a set
of sequences, can represent multiple dependencies and ancestor–descender relationships of
an object without duplicating the object in representation as in the tree structure.

For the evolving networks such as social media networks, DAG pattern mining from a set
of timestamped interaction networks would be able to discover valuable knowledge about
the users and relationships. For example, identifying user groups who frequently share infor-
mation about a particular topic and extract their hierarchical organization within the group
can be useful in influential user mining [2] to benefit the applications like viral marketing
and political campaigning. In the workflow data, representing a set of process sequences by
compact DAG structures and then mining the frequent sub-DAG patterns can be useful for
classification models in fraud detection [10]. In the web navigational pattern mining [4], the
DAG patterns can be useful in identifying the hierarchical organization of web pages and
developing better ranking methods.

In this paper, we propose the MH-DAGMiner method to mine DAG patterns from the
network databases represented as graphs with unique vertex labels and directed weighted
edges. There exist a handful of methods for DAG pattern mining from DAG databases [3,
6,21,25]. However, these methods cannot be applied to databases with cyclic graphs. MH-
DAGMiner can be used in a network transaction setting where a database instance consists of
a set of cyclic graphs, aswell as, it can be applied in graph transaction settingwhere a database
instance is a single connected cyclic graph. Figure 2 shows the difference between network
and graph settings. The network setting is useful in representing social media interactions

(a) (b) (c) (d)

Fig. 1 A cyclic graph as shown in a can have three possible hierarchical organization of vertices as shown in
b–d

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 433

A

B

D

C

E

G1

A

B

D

C

G2

A

B

D

C

E

G3

(a)

A

B
C

D

E

F
G

H

N1

A

B
C

D

E

F
G

H

N2

A

B
C

D

E

F
G

N3

P

Q
R

(b)

Fig. 2 a Input dataset in the graph transaction setting, b input dataset in the network transaction setting using
unique vertex label representation

for a time period, whereas the graph setting is suitable when the dataset contains connected
graphs such as activity flow graphs. To the best of our knowledge, MH-DAGMiner is the
first method that can be used with both cyclic network and graph databases to mine maximal
DAG patterns.

A common challenge with frequent subgraph mining is the sheer amount of patterns
generated. Maximal pattern mining is the general approach to mine compact patterns. But
it is non-trivial to use an existing maximal subgraph mining algorithm [22,24] for DAG
mining because of the complexity in modifying the processes of candidate generation and
canonization in the presence of edge direction and cycles. The popular gSpan algorithm
[26] can be modified to generate DAG patterns and prune the non-maximal; however (1) it
compromises efficiency as canonization is designed for repeated vertex label graphs, (2) it
enumerates multiple hierarchical patterns starting from each cyclic edge as shown in Fig. 1
which requires a post-processing step to select the most prominent pattern, and (3) it fails to
identify multi-rooted DAG patterns.

In this paper, we show that the maximal hierarchical DAG patterns can be efficiently
approximated using the vertex hierarchy derived from the optimum branching. The MH-
DAGMiner method proposes a novel DAGmining framework using BitCode-based FP-DAG
structure. FP-DAG, an extended version of FP-Graph [24] enables grouping of edges based
on their frequency of occurrence. Each edge group is processed to identify the optimum
vertex hierarchy with the optimum branching technique [5]. Finally, each vertex hierarchy is
approximated to a maximal hierarchical DAG pattern with a constrain driven approach. MH-
DAGMiner generates maximal hierarchical DAG patterns without an exhaustive candidate
generation step since it is not necessary to enumerate all frequent patterns when the require-
ment is maximal pattern mining. With the use of the BitCode concept [24], the frequency of

123

434 T. M. G. Tennakoon, R. Nayak

a pattern can be calculated without scanning the input database as well as the non-maximal
patterns can be pruned effectively.

We empirically analyze the effectiveness of MH-DAGMiner using six real-world net-
work datasets relating to Twitter interactions, Enron email conversations, Math Overflow
interactions, Citation database, Wikipedia talk page editing and Messaging between college
students. We also use a set of synthetic graph databases with different characteristics. We
compare the information loss of MH-DAGMiner with a naive DAG mining approach which
first removes cycles in graph database to create a DAG database and mine DAG patterns. The
average information loss due to the approximation of DAG patterns from graphs is always
found less than the naive method with the graph to DAG transformation. MH-DAGMiner is
also found to be effective compared to the extensions of gSpan [26], FP-GraphMiner [24]
andMFSH-TreeMiner [12] methods which include a post-processing step to extract maximal
hierarchical DAG patterns.
The main contributions of this paper can be summarized as below;

1. We propose the novel MH-DAGMiner method for mining maximal hierarchical DAG
patterns from a database of directed, weighted, cyclic network or graphs. It is based on
the following innovative data structure/processes.

(a) FP-DAG structure to group edges such that all themaximal hierarchical DAGpatterns
are included within these groups.

(b) Using optimum branching-based vertex hierarchy to approximate the maximal hier-
archical DAG patterns.

(c) Using FP-DAG structure for effective non-maximal pattern pruning.

2. We theoretically prove the completeness of MH-DAGMiner and analyze the computa-
tional complexity.

3. We empirically analyze the effectiveness of MH-DAGMiner using a set of real-world
network and synthetic graph datasets.

The remainder of the paper is organized as follows. Section 2 presents the related work.
Section 3 discusses the proposed method in detail with related definitions. Section 4 provides
the computational complexity analysis. In Sect. 5 we analyze the experimental results and
Sect. 6 concludes the paper with discussion and future work.

2 Related work

No explicit method of DAG mining from the directed cyclic network or graph databases
exists with which we can compare our proposed MH-DAGMiner method. Therefore, in this
section, we present the related work including maximal subgraph mining algorithms and
sub-DAG mining algorithms from DAG databases.

To deal with the explosion of patterns generated in general subgraph mining algorithms,
a number of closed and maximal subgraph mining algorithms including CloseGraph [27],
DIGDAG [21], SPIN [9], MARGIN [22] and FP-GraphMiner [24] have been developed.
Closed subgraph mining algorithms mine frequent patterns which do not have any super-
graph with the same frequency in the pattern set. Maximal subgraph mining algorithms
identify patterns which do not have any frequent super-graph in the pattern set. Closed or
maximal subgraph mining is application dependent. If the objective is extracting compact
patterns regardless of different frequency levels, maximal subgraph mining usually is found
appropriate [9].

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 435

SPIN [9], the first work in maximal subgraph mining, mines all frequent tree patterns
from the graph database and then reconstructs maximal subgraphs from trees. SPIN takes the
advantage of less complexity inherited with tree normalization compared to graph normaliza-
tion; however, it is still computationally expensive as it enumerates all frequent tree patterns
and requires post-non-maximal pattern pruning. Taking a different approach, MARGIN [22]
prunes the candidate patterns using the conjecture that a set of potential maximally frequent
subgraphs is included in the set of frequent k subgraphs that have infrequent (k + 1) super-
graphs. The maximal subgraphs are then identified using a post-processing step. MARGIN
is claimed to be three times faster than SPIN. However, both algorithms scan the database
multiple time during the mining process and designed for repeated vertex label graph repre-
sentations which adversely affects the execution time when using with unique vertex label
graphs.More importantly, it is non-trivial to extend these algorithms to apply in directed graph
mining. A recently developed subgraph mining algorithm, FP-GraphMiner [24], has been
shown to be 4 times faster than MARGIN by improving efficiency in candidate generation
and frequency counting steps for unique vertex label graph databases. This algorithm scans
the database once and stores the details of frequent subgraphs into a single compact undi-
rected graph, FP-Graph, to mine frequent subgraphs with any predefined minimum support
threshold σ .

The FP-Graph structure does not consider the possibility of the existence of graph patterns
when there are no distinct edges corresponding to a given minimum support threshold. This
issue is identified in a work related to software fault localization [12], and authors introduce
the MFSH-TreeMiner based on a Tree structure. However, as we show in this paper, MFSH-
TreeMiner fails to generate the complete set of patterns. We introduce the FP-DAG structure
in which a depth-first search (DFS) traversal is used to mine the complete set of patterns.

A handful of work has been developed for specific types of sub-DAG mining from DAG
databases. An early algorithm [3] is limited to mine pyramid patterns only, where each
DAG has a single root vertex. The DIGDAG algorithm can mine closed frequent embed-
ded sub-DAGs in unique vertex labeled DAG database [21]. It combines a closed frequent
itemset mining algorithm with the item reduction technique based on ancestor–descendant
edge groups to improve the efficiency of the mining process. The DAGMA algorithm mines
frequent fragments in DAG databases [25] by using a new canonical form based on the
topological levels of vertices. A set of rules are derived based on this topology to enumerate
sub-DAG patterns efficiently. Authors in Fariha et al. [6] introduced a framework for mining
frequent interaction patterns as DAGs from meeting databases.

These sub-DAG mining algorithms are designed with the assumption that the input
representation does not contain cyclic relationships. For example, DAGMA [25] requires
topological sorting of vertices which is infeasible in a cyclic graph. Moreover, existing DAG
mining algorithms result in specific types of DAG patterns such as pyramid patterns [3],
embedded patterns [21] and apply on DAG representations specific to applications like meet-
ing interactions where the status of participants is known. It is non-trivial to extend these
sub-DAG mining algorithms for cyclic network/graph input databases to mine the maxi-
mal hierarchical DAG patterns. As noted, applications like social network mining, work
flow network analysis and navigational pattern mining require DAG patterns to be extracted
from the graph/network databases with cyclic graphs. Graph mining algorithms such as FP-
GraphMiner [24] and MFSH-TreeMiner [12] can be used for maximal subgraph mining in
directed graphs, but they cannot be used for DAGmining without a post-processing step. The
general-purpose gSpan [26] algorithm can be extended for maximal sub-DAG mining, but it
compromises the accuracy, generates redundant patterns and unable to generate multi-rooted
DAG patterns.

123

436 T. M. G. Tennakoon, R. Nayak

Based on this discussion, it can be ascertained that existing algorithms have been mainly
developed for undirected graphs due to complexities involved with the edge direction in
processing and the unimportance of edge direction in targeted applications and also for
directed acyclic graphs focusing specific applications. However, with the recent applications
such as social networks, workflow, and navigation networks, there is an increasing need to
consider directed graphs for mining sub-DAG patterns that can represent hierarchy, activity
and information flow. To our best knowledge, we are the first one to propose a frequent
subgraph mining algorithm to generate maximal hierarchical sub-DAG patterns from the
directed cyclic network/graphs.

3 The proposedmethod: MH-DAGMiner

3.1 Definitions

Labeled weighted graph A labeled weighted graph can be represented as G(V , E, LV , ϕ,

W (E)), where V is a set of vertices, E ⊆ (V × V) is a set of edges; LV is the set of vertex
labels; and ϕ is a label function that defines the mapping V → LV . In this paper we assume
that a label function assigns distinct labels to vertices. W (E) is the set of edge weights. G is
directed if ∀e ∈ E, e is an ordered pair of vertices. G is acyclic if it contains no cycle. If G
is both directed and acyclic, it is called Directed Acyclic Graph (DAG).

Network Transaction Database A network transaction database of size n can be defined
as D = {N1, N2 . . . , Nn}. A network N can be represented as N = {G1, . . .Gn} where
G1, . . .Gn are a set of unique vertex labeled directed weighted graphs. Graph transaction
database is a special case of Network transaction database where each network N of D
consists only of a single graph G.

Sub-DAG Given two unique vertex labeled DAGs G1(V1, E1) and G2(V2, E2), G1 is a
sub-DAG of G2 if E1 ⊆ E2. In this case G2 is the super-DAG of G1.

DAG IsomorphismAunique vertex labeled DAGG1(V1, E1) is isomorphic to another DAG
G2(V2, E2) if a bijection f : E1 → E2 exists such that: ∀(u, v) ∈ E1,⇔ ∀(u, v) ∈ E2.
The bijection f is an isomorphism between G1 and G2. DAG G1 is sub-DAG isomorphic to
DAG G2 if there exists a sub-DAG g ⊆ G2 such that G1 is isomorphic to g [13].

Frequent Sub-DAG A sub-DAG g is considered to be frequent if its support is greater than
the predefined minimum support threshold σ . In this paper, support of a DAG pattern is
calculated using transaction-based counting as the number of network/graph transactions
that g is a sub-DAG of.

Frequent Maximal Sub-DAGADAG G1 is frequent maximal if there exists no super-DAG
G2 of G1, which is frequent.

Maximal Edge Group (MEG) A frequent edge set is defined as a maximal edge group
MEG1 if there is no superset of frequent edge group MEG2 such that MEG1 ⊆ MEG2.

Optimum Branching A branching B of directed graph G is a subset of edges such that
(1) if (u1, v1), (u2, v2) are distinct edges of B with v1 �= v2; and (2) B does not contain a
cycle. There will be many such branches present in G. The optimum branching Bo is the

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 437

B with highest edge weight sum1 [5]. If the branching is connected, it is called optimum
arborescence.2 Bo is represented as a subset of edges in G.

OptimumVertex Hierarchy The optimum vertex hierarchy of a directed graph G is defined
as the hierarchical organization of vertices in the optimum branching of G.

HierarchyLevel HierarchyLevel is a discrete number between 1 and h, where h is the max-
imum hierarchy level.

Hierarchical DAG We define a DAG as Hierarchical DAG when it has the optimum vertex
hierarchy and all the edges are directed from vertices with lower HierarchyLevel to vertices
with higher HierarchyLevel.

Maximal Hierarchical DAG (MH-DAG) A DAG is defined as MH-DAG if it satisfies both
frequent maximal and hierarchical DAG requirements.

Problem Definition Given a network/graph transaction database and minimum support
threshold σ , the task is to extract all MH-DAG patterns with a support ≥ σ .

The proposed MH-DAGMiner method achieves this by executing three main functions,
(1) Frequency Table creation, (2) FP-DAG creation and (3) MH-DAG mining. The MH-
DAGmining step includes sub-steps of IdentifyingMEGs,Optimumvertex hierarchymining,
DAG approximation and non-maximal pruning. Algorithm 1 summarizes MH-DAGMiner.

Input : D(N1, N2, . . . Nn): Input Database; σ : Minimum support threshold
Output: PatternDictionary

FrequencyTable ← FrequencyTableCreation (D, σ)

FP-DAG ← FP-DAGCreation (FrequencyTable, σ)

MEGs ← FindMEGS (FP-DAG)

Dictionary ← ∅
foreach MEG m in MEGs do

Optimum-Branching (B) ← EdmondsAlgorithm (m)
HMap ← AssignHierachy (B)
DAGs ← DAGMining (HMap,m)
foreach DAG d in DAGs do

Dictionary ← Pruning (d,Dictionary)
end

end
PatternDictionary ← Dictionary

Algorithm 1:MH-DAGMiner Algorithm

3.2 Frequency table creation

We propose to use the edge-based representation for networks/graphs as it is known to
be more efficient compared to the vertex-based adjacency matrix representation due to its
reduced memory requirement [24]. With the use of unique vertex label representation, a
network/graph can be presented by its edge list. For example the graph in Fig. 1a can
be noted as G(AB, BC, BD,CA,CD,CE, DE). According to the Downward Closure
Property (DCP) [1], a graph with k + 1 edges cannot be frequent if it has a subgraph
with k edges that is infrequent. Consequently if G is frequent, each edge in the edge set

1 In tree terminology, this is same as maximum spanning forest.
2 In tree terminology, this is same as maximum spanning tree.

123

438 T. M. G. Tennakoon, R. Nayak

(b)(a)

Fig. 3 a Input database (D). b Frequency table (FT)

G(AB, BC, BD,CA,CD,CE, DE) needs to be frequent. This property can be used to
avoid the exhaustive frequency counting step and make the mining process efficient.

Let D = {N1, N2, . . . Nn} be a network database with n networks. Each distinct edge in
the network is represented as E = 〈S, T 〉 where S is the source vertex and T is the target
vertex.

TheWeightMapwm of a distinct edge E is an array with n elements where each element
represents the weight of E in the corresponding network/graph instance. The BitCode bc of
E is the binary encoding of wm which can be calculated using Eq. 1. The support of E can
be easily calculated by taking the sum of 1’s in the corresponding BitCode.

∀i ∈ 0, . . . n − 1

(
bc(i) =

{
1, if wm(i) ≥ 1

0, otherwise

)
(1)

The Frequency Table (FT) is defined as a collection of frequent edges in the input database
in decreasing order with respect to the support of edges. Each row in the FT contains a pair
〈Edge,WeightMap〉. An example FT is shown in Fig. 3b, for the database illustrated in Fig.
3a.

MH-DAGMiner starts by iterating through the network instances of D to build the FT.
Given the minimum support threshold σ , only the frequent edges needed to be stored in the
FT. It is impossible to decide whether an edge is frequent before processing all networks and
edges are added to FT asWeightMap of an edge is updated while iterating through networks.
However, we can prune some of the edges, which are not going to be frequent considering σ

and the number of already processed networks. We calculate the maximum possible support
value ms of an edge using Eq. 2.

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 439

ms = c f (E) + (n − n f) (2)

where c f (E) is the support of edge E after processing n f number of networks from a total
of n networks. When iterating though the network instances in D, from the second network
we estimate ms for each distinct edge in the network, and if ms < σ , we do not add the
edge into FT and remove the existing record. For example in Fig. 3a, consider the scenario
where N1, N2, N3, N4 and N5 are processed in this order. Assume N1, N2 and N3 have
already been processed (n f = 3) and we are reading the edge 〈F,C〉 in N4. Since 〈F,C〉
does not exist in N1, N2 and N3, it is not yet included in FT (c f (E) = 0). Its ms value
indicates that maximum possible support value of 〈F,C〉 is 2. Given σ = 3, there is no need
to add 〈F,C〉 into FT asms < σ . As shown in empirical analysis, this saves a lot of memory
otherwise used for infrequent edges and improves the execution time. After processing all
network instances in D, all the frequent edges are arranged in FT according to the decreasing
order of edge supports.

3.3 FP-DAG creation

The next step ofMH-DAGMiner is grouping the edges in FT based on BitCode and create the
FP-DAG structure. We refer a group of edges as a Node. Given a set of edges e1, e2, . . . , ek
with BitCodes Be1, Be2, . . . , Bek , the BitCode of a Node can be derived using Eq. 3 and
support of the Node can be calculated by counting 1’s in the resultant Bitcode.

B(Node) = Be1 ∧ Be2 ∧ Be3 · · · ∧ Bek (3)

Two types of Nodes namely EdgeNode and ConnectorNode are created. An EdgeNode
is formed by a group of distinct edges in FT with a common BitCode. A ConnectorNode is a
placeholder to represent an edge set created by combining edges of two or more EdgeNodes
such that support (resultant edge set) ≥ σ . The BitCodes related to the ConnectorNodes
are identified by the AND operations among BitCodes of corresponding EdgeNodes. The
ConnectorNodes do not include any edges but provide guidance to the DFS traversal to create
a complete pattern set by connecting the EdgeNodes.

Given a Node N1 with BitCode B1 is a ParentNode of Node N2 with BitCode B2, the
relationship shown in Eq. 4 should always be true. Here N2 is a ChildNode of N1.

B1 ∧ B2 = B2 (4)

A Cluster is created by grouping the Nodes with the same support. Given t number
of network instances, there can be a maximum of t Clusters. Let Ci , C j and Ck be three
successive Clusters with support(Ci) < support(C j) < support(Ck), C j and Ck will be
the ParentCluster and AncesstorCluster of Ci , respectively.

FP-DAG: A FP-DAG(Nodes,Edges) is a hierarchical DAG where Clusters of Nodes are
arranged in the hierarchy by increasing order of support. Each Node is connected with all its
ParentNodes by directed paths such that start(path) = Node and destination(path) =
Parent Node while avoiding multiple paths between a Node and a ParentNode. Consider
N1 is a ParentNode of N2 and N2 is a ParentNode of N3, there will be edges from N2
to N1 and N3 to N2 but no edge from N3 to N1 as there is a directed path from N3 to
N1 via N2. The EdgeNodes are first connected with its ParentNodes in ParentCluster by
directed edges. If there is no ParentNode in ParentCluster, the next AncesstorCluster in the
hierarchy is considered until it is found. The EdgeNodes which generate the BitCode of a
ConnectorNode is identified as the ParentNodes of that ConnectorNode and directed edges
are added from ConnectorNode to the corresponding EdgeNodes.

123

440 T. M. G. Tennakoon, R. Nayak

EN1
AE,DE,RP,QP

(11111)

EN2
CD,DA
(11110)

EN3
AB,BC
(11101)

EN4
CQ,DQ,GB,HB

(10011)

CN6
(11100)

CN7
(10010)

EN5
GC

(10001)

EN1
AE,DE,RP,QP

(11111)

EN2
CD,DA
(11110)

EN3
AB,BC
(11101)

EN4
CQ,DQ,GB,HB

(10011)

EN6
CD,DA,AB,BC

(11100)

(a)

(b)

(c)

(d)

(e)

EN5
GC

(10001)

(f)

EN1
AE,DE,RP,QP

(11111)

EN2
CD,DA
(11110)

EN3
AB,BC
(11101)

EN4
CQ,DQ,GB,HB

(10011)

EN5
GC

(10001)

Cluster 4
support=5

Cluster 3
support=4

Cluster 1
 support=2

Cluster 2
support=3

Increasing order of support

Cluster 4 is the ParentCluster of Cluster 3

Cluster 4 is the AncesstorCluster of Cluster 2 and Cluster 1

Cluster 2
support=3

Cluster 1
support=2

Cluster 4
support=5

Cluster 3
support=4

Cluster 2
support=3

Cluster 1
support=2

* Solid lines shows the MFSH-Tree

Cluster 4
support=5

Cluster 3
support=4

Fig. 4 a FP-DAG, bMFSH-Tree, c FP-Graph built corresponding to the example data shown in Fig. 3, dMEGs
generated by FP-DAG, e edge groups generated by MFSH-Tree and f edge groups generated by FP-DAG

Example 1 Suppose the input database contains five networks N1, N2, N3, N4 and N5 as
shown in Fig. 3a. With σ = 2, FT (as shown in Fig. 3b) is derived where each edge is rep-
resented with a WeightMap. The WeightMap of distinct edge 〈C, D〉 [5, 6, 4, 3, 0] indicates
that it appears in N1, N2, N3 and N4 only. The corresponding BitCode and support can be
calculated as 11110 and 4, respectively. Note that edge 〈F,C〉 of N4 does not appear in the
FT since it is pruned due to support < 2.

As shown in Fig. 3b, five groups will be created based on each distinct BitCodes. Figure
4a includes these groups as EdgeNodes EN1, EN2, EN3, EN4 and EN5. EdgeNodes are

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 441

Input : EdgeNodes: The set of edge groups generated from the FT, B: the set of BitCodes
corresponding to EdgeNodes, σ : Minimum support threshold

Output: The FP-DAG

FP-DAG ← HierarchicalDAG(∅, ∅)
FP-DAG ← AddNodes(EdgeNodes)
foreach Node in FP-DAG do

ParentNodes ← FindParents(Node,FP-DAG)
foreach Parent in ParentNodes do

if IsNotReachable(Node,ParentNodes) then
FP-DAG ← AddEdge(Node,Parent)

end
end

end
foreach (B1, B2) in B where WT (B1),WT (B2) > σ do

b ← B1 ∧ B2
n ; can be an EdgeNode or a ConnectorNode
if WT (b) ≥ σ then

if b /∈ B then
B ← B ∪ b
n ← CreateNode(b)

end
else

n ← FindNode(FP-DAG,b)
end
Node1 ← FindNode(FP-DAG,B1)
Node2 ← FindNode(FP-DAG,B2)
if IsNotReachable(n,Node1) then

FP-DAG ← AddEdge(FP-DAG,n,Node1)
end
if IsNotReachable(n,Node2) then

FP-DAG ← AddEdge(FP-DAG,n,Node2)
end

end
end

Algorithm 2: The process of creating the FP-DAG

grouped into fourClusters, eachCluster sharing theNodes of same support. First eachEdgeN-
ode is connectedwith its ParentNodes in ParentCluster by a directed edge. For example, EN1
is a found as a ParentNode of EN2 following the ParentNode–ChildNode relationship and
Eq. 4 (11111∧ 11110 = 11110). Accordingly, there is a directed Edges from EN2 to EN1.

Algorithm 2 then identifies two ConnectorNodes CN6 and CN7 with supports ≥ σ .
CN6 will be connected with its ParentNodes EN2 and EN3 while CN7 will be con-
nected with EN2 and EN4 as shown in Fig. 4a. The FP-Graph structure [24] only includes
EdgeNodes(EN1, EN2, EN3, EN4 and EN5) and misses the ConnectorNodes(CN6,
CN7) as shown in Fig. 4c. TheMFSH-Tree structure [12] identifiesCN6 as another EdgeN-
ode EN6 by combining edges from EN2 and EN3, as both of these EdgeNodes belong to
the same ParentCluster, however it misses CN7 where one ParentNode is in ParentCluster
and another ParentNode is in an AncesstorCluster (Fig. 4b). ParentNodes of an EdgeNode
can also belong to different Cluster levels. For example, EN4 and EN3 are two ParentN-
odes of EN5, which belong to the ParentCluster and AncesstorCluster, respectively. Both
FP-Graph and MFSH-Tree structures do not identify EN3 as a ParentNode of EN5 as it
does not belong to the ParentCluster of EN5 and consequently there will be no directed path
from EN5 to EN3. As shown in further analyses, these processes in MH-DAGMiner ensure
the generation of a complete pattern set.

123

442 T. M. G. Tennakoon, R. Nayak

Claim 1 FP-DAG contains the complete set of Nodes and Edges for generating all MH-DAG
patterns.

Proof FP-DAG is considered complete if it contains all possible Nodes with a support ≥ σ ,
and there exist paths from each Node to all its ParentNodes. The Nodes can be either formed
by an edge group where all the edges have the same BitCode value or formed by an edge
group with dissimilar BitCodes, but the support of the group ≥ σ . If all the edges have
the same BitCode, they are available in the FT and form an EdgeNode in FP-DAG. The
dissimilar BitCodes indicates a combination of two or more EdgeNodes. As detailed in
Algorithm 2, the pairwise AND operation is performed for each dissimilar BitCode pair
(B1, B2) where WT (B1),WT (B2) > σ and all possible BitCodes, which represent all
EdgeNode combinations, are found. This ensures all possible Nodes are included in FP-
DAG. Each EdgeNode is first connected with all its ParentNodes in ParentCluster. Since
the ConnectorNodes result from the EdgeNode combinations, by default they become the
ParentNodes. These ParentNodes are again connected with their ParentNodes and so on;
thus, by considering the transitivity, we can claim that there exist paths between each Node
to all its ParentNodes in ParentCluster as well as AncesstorClusters. Consequently, FP-DAG
contains the complete set of Nodes and Edges in the dataset necessary for generating all
MH-DAG patterns. ��

3.4 MH-DAGmining

3.4.1 Identifying MEGs

Depth First Search (DFS) in FP-DAG is defined as traversing FP-DAG in depth-first order
starting from a given Node following the Edge direction and without visiting the same Node
twice. The directed Edges in FP-DAG guarantees that only the ParentNodes are visited by
DFS traversal. AMaximal Edge Group (MEG) is identified by the DFS traversal of FP-DAG
starting from each LeafNode (i.e., the Nodes which does not have any incoming Edge). If
the frequent mining is done in a graph transaction database, a MEG will generate a single
maximal subgraph pattern. However, in a network transaction setting, a MEG can generate
multiple patterns and there can be non-maximal patterns which need to be pruned.
Example 1 continues Figure 4d–f illustrates the difference between the MEGs identified by
MH-DAGMiner, the maximal subgraphs identified by the FP-GraphMiner [24] and MFSH-
TreeMiner [12]. Both FP-GraphMiner and MFSH-TreeMiner produce different results due
to the incompleteness in FP-Graph and MFSH-Tree.

Claim 2 A DFS traversal starting from each LeafNode in FP-DAG will result in generating
all MEGs existing in the dataset. The number of MEGs is equal to the number of LeafNodes.

Proof Since FP-DAG is constructed considering minimum support threshold σ , the bottom
level of FP-DAG is related to the Cluster with support≥ σ . A DFS starting from a LeafNode,
LN traverses all the ParentNodes of LN and covers the largest sub-DAG DG connected to
LN . Let DG1 and DG2 are two sub-DAGs in FP-DAG generated by LeafNodes LN1 and
LN2, respectively. It can be inferred that DG1 /∈ DG2 and DG2 /∈ DG1 due to the unique
vertex label representation.Consequently edges in DG1 and DG2 result in twoMEGsMEG1
and MEG2. BitCode of a MEG is equal to the corresponding BitCode BDG of DG which is
calculated as follows; BDG = BLN ∧ BPN1 ∧ BPN2 · · · ∧ BPNn where BLN is the BitCode
of Leaf Node and BPN1, BPN2 . . . BPNn are the BitCodes of LN ′s ParentNodes. In FP-
DAG, ParentNodes are identified with the relations BLN ∧ BPN = BLN and consequently

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 443

BMEG = BDG = BLN . Therefore, the resultant MEGs have the BitCodes of corresponding
LeafNodes and the number of MEGs is equal to the number of LeafNodes. According to the
Claim 1, a complete FP-DAG ensures to have the complete set of Nodes which includes the
complete set of LeafNodes. Consequently, A DFS traversal starting from each LeafNode in
FP-DAG results in all MEGs existing in the dataset. ��

3.4.2 Optimum vertex hierarchy mining

For all MEGs identified, the maximal hierarchical DAG patterns are approximated based on
the optimum vertex hierarchy. The optimum vertex hierarchy is derived using the Edmonds
optimum branching algorithm3 [5]. The algorithm takes a directed weighted graph as input
and returns a branching or a spanning arborescence with maximumweight, where the weight
of a branching/arborescence is defined as the sum of its edge weights. The highest weighted
incoming edge is chosen for each vertex. If there exists a cycle with selected edges, it removes
the least weighted edge.

In MH-DAGMiner, we propose to calculate the edge weight as the sum of weights in the
WeightMap relating to the BitCode of MEG. With this, edges are compared with respect to
the corresponding MEG and not considering the whole input database. This guarantees to
select the most prominent edges within a MEG. Edges are first prioritized based on weights,
if there are multiple edges with the same weight, we apply the following heuristics for edge
selection.

Heuristic 1 If there exist multiple edges with maximum weight, the edge with maximum
support will get priority for the next selection.

Heuristic 2 In case of the existence of multiple edges with equal weight and support, the
minimum lexicographical order of source and target vertices will be used to prioritize the
selection.

Heuristic 1 considers the consistency of an edge based on its frequency in the input dataset.
Heuristic 2 can be adjusted based on any feature related to the vertex. These heuristics
are helpful in identifying the optimum vertex hierarchy within patterns and removing non-
hierarchical edges.

Based on the optimum branching of a MEG, the optimum vertex hierarchy is identified.
According to the optimumvertex hierarchy, each vertex inMEG is assigned aHierarchyLevel
and stored in theHMap.HMap is a dictionary containing 〈VertexLabel, HierarchyLevel〉
pairs where VertexLabel is the key and HierarchyLevel is the value. A vertex with Hierar-
chyLevel of 0 implies that it is not yet assigned a HierarchyLevel.

Figure 5a–c illustrates the process of identifying hierarchy levels of vertexes in the MEG
identified in Ex.1 for LeafNode CN6 (Fig. 4d).

Claim 3 Optimum branching of a network N (V , E) identifies the optimum vertex hierarchy
according to the edge weights and heuristics.

Proof The Edmonds algorithm has been proved to result in the optimum branching of a
graph or network [5]. This branching is constructed considering the prominent incoming
edges into each vertex. The optimum branching selects the highest weighted incoming edge
as the prominent edge to choose a vertex. In the case of edges with similar weight, it uses

3 Implementation is available via http://edmonds-alg.sourceforge.net/.

123

http://edmonds-alg.sourceforge.net/

444 T. M. G. Tennakoon, R. Nayak

(a)

(c)

(d)

(b)

Fig. 5 a Networks generated with MEG identified in Example 1 with LeafNode CN6, b optimum branching,
c HMap, d hierarchical DAG patterns

Heuristics 1 and 2 to select an edge. This process results in generating a single root vertex
and at most one incoming edge for each vertex. By selecting the most prominent edge in
terms of support and labels, it is able to derive a deterministic and optimum vertex hierarchy.

��

3.4.3 Approximating DAG patterns

The patterns generated from optimal branching are a special kind of DAG patterns called
as spanning arborescence that have only one root vertex and at most one incoming edge for
each vertex (as shown in Fig. 5b). This structure is not sufficient when representing multiple
dependencies or authorities of objects. We extend the spanning arborescences to hierarchical
DAG patterns, allowing multiple parent vertices and roots, by applying two constraints using
HMap to the remaining edges inMEG (i.e., the edges do not belong to branching or the cyclic
edges identified). Let S be the source vertex label and T be the target vertex label.

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 445

Constraint 1 An edge is selected if HMap[S] = 0 but HMap[T] �= 0.

Constraint 2 An edge is selected if HMap[S] ≤ HMap[T].
After selecting all edges with these constraints, all connected components in the selected

edge set can be identified as hierarchical DAG patterns. Figure 5d shows an example of
hierarchical DAG patterns.

This constraint-based hierarchical DAG approximation only loses the non-hierarchical
edges that would appear in the respective cyclic graph pattern, and with the use of optimum
branching we make sure that the least significant edges will be removed. It is possible for an
edge to be non-hierarchical with respect to oneMEG and be hierarchical within anotherMEG
with a different set of edges. By approximating the DAG patterns with respect to a MEG, we
can identify both of the patterns with and without the edge. Therefore, these heuristics do
not affect the completeness of output patterns.

Claim 4 TheDAG structures constructedwith constraints 1 and 2 applied toMEGswill result
in hierarchical DAGs.

Proof According to constraint 1, if the source vertex of the selected edge is not assigned
a hierarchy level (HMap[S] = 0) during the optimum vertex hierarchy mining process, it
implies the following three properties. (1) The source vertex does not have any incoming
edge. (2) Selected edge is not included in optimum branching because the target vertex has
an incoming edge with high priority. (3) Selected edge is an isolated edge. Hence, adding
this edge would not create a cycle. In this case, the value of HMap[S] will be updated
to 1 and if HMap[T] = 1, HierarchyLevel of T and its child-vertices will be increased
by one. According to constraint 2, either the edges from lower HierarchyLevels to higher
HierarchyLevels or edges with source and target vertices belong to the same hierarchy level
(HMap[S] == HMap[T]) are selected. In the latter case, HMap[T] will be updated to
HMap[S]+1 andHierarchyLevels of T ′s child-vertices will be increased accordingly. Thus,
in the output pattern there exist only the edges from lower to higherHierarchyLevels and there
is no chance of creating a cycle. Consequently, these two constraints result in hierarchical
DAGs. ��

3.4.4 Pruning non-maximal patterns

The isomorphic and non-maximal patterns have been considerably minimized by finding
MEGs and then identifying DAG patterns. However, there is still the possibility of generating
both isomorphic and non-maximal patterns.

Cyclic edge removal Figure 6a, b shows how cyclic edge removal in twoMEGs can result
in the generation of isomorphic patterns (D1 and D2), or the generation of non-maximal
patterns (D4 ⊂ D3).

Disconnected DAG patterns In the network transaction setting, a MEG that contains
multiple graphswill result inmultiple hierarchicalDAGs. Figure 7a shows twoMEGsMEG1
andMEG2with isomorphic patterns D1 and D3. Similarly Fig. 7b shows twoMEGsMEG1
and MEG2 can produce non-maximal patterns such as D7 ⊂ D5 and D6 ⊂ D8.

Isomorphism checking is a costly operation in frequent subgraph mining [13]. Different
canonical representations have been introduced to reduce the computational cost [8,26].
However, these canonical forms are developed for graph representations with non-unique
labels. Using the same method for unique labeled graphs would add an additional overhead.
A unique vertex labeled graph can simply be represented using its edge list. We propose to

123

446 T. M. G. Tennakoon, R. Nayak

(a) (b)

Fig. 6 Examples of the cycle removal resulting in a isomorphic patterns (D1 and D2) generation, b non-
maximal patterns (D4 ⊂ D3) generation

use an edge set-based canonical string representation. In this representation, source and target
labels are separated by a comma while two edges are separated by a semi-colon. For example
‘A,C;C, D; D, E’ represents the DAG with edges AC,CD, DE . To make it unique, the
edge set is sorted lexicographically(first by source label, and, in the case of same source
label, by target label). Figure 8 shows a simple example of this unique encoding.

PatternDictionary is a dictionary in the form of 〈BitCode, PatternList〉 where Pat-
ternList is the list of canonical strings of patterns. The BitCodes in PatternDictionary are
directly related to the BitCodes of Nodes in FP-DAG.

After deriving the complete canonical string s of a pattern p, first we check whether s
exists under the BitCode category of p in PatternDictionary. If so, s will not be added to
PatternDictionary. If there is no similar string, we check for sub-DAG isomorphism. We
use the FP-DAG structure and identify the Node related to the BitCode of the pattern and
BitCodes related to all of its ParentNodes and ChildNodes. The sub-DAG isomorphism is
checked within the BitCodes of Node and ChildNodes. If there exists a string related to a
super-DAG of p, s will not be added to the PatternDictionary. Next, we check for patterns
which can be sub-DAG of p, within the BitCode category of Node and ParentNodes. If
there is a sub-DAG pattern, it will be removed from PatternDictionary. In this way, we avoid
exhaustive pruning of non-maximal patterns. At the end of processing all MEGs in the input
dataset, a dictionary with canonical strings of graph patterns categorized by BitCode will
hold. This dictionary will also enable the user to analyze output patterns based on a support
threshold and particular database instances.

Example 1 Continues Figure 9 shows an example of pruning in MH-DAGMiner with the
FP-DAG (Fig. 9c). Lets consider the MEG generated from the DFS traversal starting from
the LeafNode CN7. As shown in Fig. 9a, we can identify two patterns D1 with BitCode
10011 and D2 with BitCode 10010. Since the PatternDictionary is empty at this stage, both
patterns are added under the respective BitCode categories (Fig. 9b). Next, lets take the

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 447

(a) (b)

Fig. 7 Due to disconnected DAGs a isomorphic pattern (D1 and D3) generation, b non-maximal pattern
(D7 ⊂ D5 and D6 ⊂ D8) generation

Fig. 8 Unique canonical string of
two isomorphic DAG’s

patterns related to the MEG generated with LeafNode EN5. As shown in Fig. 9d, we get a
single pattern D3 and BitCode 10001. There is no pattern with the same canonical string
or supper-DAG pattern within the same BitCode category; hence, it will be added in the
PatternDictionary. In order to check for its sub-DAG patterns, we use the FP-DAG (Fig. 9c)
to identify all the ParentNodes and ChildNodes of EN5. We can identify the Nodes with
BitCodes 10011, 11101, 11111 as ParentNodes and there exist no ChildNodes. Therefore,
we can verify that the pattern is a maximal pattern. However, there can be sub-DAGs of this

123

448 T. M. G. Tennakoon, R. Nayak

(a)

(e)

(c)

(d)

(b)

Fig. 9 aDAGpatterns generated fromMEGforLeafNodeCN7,bPatternDictionary after processing theMEG,
c corresponding FP-DAG, d DAG patterns generated fromMEG for LeafNode EN5, e PatternDictionary after
processing MEG of EN5

patterns within ParentNodes. By checking the patterns related to ParentNode BitCodes, we
find D1 as a sub-DAG of D3 and remove D1 from the PatternDictionary as shown in Fig.
9e.

Claim 5 DAG isomorphic patterns can be pruned by searching for the exact canonical string
under the pattern’s BitCode category in PatternDictionary.

Proof Suppose, on the contrary, there exists an isomorphic pattern that has not been pruned.
Regardless of the order of edges considered in deriving canonical string, the particular pattern
will always have a fixed BitCode. Therefore, if there exists an isomorphic pattern, it should
be stored under this BitCode category in PatternDictionary. Thus, the only possibility of
creating an isomorphic pattern is considering different edge orders. Since we sort the edge
set using the vertex labels, which is unique for an edge, different edge orders are not possible.
Consequently, it contradicts the assumption and all isomorphic patterns will be pruned. ��
Claim 6 Sub-DAG isomorphism for a pattern p is needed to be checked only within the
patterns under p′s BitCode category and BitCodes related to the ChildNodes(identified from
FP-DAG) in PatternDictionary.

Proof Lets consider all the possibilities of having a super-DAG for p. (1) Extending p using
the edges of Nodes in higher Cluster levels of FP-DAG: Resulting pattern will have the
BitCode of p or BitCode of a ChildNode. (2) Extending p using edges of Nodes in the

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 449

same Cluster levels of FP-DAG: Resulting pattern will have the BitCode of a ChildNode. (3)
Extending p using edges of Nodes in lower Cluster levels of FP-DAG: Resulting pattern will
have the BitCode of a ChildNode. So in every possibility, it creates a pattern with a canonical
string that is stored under either BitCode category of p or ChildNode in PatternDictionary.

��

Claim 7 MH-DAGMiner generates the complete set of MH-DAG Patterns.

Proof Given M number of distinct frequent edges, there can be a maximum of 2M − 1
frequent DAG Patterns. The number of maximal DAGs is always < 2M − 1 as one maximal
DAG subsumes many frequent DAGs. The EdgeNodes of FP-DAG create a frequent DAG
pattern such that all the edges have the same BitCode. Since a larger maximal DAG pattern
can be created by combining two or more of these DAG patterns and, it is not necessary for
all edges of maximal DAG to have the same BitCode as long as the resultant DAG has a
support ≥ σ , MH-DAGMiner considers all possible EdgeNode combinations. For example
if Node3 has two parents Node1 and Node2, by combining edges from Node1, Node2 and
Node3 a MEG is created such that (Node1 ∪ Node2) ⊂ (Node1 ∪ Node2 ∪ Node3) and
(Node1 ∪ Node3) ⊂ (Node1 ∪ Node2 ∪ Node3) and (Node2 ∪ Node3) ⊂ (Node1 ∪
Node2 ∪ Node3).

EdgeNode combinations can be taken in two ways such that (1) one EdgeNode is a
ParentNode of the other and (2) EdgeNodes either have same support or different supports (>
σ) but not hold a parent–child relationship. With the Claim 1 showing FP-DAG is complete,
(1) each Node in FP-DAG is connected with all of its ParentNodes by Edges and (2) FP-
DAG includes theConnectorNodes as placeholders to indicate the combination of EdgeNodes
which does not have a parent–child relationship. According to Claim 2, a DFS starting from
a LeafNode in FP-DAG will result in the MEG related to that LeafNode. Since a complete
FP-DAG and DFS guarantee to identify the complete set of LeafNodes and corresponding
MEGs, respectively, we ascertain that MH-DAGMiner generates the complete set of MH-
DAG Patterns. ��

4 Computational complexity analysis

In this section, we provide the computational complexity analysis of proposed MH-
DAGMiner considering different steps in the process. Let k be the number of database
instances, m be the total number of edges in the dataset, M be the total number of dis-
tinct edges in the dataset, σ be the minimum support threshold, N be the Nodes in FP-DAG
and P be the number of output patterns.

FT Creation All the distinct edges in the k graphs are scanned in FT creation with the
complexity of O(m). The distinct edges in the FT are sorted by the descending order of
BitCode with O(MlogM) complexity. This yields the total complexity of O(m + MlogM)

[24].
MEGCreation For k database instances with only frequent edges, there can be N , (N <

2k − 1) nodes in FP-DAG. In order to identify the set of ConnectorNodes, the Node list is
traversed and the Node pairs are processed. This operation has a time complexity of O(N 2)

at worst case. Let the number of Lea f Node be Nl(
(n
k

) = k!
σ !(k−σ)!), the average number of

ParentNodes of a LeafNode l be V and the number of links connecting the ParentNodes of
a LeafNode l be E , identifying the MEGs connected to LeafNode with DFS traversal has a
time complexity of O(Nl(V + E)).

123

450 T. M. G. Tennakoon, R. Nayak

Optimum vertex hierarchy mining Let the average number of vertices and edges in
a MEG be v and e, respectively. Edmonds algorithm has the time complexity of O(v2) for
dense graphs/networks and O(elogv) for sparse graph/networks [20]. Therefore, in the worst
case, this step has a time complexity of O(Nl(v

2)).
DAG Mining Let the number of branching edges be be, vertices be bv , cyclic edges

identified by the Edmond’s algorithm be ce for a MEG, the number of remaining edges will
be er = e−(be+ce). On this edge set, constraints are applied and HMap is updated, this step
has a complexity of O(er + be + bv). Let the total number of selected edges after applying
constraints be es . Identifying connected components and canonical mapping will have the
time complexity of O(esloges). Overall, it has a time complexity of O(Nl(er + be + bv +
esloges)).

Pruning Let the number of output patterns be P . In the worst case, let’s assume all the
patterns are in the same BitCode category which is really a rare case. In this case, pruning
operation has a time complexity of O(P2). However, in practice, it’s way less than this
bound due to the use of the FP-DAG structure for identifying BitCode categories which
could include super-/sub-DAG patterns.

According to this analysis, the time complexity of MH-DAGMiner is highly depended
on MEG creation and non-maximal pattern pruning steps. Overall worst-case complexity
will be O(N 2 + P2). Both FP-GraphMiner [24] and MFSH-TreeMiner [12] have similar
theoretical complexity. However, due to the incompleteness of FP-Graph and MFSH-Tree
structures, these methods either generate less number of output patterns with less execution
time or generate more isomorphic patterns with greater execution time in comparison with
MH-DAGMiner.

5 Empirical analysis

In this section, we present the results of experiments conducted with MH-DAG-Miner. All
experiments have been conducted on a single processor of 1.2GHz Intel(R)Xeon(R)with 264
GB main memory and running Red-Hat Linux 6.4. MH-DAGMiner and all benchmarking
methods are implemented using C++ programming language and compiled using g++ and
C++11 optimizations.

5.1 Datasets

We use both the real-world and synthetic datasets to analyze the performance of MH-
DAGMiner. The real-world datasets collected from various networks are used to analyze the
performance in network transaction setting. Synthetic data sets are used to analyze the per-
formance in graph transaction setting. Table 1 lists the parameters used for creating datasets
with different characteristics.

5.1.1 Real-world datasets

We use six real-world network datasets as follows: (1) Twitter interactions on the discovery
of Higgs boson between 1st and 7th July 2012,4 (2) Interactions on the stack exchange web
site Math Overflow from 2014 to 2016,5 (3) Email conversations among employees in Enron

4 http://snap.stanford.edu/data/higgs-twitter.html,
5 http://snap.stanford.edu/data/sx-mathoverflow.html.

123

http://snap.stanford.edu/data/higgs-twitter.html
http://snap.stanford.edu/data/sx-mathoverflow.html

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 451

Table 1 Parameters for defining
the characteristics of datasets

Parameter Meaning

ncr Datasets with less correlation

cr Datasets with high correlation

D Number of graphs/networks in the database

V Number of vertices in a graph/network instance

E Number of edges in a graph/network instance

H Number of hierarchy levels in a graph/network instance

O Average size (V , E, H) of an output pattern

Table 2 Real-world network data
sets

Dataset D Median (Max) V Median (Max) E

HiggsTwitter 7 23,781 (203,235) 28,598 (295,260)

MathOverflow 8 2956 (3156) 8420 (9116)

Enron email 10 13,837 (28,675) 35,947 (80,482)

Citation 6 895 (1079) 3638 (6830)

WikiTalk 10 14,252 (20,100) 44,501 (62,208)

CollegeMsg 7 488 (1378) 1251 (10,578)

between 2000 and 2002,6 (4) Citations in the field of datamining between 1990 and 2007,7 (5)
Interactions based onWikipedia talk page editing between 2003 and 20078 and (6) Messages
sent on an online social network at the University of California, Irvine between April 2004
and October 2004.9 Table 2 details the characteristics of these datasets.

5.1.2 Synthetic datasets

The real-world network datasets consist of both small and large sized input networks. In order
to evaluate the completeness of MH-DAGMiner and its performance in a larger database
under different levels of correlation among the database instances and output pattern sizes,
we generate a set of synthetic graph databases with properties as detailed in Table 3.

To evaluate the completeness of the proposed method we create a ground-truth pattern set
(synth-data1) in a database starting froma small set of seed single rootedDAGpatterns planted
with 100% support, then their expanded and merged patterns (including single/multi-rooted
DAGs and cyclic graphs) are planted with 80%, 60%, 40%, and 20% supports, respectively.
Each pattern is represented by the edge set-based canonical string, and output patterns are
verified with a simple string matching.

The rest of the synthetic datasets are created as follows. We first create a large complete
graph (i.e., a reference graph) using the graph generator tool [14].Anumber of graph instances
are then generated by extracting subgraphs connected to randomly selected vertices with
desired sizes. To generate the highly correlated graph instances (for reflecting datasets such
as process logs), the reference graph is generatedwith the samenumber of vertices as expected

6 https://www.cs.cmu.edu/~./enron/.
7 https://static.aminer.org/lab-datasets/soinf/citation-raw.txt.
8 https://snap.stanford.edu/data/wiki-talk-temporal.html.
9 https://snap.stanford.edu/data/CollegeMsg.html.

123

https://www.cs.cmu.edu/~./enron/
https://static.aminer.org/lab-datasets/soinf/citation-raw.txt
https://snap.stanford.edu/data/wiki-talk-temporal.html
https://snap.stanford.edu/data/CollegeMsg.html

452 T. M. G. Tennakoon, R. Nayak

Table 3 Synthetic graph data sets

Dataset Property D Median (Max) V Median (Max) E O(V , E, H)

synth-data1 Ground-truth 10 38 (49) 36 (48) (6, 5, 3)

synth-data2 Low correlation 1000 100 (100) 706 (1166) Not set

synth-data3 High correlation 1000 100 (100) 1162 (1162) Not set

synth-data4 Input/output size 100 5 (5) 4 (4) (5, 4, 3)

synth-data5 Input/output size 100 50 (50) 49 (49) (50, 49, 6)

synth-data6 Input/output size 100 500 (500) 499 (499) (500, 499, 12)

graphs instances. To generate graph instances with less correlation (for reflecting datasets
like social media interactions or navigational patterns), a reference graph is generated with
at least twice the number of vertices of the expected graph. To generate a dataset with the
desired output pattern size, input graphs are generated with the same number of V , E, H as
the output and duplicated within the database.

5.2 Benchmarking and evaluationmeasures

There exists no algorithmof sub-DAGmining fromgraph databases that can be used for direct
comparison. We propose to conduct the evaluation of MH-DAGMiner by benchmarking
methods in two ways. Evaluation method 1: Preprocessing the graph data to form DAG data
and find MH-DAG patterns. Evaluation method 2: Mine subgraph patterns from the graph
data using the state-of-the-art maximal subgraph mining methods and apply post-processing
to generate MH-DAG patterns.

Evaluation method 1 The existing sub-DAG mining algorithms require a preprocessed
database such that all the cyclic relationships are removed (DAG database). This type of
preprocessing could lead to a high information loss. For example in Fig. 10a, G1 is a cyclic
graphwhich can be preprocessed tomake aDAGby removing edge D → A since its the least
weighted edge in the cycle A → B → C → D → A. Figure 10b, c shows the MH-DAG
patterns identified with and without this preprocessing step, respectively, with σ = 3. Due to
the removal of edge D → A, there is only twoMH-DAG patterns are identified whereas with
original database three patterns are identified. Therefore, it is clear that an early preprocessing
can result in an incomplete set of MH-DAG patterns and cause an information loss.

We implemented a Naive-DAGMiner method which uses the optimum branching tech-
nique to remove cycles in the input database and then mine MH-DAG patterns following the
same approach as MH-DAGMiner skipping the optimum vertex hierarchy mining step. We
empirically validate this scenario using real-world network datasets. We define a measure
Average Removed Edge Weight Ratio (AREWR) for measuring the information loss which
is being calculated using the following equation.

AREWR = 1

P

(
∀p∈P

(∑
(u,v)∈pmg W(u,v) − ∑

(u,v)∈p W(u,v)∑
(u,v)∈pmg W(u,v)

))
(5)

where P is the total number of output patterns, p is a single pattern, and pmg is the correspond-
ing cyclic graph pattern. If there is no corresponding cyclic graph for a pattern (pmg = p),
information loss gets a value of 0. AREWR calculates the average ratio of removed edge
weights to total edge weights. Lower the value of AREWR, the higher the quality of DAG

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 453

(a)

(c)

(b)

Fig. 10 a Input database with four graph instances, bMH-DAG patterns identified with preprocessed database
(edge DA in G1 is removed to make it DAG) and c MH-DAG patterns identified with original input database
with σ = 3

mining method. We use AREWR to validate the effectiveness of MH-DAGMiner over the
process of preprocessing and applying existing DAG mining methods.

Evaluation method 2 The other possible way of sub-DAG Mining from cyclic
graphs/networks is using existing subgraph mining algorithms with a post-processing step.
The gSpan [26] algorithm is a popular general-purpose algorithmwith the flexibility to extend
for maximal sub-DAG mining. We use gSpan to show the ineffectiveness in (1) generating
all candidate DAG patterns and pruning the non-maximal, (2) using an algorithm designed
for a repeated vertex labeled representation with a unique vertex labeled database and (3)
generating redundant patterns. The gSpan algorithm is modified for directed graph mining
as proposed in Leung [16], and pattern growth is restricted to DAGs. FP-GraphMiner [24]
and MFSH-TreeMiner [12] are the only two maximal subgraph mining algorithms that can
be modified for DAG mining with an additional post-processing step.

Completeness of MH-DAGMiner is evaluated based on Precision and Recall values cal-
culated with the ground-truth data set (synth-data1).

Precision = #Relevant Output Patterns

#Output Patterns
(6)

Recall = #Relevant Output Patterns

#Ground truth Patterns
(7)

Effectiveness of MH-DAGMiner(MHDM) is evaluated by the execution time (in sec-
onds), memory consumption (in MB) and soundness (number of Nodes, Edges in FP-DAG

123

454 T. M. G. Tennakoon, R. Nayak

Table 4 Evaluation method 1:
AREWR (%) values for
real-world data sets using
different Minimum support
thresholds (%)

Dataset (method) 100% 80% 60% 40% 20%

Higgs-Twitter

MHDM 0 0 0 1.12 1.11

NDM 0 0 0 2.12 1.50

Math Overflow

MHDM 0 8.38 13.05 11.56 5.6

NDM 0 15.98 20.05 28.40 10.78

Enron email

MHDM 0 4.64 10.31 10.61 2.31

NDM 0 7.34 18.98 20.60 4.96

Citation

MHDM 0 50 18.95 11.45 20.33

NDM 0 50 20.11 12.39 26.12

WikiTalk

MHDM 0 3.44 11.32 11.42 3.87

NDM 0 3.44 12.707 18.10 7.21

CollegeMsg

MHDM 48.81 31.76 29.98 19.67 21.87

NDM 48.81 31.76 33.37 23.22 28.21

and MH-DAG patterns) on real-world network datasets by comparing to the state-of-
the-art gSpan (gSpan-DAGMiner/gSDM), FP-Graph-Miner (FP-DAGMiner/FPDM) and
MFSH-TreeMiner (MFSH-DAG-Miner/MFSHDM). The MH-DAGMiner is also evaluated
in graph databases under different characteristics of datasets such as the level of correla-
tion and the average size of output patterns. In all experiments, execution is aborted after
7200 s.

5.3 Evaluationmethod 1: DAGmining from graph database (MHDM) versus DAG
mining from preprocessed DAG database (NDM)

Table 4 reports the AREWR (%) values for MH-DAGMiner and Naive-DAGMiner for all
the real-world datasets using different minimum support values. MH-DAGMiner patterns
always show an equal or lower AREWR value compared to Naive-DAGMiner patterns. In
the majority of the cases, the equal AREWR values are due to the non-existence of cyclic
relationships. AREWR depends on the proportion of maximal cyclic patterns generated and
the edge weights which do not have a relation with the minimum supports. Therefore, we
can expect a fluctuation with increasing/decreasing minimum supports. We are not compar-
ing MH-DAGMiner with other benchmarking methods based on AREWR measure because
these methods are modified for DAG mining using a similar optimum vertex hierarchy min-
ing approach and consequently the results will be similar. Therefore, we can validate that
MEG/maximal graph mining and cycles removing are more effective than removing cycles
first and then mining DAG patterns.

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 455

Fig. 11 Evaluation method 2: left: precision and right: recall calculated for the output patterns of synth-data1
dataset

5.4 Evaluationmethod 2: DAGmining from the graph database (MHDM) versus DAG
mining by post-processing graph patterns

5.4.1 Completeness of output patterns

Weuse precision and recall tomeasure the completeness of output patterns generatedwith the
synth-data1 datasetwhich has a ground truth pattern set. As shown in Fig. 11,MH-DAGMiner
is able to generate the complete pattern sets for all support threshold (σ) as indicated by the
precision and recall values of 1. Both FP-DAGMiner and MFSH-DAGMiner show similar
performance at higher threshold (e.g., σ ≥ 80 %). However, the performance degrades
at lower threshold (e.g., σ ≤ 60%) because of the missing ConnectorNodes to represent
the EdgeNode combinations. Even though MFSH-Tree includes additional EdgeNodes to
represent the EdgeNode combinations missing in FP-Graph, the Edge removal to make a tree
structure affects the precision and recall to be lower than that of FP-GraphMiner. Performance
of gSpan-DAGMiner is same as MH-DAGMiner when the input contains no cycles (e.g.,
σ = 100%). The cyclic edges lead to the generation of multiple DAG patterns per a cyclic
graph which decreases the precision. Moreover, the inability to identify multi-rooted patterns
as a single pattern causes low recall values in low minimum support thresholds.

5.4.2 Soundness of output patterns

It is difficult to validate the completeness of output in real-world datasets due to absence of
the output (patterns) information. Therefore, in this section, we evaluate the soundness of
MH-DAGMiner and other benchmarkingmethods based on the number of patterns generated.
Table 5 includes the number of patterns generated by each method for the datasets at different
minimum support thresholds. For MH-DAGMiner, FP-DAGMiner, and MFSH-DAGMiner,
we also include the number of Nodes and Edges in FP-DAG, FP-Graph, and MFSH-Tree,
respectively.

As expected, the number of patterns generated by eachmethod increaseswhenσ decreases.
The gSpan-DAGMiner method generates equal number of patterns than other methods at
higher σ ; however, it generates farmore patterns comparatively at lower σ values. It generates
an equal number of patterns when there is no cyclic relationship in input or when there is no
multi-rooted DAG pattern in output. In other cases, it generates redundant patterns because of
the cyclic relationships and the inability to process a multi-rooted pattern as a single pattern.

All the othermethods generate the same number of patternswhen FP-DAG, FP-Graph, and
MFSH-Tree have a single Node and no Edges (when σ = 100%) as all the maximal patterns

123

456 T. M. G. Tennakoon, R. Nayak

Table 5 Evaluationmethod 2: soundness of output patterns, #Patterns (#Nodes, #Edges in corresponding edge
group structures)

Higgs Twitter σ (%)

Method 100% 80% 60% 40% 20%

MHDM 4 (1, 0) 8 (4, 3) 39 (15, 17) 503 (75, 175) 2782 (96, 279)

FPDM 4 (1, 0) 8 (4, 3) 38 (15, 17) 480 (73, 163) Aborted

MFSHDM 4 (1, 0) 8 (4, 3) 38 (15, 11) 499 (75, 34) 2742 (96, 21)

gSDM 4 8 71 1290 Aborted

Math Overflow σ (%)

Method 100% 80% 60% 40% 20%

MHDM 5 (1, 0) 16 (7, 6) 132 (90, 224) 269 (160, 518) 533 (244, 971)

FPDM 5 (1, 0) 11 (7, 6) 55 (75, 151) 152 (143, 370) Aborted

MFSHDM 5 (1, 0) 11 (7, 6) 66 (90, 56) 153 (160, 70) 597 (244, 28)

gSDM 5 23 220 638 Aborted

Enron email σ (%)

Method 100% 80% 60% 40% 20%

MHDM 1 (1, 0) 33 (12, 12) 191 (126, 308) 423 (407, 1686) 594 (559, 2745)

FPDM 1 (1, 0) 28 (12, 12) 118 (98, 197) Aborted Aborted

MFSHDM 1 (1, 0) 28 (12, 9) 180 (125, 80) 514 (400, 143) Aborted

gSDM 1 Aborted Aborted Aborted Aborted

Citation σ (%)

Method 100% 80% 60% 40% 20%

MHDM 0 (0, 0) 1 (1, 0) 10 (5, 4) 57 (15, 19) 129 (27, 50)

FPDM 0 (0, 0) 1 (1, 0) 10 (5, 4) 53 (15, 9) 131 (26, 47)

MFSHDM 0 (0, 0) 1 (1, 0) 10 (5, 4) 57 (15, 9) 128 (27, 10)

gSDM 0 2 2 Aborted Aborted

Wikitalk σ (%)

Method 100% 80% 60% 40% 20%

MHDM 1 (1, 0) 10 (7, 6) 114 (81, 166) 590 (349, 1518) 1387 (505, 2766)

FPDM 1 (1, 0) 10 (7, 6) 107 (52, 71) 563 (189, 409) Aborted

MFSHDM 1 (1, 0) 10 (7, 6) 123 (79, 52) 521 (334, 145) Aborted

gSDM 1 12 185 Aborted Aborted

CollegeMsg σ (%)

Method 100% 80% 60% 40% 20%

MHDM 1 (1, 0) 5 (3, 2) 16 (12, 12) 171 (73, 194) 267 (94, 310)

FPDM 1 (1, 0) 5 (3, 2) 17 (11, 10) 162 (55, 102) 286 (76, 171)

MFSHDM 1 (1, 0) 5 (3, 2) 20 (12, 9) 166 (73, 55) 267 (94, 21)

gSDM 2 8 29 311 Aborted

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 457

are included within this Node. Despite the equal number of Nodes and Edges, in some cases
(in Math Overflow dataset, when σ = 80%) a different number of patterns can be generated
by these methods. Through manual checking, we identified that FP-DAGMiner and MFSH-
DAGMiner miss some patterns due to the use of DFS walk. It only identifies the patterns
included within paths in FP-Graph and MFSH-Tree, whereas MH-DAGMiner uses DFS
traversal to identify the patterns within maximal sub-DAGs of the FP-DAG. MH-DAGMiner
generates more patterns than FP-DAGMiner/MFSH-DAGMiner in this case. In certain cases,
it generates lesser number of patterns by subsuming two or more patterns which have been
identified as maximal patterns by FP-DAGMiner/MFSH-DAGMiner. However, there can be
datasets like citation network where DFS walk and DFS traversal do not make any difference
given the same number of Nodes and Edges. A possible reason could be the high density of
the graphs/network and the existence of only a few disconnected graphs in the network. In
other datasets, MH-DAGMiner identifies more patterns with the FP-DAG structure having
more Nodes or Edges than FP-Graph and MFSH-Tree. These results show the soundness of
MH-DAGMiner in identifying the correct set of maximal hierarchical DAG patterns.

5.4.3 Execution time andMemory consumption

Figure 12 reports the execution time and memory consumption on real-world network
datasets. MH-DAGMiner has a better execution time and less memory consumption in all
datasets especially at lower σ values. With the unique vertex labeled-based canonical repre-
sentation, MH-DAGMiner performs isomorphism testing efficiently with the use of BitCode
categories and FP-DAG. Consequently, it does not explode with the increase in output pattern
size, whereas FP-DAGMiner and MFSH-DAGMiner consume more time and space as they
produce more isomorphic patterns with DFS walk in the incomplete FP-Graph/MFSH-Tree.
As they do not include isomorphic testing, these non-maximal patterns are removed as an
additional post-processing step. The frequency-based edge pruning approach introduced in
MH-DAGMiner FT creation significantly reduces time and memory consumption at higher
σ . At lower σ , this effect is not at play.

gSpan-DAGMiner was found to be the least scalable method which was able to success-
fully execute only at higher σ . Even at high σ values, the output pattern analysis reveals
the existence of redundant patterns and inability to identify multi-rooted patterns. As shown
in Table 5, the number of output patterns increases when σ decreases; consequently, the
pruning of non-maximal involves high computational cost. Moreover, it requires a high com-
putational cost for canonization as the required number of comparisons becomes high to
validate whether the DFS code is minimum [26].

Since the real-world networks contain only a few database instances, we use synthetic
graph databases to validate the performance of MH-DAGMiner in large-sized databases.
According to the computational complexity of MH-DAGMiner, the performance highly
depends on the number of Nodes in FP-DAG and on the number of output patterns. When
database instances are highly correlated, there will be only a fewNodes in the FP-DAG as the
edges have a similar occurrence patterns in the database; consequently, there will be only a
few output patterns. In contrast, a databasewith less correlationwill generate a higher number
of Nodes and output patterns. Therefore, we first analyze the performance ofMH-DAGMiner
in large-sized graph databases with low and high correlation as shown in Fig. 13a, b.

The performance of gSpan-DAGMiner is similar on both datasets. It is aborted atσ ≤ 80%
due to the complexity relating to canonization in large (in size) output patterns. For the low-
correlated dataset (Fig. 13a),MH-DAGMiner consumes least execution time at high σ values.
It is interesting to see MFSH-DAGMiner executes (time) similar to MH-DAGMiner. As

123

458 T. M. G. Tennakoon, R. Nayak

0

500

1000

1500

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %

EX
EC

U
TI

O
N

 T
IM

E(
S)

MINUMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborte

(a)

0

500

1000

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %

M
EM

O
RY

CO

N
SU

M
PT

IO
N

(M
B)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

(b)

0

100

200

300

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %

M
EM

O
RY

CO

N
SU

M
PT

IO
N

(M
B)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

0

2000

4000

6000

8000

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %EX
EC

U
TI

O
N

 T
IM

E(
S)

MINUMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted Aborted
Aborted

(f)

0

500

1000

1500

2000

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %

M
EM

O
RY

CO

N
SU

M
PT

IO
N

(M
B)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted Aborted
Aborted

0

10

20

30

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %EX
EC

U
TI

O
N

 T
IM

E(
S)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

(d)

0

20

40

60

80

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %

M
EM

O
RY

CO

N
SU

M
PT

IO
N

(M
B)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

0

1000

2000

3000

4000

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %EX
EC

U
TI

O
N

 T
IM

E(
S)

MINIMUM SUPPORT

MHDM FPDM MFSHDM gSDM

Aborted
Aborted

0

500

1000

1500

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %

M
EM

O
RY

CO

N
SU

M
PT

IO
N

(M
B)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted
Aborted

(e)

0

200

400

600

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %

EX
EC

U
TI

O
N

 T
IM

E(
S)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

Aborted

0
50

100
150
200
250
300

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %EX
EC

U
TI

O
N

 T
IM

E(
S)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

0

50

100

150

200

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 %

M
EM

O
RY

CO

N
SU

M
PT

IO
N

(M
B)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

(c)

Fig. 12 Evaluation method 2: left: execution time versus σ , right: memory consumption versus σ for a Higgs
Twitter, bMath Overflow, c Enron email, d Citation, e Wikitalk, f CollegeMsg

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 459

0
50

100
150
200
250
300
350
400
450

1 0 0 % 5 0 % 1 0 % 5 % 1 %

EX
EC

U
TI

O
N

 T
IM

E(
S)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

0
500

1000
1500
2000
2500
3000
3500
4000

1 0 0 % 5 0 % 1 0 % 5 % 1 %M
EM

O
RY

 C
O

N
SU

M
PT

IO
N

(M
B)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

(a)

0

20

40

60

80

100

120

140

1 0 0 % 5 0 % 1 0 % 5 % 1 %

EX
EC

U
TI

O
N

 T
IM

E(
S)

MINMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

0
50

100
150
200
250
300
350
400
450
500

1 0 0 % 5 0 % 1 0 % 5 % 1 %M
EM

O
RY

 C
O

N
SU

M
PT

IO
N

(M
B)

MINIMUM SUPPORT THRESHOLD

MHDM FPDM MFSHDM gSDM

Aborted

(b)

Fig. 13 Evaluation method 2: left: execution time versus σ , right: memory consumption versus σ for a synth-
data2 (low correlation), b synth-data3 (high correlation)

0

0.5

1

1.5

2

2.5

V5E4H3 V50E49H6 V500E499H12

EX
EC

U
TI

O
N

 T
IM

E(
S)

AVERAGE SIZE OF AN OUTPUT PATTERN

MHDM FPDM MFSHDM gSDM

0
5

10
15
20
25
30
35
40
45

V5E4H3 V50E100H7 V500E499H12M
EM

O
RY

 C
O

N
SU

M
PT

IO
N

(M
B)

AVERAGE SIZE OF AN OUTPUT PATTERN

MHDM FPDM MFSHDM gSDM

AbortedAborted

Fig. 14 Evaluation method 2: left: execution time, right: memory consumption versus average size of output
patterns O(V , E, H) on synth-data4 (5, 4, 3), synth-data5 (50, 49, 6) and synth-data6 (500, 499, 12)

shown in previous experiments,MFSH-Tree is not always complete and can generate isomor-
phic patterns. However, in graph transaction setting, isomorphic patterns are rarely produced;
therefore, the time performance of MFSH-DAGMiner comes close to MH-DAGMiner at
lower σ . Due to the incompleteness in FP-Graph, FP-DAGMiner generates a higher number
of patterns and it reflects in its time and memory consumption. performance than MH-
DAGMiner and MFSH-DAGMiner methods and increases the computational complexity.

For the high-correlated dataset (Fig. 13b), a different performance can be seen. Due to high
correlation among graph instances, only a few large (in size) sub-DAG patterns should be
generated. The execution time andmemory consumption ofMH-DAGMiner increases rapidly
with decreasing σ and becomes more than that of FP-DAGMiner and MFSH-DAGMiner.
When there is a high correlation, the FP-DAG/FP-Graph/MFSH-Tree structures include only
a few Nodes and Edges. Finding missing Nodes or Edges increases the complexity of MH-
DAGMiner without any significant contribution in identifying the complete pattern set.

Next, we compare the performance of MH-DAGMiner with different values O(V , E, H)

of output patterns in order to validate the effectiveness of non-maximal pattern pruning

123

460 T. M. G. Tennakoon, R. Nayak

technique used inMH-DAGMinerwith compared tominimumDFSCode-based canonization
in gSpan-DAGMiner and naive approach of comparing each pattern with the rest of the
patterns in FP-DAGMiner andMFSH-DAGMiner. The datasets are created in a way that only
five maximal patterns are generated by all methods which help to compare the performance
only based on the size of output patterns.

As shown in Fig. 14, gSpan-DAGMiner is highly sensitive to the size of output patterns.
As the size of patterns increases, execution time and memory consumption explode proving
the inefficiency of using minimum DFS code canonization with unique vertex label graph
representation. Execution time andmemory consumption ofMH-DAGMiner, FP-DAGMiner
andMFSH-DAGMiner increase with the size of output patterns whereMH-DAGMiner is the
least expensive method. Considering the fact that these results are for only five patterns, we
can expect a significant performance improvement in MH-DAGMiner over other methods
when there are a large number of output patterns with higher values of O(V , E, H).

6 Conclusion and future work

In this paper, we present a novel algorithm (MH-DAGMiner) to mine maximal hierarchi-
cal DAG patterns from a directed weighted and cyclic network/graph database. A novel
frequency-based edge grouping method using the FP-DAG structure is developed to identify
MEGs in the dataset. TheseMEGs are approximated using the optimum branching technique
to generate maximal hierarchical DAG patterns. We theoretically prove the completeness of
MH-DAGMiner based on the FP-DAG Structure.

The extensive empirical analysis is conducted with several synthetic and real-world
datasets exhibiting diverse characteristics. The approach of MH-DAGMiner is found to be
effective compared to DAG mining from the preprocessed DAG database. MH-DAGMiner
is also benchmarked with the state-of-the-art graph mining algorithms after extending them
for DAG mining with a post-processing step. Results show that MH-DAGMiner is scalable
for large network and graph datasets as well as efficient in terms of reduced execution cost
andmemory consumption.MH-DAGMiner shows better performance in network transaction
setting with real-world data sets compared to graph transaction setting. In the graph trans-
action setting, MH-DAGMiner shows better performance with non-correlated datasets. With
the unique vertex-labeled, edge-based canonical representation, MH-DAGMiner can handle
large (in size) output patterns with a high number of hierarchy levels efficiently.

As expected, when the number of output patterns explodes, the performance degrades
which indicates that maximal pattern mining alone is not sufficient when the requirement
is identifying most significant patterns. We also found interesting insights on Twitter inter-
actions and Enron email conversations which proves the applicability of MH-DAGMiner in
applications like hierarchy mining, role mining and influence mining. In the future, we will
investigate the use of MH-DAG patterns in these application areas.

References

1. Aggarwal CC, Han J (eds) (2014) Frequent pattern mining. Springer, Berlin, pp 1–17
2. Bonchi F (2011) Influence propagation in social networks: a data mining perspective. IEEE Intell Inform

Bull 12(1):8–105
3. ChenYL,KaoHP,KoMT (2004)MiningDAGpatterns fromDAGdatabases. In: International conference

on web-age information management, pp 579–588

123

MH-DAGMiner: maximal hierarchical sub-DAGmining in… 461

4. Cooley R, Mobasher B, Srivastava J (1997) Web mining: information and pattern discovery on the world
wide web. In: IEEE international conference on tools with artificial intelligence, pp 558–567

5. Edmonds J (1968) Optimum branchings. Math Decis Sci 1:335–345
6. Fariha A, Ahmed CF, Leung CK et al (2015) A new framework for mining frequent interaction patterns

from meeting databases. Eng Appl Artif Intell 45:103–118
7. GupteM, Shankar P, Li J et al (2011) Finding hierarchy in directed online social networks. In: International

conference on world wide web WWW ’11, pp 557–566
8. Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraphs in the presence of isomorphism.

In: IEEE international conference on data mining (ICDM), pp 549–552
9. Huan J, Wang W, Prins J et al (2004) SPIN: mining maximal frequent subgraphs from graph databases.

In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 581–586
10. Hwang S, Wei C, Yang W (2004) Discovery of temporal patterns from process instances. Comput Ind

53(3):345–364
11. Inokuchi A, Washio T, Motoda H (2000) An a priori-based algorithm for mining frequent substruc-

tures from graph data. In: European conference on principles of data mining and knowledge discovery,
pp 13–23

12. Jiadong R, HuiFang W, Yue M et al (2015) Efficient software fault localization by hierarchical instru-
mentation and maximal frequent subgraph mining. Int J Innov Comput Inf Control 11(6):1897–1911

13. Jiang C, Coenen F, Zito M (2013) A survey of frequent subgraph mining algorithms. Knowl Eng Rev
28(1):75–105

14. Johnsonbaugh R, Kalin M (1991) A graph generation software package. ACM SIGCSE Bull 23(1):151–
154

15. Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network.
In: ACM SIGKDD international conference on Knowledge discovery and data mining, pp 137–146

16. Leung CW (2010) Technical notes on extending gSpan to directed graphs. Technical Report,Management
University, Singapore

17. Li Y, Lin Q, Zhong G, Duan D et al (2009) A directed labeled graph frequent pattern mining algorithm
based onminimum code. In: International conference onmultimedia and ubiquitous engineering, pp 353–
359

18. Nijssen S, Kok J N (2004) A quickstart in frequent structure mining can make a difference. In: ACM
SIGKDD international conference on knowledge discovery and data mining, pp 647–652

19. Sreenivasa GJ, Ananthanarayana VS (2006) Efficient mining of frequent rooted continuous directed
subgraphs. In: International conference on advanced computing and communications (ADCOM), pp 553–
558

20. Tarjan RE (1977) Finding optimum branchings. Networks 7(1):25–3
21. TermierA, TamadaY,NumataK et al (2007)DIGDAG, a first algorithm tomine closed frequent embedded

sub-DAGs. In: Mining and learning with graphs workshop (MLG’07), pp 41–45
22. Thomas LT, Valluri SR, KarlapalemK (2010)MARGIN:maximal frequent subgraphmining. ACMTrans

Knowl Discov Data (TKDD) 4(3):10:1–10:42
23. Van der Aalst W,Weijters T, Maruster L (2004)Workflowmining: discovering process models from event

logs. IEEE Trans Knowl Data Eng 16(9):1128–1142
24. Vijayalakshmi R, Rethnasamy N, Roddick JF et al (2001) FP-GraphMiner: a fast frequent pattern mining

algorithm for network graphs. J Graph Algorithms Appl 15(6):753–776
25. Werth T, Dreweke A, Wörlein M et al (2008) DAGMA: mining directed acyclic graphs. In: IADIS

European conference on data mining, pp 11–18
26. Yan X, Han J (2002) Gspan: graph-based substructure pattern mining. In: IEEE international conference

on data mining (ICDM ’02), pp 721–724
27. Yan X, Han J (2003) CloseGraph: mining closed frequent graph patterns. In: ACMSIGKDD international

conference on knowledge discovery and data mining, pp 286–295

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

462 T. M. G. Tennakoon, R. Nayak

T. M. G. Tennakoon received a B.Sc. (Hons) in Computer Engineer-
ing degree from University of Peradeniya, Sri Lanka, in 2013. She is
currently a Ph.D. student in the School of Electrical Engineering and
Computer Science, Science and Engineering Faculty, Queensland Uni-
versity of Technology (QUT), Australia. Her research interests include
data mining, machine learning, graph mining and social network anal-
ysis.

Richi Nayak is currently Associate Professor of Computer Science
in the School of Electrical Engineering and Computer Science, Sci-
ence and Engineering Faculty, Queensland University of Technology
(QUT), Australia. She is an internationally recognised expert in data
mining, text mining and web intelligence. She has combined knowl-
edge in these areas very successfully with diverse disciplines such as
Social Science, Science, and Engineering for Technology transfer to
real-world problems to change their practices and methodologies. Her
particular research interests are machine learning, and in recent years
she has concentrated her work on text mining, personalization, and
social network analysis. She has received a number of awards and nom-
inations for teaching, research and service activities.

123

	MH-DAGMiner: maximal hierarchical sub-DAG mining in directed weighted networks
	Abstract
	1 Introduction
	2 Related work
	3 The proposed method: MH-DAGMiner
	3.1 Definitions
	3.2 Frequency table creation
	3.3 FP-DAG creation
	3.4 MH-DAG mining
	3.4.1 Identifying MEGs
	3.4.2 Optimum vertex hierarchy mining
	3.4.3 Approximating DAG patterns
	3.4.4 Pruning non-maximal patterns

	4 Computational complexity analysis
	5 Empirical analysis
	5.1 Datasets
	5.1.1 Real-world datasets
	5.1.2 Synthetic datasets

	5.2 Benchmarking and evaluation measures
	5.3 Evaluation method 1: DAG mining from graph database (MHDM) versus DAG mining from preprocessed DAG database (NDM)
	5.4 Evaluation method 2: DAG mining from the graph database (MHDM) versus DAG mining by post-processing graph patterns
	5.4.1 Completeness of output patterns
	5.4.2 Soundness of output patterns
	5.4.3 Execution time and Memory consumption

	6 Conclusion and future work
	References

