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Abstract
Energy data, which consist of energy consumption statistics and other related data in green
data centers, grow dramatically. The energy data have great value, but many attributes within
them are redundant and unnecessary, and they have a serious impact on the performance of the
data center’s decision-making system. Thus, attribute reduction for the energy data has been
conceived as a critical step. However, many existing attribute reduction algorithms are often
computationally time-consuming. To address these issues, firstly, we extend themethodology
of rough sets to construct data center energy consumption knowledge representation system.
Energy data will occur some degree of exceptions caused by power failure, energy instability
or other factors; hence, we design an integrated data preprocessing method using Spark for
energy data, which mainly includes sampling analysis, data classification, missing data fill-
ing, outlier data prediction and data discretization. By taking good advantage of in-memory
computing, a fast heuristic attribute reduction algorithm (FHARA-S) for energy data using
Spark is proposed. In this algorithm, we use an efficient algorithm for transforming energy
consumption decision table, a heuristic formula for measuring the significance of attribute to
reduce the search space, and introduce the correlation between condition attribute and deci-
sion attribute, which further improve the computational efficiency.We also design an adaptive
decision management architecture for the green data center based on FHARA-S, which can
improve decision-making efficiency and strengthen energy management. The experimental
results show the speed of our algorithm gains up to 2.2X performance improvement over the
traditional attribute reduction algorithm using MapReduce and 0.61X performance improve-
ment over the algorithm using Spark. Besides, our algorithm also saves more computational
resources.

Keywords Energy data · Attribute reduction · Rough sets · Heuristic · Spark

1 Introduction

Today, cloud computing is sweeping the globe [29]. Data centers have become the major
facilities to support highly varied big data processing tasks [12]. Nevertheless, their huge
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IT energy consumption, environmental issues have become increasingly prominent [23].
Therefore, widely deploying large-scale green data centers over the world is an approach
to tackle the dual challenges of energy deficiency and environmental pollution [21,22]. It
produces the energy data, which comprise monitoring data and other relevant data in green
data centers, rise extremely [6]. Velocity and volume are presented by energy data due to
the instable renewable energy and the enormous scale. Besides, energy data show variety
as their shapes are complex, usually mixing with structured data, semi-structured data and
unstructured data. Moreover, energy data have great value for monitoring operation status,
making decision and scheduling resources if they could be processed and analyzed effectively.
In fact, plenty of attributes within the energy data are redundant for making decision, that
is, unnecessary attributes may raise the computing cost and degenerate the performance of
mining algorithms [1,14]. Furthermore, storing all attributes will be extremely expensive and
unreasonable [26]. Therefore, it is necessary to select informative attributes for decreasing
the cost of storing, shortening the computation time and obtaining the better decisionmaking.

To address these issues, many efficient attribute reduction methods have been proposed.
However, these methods are still time-consuming in dealing with large-scale data. As we
have seen, attribute reduction algorithms for the energy data using Spark have not been
widely researched. And Spark proposes a new concept called resilient distributed datasets
[37,45], through which we can cache intermediate results in memory. This characteristic is
benefit to iterative algorithm like attribute reduction [2]. In this thesis, the following issues
are investigated:

(1) Rough set theory is an importantmethod to extract rules from information systems. Thus,
we introduce a theoretical framework based on rough sets and extend the methodology
of rough sets to construct data center energy consumption knowledge representation
system.

(2) The energy data will occur some degree of exception caused by servers, switches and
rack failures. So we design a data preprocessingmethod for the energy data using Spark.
The method analyzes the sampled data and then uses the corresponding programs to
clean the different types of abnormal data, which include missing data filling and outlier
data prediction. It discretizes energy data finally.

(3) By taking good advantages of Apache Spark, we propose a fast heuristic attribute reduc-
tion algorithm (FHARA-S) for energy data using Spark. In our algorithm, we use an
efficient algorithm for transforming energy consumption decision table, a heuristic for-
mula formeasuring the significance of attribute to reduce the search space, and introduce
the correlation between condition attribute and decision attribute. We also design an
adaptive decision management architecture for the green data center based on FHARA-
S. The experiments reveal that the speed of our algorithm gains up to 2.2X performance
improvement over the traditional attribute reduction algorithm using Hadoop and 0.61X
performance improvement over the algorithms using Spark. Besides that, our algorithm
also saves computational resources.

The rest of the paper is organized as follows. Section 2 surveys related work. Section 3
gives a description of data center energy consumption knowledge representation system.
Section 4 presents the design of an integrated data preprocessing method using Spark for
energy data. Section 5 proposes a heuristic attribute reduction algorithm for energy data using
Spark. Section 6 presents an adaptive decision management architecture for the green data
center. Section 7 presents three groups of experimental results. Section 8 gives a conclusion.
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2 Related work

Rough set theory, put forward by Pawlak [31,32], is one of the most useful mathematical
tools utilized in processing information with imprecision and incompleteness. It has been
employed in a lot of fields successfully, such as financial investment [7], fault diagnosis [30],
medical research [8] and pattern recognition [20].

As a significant application of rough set theory, attribute reduction contributes to diminish
attribute space and raise algorithm efficiency by reducing attributes which are redundant and
unnecessary [3,16]. However, the massive data still cannot be handled through most existing
reduction algorithms as high computational cost. To improve these algorithms, many efficient
methods were proposed in the past several years.Wei et al. [40] introduced a new information
measure and proposed an algorithm to obtain an attribute reduct from hybrid data. Zhang
et al. [48] proposed an efficient matrix-based approach for fast updating approximations in
dynamic information systems, which was vital for attribute reduction. Lu et al. [27] devised a
fast attribute reduction algorithmbased onboundary region,which has the ability to efficiently
find a reduct from a large incomplete decision system. Wang and Liang [38] studied an
efficient attribute reduction algorithmbased on the idea of decomposition and fusion for large-
scale hybrid data sets. Zheng et al. [51] enhanced the efficiency of the reduction algorithm
by improving the computing method of heuristic information. Liang et al. [25] developed
a group incremental approach for attribute reduction. Xie et al. [41] provided three update
strategies: object-related strategy, attribute-related strategy and both-related strategy and then
developed an efficient incremental attribute reduction algorithm for the dynamic incomplete
decision system. Chen et al. [4] proposed an incremental algorithm for attribute reduction
with variable precision rough sets, to decrease the time complexity. Jing et al. [18] developed
an incremental attribute reduction algorithmwith a multi-granulation view to deal with large-
scale decision systems.Wang et al. [39] computed the corresponding discernibility matrix by
the most informative instances selected from large-scale datasets and then found all reducts.
Liang et al. [24] considered the subtables within a large-scale dataset as small granularities,
and he designed an algorithm to build an approximate reduct by fusing the feature selection
results of small granularities. In conclusion, many efficient approaches have been developed.
However, the approaches mentioned above cannot perform effectively if the data set is huge
volume or high-dimensional. Moreover, sampling techniquesmerely support the samples can
represent the whole data or meet the hypothesis space.

Recently, many scholars have attempted to parallelize the attribute reduction algorithms
for enhancing their performance on large-scale data. Zhang et al. [49] studied parallel algo-
rithms for knowledge acquisition on varyingMapReduce runtime systems. Furthermore, they
presented three different parallel matrix-based methods to handle large-scale data [50]. Ma
et al. [28] put forward a parallel heuristic technique to find attribute reduct and apply it to
distribution network for fault detection. Qian et al. [33,34] presented various parallelization
strategies for attribute reduction to raise the computational efficiency. Czolombitko et al. [9]
proposed a parallel attribute reduction algorithm MRCR. To reduce the memory complex-
ity, they used counting tables to compute discernibility measure of the datasets. Chen et al.
[5] studied the algorithms for attribute reduction in parallel using dominance-based neigh-
borhood rough sets, which considered the partial orders among numerical and categorical
attribute values. Hu et al. [15] designed a strategy for large-scale multimodality attribute
reduction with multi-kernel fuzzy rough sets and developed it in the framework of MapRe-
duce. Ding et al. [10] presented a multi-agent consensus MapReduce optimization model
and co-evolutionary quantum PSOwith self-adaptive memeplexes for designing the attribute
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reduction approach. El-Alfy and Alshammari [11] presented a MapReduce method for dis-
covering the minimal reduct by the parallel genetic algorithm. However, parallel attribute
reduction algorithms based on rough sets need to output a lot of intermediate results to
Hadoop Distributed File System (HDFS), which causes plenty network IO and disk. There-
fore, they are still time-consuming to deal with massive data.

3 Related concepts in energy consumption knowledge representation
system

Rough set theory is an important mathematical tool to extract rules from information systems.
To promote its application in attribute reduction for energy data, the rough set approach is
extended to construct data center energy consumption knowledge representation system. We
use the energy consumption data collected as the domain U . By considering the multiple
supply situations and the energy change parameters, the energy supplies are classified, so
as to determine the condition attribute set C and the decision attribute set D. The specific
related definitions are as follows:

Definition 1 An energy consumption decision table can be described as S = (U , At, {Va |a ∈
At}, {Ia |a ∈ At}), whereU = {x1, x2, . . . , xn} is a non-empty finite set of energy consump-
tion records; At = C

⋃
D is a non-empty finite set of attributes, where C is the set of energy

consumption conditional attributes of system components, D is the set of decision attributes,
and C

⋂
D = ∅; Va is a domain of the attribute a ∈ At ; Ia is an information function that

maps an energy consumption record x in U to exactly one value v in Va , that is, Ia(x) = v.

Definition 2 Suppose that S = (U , At, {Va |a ∈ At}, {Ia |a ∈ At}) is an energy consumption
decision table, and let P ⊆ C be a subset of condition attributes. An equivalence relation
with respect to P is defined as:

I N D(P) = {(x, y) ∈ U ×U |∀a ∈ P, Ia(x) = Ia(y)} (1)

I N D(P) partitions U into several equivalence classes given by:

U/I N D(P) = {[x]P |x ∈ U } (2)

where [x]P denotes the equivalence class determined by x with respect to P , [x]P = {y ∈
U |(x, y) ∈ I N D(P)}. For simplicity, U/P will be instead of U/I N D(P).

Definition 3 Let U/D = {d1, d2, . . . , dm} be the partition of the universe U with respect to
the decision attribute D. Then the positive region and boundary region of D with respect to
C are defined as:

POSC (D) =
m⋃

i=1

AprC (di ) (3)

BNDC (D) = U − POSC (D) (4)

where AprC (di ) = {x ∈ U |[x]C ⊆ di } is the lower approximation of di defined by I N D(C).

An energy consumption decision table S is consistent if whole records in an equivalence
class defined by C have the same decision attribute value, i.e., ∀(x, y) ∈ U × U ,∀a ∈
C, [Ia(x) = Ia(y)] → [Id(x) = Id(y)]. In this case, POSC (D) = U , and BNDC (D) = ∅.
Otherwise, the table is inconsistent.
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Fig. 1 Different types of abnormal data

Definition 4 Let B be a subset of C ; a conditional attribute a ∈ B is indispensable in B if
POSB−{a}(D) �= POSB(D); otherwise, a is dispensable in B. A conditional attribute set
B ⊆ C is a reduct of C with respect to D if it satisfies the following two conditions:

(1) POSB(D) = POSC (D);
(2) ∀a ∈ B, POSB−{a}(D) �= POSB(D).

The reduct of an energy consumption decision table is the minimal subset of C , which
ensures the positive region unchanged.

4 Data preprocessing

Energy data will occur some degree of exception caused by servers, switches, rack failures
due to power off, energy instability or other factors. Figure 1a shows short-term data missing
and zero-value data caused by inrush current. Figure 1b shows multi-point data missing of
partial time segment caused by the power supply failure. Figure 1c shows outlier data caused
by the unstable renewable energy. Meanwhile, the quality of the energy big data will be
affected by RTU (Remote Terminal Unit) collection, power meter acquisition, channel status,
parameter setting and other factors. These will influence the reduction results even though
they can reflect the actual operation situation. So it is imperative to clean and preprocess
the energy data. But most existing researches merely concentrate on some aspects of data
preprocessing [19,36,46]. And the input data cannot be effectively handled by the traditional
statistical methods because of its large scale [13,52]. So we design a systematic and suitable
data preprocessing method using Apache Spark for energy data analysis in green data center.
Figure 2 illustrates the flowchart of our method.

First of all, we do sampling analysis for the raw data and find the quality problems existed
in the energy data. In the process of sampling analysis, how to determine the sample size is
one of the most significant problems. Hence, we utilize a familiar method [24,38] to make
sure the sample size of the energy data set. The specific method is as follows:

Let the size of the original energy data set S be denoted by N . After that, the sample size
n0 can be calculated as:

n0 = Z2 × σ 2

d2
(5)

where σ denotes the standard deviation on S, Z denotes the Z-statistic under confidence
intervals (e.g., 95% confidence interval of Z-statistic is 1.96 and 90% confidence interval of
Z-statistic is 1.64) and d denotes the tolerable error which could be adjusted as necessary.
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Fig. 2 Flowchart of the data
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Moreover, if sample size n0 is bigger than 5% of the whole size N , we should adjust the
sample size n0. The adjusted formula is calculated as follows:

n = n0 × N

n0 + N
(6)

Then combinedwith the abnormal data sources, we classify the data. The classification results
are the important basis for data cleaning. Then we call the corresponding parallel programs to
clean the abnormal data in the light of these results. For example, we fill the predicted values
for missing data [43,44] and carry out regression analysis for outlier data. Discrete attribute
values are easier to utilize and understand than continuous attribute values, because they are
much closer to the knowledge-level representation [17,35]. Many studies also indicate that
rules with discrete attribute values are more comprehensive, and discretization can enhance
efficiency of attribute reduction algorithms. Therefore, the equal-interval-width method is
elected to discretize continuous attributes according to the characteristics of energy data in
the end.

Let {A1, A2, . . . , Ai , Ai+1, . . . , An} be the energy data set of all attributes, where
attributes A1, A2, . . . , Ai are continuous and attributes Ai+1, Ai+2, . . . , An are discrete
(1 < i ≤ n). The interval length of the attribute Ai is computed as

dAi = max(Ai ) − min(Ai )

tAi

(7)

wheremax(Ai ) is the maximum value of the attribute Ai andmin(Ai ) is the minimum value,
and tAi is the number of interval. Then the breakpoint is computed as

q j = min(Ai ) + j × dAi (0 < j ≤ t − 1) (8)
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Algorithm 1 PDA
Input: Energy data set S

Set of interval numbers T = {tA1 , tA2 , . . . , tAi }
Output: Discrete energy data set SD
1: begin
2: S ← spark.text f ile(S);


 Convert S to RDD
3: let minMax ← ∅;


 initialize two-dimensional array
4: for i ← 1, n do
5: minMax(i) ← (S.map(x ⇒ x(i)).min(), S.map(x ⇒ x(i)).max());
6: end for
7: S′ ← EC .Map(discreti ze(){
8: let DsArr ← ∅;
9: for i ← 1, record.length do
10: dAi ← (minMax(i)._2 − minMax(i)._1)/tAi ;
11: q j ← minMax(i)._1 + (record(i)/dAi ) × dAi ;
12: q j+1 ← q j + dAi ;
13: DsArr(i) ← (q j , q j+1];
14: end for
15: return DsArr ;
16: }).map(.mkString(""))
17: end

where dAi is the interval partition and j is the sequence number of breakpoints. So the interval
partition on the domain of the attribute Ai is equal to

QAi = {[q0, q1], (q1, q2], . . . , (qtAi −2, qtAi −1]} (9)

The pseudocode of parallel algorithm for discretization (PDA) is shown in Algorithm 1.
By Algorithm 1, it computes the minimum and maximal values of every continuous

attribute and then stores them in the two-dimensional array minMax (lines 4–6). After that,
the algorithm discretizes the continuous attributes (lines 6–15). The array DsArr is utilized
to store the attributes after discretizing.

As the energy data source may be composed of many small files which less than 64M,
we also write a program for merging small files to avoid affecting the operating efficiency
of Spark. The data are stored directly in HDFS. This method can take full advantage of the
data parallelization on Spark, which greatly optimizes the preprocessing efficiency.

5 Heuristic attribute reduction algorithm for energy data using Spark

5.1 The simplification and transformation of decision table

Studying the historical energy consumption data, we discover that the data have features like
correlation, continuity, periodicity. Plenty of data records are similar. They may belong to
the same equivalence class. Thus, equivalence class can be utilized to transform the energy
consumption decision table. And energy data will show some degree of inconsistency caused
by imperfect information collection, power off, servers failure, energy instability or other
factors. It may affect decision making. Furthermore, the inconsistent decision table cannot
be dealt with by the attribute reduction algorithms. Hence, the energy consumption decision
table should be transformed.

123



284 M. Chen et al.

Definition 5 Given an energy consumption decision table S = (U , At, {Va |a ∈ At}, {Ia |a ∈
At}), for conditional attributes C , if the decision table produces inconsistent objects on C ,
the inconsistent objects are defined as

RC = {(xi , x j )|xi , x j ∈ U , i �= j,∀a ∈ B, f (xi , a) = f (x j , a) ∧ f (xi , D) �= f (x j , D)}
(10)

Analyzing the inconsistent objects by Definition 5, we can discover that there are two
main categories of their distribution:

(1) Due to energy data collection error, or equipment failure, some records’ decision
attributes deviate from the normal values. Hence, they cause inconsistency of data. The
distribution of these inconsistent objects is often irregular, and their proportion is very small.

(2) Because of incomplete energy data collection, some key conditional attributes are
missing. It causes that different decision attribute values appear under the same condition
attributes. The distribution of these inconsistent objects is often regular, and their proportion
is larger.

In order to describe the distribution of the inconsistent objects better, we give the following
definition.

Definition 6 Given an energy consumption decision table S = (U , At, {Va |a ∈ At}, {Ia |a ∈
At}),U/D = {D1, D2, . . . , Dn},where n = |U/D|. For any x ∈ U , the distribution function
of object x on every decision class with respect to C is defined as

ψD|C (x) = (P(D1|[x]C ), P(D2|[x]C ), . . . , P(Dn |[x]C )) (11)

where Dj ∈ U/D (1 ≤ j ≤ m) and P(Dj |[x]C ) = |[x]C∩Dj |
|[x]C | . According to the distribution

types of the inconsistent objects and their distribution function, we design a method to
transform an inconsistent decision table into a consistent decision table which represents

f (x, D) =
{
MAXD (Max(ψD|C (x)) > α)⋃

P(Dj |[x]C )�=0 Dj (Max(ψD|C (x)) < α)
(12)

where Max() denotes the function obtains the maximum and α denotes the threshold, which
is taken as 0.8.

Based on the theories and methods mentioned above, we design a parallel algorithm for
simplifying and transforming decision table (PASTDT) based on Spark. The pseudocode of
PASTDT is shown in Algorithm 2. At the start of Algorithm 2, spark.text f ile() loads the
original decision table (line 2). Then the different equivalence classes which induced from
conditional attributes are computed by the algorithm (lines 3–6). Thereafter, it transforms
the decision table (lines 7–17). get DecisionArr_distribution() is utilized to obtain the
distribution of object x on every decision class. At last, the algorithm gets a simplified and
consistent energy consumption decision table S′.

5.2 Parallelization strategies for attribute reduction

Calculating all attribute reducts for an energy consumption decision table is an NP-hard
problem, and it often needs a huge quantity of time to search the reducts out. The time
will grow rapidly with increasing the number of attributes. Hence, the time complexity of
attribute reduction is decreased with the heuristic information’s help. In this paper, we utilize
a heuristic formula for measuring the significance of attribute to reduce search space.
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Algorithm 2 PASTDT
Input: S = (U , At, {Va |a ∈ At}, {Ia |a ∈ At})
Output: A simplified and consistent energy consumption decision table S′ = (U ′, At, {Va |a ∈ At}, {Ia |a ∈

At}).
1: begin
2: S ← spark.text f ile(Si ); 
 Convert Si to RDD
3: EC ← S.Map(
4: key ← ECi ;


 ECi is an equivalence class
5: value ← idx ;


 idx is the id of the record
6: ).groupByKey().values
7: S′ ← EC .Map(
8: record ← consistent_trans f orm(ECi ){
9: ψD|C (Dj , P(Dj |[x]C )) ← get DecisionArr_distribution(ECi );


 [x]C is equivalent to ECi
10: if Max(ψD|C (x)) > α then
11: DeciValue ← MaxD;
12: else
13: DeciValue ← ⋃

P(D j |[x]C ) �=0 Dj ;
14: end if
15: return x + DeciValue;
16: }
17: )
18: end

Definition 7 Given a simplified and consistent energy consumption decision table S′ =
(U ′, At, {Va |a ∈ At}, {Ia |a ∈ At}). ∀P ⊆ C , U ′/P = {EC1, EC2, . . . , ECm} is condition
partitions. POSP (D) is equal to

POSP (D) =
⋃

EC∈U ′/P∧|EC/D|=1

EC (13)

where |EC/D| = 1 denotes that all records in EC have the same decision value.

Definition 8 Let P ⊆ C be a subset of condition attributes, and a ∈ C − P , then dependency
degree of condition attribute set P with respect to decision attribute D is defined as

γP (D) = |POSP (D)|/|U ′| (14)

And the significance of attribute a with respect to condition attribute set P is defined as

sigP (a) = γP∪{a}(D) − γP (D) (15)

Definition 9 Let a ∈ C , and the correlation between condition attribute a and decision
attribute D is defined as

COR(a, D) = H(D) − H(D|a) (16)

where H(D) denotes an entropy function and H(D|a) denotes the conditional entropy of a
and D.

According to Definitions 7 and 8, we construct the heuristic attribute reduction algorithm.
The algorithm takes the empty set as the starting point, calculates the significance of all the
remaining attributes and selects the attribute with the largest significance and then adds it
to the reduction. If more attributes than one have the best significance, we should compute
the correlation between condition attribute and decision attribute in the light of Definition 9.
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Algorithm 3 FHARA-S
Input: S′ = (U ′, At, {Va |a ∈ At}, {Ia |a ∈ At})
Output: Attribute reduct Red
1: begin
2: let Red ← ∅;
3: To each attribute a ∈ C − Red, computing equivalence classes for candidate attribute subset Red ∪ {a} by

executingAlgorithm4, calculating the attribute significance sigRed (a) and POSRed∪{a}(D) byAlgorithm
5;

4: if Count(Max(sigRed (A1), . . . , sigRed (An))) is non-unique then
5: Am ← Max(COR(A j , D), ..,COR(Ak , D));


 A j , .., Ak have the same max significance value
6: else
7: Am ← Max(sigRed (A1), . . . , sigRed (An));
8: end if
9: Red = Red ∪ {Am };
10: U ′ ← U ′ − POSRed (D);
11: S′ ← Simpli f y(U ′);


 Simplify ECIS S′
12: if U ′ = ∅ then
13: Stop the algorithm, output the attribute reduct Red;
14: else
15: The algorithm turns to step 3;
16: end if
17: end

Algorithm 4 FHARA-S-ComputeEquivalenceClass
Input: Attribute reduct Red

S′ = (U ′, At, {Va |a ∈ At}, {Ia |a ∈ At})
Output: Equivalence classes ECRed∪{a}
1: begin
2: ECRed∪{a} ← S′.Map(
3: key ← EC ′

i ;

 EC ′

i is an equivalence class induced by Red ∪ {a}
4: value ← id ′

x ;
 id ′
x is the id of the record

5: ).groupByKey().values
6: end

Algorithm 5 FHARA-S-Compute-POS-SIG
Input: Equivalence classes ECRed∪{a}
Output: sigRed (a) and POSRed∪{a}(D)

1: begin
2: POSRed∪{a}(D) ← ECRed∪{a}.filter(get POS(){
3: return ECi .i f DecisionAttr();
4: })
5: sigRed (a) ← computesig(POSRed∪{a}(D));


 compute sigRed (a)

6: out Put (sigRed (a), POSRed∪{a}(D));
7: end

The attribute which has the largest correlation is selected. Finally, the algorithm outputs the
reduction result.

In order to further simplify the reduction algorithm, we improve the algorithm by Defini-
tion 10 [42].
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Fig. 3 Heuristic attribute reduction algorithm for energy data using Spark

Definition 10 Let U ′ = {x1, x2, . . . , xm} be a finite set of energy consumption records and
P ⊆ C be a subset of condition attributes, for a ∈ C − P , then

POSP∪{a}(D)
(x∈U ′)

= POSP (D)
(x∈U ′)

∪ POSP∪{a}(D)
(x∈U ′−POSP (D))

(17)

POSP (D), (x ∈ U ′) has been already obtained in the previous stage. We only calculate
POSP∪{a}(D), (x ∈ U ′ − POSP (D)) to acquire POSP∪{a}(D), (x ∈ U ′). Compared with
the traditional computing approaches [33], this approach can cut down time complexity from
O(|U ′|/n) to O(|U ′ − POSP (D)|/n), and n is the number of computational nodes. Since
we can use POSP (D), (x ∈ U ′), which is get during the computation process, to simplify
S′ by Definition 6. More importantly, time cost of transforming B is very small. Hence, it
can cut time complexity and search space down further.

According to Definitions 7, 8, 9 and 10, we design a fast heuristic attribute reduction
algorithm based on Spark (FHARA-S). Algorithm FHARA-S includes Algorithm FHARA-
S-ComputeEquivalenceClass and FHARA-S-Compute-POS-SIG. The pseudocodes of the
algorithms are presented in Algorithms 3, 4, 5, respectively.

Firstly, Algorithm 3 initializes the attribute reduct (line 2) and then calculates equivalence
classes for candidate attribute subset, the corresponding attribute significance and positive
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Fig. 4 Adaptive decision management architecture for the green data center based on FHARA-S

region (line 3). Then the best candidate attribute is chosen and added to the attribute reduct
(lines 4–8). After that the algorithm updates the records and simplifies the decision table
(lines 9–10). The algorithm outputs the reduction result when it meets the terminal condition
(lines 12–16).

Algorithm 4 is mainly utilized to calculate equivalence classes induced from candidate
attribute subset Red ∪ {a}(lines 2–5).

Algorithm 5 firstly calculates the positive region POSRed∪{a}(D)(lines 2–4).
i f DecisionAttr() judges whether decision attribute values in EC ′

i are consistent. If
i f DecisionAttr() returns false, the equivalence classes whose decision attribute values
are inconsistent will be deleted by filter operator. Then the algorithm calculates the attribute
significance (line 5). The intermediate result is output by out Put() (line 6).

Figure 3 illustrates the heuristic attribute reduction algorithm for energy data using Spark,
where Stage 1 is composed of Algorithm 2, Stage 2 is composed of Algorithm 4, Stage 3 is
composed of Algorithm 5.

6 The adaptive decisionmanagement architecture

For the features as large scale of green data centers, data processing time-sensitive and the
heterogeneous ways of data monitoring, we envision the adaptive decision management
architecture for the green data center based on the parallel heuristic reduction algorithm
mentioned above (shortened as PAHAR), which can decrease the computational complexity
of the learning algorithms and improve the model accuracy as well as their description ability
by eliminating the redundant information. The decision management architecture is shown
in Fig. 4.

In the system architecture, renewable energy, grid and storage battery are the mainly
components that provide the power for data centers. The architecture monitors the envi-
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Table 1 Environment of
experiments

Category Item Configuration or version

Hardware CPU Intel Core i5-2410M

Memory 4GB

Hard disk 500GB

Software Operation system Ubuntu 14.04

Hadoop 2.6.0

Spark 1.5.1

Table 2 Data sets information Data sets Instances Attributes

1 DS1 1,152,067 25

2 DS2 2,099,647 25

3 DS3 3,114,464 25

4 DS4 3,114,464 37

5 DS5 3,114,464 50

6 DS6 4,013,624 25

7 DS7 8,008,986 25

8 DS8 16,060,782 25

ronment via various monitoring equipments and runs the monitoring programs (such as a
guardian process) on each server for the purpose of resource monitoring. These equipments
and processes, comply with certain standards, communicate with the master node and trans-
mit collected data to compute nodes. Then the reduction for initial energy data is parallel
processed. The task is divided into several sub-parts for different processors, so as to select
the necessary attributes rapidly. After eliminating the redundant attributes, the final data will
be obtained. The architecture utilizes the data to train decision models and finally gets the
power supply strategies and cluster scheduling strategies, which manage energy supply and
resource allocation efficiently. Thus, it can provide desirable services for the entire data center
system.

7 Experimental evaluation

Our algorithm FHARA-S is coded in Scala and implemented by the framework of Spark. We
run parallel algorithms on a cluster of 4 nodes. One computer serves as a master node, and
the rest computers serve as slave nodes. They connect via an Ethernet (100Mbps). Detailed
information regarding the configuration of software and hardware is described in Table 1.

We choose the energy consumption produced by green data centers as experimental data
(DS1-3). And we also study the change law of energy data by analyzing the data set DS1-3
and write a corresponding simulation data generator to create new large data sets (DS6-8)
owing to the limited quantity of samples. In addition, two synthetic data sets DS4-5 have been
generated on the basis of DS3. DS4 has 12 more attributes which are randomly generated
than DS3, and DS5 has 25 more attributes which are randomly generated than DS3. Table 2
reveals the information of these 8 data sets. Energy data present some degree of exception
frequently. Hence, we apply data preprocessing approach to deal with them first.
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Fig. 5 Comparisons of two algorithms for eight data sets

7.1 Performance comparison with the traditional attribute reduction algorithm
usingMapReduce

Weselect PARAPR-MRas the comparison algorithm in this section. PARAPR-MRalgorithm
in our paper is implemented on the basis of PAAR-PR which is proposed in the literature
[33]. It is a traditional representative attribute reduction algorithm using MapReduce.

7.1.1 Running time comparison

We execute our heuristic attribute reduction algorithm FHARA-S on Spark cluster and the
traditional algorithm PARAPR-MR [33] on Hadoop cluster. Figure 5 shows the total running
time of FHARA-S and PARAPR-MR on DS1–DS8. We can discover that when the data
set is small, e.g., DS1, FHARA-S can outperform PARAPR-MR by 2.7X, since the com-
putation time of FHARA-S dominates the total running time. But for PARAPR-MR, its job
initialization time contributes a large part of its cost. When the data set is large, e.g., DS7,
DS8, in this circumstance, the computing resources of the cluster are reasonably utilized. The
computation time dominates the total running time of FHARA-S and PARAPR-MR, which
can show their true performance. FHARA-S also can outperform PARAPR-MR by 2.2X.
Because PARAPR-MR reads intermediate results in each iteration. It needs a lot of disk I/Os,
network I/O and unnecessary processes. However, the intermediate results of FHARA-S can
be cached in memory during the whole iterative computation, which effectively improves
the performance of attribute reduction. At last, from the experimental results on DS3-5, we
find that FHARA-S promotes around 1.9X, 2.1X and 3X performance improvement over
PARAPR-MR on DS3-5, respectively. This shows that FHARA-S has more advantages with
dimension increasing.

7.1.2 Resource utilization comparison

Compared with PARAPR-MR, FHARA-S significantly improves the efficiency of the algo-
rithm, and we need to further verify whether FHARA-S has the advantage in saving
computational resources. Therefore, we compare the resource utilization of FHARA-S and
PARAPR-MR when they process the experimental data sets.

Given the limited space available, we select three groups of representative experiments for
analysis. Figure 6 shows the screenshots of the cluster resource monitor. Figure 6a shows the
experimental results on DS1, the running time of FHARA-S is 14:58-15:01, and PARAPR-
MR is 22:04-22:16. Figure 6b shows the results on DS2, the running time of FHARA-S is
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Fig. 6 Comparisons of resource utilization
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16:19-16:25, and PARAPR-MR is 19:43-20:01. Figure 6c shows the results on DS6, the run-
ning time of FHARA-S is 14:42-14:54, and PARAPR-MR is 12:50-13:31. We find that the
CPU utilization of them is all below 30% during the application execution. However, the exe-
cution time of PARAPR-MR is much longer than FHARA-S. PARAPR-MR consumes more
CPU resource than FHARA-S in general. The memory utilization of FHARA-S increases
significantly during its execution. Compared with PARAPR-MR, its memory utilization is
only slightly improved. Therefore, FHARA-S consumes more memory resource. Then the
network utilization of PARAPR-MR is much larger than that of FHARA-S. When the data
size increases, the advantage of FHARA-S becomes more apparent, because PARAPR-MR
transmits its intermediate results through HDFS, which needs lots of disk accesses and I/Os.
Attribute reduction is an iterative algorithm, which requires repeated iteration. Therefore,
this highlights the limitations of PARAPR-MR. We also find PARAPR-MR reduces the hard
disk space sharply on account of mass intermediate results.

Based on the above results, FHARA-S not only extremely improves the computational
efficiency, but also greatly saves the computational resources when compared with the tradi-
tional reduction algorithm PARAPR-MR.

7.2 Performance comparison with attribute reduction algorithms using Spark

Compared with the traditional attribute reduction algorithm usingMapReduce, our algorithm
takes full advantage of the computing platform. But it cannot reflect the details of our algo-
rithm’s improvement. So in addition to our FHARA-S, we also have realized two kinds of
other attribute reduction algorithms using Spark. These baseline algorithms are extensively
researched, and they also show good performance. We list them below:
1© FHARA-S: The algorithm proposed in our paper.
2© PARAPR-S: Parallel attribute reduction algorithms based on positive region using Spark,
which is implemented on the basis of PR algorithm proposed in the literature [47]. But PR
is implemented by MapReduce; PARAPR-S is implemented by Spark.
3© PARABR-S: Parallel attribute reduction algorithms based on boundary region using
Spark, which is implemented on the basis of PAAR-BR algorithm proposed in the litera-
ture [33]. But PAAR-BR is implemented by MapReduce; PARABR-S is implemented by
Spark.

Figure 7 shows the comparison of FHARA-S, PARAPR-S and PARABR-S. We use three
different arrows to indicate the execution flows of these algorithms. Compared to FHARA-S,
other 2 algorithms cannot simplify the decision table constantly and cut the search space
down with the assistance of heuristic information.

7.2.1 Running time comparison

These 3 parallel attribute reduction algorithms are executed on Spark cluster, and we record
their running time separately. Figure 8 reveals the whole running time of these algo-
rithms on DS1–DS8. We can discover that FHARA-S promotes around 0.61X performance
improvement over PARABR-S and PARAPR-S on various kinds of data sets. Through their
performance on the data set DS3–DS5, we discover that PARAPR-S consumes more time
than the other two algorithms as the attribute dimension increases (e.g., FHARA-S pro-
motes around 0.89X and 1.04X performance improvement over PARABR-S on DS4 and
DS5, respectively, which far exceeds the average level of improvement). This is because
PARAPR-S requires to calculate plenty of positive region objects as the number of selected
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Fig. 8 Comparisons of three parallel algorithms using Spark for eight data sets

attributes grows. When the attribute dimensions of the data sets are not high, the similar per-
formance is exhibited by PARABR-S and PARAPR-S to the whole running time, especially
for DS1–DS3.

7.2.2 Iteration time comparison

In the following, in order to further study the execution details of the algorithms, each iteration
time of PARAPR-S, PARABR-S and FHARA-S is also examined. Figure 9 reveals the first
fourteen iterations of these three algorithms on DS1–DS8. We can find out that PARAPR-S
and PARABR-S reveal a similar pattern of decline in the iteration time. Compared to them,
more time is expended by the second, third and fourth iteration of FHARA-S than PARAPR-
S and PARABR-S, as it costs time to calculate new U ′ and update S′; more importantly, the
quantity of U ′ has not yet been cut down. Since FHARA-S simplifies the S′ constantly and
cuts the search space down, the 5th–14th iteration’s execution time decreases significantly.
The 14th iteration needs only about a tenth of the time of PARAPR-S and PARABR-S.
By observing the experimental results on DS3–DS5, we also find that when increasing the
number of the attributes, the first three iterations of FHARA-S consume much more time.
Furthermore, each iteration of PARAPR-S consumes significantly more time than PARABR-
S as the dimension of attributes increasing. These experiments show that the heuristic formula
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Fig. 9 Comparisons of three algorithms for iterations on DS1–DS8

which measures the significance of the attribute can promote the computation efficiency as
well.

7.3 Case study

As a case study, we first randomly extract 10% of the data for DS1–DS8 as experimental data
sets. Then we utilize the our algorithm(FHARA-S) to process them. Each experimental data
set after reduction is divided into two parts randomly. One part of the data set is regarded
as the training data for building the random forest classification model and the other part
is as testing data for evaluating the model. We also use the original data sets to do contrast
experiments.

Figure 10 shows the comparison of classification accuracy. We can discover that the
accuracy of them is similar on the real data sets DS1–DS3. But the model established through
the data after processing still has a higher accuracy than the model established through the
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Fig. 10 Comparison of classification accuracy

data before processing. This is because the real data have high quality and little noise data.
Our reduction algorithm only removes redundant data and some noise data. The data sets
DS4–DS8 have a lot of synthetic data. Their data quality is low. The classification accuracy
of the model established through the data after processing has greatly improved. This shows
that when the data quality is not high, through our reduction algorithm we can improve the
quality of data, thereby enhancing the value of data applications.

8 Conclusion

As the era of cloud computing and big data is coming, large-scale green data centers have
been deployed widely all over the world. This has led to a sharp increase in energy data.
The energy data always have many redundant and unnecessary attributes; thus, attribute
reduction becomes a significant step. In this paper, we extend the methodology of rough
sets to construct data center energy consumption knowledge representation system firstly.
Then we take good advantage of in-memory computing to propose an attribute reduction
algorithm for energy data using Spark. In this algorithm, we utilize an efficient algorithm
for transforming energy consumption decision table, a heuristic formula for measuring the
significance of attribute to reduce the search space, and introduce the correlation between
condition attribute and decision attribute to further improve the computational efficiency.
The adaptive decision management architecture based on FHARA-S is also designed for
the green data center, which can improve decision-making efficiency and strengthen energy
management. The experimental results demonstrate that the speed of our algorithm gains up
to 2.2X performance improvement over the traditional attribute reduction algorithm using
MapReduce and 0.61X performance improvement over the algorithms using Spark. Besides,
our algorithm also saves much computation resources. Furthermore, the parallelization of
other extended rough set models will be studied in the future.
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