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Abstract
We propose a learning and negotiation method to enhance divisional cooperation and demon-
strate its flexibility for adapting to environmental changes in the context of the multi-agent
cooperative problem. We now have access to a vast array of information, and everything has
become more closely connected. However, this makes tasks/problems in these environments
complicated. In particular, we often require fast decision-making and flexible responses
to follow environmental changes. For these requirements, multi-agent systems have been
attracting interest, but the manner in which multiple agents cooperate is a challenging issue
because of the computational cost, environmental complexity, and sophisticated interaction
between agents. In this work, we address the continuous cooperative patrol problem, which
requires cooperation based on high autonomy, and propose an autonomous learning method
with simple negotiation to enhance divisional cooperation for efficient work. We also inves-
tigate how this method can have high flexibility to adapt to change. We experimentally show
that agents with our method generate several types of role sharing in a bottom-up manner
for effective and flexible divisional cooperation. The results also show that agents using our
method appropriately change their roles in different environmental change scenarios and
enhance the overall efficiency and flexibility.

Keywords Divisional cooperation · Multi-agent system · Continuous patrolling ·
Autonomous learning

1 Introduction

Autonomous decision-making and collaboration with multiple agents have been required
for various applications in computer science. Ongoing developments in information and
communication technology now enable us to easily obtain almost any information we desire,
and everything is now more closely connected due to innovations such as the Internet of
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things. On the other hand, these developments have dramatically increased the amount of
information to be processed and cause frequent changes of environments. It is difficult to
follow these changes with only centralized control systems in a top-down manner because
the systems and environments are constantly growing without any centralized manager and
the problems occurring there are becoming complicated. Thus, distributed systems in which
multiple agents work through mutual coordination and/or cooperation to cover the entire
environment and follow the changes occurring there by making autonomous decisions are
more suitable in these environments.

Portugal and Rocha [13] stated that the patrol problem with multiple agents is a good
case study for multi-agent systems in general. They first summarized the recent methods for
cooperative patrolling, and from the discussion about recent progress, they stated that flexibil-
ity, resource utilization, interference, and a balanced workload would be required the future
patrol problems. They also insisted that the cooperative patrol problem has the common char-
acteristics required in multi-agent systems such as autonomy, distribution, communication
constraints between agents, and scalability in terms of the number of agents and dimensions of
the environment. Thus, this problem is a good benchmark to evaluate intelligent cooperative
behaviors in multi-agent systems.

In this paper, we address one of themore sophisticated issues that require high agent auton-
omy: the continuous cooperative patrol problem (CCPP). In the CCPP, multiple autonomous
agents continuously monitor and/or move around a given area without any pre-defined coop-
eration methods nor optimal visiting routes. In conventional patrol problems, all nodes have
the same priority for visitation, and the agents’ purpose is to visit all nodes with the same
frequency (like the traveling salesman problem) and reduce the intervals of visits to monitor.
On the other hand, nodes in the CCPP have different visitation requirements, which reflect
that events in nodes occur with different probabilities, where the locations (nodes) with high
probabilities indicate important locations such as easy-to-dirty regions in the vacuum clean-
ing domain, and location that require a high-security level where no events must be missed
in the security patrolling domain. Thus, we have to reduce unawareness of events, i.e., mini-
mize the periods from the time when an event occurs to the time when the occurrence of the
event is identified by one of the agents. Another important requirement of the CCPP in our
applications is that agents have to suspend operating periodically; for example, if the agents
are autonomous robots, they need to charge their batteries at regular intervals. Therefore,
they have to coordinate their behaviors by taking into account such a suspension as well as
meeting the visitation requirement. We expect that good solutions to the CCPP would lead
to enormous benefits in a variety of applications such as security surveillance and cleaning
tasks.

Thus, problems similar to the CCPP are being actively studied by many researchers in the
multi-agent system context. Particularly, we think that it is crucial that appropriate divisional
cooperation, such as division of labor between agents, can be achieved by using only light-
weight negotiation protocols based on locally observable characteristics because the cost of
communication and negotiation with others always affects the performance of distributed
systems [5,19]. Adam Smith [15] mentioned that the advantages of division of labor during
the Industrial Revolution are (1) the improvement of skills by specializing on a specific
type of work, (2) the cost reduction due to avoiding work change, and (3) the promotion
of tool developments for efficiency. More importantly, he insisted that division of labor
was structured as a result of individual selfish behavior in society. If a central agent could
obtain all the updated complete information and could perfectly control all other agents,
appropriate divisional cooperation would easily be realized. Unfortunately, this is infeasible
in real-world applications because it requires a high computational cost due to the complexity
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of environment and the heterogeneity of agents’ behavior and unlimited communication
bandwidth; thereby, it is expected that agents realize only divisional cooperation based on
the autonomous decisions. Likewise, in the CCPP, any single agent cannot cover the entire
area for visiting all nodes with the required frequency. Thus, dividing the area into a number
of subareas and allocating them to individual agents as the responsible areas seem to be
a better solution. However, studies on how agents with only local information and limited
communication capability mutually generate satisfactory divisional cooperation in a bottom-
up manner are not sufficiently clear for real-world applications.

We can consider two approaches to divisional cooperation in the CCPP in the context
of multi-agent systems. The first is partitioning an area into separate subareas explicitly,
each of which is allocated to one or a few agents as responsible areas [1,3,7,19]. Although
this approach is a basic style of divisional cooperation and can easily prevent redundancy
and conflicts between agents, it is not flexible enough to follow the environmental changes
because the convergence speed decreases as the number of agents and the size of area increase.
The second approach is not dividing the area but having the agents learn their own targets
and behavioral strategies to increase their own performance [2,14]. This approach aims to
establish a bottom-up cooperativemanner in an entire system.We expected that this approach
would have high flexibility for environmental changes. However, the mutual interference
between agents caused by autonomous decisions is likely to be complicated, and the effect
of the agents’ local decision on the whole performance is unforeseeable; thus, the optimal
methods for this approach have still not been studied well.

Therefore, we have also investigated the second approach to the CCPP, and we address
the problem of how autonomous agents with limited communication capability cooperate
only on the basis of local information to reduce the duration of unawareness of events in the
context of the CCPP, where events occur in accordance with the probabilities specified for
each location. Agents are also required to periodically suspend patrolling to charge their bat-
teries for subsequent continuous operation. We previously proposed an autonomous learning
meta-strategy to find the appropriate strategy in accordance with the environmental charac-
teristics [20]. We also revised it so that agents indirectly learn which locations are important
for their local perspectives by taking into account the behavior of other agents [17]. Their
studies can improve the efficiency of coordinated patrolling but did not consider flexibility
for the environmental changes. For this purpose, we focus on how the agents realize divi-
sional cooperation in a bottom-up manner without complicated negotiation that may greatly
increase computational cost.

The contribution of our research is to clarify the mechanism by which the autonomous
agents implicitly realize divisional cooperation by individual learning and simple negotiation
without needing to reach a complicated consensus as mentioned in Adam Smith [15]. We
also investigate why such divisional cooperation facilitates the adaptation to environmental
changes. For this purpose, we introduce the concept of “responsible nodes” to agents and
demonstrate that simple negotiation with this concept enhances effective and flexible divi-
sional cooperation in a bottom-upmanner. Althoughwe preliminarily reported thesemethods
elsewhere [16,18], their formulation, analysis, and evaluation were not sufficiently described.
Actually, we fully conducted new experiments with additional experimental conditions for
this paper. We then analyzed these results and the structures of divisions of labor, and then
discussed that agents can balance their workload and why the proposed mechanisms pro-
moted divisional cooperation with improved flexibility and efficiency. In essence, we found
that individual agents using our method gradually identified their own role to play, specialist
or generalist, with the progress of learning, and the generated role-sharing structure as well
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as regional divisional structure in the multi-agent system improved efficiency and flexibility
of the adaptation to environmental changes.

This paper is organized as follows. First, we first discuss a number of related studies in
Sect. 2 In Sect. 3, we describe our models of the environment and agents and introduce the
CCPP. Section 4 presents our method and explains how agents decide which locations should
be included in their responsible areas. Section 5 evaluates the effectiveness of our method
and investigates its flexibility in the two basic scenarios where some agents suddenly halt and
the probabilities of event occurrence in the environment suddenly change, and we explain
what factors could improve the flexibility. We conclude with a brief summary in Sect. 6.

2 Related work

There have been a number of studies on the multi-agent patrolling problem. Portugal and
Rocha [13] summarized the development of cooperative patrolling methods. In this research,
they stated that the optimal solution for the patrolling problem depends on the environmental
structure and the number of agents. In addition, they stated that a method based on the
traveling salesman problem (TSP) often outperforms other strategies for most cases except
in dynamic environments and environments expressed by a large graph or graphs containing
long edges. They introduced not only optimal solutions but also heuristic approaches. They
concluded from their summary that methods based on reinforcement learning have good
distribution characteristics and usually derive the adaptive behavior of agents, which are
required in many real-world domains.

There are two approaches for cooperation between agents in the patrolling problem. The
first is the area division approach which divides the whole area into some subareas. This
approach easily enables agents to avoid conflict with each other. Ahmadi and Stone [1]
proposed a negotiation method to determine responsible subareas for individual agents by
exchanging their boundary information. Elor andBruckstein [3] achieved segmentation of the
whole area in a continuous cleaning application by using indirect communications. Agents
using this approach autonomously extend their responsible area on the basis of ant-pheromone
and balloon models to balance the sizes of their responsible areas. Kato and Sugawara [7]
proposed an autonomous and cooperative negotiation method for segmentation in a situation
where dirt was accumulated differently in an environment. Suseki et al. [19] proposed a
proportion regulationmethod inspired by task allocation in social insects. Two common issues
of these area division approaches are the convergence speed and the flexibility. If the numbers
of agents and subareas are large or an environment dynamically changes, the convergence
speed of arranging the responsible areas decreases, and re-allocating their responsible areas to
agents through negotiation becomes difficult. Clustering methods are also considered in area
division approaches if we regard target data to be separated in clusters as the events to detect
or the nodes to visit for patrolling. Li et al. [8] proposed a density- and distance-based hybrid
clusteringmethod in the context of multi-target detections withmulti-sensor/scanning, where
they assumed that the target data varied and the varying speed was slower than the scanning
speed, so they could neglect the varying of the target data between different scans. We would
expect to find the appropriate division by using a clustering method in a patrolling problem
only when the environmental change is stable compared to the agents’ activity. Popescu et
al. [12] proposed a patrolling method on a wireless sensor network, in which agents collect
the saved data from sensors with limited storage from their local viewpoint independently.
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The second approach is not dividing the area, but agents with this approach identify
their planning/behavior strategies. Sampaio et al. [14] proposed a gravity-based model in
which the node to which no agents visit recently has strong gravity and the gravitation
depends on distance between each agent and the node; thus, each agent visits nearby node
with higher gravitation and avoids conflict. Cheng and Dasgupta [2] studied a decentralized
management system considering real-world limitations such as communication range, noise
in communications, and memory size. Jordan et al. [6] proposed a planning algorithm based
on game theory in which self-interested agents reflected on interactions such as conflicts
and congestions in the agents’ utility to avoid conflict. This algorithm used the so-called
taxation schemes, and a third party imposed a tax on the agent system involved in conflicts.
The taxation schemes enable self-interested and non-cooperative agents to avoid conflicts.
However, detecting the conflict by agents with a local view becomes difficult. Yoneda et
al. [20] proposed an autonomous learningmethod to identify an appropriate planning strategy
to determine the next targets according to knowledge on where dirt would accumulate easily.
Then, they showed that the strategies selected by agents were different according to the
environmental characteristics observed locally by agents. We extended their method and
proposed a meta-strategy, called the adaptive meta-target decision strategy with learning of
dirt accumulation probabilities (AMTDS/LD), that enables agents to autonomously decide
planning strategies by learning where they should visit more frequently in a given area for a
continuous cleaning application [17]. Agents with AMTDS/LD indirectly learn other agents
behavior by learning about the environment and avoiding conflicts with others; for example,
they could avoid redundant visits to nodes where so many agents frequently visit the same
nodes with the previous method. These methods are more flexible, but how agents with local
information in a dynamic environment, where the learning of agents is often not stable, avoid
the conflict is still a challenging issue.

In recent years, the number of studies on patrolling problems based on a dynamic envi-
ronment has increased. In general, the purpose of patrolling problems is to minimize the
average or longest visitation interval between two visits of nodes in a given graph. This
means that the environment was static and all nodes have the same visit priority. Ahmadi and
Stone [1] also assumed that the event to be found was generated stochastically. Agents had
to learn which location was important and changed the visit frequency to a node according
to the environmental change. Othmani-Guibourg et al. [10] proposed a model assuming an
environment in which edges in the environment dynamically changed, although the priority
of nodes was the same. Pasqualetti et al. [11] studied a patrol problem that assumes that each
node has a different priority in the context of multi-robot patrolling, but this model assumed
a simple cycle graph, and the number of nodes and agents was small.

Generating divisional cooperation such as division of labor is a good solution to avoid
conflicts. Ghavami et al. [4] proposed a learning method in which agents identify the human
actor’s social preference and also proposed a negotiation method in which agents reached the
agreement instead of human actors for spatial urban land use planning. They introduced facil-
itators and decision makers for negotiation, and the decision makers had two roles: speaker
and listener. The speaker revises the plan and proposes alternative plans, and the listeners
express opinions on the plan. This negotiation between them enables individual agents to
avoid conflicts, but reaching consensus is difficult and facilitators that decide the duration
of negotiation phases often cause bottlenecks when the number of agents increases. How-
ever, howmultiple autonomous agents should generate divisional cooperation in a bottom-up
manner in a dynamic environment has been unclear. For example, there have been studies on
how divisional cooperation based on the swarm system like that of social insects is achieved
without a central manager [5,19].
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Jones and Matarić [5] proposed an adaptive division of labor in large-scale systems. They
conducted an experiment using a concurrent foraging problem where robots forage for two
different types of foods in the environments to divide agents into two groups so that the ratio
between the groups is identical to that between the numbers of the two types of foods, but
they assumed that the numbers of foods were given in advance. Menezes et al. [9] proposed
a negotiation algorithm based on an auction mechanism for patrolling. In their method, the
appropriate ratio of agents to be allocated to individual tasks is not given but is decided by
auction. However, the computational cost for negotiation becomes higher when the number
of agents and the complexity of the environment increase.

We also proposed a newmodel of the dynamical patrolling problem, called the CCPP, and
the methods that enhanced the emergence of divisional cooperation by interaction between
individual agents with learning and using a simple negotiation. In the CCPP, agents move
around in the environment to detect events that occurred stochastically. We assumed that
agents have limited batteries and they have to stop to charge for subsequent patrolling.
In [16], we introduced the notion of sets of responsible nodes to agents and proposed a simple
negotiation that tried to balance the workload by adjusting the sets of responsible nodes in a
bottom-up manner. As a result, the agents could generate role sharing in which some agents
visit specific nodes and others move around in other large areas. Moreover, the agents could
build some teams based on the structure of the environment although they did not negotiate
with others to generate teams. We also analyzed the mechanisms to realize the divisional
cooperation and found that their teams have high flexibility in divisional cooperation by
changing their roles dynamically [18].

However, our previous studies were only examined using limited experimental scenarios,
and themechanism for autonomous agents to adapt to the changes has not been fully analyzed.
Therefore, in this paper, we combine the insight of our previous researches with additional
experiments. In particular, we evaluated our method in different change scenarios to evaluate
the flexibility of our method.

3 Model

In the CCPP, events occur at each node with a different frequency, and agents move around
to detect the events in the environment. Here, we explain the model based on the CCPP used
in this study. Our model is an extension of the one by Sugiyama and Sugawara [17].

3.1 Environment

We introduce discrete time with units called ticks in which events occur and agents move and
decide their strategy. The environment for agents to patrol is described by G = (V , E) that
can be embedded into R2. V = {v1, . . . vm} is the set of nodes to visit, and v has coordinates
such that v = (xv, yv). E is the set of edges, and edge e has the length le. Agents can move to
an adjacent node connected by an edge, but if obstacles Ro(⊂ V ) exist, agents cannot move
to that node. All nodes have an event occurrence probability value p(v) (0 ≤ p(v) ≤ 1). A
high value of p(v) means the event will frequently occur. The number of neglected events
without visiting (or monitoring) v at time t is expressed by Lt (v). Lt (v) is updated based on
p(v) at every tick by
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Lt (v) ←
{
Lt−1(v) + 1 (if an event occurs),

Lt−1(v) (otherwise).
(1)

When an agent visits node v at time t , the neglected events at v are cleared and Lt (v) is set
to 0.

The requirement of the CCPP is to minimize the values of Lt (v) by visiting important
nodes. Therefore, we define the performance measure Dts ,te during the interval from ts to te
to evaluate our method as

Dts ,te (s) =
∑
v∈V

te∑
t=ts+1

Lt (v), (2)

where ts < te and s is the strategy selected by agents. We explain this strategy in Sect. 3.3.
Dts ,te (s) expresses the cumulative neglected duration for interval (ts, te] when agents use
strategy s, so a smaller Dts ,te indicates a better system performance.

3.2 Agent

We make two assumptions that simplify the problem so as to focus on cooperation among
agents and the effect of divisional cooperation on robustness. First, multiple agents can be at
the same node. This may be impossible in two-dimensional space, but many notable collision
avoidance algorithms have been proposed, so we believe we can use this assumption. Second,
agents know their own and others’ locations. We believe this is a reasonable assumption
because recent positioning technology, such as that of global positioning systems, is high
precision, and external observable information such as location is easier to understand than
internal information.

Let A = {1, . . . , n} be a set of agents. The position of agent i at time t is represented
as vit ∈ V . Agent i has a battery with a limited capacity, so it must periodically return to
its charging base vibase to charge its battery for continuous patrolling (the control algorithm
for this is outside the scope of this paper [17]). Agent i learns and estimates the degree of
importance pi (v) of node v, and i has a set of these importance as Pi = {(v, pi (v))|v ∈ V }.
The importance can be expressed as a numerical value and differs from p(v) in that each
agent has a different belief for pi (v): for example, if some agents frequently visit a node, the
importance of the node is low for other agents. Agent i can get the time at which any agent
visits node v most recently because of the assumption described above, and i can be used to
calculate the elapsed time I it (v) from tvvisit to current time t as

I it (v) = t − tvvisit. (3)

Agent i estimates the priority to visit a node at time t as ELi
t (v) using pi (v) and I it (v) as

ELi
t (v) = pi (v) · I it (v). (4)

We explain how agents learn pi (v) in Sect. 4.
Communication between agents is often limited, and frequent communication is costly, so

we consider these factors tomodel communications between agents.We denote the Euclidean
distance between agents i and j as m(vi , v j ). This ignores the partitions and walls. Agents
have a communication range, dcom (> 0), and i can communicate with agent j at time t only
when m(vit , v

j
t ) < dcom. To avoid a cost increase due to excessive communication, we also
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define the minimum interval Tlimit (> 0). Agent i stores the last communication time with j
as T i, j

last , and if Tlimit ≥ t − T i, j
last at current time t , i does not communicate with j .

3.3 Planning in agents

Agent i patrols by repeating the following sequence. First, i decides the target node, vitar,
according to target decision strategy s. Second, i generates the path to vitar according to a
path planning strategy. Finally, i goes to vitar using the generated path.

We introduce some target decision strategies below. We briefly explain these strategies;
the details are discussed in [16,20].

Random selection (R): i randomly selects vitar from V .
Probabilistic greedy selection (PGS): i randomly selects vitar from Ng highest nodes
according to the values of estimated priority ELi

t (v), where Ng is a positive integer.
Prioritizing unvisited interval (PI): i selects vitar that was not recently visited; it selects
it from the Ni highest nodes according to the interval I it (v) in V , where Ni is a positive
integer and I it (v) is defined in Sect. 4.1.
Balanced neighbor-preferential selection (BNPS): i first selects a nearby node whose
ELi

t (v) is large. After i has moved around nearby nodes, it selects vitar by PGS.
Adaptive meta-target decision strategy (AMTDS): i learns the appropriate strategy
from a given set of strategies S = {s1, . . . , sn} [20] and selects a strategy to decide a
target with ε-Greedy policy. Agents with AMTDS change their strategy according to the
situation of the environment. They can obtain p(v) before patrolling and set the value as
pi (v) all the time. In this paper, we set S as S = {R, PGS, PI, BNPS}.
AMTDSwith learning of dirt accumulation probability (AMTDS/LD) : AMTDS/LD
[17] is an extension of AMTDS. Agents with AMTDS/LD also change their strategy, but
they cannot obtain p(v) before patrolling. They learn pi (v) during their patrolling.

We introduce two path planning strategies. The first is the shortest path strategy using
Dijkstra’s algorithm. The second is the gradual path generation (GPG) method. An agent
using the GPG method visits some nodes with higher ELi

t (v) if the nodes are near the
generated shortest path. We found that the GPG method usually outperformed the simple
shortest path strategy, sowe only usedGPG in our experiment. The details of these algorithms
have been described elsewhere [20].

4 Proposedmethod

Our objective in proposing this method is to enhance effective flexible divisional cooperation
from micro-behaviors such as autonomous individual learning and one-on-one negotiation.
We call our method AMTDS with learning of event probabilities and enhancing divisional
cooperation (AMTDS/EDC). The basic idea of our method is that each agent independently
decides nodes which the agent is responsible for by learning the importance of each node,
which is expressed by a nonnegative real value. For this purpose, we introduce a set of
responsible nodes and a simple negotiation algorithm that uses the size and center of the
responsible nodes to enhance divisional cooperation. The proposed model and method are
based on those of a previous study [16], but we extend the model for flexibility to adapt to
environmental changes.

Agents using our method do not strictly decide which agent should be responsible for
certain nodes and the visit frequency. Instead, agents using ourmethod suggest to other agents
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which nodes seem to be important by delegating pi (v) to others during negotiation (described
later), but these agents continue to visit there to some degree. On the other hand, an agent to
whom the important nodes are suggested by another agent reflects the received values onto
the local model. Then, they attempt to check whether the received nodes are really important,
which are performed by temporarily increasing the visit frequency. Our proposed negotiation
method is quite simple, and no additional negotiation such as agreement/disagreement and
reallocation is performed.

4.1 Learning importance and responsible node

When agent i visits node v, pi (v) is updated from I it (v) as

pi (v) ←
⎧⎨
⎩(1 − β)pi (v) + β

1

I it (v)
(if events on v are cleared),

(1 − β)pi (v) (otherwise),
(5)

where β (0 < β ≤ 1) is the learning ratio
Here, we introduce the set of responsible nodes V i

self (⊂ V ). Agent i basically decides its
next target vitar from V i

self (not V ), but when i selects R or PI as the target decision strategy,
it decides vitar from V , since the purpose of these strategies is exploration. Agent i updates
V i
self when i returns to the charging base. i sorts the elements of Pi in descending order of
pi (v) and defines V i

self as the set of the first Ni
self nodes in Pi , where Ni

self expresses the
size of V i

self . If the values of p
i (v) are identical for different nodes, one of them is selected

randomly. We set the initial value of V i
self as V

i
self = V , so Ni

self initially equals |V | and is
adjusted through the negotiation.

In addition, we introduce just two parameters calculated from V i
self for negotiation. The

first parameter is the total amount of importance of its responsible nodes pisum (≥ 0) and is
calculated as

pisum =
∑

v∈V i
self

pi (v). (6)

pisum expresses the total burden of tasks for which i is responsible because a node with high
pi (v) requires frequent visits. The second parameter is the barycenter,Ci = (xic, y

i
c) of V

i
self ,

that is the node in V closest to (xic, y
i
c), where x

i
c and yic are calculated as

xic =
∑

v∈V i
self

pi (v)

pisum
xv, and yic =

∑
v∈V i

self

pi (v)

pisum
yv. (7)

When we define the shortest path length from node vp to vq as d(vp, vq), if d(Ci , v) <

d(C j , v), we assume that the cost of agent i to visit node v is smaller than that of j to visit
this node. d(vp, vq) is the shortest path length which is sum of le from node vp to vq . Note
that because Ci may not be the element of V , we approximate the value of d(Ci , v) by using
d(vc, v), where vc ∈ V is the node closest to Ci based on m(Ci , v).

4.2 Negotiation between agents

Agents using our method individually try to improve the elements of V i
self by simple nego-

tiation for more effective patrolling. In this negotiation, agents do not fully decide who is
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responsible for the node; rather, agent i entrusts a number of important nodes to j if it is
more appropriate for j to handle them.

We introduce two types of negotiations. The first is negotiation for balancing total amount
of pi (v), psum, inwhich agents try to balance the learned importance pi (v). Nodeswith higher
value of pi (v) require frequent visits, so agents with higher psum have much responsibility.
When there is big difference between the value of pisum and one of p j

sum : Agent i with
higher psum delegates the pi (v) of some nodes that are not important for agent i to agent
j with lower psum; thus, i concentrates more on the important tasks, and j will be able to
widely explore locations considered important. The second negotiation is for improving the
performance, and agents carefully trade-off the responsible nodes between agents when their
psum is almost identical. Hence, agent i delegates the pi (v) of some nodes that are important
for agent i and another agent j can visit the nodes at a lower cost; thus, both agents i and j
can decrease the cost to patrol in their responsible nodes.

4.2.1 Negotiation for balancing tasks

If condition
1 + Tc < pisum/p j

sum (8)

is satisfied, agents i and j negotiate to balance their psum. Tc (0 < Tc � 1) is the threshold
value to judge whether there is a difference of responsibility between i and j . Then, i
calculates the ordered set

V i, j
self = {v ∈ V i

self | d(Ci , v) > d(C j , v)},
where the elements are sorted by pi (v) in descending order. Then, i selects the smallest
eg (positive integer) nodes that are not so important to i in V i, j

self (i.e., from the tail), and i
delegates its pi (v) to j as

p j (v) ← p j (v) + pi (v) × (1 − δ),

pi (v) ← pi (v) × δ, (9)

where δ(0 < δ < 1) is the ratio to delegate. eg is determined on the basis of the ratio of pisum
to p j

sum:

eg = min

(
Ni
self − 1, Ni

gmax,

⌊
pisum
p j
sum

× γ

⌋)
, (10)

where Ni
gmax (0 < Ni

gmax < Ni
self ) is the upper limit to prevent big fluctuations, and γ (0 < γ )

is adjustment ratio to resolve imbalance. After agents delegate or receive pi (v), agents i and
j update their sizes of responsible nodes by

Ni
self ← Ni

self − eg

N j
self ← min(|V |, N j

self + eg). (11)

4.2.2 Negotiation for trade-off of responsibility

If condition
1 − Tc < pisum/p j

sum < 1 + Tc (12)
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is satisfied, they negotiate to improve their V i
self by swapping pi (v) of several important

nodes. i selects the first Ni
cmax nodes from the head of V i, j

self , and then i delegates those pi (v)

to j according to Eq. 9. Then, eg is determined as

eg = min
(
Ni
self − 1, Ni

cmax

)
, (13)

where Ni
cmax(> 0) is the upper limit. Note that nodes with high pi (v) incur relatively high

burdens, so Ni
cmax must be a small constant and be much less than Ni

gmax. Then, they update
their sizes of responsible nodes by using Eq. 11.When Eq. 12 is satisfied, agent j is also likely
to send a part of the learned p j (v) to i , so these processes occur in the opposite direction.

5 Experiments and discussion

5.1 Experimental setting

To evaluate our method, we prepared a large environment for agents to patrol (Fig. 1) that
consists of six rooms (Room 0-5), a corridor, and a number of nodes where events occur
frequently. It was represented by a 101×101 2-dimensional grid spacewith several obstacles,
and we set a length of all edges to one. We made the environment using C#. We set p(v) for
v ∈ V as

p(v) =

⎧⎪⎨
⎪⎩
10−3 if vwas in a red region,

10−4 if vwas in an orange region, and

10−6 otherwise,

(14)

where the colored regions are as shown in Fig. 1. We provide two types of environments
with different event occurrence probabilities, Office and Office2, to evaluate the flexibility to
adapt to environmental change. The event occurrence probabilities of each room of Office2
are obtained by shifting the probabilities of Office clockwise by one room, which are shown

(a) (b)office office2

Fig. 1 Experimental environment
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Table 1 Values of parameters
used in Sec. 3

Model Parameter Value

PGS Ng 5

PI Ni 5

AMTDS/LD β 0.05

ε 0.05

Communication dcom 5

Tlimit 10,800

Table 2 Value of parameters
used in Sec. 4

Strategy Parameter Value

AMTDS/EDC Ngmax 100

Ncmax 10

Tc 0.05

γ 10

δ 0.5

in Fig. 1. We set the number of agents, |A|, to 20 and set their charging base, vibase, on
vibase = (0, 0) for ∀i ∈ A. Agents start their patrol from their vibase and must periodically
return to vibase before their battery runs out. The capacity of the battery in each agent enables
them to move at most 900 ticks, and it requires 2700 ticks for a full charge when the battery
is completely empty. The maximum cycle of movements and charges is 3600 ticks, so we
measure Dts ,te (s) every 3600 ticks.

In addition to AMTDS/LD (LD) and AMTDS/EDC (EDC), we introduce AMTDS/EDC
without responsible nodes (EDCRN) as the target decision strategy of agents. Agents with
EDCRN decide the target node and negotiate with others in almost the same way as for EDC.
The difference between EDCRN and EDC is that agents with EDCRN are always responsible
for all nodes in an environment, which means they do not change their Nself with negotiation.
The parameter values used in the model and our method are listed in Tables 1 and 2.

5.2 Efficiency evaluation

Before we evaluate the flexibility to adapt to changes in environment, we evaluate the effi-
ciency of EDC. In this experiment, 20 agents move around to detect events in the Office
environment shown in Fig. 1a.We have already discussed the difference in efficiency between
EDC and LD [16]. In this paper, we additionally introduce EDCRN formore detailed analysis
of factors to realize efficient and flexible divisional cooperation. The reason for improvement
in efficiency is also related to flexibility to change, so we explain it here. Note that agents
with EDC have limited responsible nodes, and agents with LD and EDCRN are responsible
for the whole environment.

Figure 2 plots the improvement of D(s) over time. EDCRN finally decreased D(s) by
13.6%, and EDC finally decreased D(s) by 27.2% compared with that of LD. The difference
between EDCRN and LD is that agents with EDCRN negotiate and transfer their responsibil-
ity with others. Therefore, the results indicate both the negotiation and having a responsibility
for a limited area are important for effective divisional cooperation.
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Fig. 2 Improvement in D(s) over time

We measured the working time of each agent for each node to investigate the structure of
divisional cooperation. Figure 3a–c plot the working time of agents with LD, EDCRN, and
EDC in individual rooms during the last 1,000,000 ticks, and the 20 agents in these figures
are sorted in descending order of working time in Room 3. Figure 3c shows that agents
with EDC mainly worked in one or two rooms with much more bias than LD (Fig. 3a) and
EDCRN (Fig. 3b). Agents with LD indirectly learned the behavior of others through learning
pi (v) which became lower when other agents frequently visited the node. Therefore, agents
targeted different nodes from other agents. However, their divisional cooperation was not
enough. Agents with EDCRN delegated their pi (v) through negotiation. However, compared
to EDC, the bias of the working time of agents with EDCRN was smaller. In particular,
Room0 and Room1 were visited by more agents because there were regions with a much
higher value of p(v), the red regions in Fig. 1, in Room2 and Room4, so agents that were
responsible for the whole environment could not ignore these regions and had to regularly
visit these regions. Many agents that could not ignore these regions reduced the opportunities
to visit well-learned nodes that were primarily visited by them. Also, as the opportunities
for detecting events were dispersed to many agents, learning the appropriate visit frequency
of a node became more difficult because the appropriate visit frequency depended on the
behavior of other agents that often target the node.

Divisional cooperation was promoted by agents with EDC since they divided the agents
into four groups like teams without any negotiation to make a team, and each team mainly
visited a different room. An agent that detected a node required frequent visits and had a
higher value of pisum and decreased its size of responsibility Ni

self through the negotiation. As
a result, the barycenter Ci of the agent approached the detected node. Since an agent whose
Ci approached a detected node was delegated responsibility for nodes around the detected
node, the agent specialized on the node and moved around the node. Moreover, switching the
costs of a specialized agent to move around also reduced the costs because the agent focused
on a specific node. Agents try to maximize the number of detected events. Therefore, agents
do not give higher priority to a node that has a higher value of p(v) and was visited by
many agents when the agent can find a node where it detects more events. As a result, the
appropriate visit frequency to an area was automatically adjusted according to the number
of agents that visited the node and the visit frequency throughout the system. Our method
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(b) EDC with responsible nodes
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Fig. 3 aDistribution of working time during last 1,000,000 ticks in agents with LD. bDistribution of working
time during last 1,000,000 ticks in agents with EDCRN. c Distribution of working time during last 1,000,000
ticks in agents with EDC

realized selection and integration by micro-behavior such as negotiation between agents, and
its micro-behavior has created macro-divisional cooperation as a team.

Our method also created role sharing based on the size of responsibility. Figure 4 plots
the size of responsible node Ni

self of agents with EDC at 3,000,000 ticks. This figure is
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Fig. 4 Size of responsible nodes Ni
self at 3,000,000 ticks when agents use AMTDS/EDC as a target decision

strategy

sorted in same order to Fig. 3c. This figure indicates that some agents focus on specific
nodes (specialists), and some agents move around a larger area (generalists). Specialists
occurred due to selection and integration. Agents that were specialists could move around
with high accuracy in their responsible nodes because these agents focused on a specific
area and have many opportunities to learn the importance of the nodes. Generalists occurred
due to the negotiation for balancing tasks. Agents that were generalists were delegated the
responsibility of some nodes that were not focused on by specialists. They explore a larger
area and did not need to visit high p(v) nodes because the specialists frequently visited them
instead. We consider that the role sharing which is a divisional cooperation also raised the
efficiency of the patrols.

In conventional region segmentation methods, agents have a specific role and limited
responsible nodes, but the responsible area is usually connected, and the ratio of agents
to be deployed in each area has been given. In contrast, agents using our method divided
their responsible area into discontinuous nodes in a bottom-up manner and autonomously
determined how to visit each area.

5.3 Flexibility evaluation for stop of agents

Next, we evaluate the flexibility to adapt to change. We experimented and analyzed our
method in two scenarios of environmental change. In the first scenario, several agents sud-
denly halted and did not communicate with other agents. In the second scenario, the event
occurrence probabilities of each node suddenly changed. In this section, we discuss the results
of the first scenario.

We stopped ten agents selected randomly at 1,000,000 ticks; after that they restarted at
2,000,000 ticks. The stopped agents could not move and could not communicate with the
other agents when they were stopped, and the other agents did not know they were stopped.
Figure 5 plots the improvement in D(s) over time. Compared to LD, EDCRNdecreased D(s)
by 23.1% after the stop, and EDC greatly prevented the deterioration of efficiency after the
stop, where D(s) decreased by 36.6% at the peak. This result shows that agents with EDC
flexibly responded to the change.Moreover, EDC outperformed LD and EDCRNbefore/after
agents stopped at all times.
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Fig. 5 Improvement in D(s) over time in a scenario where some agents halt

We analyzed how agents with EDC flexibly reacted to the stop of agents. Figure 6a shows
the change in pisum of agents with EDC without a stop, and Fig. 6b shows the change in
Ni
self of these agents in an experimental trial. Note that this experimental trial was randomly

selected from thirty trials, and similar characteristics were observed in other trials. Figure 6a
shows that the value of pisum greatly changed after some agents stopped because the agents
discovered and learned a remaining task that a stopped agent was primarily responsible for.
Similarly, Fig. 6b shows that agents changed their value of Ni

self by negotiation according
to the change in the value of pisum after some agents stopped. Interestingly, some generalists
(agents 1, 3, 12) were drastically decreasing the value of Ni

self , and some specialists (agents 2,
4) were drastically increasing it.We conclude that generalists whomove aroundwidely could
quickly find remaining uncovered tasks, then the value of pisum of the generalists became
higher than the value of other agents so some generalists change their role to specialists. In
contrast, a specialist with lower value of pisum was delegated a part of pi (v) of some nodes
and moved around widely as generalists after environmental change.

Figure 6b also shows that several agents (agents 11, 13, 19) do not change their role
before and after the change in environment. There are two reasons. One is that other agents
discovered and responded to changes, so they were able to continue working as usual. pisum of
these agents (agents 13, 19) changed little. Everyone responding to the change causes great
confusion, but in our method, agents that do not respond to change in accordance with the
situation autonomously appear. The other is that although the amount of work had changed,
therewas no other agents to delegate responsibility. The value of pisum of agent 11 had changed
significantly; so in the usual case, agent 11 delegated its responsibility to others by negotiating
for fairness. However, agent 11 was a specialist and was responsible for only a few nodes.
Agent 11 had few chances to delegate its responsibility when there were few agents that could
execute tasks that agent 11 was responsible for with a lower cost compared with barycenter
Ci and workload pisum. Therefore, after another agent restarted at 2,000,000 ticks, agent 11
was able to decrease its pisum and change its role. In our negotiation, agents compared just
the workload and the barycenter, but agents automatically improved the information about
the importance of each node and dynamically changed their role to adapt to change.

Specialists greatly contribute to efficiency asmentioned inSect. 5.2, and generalists greatly
contribute to adapting to change. We conducted an additional experiment in which the top
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Fig. 6 a Change in pisum. b Change in Ni
self

ten (generalist) or bottom ten (specialist) Ni
self agents with EDCwere stopped. Figure 7 plots

the improvement in D(s) of the average of 30 trials. It shows that it is inefficient when the
generalists stopped. As generalists moved around widely in environments, they discovered
the change at an early stage. Also, in contrast to specialists, there were many other agents that
generalists could delegate their responsibility to. However, as specialists focused on specific
nodes, generalists greatly reduced switching costs to visit there and moved around in a wider
area and improved overall efficiency. Therefore, agents with EDCRN that are responsible
for the whole environment without roles such as specialist and generalist did not sufficiently
respond to change. As a result, we conclude that the roles of both between specialists and
generalists are important for flexibility, and agents with our method decide and adjust their
roles automatically.
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5.4 Flexibility evaluation for change in environment

In this section, we evaluate the flexibility of LD, EDCRN, and EDC in the second scenario
where the event occurrence probabilities of the environment suddenly change. The number
of agents was 20, and the event occurrence probabilities were changed from those of Office
shown in Fig. 1a to those of Office2 shown in Fig. 1b at 1,000,000 ticks. After that, the
probabilitieswere changed from those ofOffice2 to those ofOffice at 2,000,000 ticks. Figure 8
plots the improvement in D(s) over time. Compared to LD, EDCRN decreased D(s) by 4.3%
after the stop, and EDC decreased D(s) by 6.7% at the peak. At 2,000,000 ticks, EDCRN
decreased D(s) by 13.2% after the stop, and EDC decreased D(s) by 25.1% compared with
LD. As with the results of the first scenario, the efficiency of EDC was best, EDCRN was in
the middle, and LD was the worst. However, the difference of D(s) between LD, EDCRN,
and EDC at the peak was much smaller than the difference of the first scenario.

The changes in the second scenario affect agents much more had than changes in the first
scenario. In the first scenario, as ten agents stopped, the number of agents to consider the
agents’ behavior decreased, and the remaining agents just additionally learned tasks that the
stopped agent did. However, in the second scenario, the information learned by agents greatly
diverged from the actual event occurrence probability after the change. Moreover, almost all
agents changed their behaviors and must respond to changes in other agents’ behaviors at
the same time.

For such a complex change, agents with LD and EDC responded to the changes in a
different way from the first scenario. Figure 9 plots the number of selected target decision
strategies of first scenario in LD and EDC over time, and Fig. 10 plots one of the second
scenarios in LD and EDC over time. Comparing Figs. 9 and 10, there is a big difference in the
selected strategies at a certain time immediately after the environmental change. In Fig. 10,
at first many agents selected the R or PI strategy, next, the PGS strategy is selected, and after
that, the BNPS strategy is selected bymany agents. In contrast to the case of the first scenario,
the changes in the number of selected target decision strategies in the second scenario are
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Fig. 10 Number of selected target decision strategies over time in scenario where events occurrence proba-
bilities change

similar between LD and EDC because the difference in peak efficiency was much smaller
between LD, EDCRN, and EDC than in the first scenario. After the environment changed,
pi (v) and ELi

t (v) of each agent became inaccurate. Therefore, many agents selected a PI
strategy that did not use a value of pi (v) unlike GPS and BNPS. After agents discovered a
new location with many events, the GPS strategy outperformed the other strategies. At that
time, the learning and behavior of other agents were not stable yet, so competition did not
occur that much. However, as the behaviors became stable, agents selected the BNPS strategy
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because it was effective in a situation where the learning of an agent was not enough and
uncertainty in targeting a far node was big. At the second change, since the past knowledge
remained in the agents, the agentswithEDC that could efficiently redistribute their knowledge
effectively adapted to change, so Fig. 9b shows that agents with EDC continued to select
the PGS strategy after the change. When only the learning of probabilities of each node and
negotiation were not able to adapt to change, the agents using our method changed the target
decision strategy which strongly affects agents’ behavior and adapted to change in a different
way.

6 Conclusion

We focused on the CCPP, which requires higher autonomy and cooperation between agents,
and investigated the mechanisms with which agents autonomously realize divisional coop-
eration and the group of agents that could follow environmental changes by revising their
divisional cooperation structure. First, we proposed the autonomous learning and negotia-
tion method in which agents generate the cooperation regime only with local interaction.
Our method did not partition responsible areas nor did it explicitly decide which agents are
responsible for each node. Instead, agent i using our method learns the importance of nodes,
Pi , by its local viewpoint and identifies the set of the responsible nodes, V i

self . Then, i partially
transfers the values of importance of the responsible nodes to other agents and vice versa,
and i decreases/increases the size of the responsible nodes, Ni

self . Our experimental evalu-
ation revealed that our method enhanced divisional cooperation compared to our previous
method.We found that our method developed two distinct roles, specialist and generalist, and
that agents were able to move around with different patterns. This is one reason our method
outperformed the previous one. With the negotiation and individual learning, the specialist
agents have more responsibility on the specific nodes that usually require high visitation, and
the generalist agents moved around the wider area to cover other nodes.

Then, we conducted two additional experiments to evaluate the flexibility of our method
to adapt to environmental changes. In the first experimental scenario, some agents suddenly
halted; thus, other agents have to find some areas that were neglected. The results suggest
that our method could flexibly adapt to this situation. In this scenario, the generalists played
an important role; they could quickly find the neglected nodes and identified them as nodes to
visit by re-calculating the importance of nodes. Thismight force a few generalists to change to
specialists temporarily, but other agentswere not affected by this environmental change.After
the halted agents returned to the environments, they mutually start to cover some important
nodes, and all agents converged to another stable structure of divisional cooperation. This
also indicates that our method is advantageous compared to the area-partitioning approaches
that required more time to follow the change because the interference of agent using these
approacheswill be limited between the neighboring agents. Thismay result in slow adaptation
to the changes in large environments.

In the second scenario, the event occurrence probabilities in the environment largely
changed suddenly. This change led to the invalidity of learned results so far and forced agents
to re-learn the importance of many nodes; thereby, the behaviors of other agents were also
altered. Actually, our experimental results showed that only re-learning and negotiation were
not enough to quickly adapt to the changes, unlike in the previous scenario. However, agents
using our method could respond to the changes in a different way. First, they temporarily
changed their target decision strategies to “R” or “PI”, which does not use learned Pi ,
and then they start re-learning the importance and perform negotiation with others. After
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a sufficient amount of processing, they gradually adopted the appropriate target decision
strategies. This result suggests that the diversity of strategies facilitates the flexibility to
follow the environmental changes.

In this research, we considered the efficiency of event detection. In terms of sustainability,
we think that the efficiency of energy saving is also required, so we will try to propose
a method in which agents save their energy when the quality of work is sufficient for the
requirements. We also plan to compare our method with a deterministic method such as the
TSP-based approach and will clarify the environmental characteristics in which our method
effectively leads to divisional cooperation structure in our next research.

Acknowledgements This work was partly supported by JSPS KAKENHI Grant No. 17KT0044 and Grant-
in-Aid for JSPS Research Fellow (JP16J11980).
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