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Abstract
In this paper, we consider the problemof anonymization on directed networks.Although there
are several anonymization methods for networks, most of them have explicitly been designed
to work with undirected networks and they cannot be straightforwardly applied when they
are directed. Moreover, ignoring the direction of the edges causes important information
loss on the anonymized networks in the best case. In the worst case, the direction of the
edges may be used for reidentification, if it is not considered in the anonymization process.
Here, we propose two different models for k-degree anonymity on directed networks, and we
also present algorithms to fulfill these k-degree anonymity models. Given a network G, we
construct a k-degree anonymous network by the minimum number of edge additions. Our
algorithms use multivariate micro-aggregation to anonymize the degree sequence, and then,
they modify the graph structure to meet the k-degree anonymous sequence. We apply our
algorithms to several real datasets and demonstrate their efficiency and practical utility.
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1 Introduction

In recent years, a huge amount of social and human interaction networks have been made
publicly available. Embedded within this data, there is user’s private information that must
be preserved before releasing the data to third parties and researchers. The study by Ferri
et al. [17] reveals that up to 90% of user groups are concerned by data owners sharing data
about them. Backstrom et al. [2] point out that the simple technique of anonymizing graphs
by removing the identities of the vertices before publishing the actual graph does not always
guarantee privacy. In particular, they have shown that an adversary can infer the identity of
the vertices by solving a set of restricted graph isomorphism problems. It is evident that
network anonymization processes become an important issue under this scenario.

Several methods have been developed to protect users’ privacy on networks, but none of
them has been designed specifically for directed networks. Some methods remove the direc-
tion of edges in order to convert directed networks to undirected ones, and then, they utilize
undirected algorithms to protect users’ privacy. This has two drawbacks. First, if the published
network is undirected, the direction of the edges is lost; hence, in the published version there
may be connected nodes that were not connected by a directed path in the original directed
graph. Second, if the network is anonymized without considering the direction of the rela-
tions, then this informationmay be used for reidentification, that is the case when considering
k-degree anonymization without considering the direction of the edges. However, removing
the direction of the edges produces a severe loss of information regarding the structure of
the network, in the sense that the in-degree and out-degree of each node are combined into
a single characteristic that is anonymized using models designed for undirected networks.
There are cases where we are interested to treat the in-degree and out-degree sequences
of a graph in a different manner—and not as the combined undirected degree—during the
anonymization process. For example, in Twitter’s who-follows-whom social graph, one may
be interested to consider different levels of anonymity for the in-degree (followers) and the
out-degree (followees) of a user, as the out-degree may contain more sensitive information
(e.g., in the case of a celebrity), and is also relevant to consider the direction of the rela-
tion (who-follows-whom), since the flow of information goes only in one direction (e.g., a
celebrity does not know what his followers post).

1.1 Our contributions

In this paper, we define two k-anonymity models specifically designed for directed networks.
Additionally, we present algorithms to implement these models and empirically demonstrate
their practical application on real directed networks. Since these graphs have no attributes or
labels on the edges, information is contained only in the structure of the graph itself and, due
to this, preserving network’s structure and edges’ direction are critical to reduce information
loss. The contributions of this work can be summarized as follows:

– We define two different models for k-anonymity on directed networks, offering different
privacy protection levels.

– We introduce algorithms to achieve the desired privacy levels based on the previously
proposed models.

– We show that our algorithms are able to dealwith large networks of thousands andmillions
of vertices and edges, demonstrating their practical utility in real-world problems.
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– We conduct an empirical evaluation of these models on several real networks, compar-
ing information loss based on different graph properties and also on clustering-specific
processes.

– We demonstrate that our models preserve data privacy, while simultaneously conduct the
anonymization process toward reducing information loss and increasing data utility.

1.2 Notation

Let G = (V , A) be a directed and unlabeled graph (also called digraph), where V is the set
of vertices (or nodes) and A the set of arcs (or edges) in G. We define n = |V | to denote the
number of vertices and m = |A| to denote the number of arcs. We use (vi , v j ) ∈ A to denote
a directed arc from vertex vi to v j but not vice versa. Finally, we denote by G = (V , A) and
˜G = (˜V , ˜A) the original and the perturbed graph produced by the anonymization process,
respectively.

1.3 Roadmap

This paper is organized as follows. In Sect. 2,we review the relatedwork and the state of the art
on privacy-preserving methods for networks. Section 3 introduces the preliminary concepts
and our k-anonymity models for directed graphs. Then, in Sect. 4, we propose algorithms to
fulfill the privacy levels pointed out by our models.1 Our experimental framework is provided
in Sect. 5, and then, we discuss the results in terms of information loss and data utility in
Sect. 6. Experiments about scalability issues are presented in Sect. 7. Lastly, we discuss the
conclusions of this work and future research directions in Sect. 8.

2 Related work

The k-anonymity model was introduced in [35,36] for privacy preservation on structured or
relational data. Formally, the k-anonymity model is defined as follows: let RT (A1, . . . , An)

be a table and QIRT be the quasi-identifier associatedwith it. RT is said to satisfy k-anonymity
if and only if each sequence of values in RT [QIRT ] appears with at least k occurrences in
RT [QIRT ]. The k-anonymity model indicates that an attacker cannot distinguish between
different k records although he manages to find a group of quasi-identifiers. Therefore, the
attacker cannot re-identify an individual with a probability greater than 1

k .
Several concepts can be used as quasi-identifiers for k-anonymity on graph structured

data. A widely applied option is to use the vertex degree as a quasi-identifier. Accordingly,
we assume that the attacker knows the degree of some target vertices. If the attacker identifies
a single vertex with the same degree in the anonymous graph, then he has re-identified this
vertex. That is, deg(vi ) �= deg(v j ) ∀ j �= i . This model is called k-degree anonymity [24],
and these methods are based on modifying the graph structure (by edge modifications) to
ensure that all vertices satisfy k-anonymity for their degree. In otherwords, themain objective
is that all vertices have at least k − 1 other vertices sharing the same degree. Furthermore,
Liu and Terzi [24] developed a method based on dynamic programming and edge switch in
order to construct a new k-degree anonymous graph, where V = ˜V and E ∩ ˜E ≈ E . Their

1 The source code for the paper is available at: https://jcasasr.wordpress.com/software/dga/.
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work inspired many other authors who proposed improved solutions based on different kinds
of heuristics, such as [7,11,20,27].

Instead of using the vertex degree, Zhou and Pei [38] consider the 1-neighborhood
subgraph of the objective vertices (Γ (v)) as a quasi-identifier. For a vertex v0 ∈ V , v0
is k-anonymous in G if there are at least k − 1 other vertices v1, . . . , vk−1 ∈ V such
that Γ (v0), Γ (v1), . . . , Γ (vk−1) are isomorphic. They demonstrated that the neighborhood
anonymity problem for vertex-labeled graphs is NP-hard. Other authors modeled more com-
plex adversary knowledge and used them as quasi-identifiers. For instance, Hay et al. [22]
proposed a method called k-candidate anonymity, where a vertex v0 is k-candidate anony-
mous with respect to question Q if there are at least k −1 other vertices in the graph with the
same answer. Formally, |candQ(v0)| ≥ k where candQ(v0) = {v j ∈ V : Q(v0) = Q(v j )}.
A graph is k-candidate anonymous with respect to question Q if all of its vertices are k-
candidate with respect to Q. Zhou et al. [40] and Zhou and Pei [39] considered all structural
information about a target vertex as quasi-identifier and proposed a new model called k-
automorphism to anonymize a network and ensure privacy against this attack. They define
a k-automorphic graph as follows: (a) if there exist k − 1 automorphic functions Fa(a =
1, . . . , k − 1) in G, and (b) for each vertex vi in G, Fa1(vi ) �= Fa2(1 ≤ a1 �= a2 ≤ k − 1),
then G is called a k-automorphic graph.

Rossi et al. [31] studied the problem of k-degree anonymization on time-varying (and
multilayer) graphs. Let G = {G1, . . . ,GT } be a time-varying graph with a fixed set of
vertices V , where |V | = n. In other words, G is defined as a sequence of undirected graphs
Gt = (V , ET ), t = 1, . . . , T , where Et denotes the set of edges at time t . Also, let D = {dit }
be the n×T degree matrix, where dit is the degree of the i-th node of Gt . We say that matrix
D is a set of k-anonymous vectors, if for every row di : there are at least k − 1 vectors d j :
such that dit = d jt , for each t = 1 . . . , T . Then, a time-varying graph G is defined to be
k-degree anonymous, if the degree D defines a set of k-anonymous vectors. Similar to the
work of Liu and Terzi [24], the authors of [31] propose a three-step approach where firstly
they enforce anonymity, then enforce realizability, and finally construct the graph. However,
their realizability constraints are only for undirected graphs.

All the aforementioned methods work only with simple and undirected graphs, and it
is not straightforward to extend those methods to directed networks. The naïve approach
to convert digraphs to undirected graphs, anonymize them and finally transform back to
directed graphs, causes severe perturbations to the graph’s structure. We will provide an
empirical example of such approach in Sect. 6. Other works focus on the problem of edge-
weight anonymization, e.g., [14] aims at anonymizing the weights of a graph with the aim of
preserving the utility for algorithms such as the minimum spanning tree—thus, emphasizes
at preserving the inequalities among the edge weights; Liu et al. [23] protects the weights
of the edges by adding Gaussian noise to them. To sum up, those methods preserve the
edge weights and not the amount of edge relations; hence, they cannot be adapted to degree
anonymity for directed networks. Alternatively, other types of privacy-preserving methods
can easily be extended to work with directed networks, such as randomization techniques
[18] or class-based generalization techniques [3,13].

However, [3,13] consider preventing an attacker from learning interactions between enti-
ties, which is equivalent to protecting against edge disclosure in bipartite graphs, that for
example may represent users and interactions, or costumers and products. The authors of
[18] aim at explicitly preserve the degrees of the nodes while randomizing the graphs. Thus,
even when adapted for directed graphs, those approaches may still be vulnerable to attacks
based on the degrees.

123



k-Degree anonymity on directed networks 1747

Therefore, in this paper, we are interested in proposing a k-anonymity model specifically
designed for directed networks and also to develop algorithms to protect user’s privacy with
guarantees of the k-degree anonymity model.

Related to the complexity of k-degree anonymization algorithms, Hartung et al. [21]
proved that the problem of degree anonymity (by only adding edges) is NP-hard on 3-
colorable graphs and on graphs with H -index three. Also, they proved that there is a
polynomial-time algorithm that transforms any instance of the degree anonymity problem
into an equivalent instance with at most O(Δ7) nodes. A similar result is obtained in [4]
for directed graphs, that is, a polynomial size problem kernel for the combined parameter
(s,ΔD), where ΔD denotes the maximum in- or out-degree of the input digraph D and s
is the number of edges to be added. We emphasize that both papers obtain solutions for the
original question of Liu and Terzi of obtaining a k-degree anonymous graph that contains
the original graph as subgraph, and are equivalent to generating graphs with specified degree
sequences and excluded graphs, as in [33]. While we argue that the original edges are to be
preserved as much as possible, we are aware that there are many cases where this is not pos-
sible. So, we propose an algorithm that tries to obtain k-degree anonymous directed graphs
by only adding edges until it is necessary to modify the original graph.

3 k-Anonymity models on directed networks

In this section, we define our models based on k-degree anonymity to preserve user’s privacy
on directed networks.

3.1 k-degree anonymity

The concept of k-degree anonymity was proposed by Liu and Terzi in [24] for undirected
networks, and it can be directly mapped to the degree sequence.

Definition 1 A vector of integers V is k-anonymous, if every distinct value vi ∈ V appears
at least k times.

Definition 2 An undirected network G = (V , E) is k-degree anonymous, if the degree
sequence of G is k-anonymous.

Let V andW correspond to the degree sequences of the input and anonymized graph, respec-
tively. The distance between twovectors of integersV = [v1, . . . , vn] andW = [w1, . . . , wn]
is defined by Eq. 1:

Δ(V ,W ) =
n

∑

i=1

|vi − wi |, (1)

where vi ∈ V , wi ∈ W and |V | = |W | = n. The lower the value of Δ, the lower the
information loss of the anonymized network.

3.2 k-degree anonymity for directed networks

Direct successors of vertex vi ∈ V , denoted by Γ +(vi ), are defined as the vertices at distance
1 from vi , i.e., all v j : (vi , v j ) ∈ A. The number of successors is defined as the vertex’s
out-degree, dout(vi ) = |Γ +(vi )|. Similarly, direct predecessors of vertex vi are all vertices
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Fig. 1 Toy example showing an anonymization process from the original graph to an Independent 2-degree,
Independent (1, 2)-degree and Paired 5-degree anonymous versions of the same network. a Original network,
b Independent 2-anonymous, c Independent (1, 2)-anonymous, d paired 5-degree anonymous

fromwhich vi can be reached at one hop. That is, Γ −1(vi ) = {v j : (v j , vi ) ∈ A} and vertex’s
in-degree is defined as din(vi ) = |Γ −1(vi )|. Therefore, a directed graph is associated with
two degree sequences: the in-degree sequence, din = {din(v1), . . . , din(vn)}, and the out-
degree sequence, dout = {dout(v1), . . . , dout(vn)}. Since each arc connects two vertices, it is
obvious that:

n
∑

i=1

din(vi ) =
n

∑

i=1

dout(vi ). (2)

It is important to note that, in the anonymization process, the same number of arcs have to
be added to both in-degree and out-degree, since each added arc implies adding value one to
in-degree and also to out-degree. Thus, anonymous in-degree and out-degree have to satisfy
Eq. 2.

Next, we propose two models to achieve different privacy levels according to the k-
anonymity model.

3.2.1 Independent (ki , ko)-degree anonymity

This model assumes that an adversary knows the in-degree or the out-degree of some target
vertices, but does not knows the in- and out-degree of the target vertices.

Definition 3 A directed network G = (V , A) is Independent (ki , ko)-degree anonymous if
the in-degree sequence of G is ki -anonymous and the out-degree sequence is ko-anonymous.

In the case that ki = ko = k, we simply call it Independent k-degree anonymity.

Definition 4 A directed network G = (V , A) is Independent k-degree anonymous if both
the in-degree and the out-degree sequences of G are k-anonymous.

Example 1 A toy example of Independent k-degree anonymity is shown in Fig. 1. The original
network, shown in Fig. 1a, contains 5 vertices and 6 arcs, and its degree sequences are
din = {2, 1, 2, 1, 0} and dout = {1, 2, 0, 1, 2}. Thus, adding just one arc from v3 to v5 is
enough to convert this network into a Independent 2-degree anonymous graph. Figure 1b
shows the anonymous network, which has din = {2, 1, 2, 1, 1} and dout = {1, 2, 1, 1, 2}.
Example 2 The graph represented in Fig. 1b is also (2, 2)-anonymous according to our defini-
tion. However, using thismodel we are able to create asymmetric privacy levels if we consider
that, for example, the out-degree of some target vertices can be the main knowledge of an
adversary and we want to protect our network accordingly. Figure 1c shows an Independent
(1, 2)-anonymous version of the graph, where din = {2, 1, 2, 1, 3} and dout = {1, 1, 2, 2, 1}.
Hence, it is possible to re-identify a user using in-degree information but it is not possible
using information related to out-degree of some target vertices.
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3.2.2 Paired k-degree anonymity

This model assumes that an adversary knows both the in-degree and the out-degree of some
target vertices. Obviously, this model gives us a higher privacy protection than the above
models, since it also protects users from an adversary who knows only the in- or out-degree
of some target vertices. We define the paired degree of a vertex as a pair of integer numbers,
where the first one is the in-degree of the vertex and the second one is the out-degree, that
is, (din(vi ), dout(vi )).

Definition 5 A directed network G = (V , A) is Paired k-degree anonymous if the paired
degree sequence of G is k anonymous, i.e., for each pair (a, b) representing the in-degree
and the out-degree of a vertex, there exist at least k − 1 other pairs with the same values.

Notice that, a Paired k-degree anonymous graph is always an Independent (k, k)-degree
anonymous one, but not vice versa. Thus, Paired k-degree anonymity is stronger than Inde-
pendent (k, k)-degree anonymity.

Example 3 Figure 1d presents the Paired 5-degree anonymous version of our toy example.
Four arcs must be added to fulfill the properties of this model, and its degree sequences
are din = {2, 2, 2, 2, 2} and dout = {2, 2, 2, 2, 2}. It is interesting to see that this network
is also Independent (5, 5)-degree anonymous. Moreover, the network depicted in Fig. 1c
is Independent (2, 2)-anonymous, but it is not Paired 2-anonymous. Actually, it is Paired
1-anonymous.

4 Anonymization of directed graphs

In this section, we present the DGA (directed graph anonymization) algorithm, designed
to preserve user’s privacy on directed and unlabeled networks according to the proposed
anonymization models. We use the concept of k-degree anonymity to anonymize users’ rela-
tionship, performing modifications only on the edge set, so as to generate a new anonymous
graph Gk = (V , A ∪ Ak), where Gk is k-degree anonymous and |Ak | is minimized.

Our approach to anonymize a directed graph relies on Definition 2. Thus, we anonymize
both the in-degree and the out-degree sequences of G = (V , A) by edge addition in order
to meet the k-degree anonymity for a directed graph. Our approach is based on two steps
(similar to the one in [24]):

1. Anonymization of degree sequences. We construct a k-degree anonymous sequence dkin =
{dkin(v1), . . . , dkin(vn)} from the in-degree sequence din = {din(v1), . . . , din(vn)} of the
original graph using Definition 1. The same process is applied to obtain an anonymized
version of the out-degree sequence, dkout.

2. Adding fake arcs. The second step adds fake arcs between vertices tomeet the anonymized
in-degree (dkin) and out-degree (dkout), achieving a k-degree anonymous directed graph
Gk = (V , A ∪ Ak), where |Ak | is minimized.

4.1 Step I: Anonymization of degree sequences

This step provides the anonymity level through the in- and out-degree sequences. Therefore,
we develop two different strategies according to the privacy models we have introduced
previously. First, we present the algorithm for Independent (ki , ko)-degree anonymity, and
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later we propose a second approach for achieving Paired k-degree anonymity. Last but not
least, we detail a post-processing method that needs to be applied when Eq. 2 is not satisfied
after the anonymization of degree sequences.

4.1.1 Independent (ki , ko)-degree anonymity

We refer to (ki , ko)-DGA when Independent (ki , ko)-degree is considered. The same process
is applied both to in-degree (din) and out-degree (dout) sequences; therefore, we will detail
the process on a general degree sequence (d). The objective of this step is to anonymize
the degree sequence of the original network, d . Optimal univariate micro-aggregation by
Hansen and Mukherjee [19] is used to achieve the best group distribution for both in-degree
and out-degree sequences and then we compute the values for each group that minimize
the distance from the original degree sequences by Eq. 1. We choose such algorithm with
complexity O(k2n) for its flexibility; by changing only one parameter, it can compute the
optimal k-anonymous degree sequences for different metrics such as euclidean, linear, or
any function of the nodes in the k-groups—contrary to Clarkson et al.’s algorithm [12] that
has complexity O(n) but is specifically tailored for taking the maximum on the k-groups.
Moreover, we implement it with the improvements proposed by [34], which greatly reduce
the execution time. Note that, the degree sequence anonymization is the less expensive part,
as shown in Table 5.

Our approach starts by applying a permutation f to the degree sequence to reorder the
elements. We refer to the ordered degree sequence as a monotonic, non-decreasing sequence
of the vertex’ degrees, that is d(vi ) ≤ d(v j ) ∀i < j . Let k be an integer such that 1 ≤ k < n
which is the k-degree anonymity value, i.e., ki in case of in-degree and ko otherwise. Typically,
k is much smaller than n. In order to apply the optimal univariate micro-aggregation and
according to [19], we construct a new directed network Hk,n and get the optimal partition
which is exactly the set of groups that corresponds to the arcs of the shortest path from vertex
0 to vertex n on this graph. We denote by g = {g1, . . . , gp} the optimal partition, where

n
2k−1 ≤ p ≤ n

k , and each of them has between k and 2k − 1 items. Obviously, each di ∈ d
belongs to a specific group g j ∈ g. Since our approach relies only on edge addition to modify
the graph structure, we have to increase or keep the same degree values, but not to decrease
any of them which would be equivalent to an edge removal. Therefore, the optimal partition
corresponds to increasing the value of each vertex’s degree up to the maximum value of its
group, i.e., di = max(dq) ∀di , dq ∈ g j . The cost of the shortest path on Hk,n denotes the
number of added arcs that is needed in order to meet the k-anonymity value.

4.1.2 Paired k-degree anonymity

We refer to k-DGA when Paired k-degree is considered. In this model, we need to consider
simultaneously both the in- and out-degree of each vertex. Thus, each pair (din(vi ), dout(vi ))
represents the in-degree and the out-degree of a vertex vi . According to Definition 5, we
must find the optimal partition in this 2-dimensional space. The decision problem of finding
a paired k-degree anonymous sequence by adding exactly s edges (referred to as theNumbers
Only Digraph Degree Anonymity problem) was proven to be NP-hard (Ref. [5], Theorem
23). Hence, we use multivariate micro-aggregation to find quasi-optimal partitions in a rea-
sonable time; specifically, we have applied the MDAV algorithm [15,16]. Similarly to the
aforementioned method, the optimal partition corresponds to increasing the pair values of
each vertex’s degree up to the maximum pair values of its group.
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4.1.3 Degree sequences post-processing

It is important to note that the same number of arcs needs to be added to the in-degree and
out-degree sequences, since each new arc implies adding value one to both the in-degree and
out-degree sequence. Consequently, anonymous in-degree and out-degree sequences have to
satisfy Eq. 2.

We denote as ηin the number of added arcs on the in-degree and by ηout the number of
added arcs on the out-degree sequence, for a given k-degree anonymization of a directed graph
G. If ηin �= ηout, our anonymous degree sequences do not satisfy Eq. 2, which is required
for directed graphs. Hence, the minimum number of arcs we must add to the original graph
is at least max{ηin, ηout}, if we consider that ηin, ηout are the number of edges needed in an
optimal micro-aggregation for the in-/out-degree sequences, respectively. Hence, if we get a
k-degree anonymous sequence with max(ηin, ηout) edges, then we know that it is optimal.

Let Sin and Sout be the optimal in- and out-degree sequence partition obtained after apply-
ing the micro-aggregation algorithms, where Sin = ∪p

i=1s
i
in and Sout = ∪q

i=1s
i
out. Note that

the number of partitions does not have to be equal (p �= q). Also, it is important to note
that the minimal edge addition to fulfill Eq. 2 is represented by finding the minimal values
to solve:

p
∑

i=1

ciin + αi × |siin| =
q

∑

i=1

ciout + βi × |siout|, (3)

where ciin and ciout represents the number of added edges at partition i computed by Eq. 4,
αi , βi ≥ 0 and αi , βi ∈ N:

ciin =
∑

|v j − Δi | : v j ∈ siin, (4)

where Δi = max{deg(v j ) : v j ∈ siin}. In order to simplify the equation and the calculations,
we consider only the different sizes of siin and s

i
out,which are denoted byai andbi , respectively.

We will denote
∑p

i=1 c
i
in −∑q

i=1 c
i
out as R. Then, we can obtain the following equation from

Eq. 3:
p′

∑

i=1

αi ai + R =
q ′

∑

i=1

βi bi , (5)

where p′ < p and q ′ < q , since we are taking out the repeated values of |siin| and |siout|. For
the same reason, the values of αi , βi in Eq. 5 are different from the values in Eq. 3.

Recall that in optimal micro-aggregation, k ≤ |siin|, |siout| ≤ 2k −1 for all i ≤ max(p, q).
Hence, k ≤ ai , bi ≤ 2k − 1 for all i ≤ max{p′, q ′}. If we assume that βi0 �= 0 for a given
i0, then we obtain the equation:

p′
∑

i=1

αi ai + R −
∑

i �=i0

βi bi = βi0bi0 (6)

Therefore, a solution can be obtained by solving the following equation:

p′
∑

i=1

αi ai + R −
∑

i �=i0

βi bi ≡ 0 (mod bi0) (7)

Now, since we are working with congruences (mod bi0 ) we can consider the coefficients
αi , βi to be less than bi0 , which gives a large reduction of our search space for the solutions.
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vi vj

vi vj

vk vp

vi

vk vp

(a) (b) (c)

Fig. 2 Illustration of edge addition, switch and extension processes. Solid lines represent new edges to be
added and dashed lines existing edges to be deleted. Vertex color indicates whether a vertex changes its degree
(dark gray) or not (light gray) after the edge modification has been carried out. a Edge addition, b edge switch,
c edge extension

In the worst case, we can obtain a solution by brute force, considering all the combinations
of αi , βi ≤ bi0 which would be a search in O(kk), since bi0 ≤ 2k. Moreover, in practice we
can find solutions to Eq. 7 much faster. In all the sequences, we have studied, αi = 0 for all
i . While, for some i1 �= i0 and βi1 the congruence R − βi1bi1 ≡ 0 (mod bi0) was verified, so
it is enough in most cases to consider only one variable i1 �= i0.

4.2 Step II: Graphmodification

As mentioned earlier, our algorithm is based on adding fake arcs. Other methods anonymize
the graph’s structure by adding and removing arcs, instead of additions only. In our approach,
we consider keeping arcs of the original network, since true relations between users can be
important for clustering or other graph-mining tasks. The authors of [9] empirically proved
that edge addition is the best method to keep graph’s properties when perturbing scale-free
networks, which constitute the most common type of real-world networks.

Oncewe have computed the k-degree anonymous in-degree and out-degree sequences, our
approach computes the vector of differences between the original and anonymous sequences.
That is, δin = dkin − din and δout = dkout − dout. Each vector clearly shows which vertices
have to increase their in-degree (δin) and out-degree (δout). For each of them, we use three
edge modification processes to increase the in- and out-degree of vertices in δin and δout,
respectively, which are the following:

1. Edge addition randomly chooses a combination of vertices which satisfies (vi , v j ) /∈ A,
where vi ∈ δout : δout(vi ) > 0 and v j ∈ δin : δin(v j ) > 0. The out-degree of vertex vi
and the in-degree of v j both increase, as shown in Fig. 2a.

2. Edge switch occurs between four vertices vi , v j , vk, vp ∈ V where (vi , v j ), (vk, vp) ∈
A and (vi , vp), (vk, v j ) /∈ A. It is defined by deleting arc (vk, vp) and adding new arcs
(vi , vp) and (vk, v j ), as Fig. 2b illustrates. Note that, the out-degree of vertex vi and the
in-degree of vertex v j will increase by 1, while other vertices’ degree will remain the
same.

3. Edge extension exists between three vertices vi , vk, vp ∈ V , where (vk, vp) ∈ A and
(vk, vi ), (vi , vp) /∈ A. Arc (vk, vp) is deleted and new arcs (vk, vi ) and (vi , vp) are
created, as Fig. 2c illustrates. Note that the in- and out-degree of vertex vi increases,
while auxiliary vertices’ degree remains the same.

The process is described in Algorithm 1. For each vertex vi ∈ δout, the algorithm finds
v j ∈ δin and adds an arc between them. Due to the edge sparsity of real networks, this
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Fig. 3 Order for adding edges may be relevant. a Original graph, b adding (v1, v4) and (v2, v5), c adding
(v1, v6), (v2, v4) and (v3, v5)

process is possible in several cases. However, in some cases it is not possible to create a
fake edge as described previously. Then, we propose to use edge switch or edge extension to
alter graph’s structure to fulfill the anonymous degree sequences. It may be the case that the
order of adding edges may be relevant, as in Fig. 3. Suppose that the anonymous sequence
should be δout = (2, 2, 3) and δin = (2, 2, 3), and the algorithm added the edges (v1, v4)

and (v2, v5) first, as in (b). In this case, it will not be possible to apply any of our three edge
modification processes to add one to the degrees of nodes v3 and v6; however, by adding the
correct edges the sequence could have been obtained with our edge modification processes,
as in (c). Notice that, we have never encountered such situation in our experiments possibly
because of the sparsity of social networks, and due to the fact that our algorithms choose the
added edges at random—arriving at such situation that no possible edge can be added, will
only require to rerun the algorithm to avoid it.

5 Experimental framework

In this section, we will describe the experimental framework we have used to analyze and
compare the information loss induced by our anonymization methods. For each dataset, we
compute the Paired and Independent k-degree anonymous networks considering different
values of k in the range [1, 10]. Notice that, k = 1 corresponds to the original network.
Independent (ki , ko)-degree anonymous networks are evaluated in the range of ki ∈ [1, 10]
and ko ∈ [1, 10]; this implies a total of 100 anonymous networks for each dataset.

5.1 Description of network datasets

We have used five standard and well-known real networks to test our methods: (1) Polblogs
[1], a network of hyperlinks between weblogs on US politics; (2) UC- Irvine [28], which
contains messages sent between the users of an online community of students from the
University of California, Irvine; (3) Wiki- vote [26] (Wikipedia vote network) contains all
theWikipedia voting data from the inception ofWikipedia till January 2008, where vertices in
the network represent wikipedia users and a directed edge from node vi to node v j represents
that user i voted on user j ; (4) DBLP- cite [25] is the citation network of DBLP, a database
of scientific publications such as papers and books, where each vertex is a publication and
each edge represents a citation of a publication by another publication; and (5) Epinions [30]
is a who-trust-whom online social network of a general consumer review site Epinions.com,
where members of the site can decide whether to “trust” each other. We have selected these
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Function graph_modification_process
Input: δin, δout, V and A
Output: Anonymized arc set (˜A).

for vi : δout(vi ) > 0 do
if ! edge_addition (vi ) then

for v j : δin(v j ) > 0 do
if (vi , v j ) ∈ A then

edge_switch (vi , v j )
else

edge_extension (vi )
end

end
end

end
return ˜A

end

Function edge_addition(vi)
for v j : δin(v j ) > 0 do

if (vi , v j ) /∈ A then
create (vi , v j )
return true

end
end
return false

end
Function edge_switch(vi , v j)

find vk , vp : (vk , vp) ∈ A and (vk , v j ), (vi , vp) /∈ A
delete (vk , vp)
create (vi , vp) and (vk , v j )
return true

end
Function edge_extension(vi)

find vk , vp : (vk , vp) ∈ A and (vk , vi ), (vi , vp) /∈ A
delete (vk , vp)
create (vk , vi ) and (vi , vp)
return true

end
Algorithm 1: Edge modification process.

datasets because they have diverse statistics and properties, as shown in Table 1. We have
removed loops and multiple edges from all analyzed networks.

5.2 Information loss evaluation

In this part, we describe the criteria that are used to quantify the information loss that is
introduced by our anonymization models. Following the approach presented in [8], we use
diverse structural measures which are strongly or moderately correlated with clustering-
specific processes. We claim that, by choosing those measures, our results will be applicable
not only to graph’s properties but also to clustering and community detection processes. The
first graph structural measure is the average distance (dist), which is defined as the average
of the distances between each pair of vertices in the graph. Diameter (d) is defined as the
largest minimum distance between two vertices in the graph, and edge intersection is the
percentage of original arcs which are also present in the perturbed version of the graph, i.e.,

E I (G, ˜G) = |A∩˜A|
max(|A|,|˜A|) . The above measures evaluate the entire graph as a unique score.
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Table 1 Datasets used in this
study

Dataset n m deg dist d

Polblogs 1490 19,022 25.53 3.39 9

UC- Irvine 1899 20,296 21.37 3.19 8

Wiki- vote 7115 103,689 29.14 3.34 10

DBLP- cite 12,591 49,728 7.89 5.42 20

Epinions 75,879 508,837 13.41 4.75 16

For each network, we present the number of vertices (n), number of
edges (m), average degree (deg), average distance (dist) and diameter
(d)

We compute the error on these graph metrics as follows:

εm(G, ˜G) = |m(G) − m(˜G)| (8)

where m is one of the graph metrics defined above, G is the original graph, and ˜G is the
k-anonymous graph.

The following metrics evaluate specific structural properties for each vertex of the graph:
the first one is betweenness centrality (CB ), which measures the fraction of the shortest paths
that go through each vertex. The second one is closeness centrality (CC ), and it measures
how many steps are required to access every other vertex from a given vertex. We refer to
C−
C when the in-degree is considered and C+

C in case of considering the out-degree. Finally,
we use the degree centrality (CD), which evaluates the centrality of each vertex based on its
degree, i.e., the fraction of vertices connected to it. Similarly, C−

D refers to in-degree and C+
D

to the out-degree of each vertex. We compute the error on vertex metrics by:

εm(G, ˜G) =
√

1

n

(

(g1 − g̃1)2 + · · · + (gn − g̃n)2
)

, (9)

where gi and g̃i are the values of the metric m for vertex vi of G and vi of ˜G, respectively.

5.3 Clustering-specific evaluation

Variations in the generic graph properties are a good way to assess the information loss,
but they have their limitations because they are just a proxy for the changes in data utility
we actually want to measure. We define the specific information loss measures as a task-
specific measure for quantifying the data utility and the information loss associated to a
data publishing process. We focus on clustering-specific processes, due to their importance
in networks arising from diverse applications, including social, biological and healthcare
networks. Similar to generic graph measures, we compare the results obtained both by the
original and the perturbed data in order to quantify the level of noise introduced in the
perturbed data. This measure is specific and application-dependent, but it is necessary to test
the perturbed data in real graph-mining processes.

We consider the following approach to measure the clustering assessment for a particular
perturbation and clustering method: (1) apply our k-degree anonymity algorithms to the orig-
inal graphG and obtain ˜G; (2) apply a particular clustering method c toG and obtain clusters
c(G) and then apply the same method to ˜G to obtain c(˜G); (3) compare the clusters c(G)

to c(˜G) as shown in Fig. 4. With respect to information loss, it is clear that the more similar
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G G

Original
clusters
c(G)

Precision
index

Perturbed
clusters
c(G)

Anonymization
process p

Clustering
method c

Clustering
method c

Fig. 4 Framework for evaluating the clustering-specific information loss measure

c(˜G) is to c(G), we have the less information loss. Thus, clustering-specific information loss
measures should evaluate the divergence between both sets of clusters c(G) and c(˜G).

Ideally, the results should be the same, that is, the same number of sets (i.e., clusters)
with the same elements in each set. In this case, we can say that the anonymization process
has not affected the clustering process. When the sets do not match, we should be able to
calculate ameasure of divergence. For this purpose, we use the precision index [6]. Assuming
that we know the true communities of a graph, the precision index can directly be used to
evaluate the similarity between two cluster assignments. Given a graph of n nodes and q true
communities, we assign to nodes the same labels ltc(·) as the community they belong to.
In our case, the true communities are the ones assigned on the original dataset (i.e., c(G)),
since we want to obtain communities as close as the ones we would get on non-anonymized
data—we are not interested in the ground truth communities. Assuming that the perturbed
graph has been divided into clusters (i.e., c(˜G)), then for every cluster, we examine all the
nodes within it and assign to them as predicted label l pc(·) the most frequent true label in
that cluster (basically the mode). Then, the precision index can be defined as follows:

precision(G, ˜G) = 1

n

n
∑

i=1

δltc(vi ),l pc(vi ), (10)

where δ is the Kronecker delta function, i.e., δx,y equals 1 if x = y and 0 otherwise. Note
that the precision index is a value in the range [0, 1], which takes the value 0 when there is
no overlap between the sets and the value 1 when the overlap between the sets is complete.

We have considered two different graph clustering algorithms to evaluate the anonymiza-
tion process. Both them are unsupervised algorithms based on different concepts and
developed for different applications and scopes. The selected clustering algorithms are: (1)
Infomap [32] that optimizes the map equation, which exploits the information-theoretic dual-
ity between the problem of data compression and the one of detecting significant structures
in the graph; and (2)Walktrap [29] that finds densely connected subgraphs via randomwalks.

6 Information loss and data utility

In this section, we present the results of our anonymization techniques in terms of data
utility and information loss. Generic information loss measures, which are based on several
graph’s properties, will be described in the next section, while information loss regarding
clustering-specific graph-mining tasks will be analyzed in subsequent section.
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6.1 Generic information loss evaluation

In this subsection, we compare the results of anonymizing several networks using our models
and algorithms for k-degree anonymity on directed networks. Specifically, we will use DGA
for Paired and Independent k-degree anonymity. We apply both algorithms on the same data
with the same parameters and compare the results in terms of information loss and data utility.
It is important to note that the privacy level achieved for both algorithms is similar, but not
the same. As we have discussed previously, Paired k-degree anonymity is a stronger model
than the one of Independent k-degree anonymity. However, the former or the latter method
could be of interest depending on the dataset and the application scenario. Unfortunately, we
cannot compare our methods to other k-degree anonymity algorithms, due to the fact that our
work is the first that considers k-degree anonymity models specifically designed for directed
networks.

Firstly, an in-depth analysis of generic information loss measures onDBLP- cite network
will be performed. We propose a detailed study of how generic information loss measures
evolves during the anonymization process. Then, we present the same analysis on the other
four networks, but skipping details due to the space constraints.

The results are shown in Table 2. Each row indicates the scored value for the corresponding
measure and method, and each column corresponds to an experiment with a different k-
anonymity value. For each dataset and method, we vary k from 1 to 10 (k=1 corresponds to
the original dataset) and compare the results obtained on E I , E A, dist , d , CB , C

−
C , C

+
C , C

−
D

and C+
D . The last column corresponds to the average error εm . Each characteristic is reported

two times, corresponding to Paired and Independent k-degree anonymity. Clearly, the lower
the information loss, the better the method. Perfect performance in a row would be indicated
by achieving exactly the same score as in the original network (the k=1 column). Although
deviation is undesirable, it is inevitable due to the edgemodification process. Complementary
information is introduced in Fig. 5, where we can see graphical details about the behavior
of different models during anonymization process (those are the same values that we have
reported in Table 2). Additionally, information regarding degree distribution is provided in
Fig. 5a, where several nodes do not fulfill k-degree anonymity both on in- and out-degree.

The first two rows in Table 2 correspond to edge intersection and edge addition. Edge
intersection is the percentage of edges on the anonymous networks which are also present
in the original network. Figure 5b shows that this metric is linear on the k value on both
methods. It is important to underline that more than 90% of the arcs in ˜A are also present
in A. The next metric is closely related to this one, and the behavior is similar, as depicted
in Fig. 5c. Edge addition indicates the number of arcs added to anonymize the network. The
difference between these metrics rely on the edge switch and edge extension operations,
which can modify some arcs to fulfill the anonymous degree sequences. We note that usually
the number of arcs added by Independent k-degree is half the number of Paired k-degree.
Average distance is pointed out in the third row. The value of the original network (denoted by
k = 1) is 5.427. Thus, values close to this one indicate low information loss. Although both
methods achieve good results, values of Independent k-degree anonymity remain closer to
the original one over all anonymization range than values of Paired k-degree, as can be seen
in Fig. 5d. Indeed, the average error computed over all range is 0.996 for Paired k-degree and
0.439 for Independent k-degree. A similar behavior can be seen within the second metric,
diameter (see Fig. 5e).

The centrality measures are computed by Eq. 9, as described previously. Therefore, the
values in Table 2 are 0 for the original network, i.e., k=1. Clearly, the lower the value, the
better the performance of the corresponding method. Betweenness centrality is an important
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Fig. 5 Generic and clustering information loss evaluation on Paired k and Independent k-degree anonymity
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measure for some clustering and community detection algorithms. We remark that the error
remains almost stable for values of k ≥ 3, as can be seen in Fig. 5j. Figure 5f, g depict
the in- and out-degree closeness centrality, respectively. We can observe that these values
remain low, except from the out-degree values of Paired k-degree anonymity which present
slightly high values. Finally, the in- and out-degree centrality measures, which are depicted
in Fig. 5h, i, indicate very similar values and behavior, independently of the method used
to anonymize the network. We should note here that the results shown in Fig. 5 and Table
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2 correspond to a single run of the proposed models. As we can observe, some data utility
criteria are not monotonous with respect to the anonymization level k. For example, in Fig.
5e, the diameter of the graph presents a spike at k = 8, which turns out to be an effect of the
edge modification process (edge switch and edge extension).

Table 3 presents the same analysis on the other tested networks. However, due to space
constraints, only the average error (last column of Table 2) is pointed out for each metric,
method and network. Polblogs is a medium size network with some important hubs. Hence,
anonymization process is harder than other networks, adding an average of 19% of total arcs
to fulfill Paired k-degree anonymity. When Independent K -degree is considered, less than
5% of arcs have to be added. Nonetheless, the average distance and diameter show relatively
small distortion after the anonymization process. On the contrary, Epinions is our largest
network and the results are very encouraging. Less than 6% of the total number of arcs need
to be added to fulfill Paired k-degree anonymity. The same value reduces to less than 2%
in case of Independent k-degree anonymity. Moreover, the average distance and diameter
show very small perturbation. Indeed, there is no perturbation in diameter using Independent
k-degree anonymity.

In the previous paragraph, we have considered and compared Independent k-degree when
k = ki = ko. This is an specific case, but also the most probable, interesting and useful
one. Nevertheless, we want to analyze the general case, i.e., Independent (ki , ko)-degree
anonymity where ki �= ko. In the following experiments, we will consider all possible com-
binations of ki , ko ∈ [1, . . . , 10] on Polblogs, which implies 100 anonymous datasets. Note
that, 10 of these datasets are the same in Independent k-degree anonymity.

Results of Independent (ki , ko)-degree anonymity are depicted in Table 3 (third row) and
in Fig. 6. As it can be seen, the average error of Independent (ki , ko)-degree anonymity on
generic information loss measures remains higher than Independent k but lower than Paired
k. It is interesting to underline that the number of edges added when ki ≈ 10 or ko ≈ 10 is
very similar to the one when ki , ko ≈ 10, but the privacy level is not. Indeed, the best ratio
between number of arcs added and privacy level is achieved when ki = ko, as can be seen in
Fig. 6a. The average distance (Fig. 6b) also shows that the error is greater when considering
very different values of ki and ko.

Finally, we have considered a baseline comparison to our methods. It is a naïve approach
based on converting the digraphs to undirected graphs, applying a k-degree anonymity algo-
rithm (with k in the same range as the other methods) and transforming again to directed
graphs to make the comparison fair. For this analysis, we have used the UMGA algorithm
[10], which demonstrated to preserve data utility better than other k-degree-based methods.

We named this method Undirected k-degree anonymity (U-k), and its results are depicted
in Table 3 (fourth row). It is important to underline that the privacy level achieved is the same
as in the Paired k-degree anonymity, since the in- and out-degree of the anonymous graphs
are the same. However, the error values are higher than the ones for Paired k on all metrics,
except the diameter.

6.2 Clustering information loss evaluation

As we have stated previously, clustering-specific information loss measures are important
to consider data utility and information loss on real graph-mining processes. Even though
the generic information loss measures are a good way to assess the data utility, specific
information loss measures can help us to quantify data utility and information loss associated
to a data publishing process. The last two rows in Table 2 and the last two columns in Table
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Fig. 6 Independent (ki , ko)-degree anonymity on Polblogs dataset. a Degree distribution, a E A, b dist , c
Infomap, d Walktrap

3 present the precision index computed using the Infomap and Walktrap algorithms. As we
have previously commented, the precision index takes the value of zero when there is no
overlap between the sets and the value of one when the overlap between the sets is complete.

Analyzing our in-depth experiment on the DBLP- cite network, we can point out that
more than 94 (Paired k) and 97% (Independent k) are correctly clustered using Infomap after
k = 10 anonymization process, as shown in Fig. 5k. Precision index average values are 0.97
and 0.985, respectively. Similar results can be seen for our other tested networks in Table 3.
Precision index on Independent (ki , ko)-degree anonymity on Infomap is shown in Fig. 6c.
As in the previous experiments, Infomap seems to be more stable and less sensitive to data
perturbation. The average precision index keeps close to 90% well-classified vertices using
both clustering algorithms. These results allow us to claim that data utility is preserved using
our methods to anonymize directed networks.

Lastly, it is interesting to point out that the precision index achieved using an undirected
k-degree approach (U-k) is far worse than the methods specifically developed to deal with
directed networks when considering the clustering-specific information loss.

Summarizing the results, it is interesting to stress out that both methods achieve good
results on generic and clustering-specific information loss measures. Specifically, Indepen-
dent k-degree anonymity gets the lowest average error on all analyzed metrics and datasets
and the highest precision index values on all clustering algorithms. It is also important to

123



k-Degree anonymity on directed networks 1763

Function graph_partition_process
Input: (δin, δout), threshold = s
Output: Partition C
Apply k-means clustering to obtain clusters C = C1, . . . ,Cm0

while |Ci | > s for some Ci ∈ C do
for C1 : |C1| = max{|Ci | : Ci ∈ C} do

Apply k-means clustering to obtain clusters C1 = C11, . . . ,C1m1

Update C = (C \ C1) ∪ C1
end

end
return C

end

Function MDAV_parallel
Input: Partition C
Output: Anonymized sequence (δkin, δ

k
out) = P

for Ci ∈ C do
Apply MDAV to obtain k-anonymous subsequences Pi for each Ci

end
return P = ∪Pi

end
Algorithm 2: Scalable Paired k-degree anonymity

underline that although Paired k-degree anonymity imposes the strongest privacy levels, it
achieves very good results on all analyzed metrics.

7 Performance and scalability

In this section, we aim to improve the scalability of the proposed methods toward being
able to anonymize large-scale directed networks. To this direction, we have applied two
preprocessing techniques for obtaining the k-anonymous degree sequences. The first one,
which is tailored for the Independent (ki , ko)-degree anonymity model, is based on a lossless
representation of the degree sequences din, dout with a considerable reduction in size [34].

For the case of Paired k-degree anonymity, since the micro-aggregation technique is not
scalable (e.g., the MDAV algorithm has time complexity proportional to O(n2)), we have
applied k-means as a partitioning method (preprocessing step of O(n) complexity). In partic-
ular, we have used Lloyd’s algorithm in a hierarchical way to obtain partitions of manageable
size.

More precisely, we start by applying k-means to obtain a partition for the entire dataset.
If the parts are not small enough (smaller than a threshold s), we further apply k-means on
each of them, until we satisfy the required threshold. Notice that our solution could have been
executed in parallel, yielding an even faster algorithm in practice. The method is presented
in Algorithm 2.

In order to examine the scalability of our methods, we have used two large-scale real
networks. The first one is theDBLP- 2006,2 which corresponds to the co-authorship network
of the DBLP computer science bibliography in 2006. The second one, Pokec [37], is the
most popular online social network in Slovakia. Table 4 provides the main properties of these
networks. All the experiments reported in this section have been performed on a 4 CPU Intel
Xeon X3430 at 2.40GHz with 32GB RAM, running Debian GNU/Linux.

2 DBLP Bibliography Server: http://dblp.uni-trier.de/xml/.
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Table 4 Large datasets used to
test the scalability of our methods

Dataset n m (ki , ko) k

DBLP- 2006 484,161 1,422,263 (1,1) 1

Pokec 1,632,803 30,622,564 (1,1) 1

For each network, we present the number of vertices (n), number of
edges (m), independent (ki , ko)-degree anonymity and paired k-degree
anonymity

Table 5 Results for Paired k (P-k) and Independent k (I-k) degree anonymity for k ∈ {10, 20, 50, 100}
Network Model Deg. seq. anon. Graph modification

Meth. k Time (s) Arcs Add Switch Extend Time (s)

DBLP- 2006 P-k 10 13 18,107 18,106 1 0 15

20 15 33,915 33,915 0 0 44

50 105 70,365 70,286 68 11 118

100 457 130,447 130,417 10 20 326

I-k 10 81 1143 956 187 0 12

20 65 2885 2346 539 0 30

50 48 8053 6769 1284 0 118

100 39 18,485 14,971 3514 0 298

Pokec P-k 10 503 265,095 230,875 31,675 2545 44,502

20 357 623,930 477,875 138,646 7409 142,926

50 400 1,145,660 889,369 243,467 12,824 246,668

100 456 1,861,159 1,444,475 396,106 20,578 323,473

I-k 10 60 95,281 53,659 39,209 2413 47,307

20 73 222,653 54,731 166,545 1377 72,807

50 604 618,259 233,867 383,892 500 141,137

100 1880 1,281,275 517,036 763,910 329 274,976

For each dataset, method and k value, we present the main values for each step of our method: computation
time (in s) and number of new arcs for degree sequence anonymization; and number of edge addition, edge
switch and edge extension, and computation time (in s) for graph modification process

Table 5 depicts the results of the scalability experiments. For each network and method,
we have considered values of k ∈ {10, 20, 50, 100}. As a summary of the first step of our
method, we provide the computation time (in secs.) and the number of new arcs that is
needed to create a k-degree anonymous sequence. Regarding the second step of our method,
we report the computation time, as well as the number of edge addition, switch and extension
that is performed.

As it can be seen in Table 5, the computation time of degree sequence anonymization (step
1) is negligible compared to the one of graph modification process (step 2). Consequently,
the Paired k model is more time-consuming compared to the Independent k model, mainly
due to the fact that the Paired k involves the insertion of more new edges in order to reach
the desired privacy level. Figure 7a also shows that the total running time grows linearly with
respect to the value of k. Additionally, the number of arcs that need to be added also grows
linearly with the value of k, as shown in Fig. 7b. Finally, as depicted in Fig. 7c, the number
of edge additions, swaps and extensions grows proportionally while the value of k increases.
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Fig. 7 Details of our experiments on Pokec network. The horizontal axis represents the k-degree anonymity
value. a Computation time, b new arcs, c detail of new arcs

However, the computation time needed by the Paired and Independent k anonymitymodels
is quite similar in the DBLP-2006 graph. Although the number of arcs that need to be created
is much lower in the Independent k model, the number of edge switch operations is higher;
edge switches, along with edge extensions, are more time-consuming compared to edge
additions which are computationally easy to be performed.

Finally, regarding data utility and information loss, we underline that the preprocessing
technique on Independent (ki , ko)-degree anonymity model preserves the quality of the solu-
tion, as demonstrated by authors in [34]. On the contrary, the preprocessing technique on
Paired k-degree anonymity can slightly reduce the quality of the solution compared to the
case where no preprocessing step is applied. We measure this divergence as the number
of added extra arcs to the k-anonymous degree sequences, which is between 0.1 and 1.5%
according to our experiments on DBLP- 2006. Specifically, the values are 0.13%, 0.33%,
0.93% and 1.57% for k ∈ {10, 20, 50, 100}.

8 Conclusions

In this paper, we have defined two different k-degree anonymity models specifically designed
for directed networks. Furthermore, we have introduced different algorithms to achieve the
desired privacy levels, based on the proposed models. An empirical evaluation of these
models have been conducted on several real networks, comparing information loss based
on different graph properties and also on clustering-specific criteria. We have demonstrated
that our anonymization models aim to reduce information loss, while simultaneously retain
data utility. As we have seen throughout our experimental framework, the Independent k-
degree anonymity model demands fewer edge additions and switches in order to meet the
desired privacy level. Nevertheless, the Paired k-degree model gives good results in several
generic information loss measures and also achieves excellent precision index values in our
clustering-specific information loss framework. Furthermore, we have demonstrated that our
edge modification technique is scalable to large-scale networks.

Many interesting directions for future research have been uncovered by this work. Firstly,
a deeper analysis of the Independent (ki , ko)-degree anonymitymodel have to be performed in
order to better understand how these parameters can be used according to network’s specific
properties in order to achieve good privacy levels, while preserving the underlying graph
structure. Secondly, it would be thought-provoking to also consider edge deletion in order to
better preserve data utility. Moreover, other information loss measures based on real graph-
mining processes can be considered, such as information flow. Lastly, it would be also very
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interesting to extend those models to other rich graph types, including weighted, signed and
multilayer [31] directed networks.
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