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Abstract
Significant advances have been made in automatically constructing knowledge bases of
relational facts derived from web corpora. These relational facts are linguistic in nature
and are represented as ordered pairs of nouns (Winnipeg, Canada) belonging to a category
(City_Country). One major problem is that these facts are abundant but mostly unlabeled.
Hence, semi-supervised learning approaches have been successful in building knowledge
bases where a small number of labeled examples are used as seed (training) instances and
a large number of unlabeled instances are learnt in an iterative fashion. In this paper, we
propose a novel fuzzy rough set-based semi-supervised learning algorithm (FRL) for catego-
rizing relational facts derived from a given corpus. The proposed FRL algorithm is compared
with a tolerance rough set-based learner (TPL) and the coupled pattern learner (CPL). The
same ontology derived from a subset of corpus from never ending language learner system
was used in all of the experiments. This paper has demonstrated that the proposed FRL out-
performs both TPL and CPL in terms of precision. The paper also addresses the concept
drift problem by using mutual exclusion constraints. The contributions of this paper are:
(i) introduction of a formal fuzzy rough model for relations, (ii) a semi-supervised learning
algorithm, (iii) experimental comparison with other machine learning algorithms: TPL and
CPL, and (iv) a novel application of fuzzy rough sets.

Keywords Text categorization · Relational facts · Semi-supervised learning · Fuzzy rough
sets · Web mining
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1 Introduction

Information extraction is the task of automatically extracting knowledge from text and con-
structing knowledge bases. A knowledge base usually contains entities such as Tom Brady,
Winnipeg, or Manchester United FC. It also contains information about these entities, such
as the fact that TomBrady plays football, Winnipeg is a city in Canada, orManchester United
FC is a sports team. These facts are essentially linguistic in nature and referred to commonly
as nouns (or categorical instances) or relations (which are ordered pairs of nouns). Examples
of nouns are Winnipeg, Warsaw, New Delhi which belong to the category of City. Examples
of relations which are ordered pairs of nouns are: (Winnipeg, Canada), (Warsaw, Poland),
(New Delhi, India), belonging to the category of CityInCountry. Knowledge bases are uti-
lized in many applications such as machine translation, question answering, and semantic
search [28]. The growth of the web has spawned knowledge bases from web corpora where
the construction of these bases is performed in a either semi-supervised or unsupervisedman-
ner. These methods require minimal or no human intervention and can recursively discover
new relations, attributes, and instances in a fully automated, scalable manner. The focus of
some of the current systems such as YAGO3 [17,35,36], KnowItAll [11] and TextRunner [1]
is on machine reading. Other systems such as NELL [4,19] successfully learn facts over a
prolonged period of time and are called never ending learners.

Typical web corpora include Wikipedia, DBpedia, WordNet [18], NELL [19], and
Google’s Knowledge Vault [9]. In this work, inspired by NELL, we focus on a small subset
of the problemwhere facts are learned using machine learning techniques in an iterative fash-
ion rather than machine reading or the extraction process itself. In other words, we are given
facts that have already been extracted and new facts are learnt. Content for such learning can
be thought of as a triple (subject, predicate, object). For example, a relational fact can be
represented as:

〈Tom Brady〉 〈actually led〉 〈Patriots〉 to a win

where “TomBrady” is a subject (noun), “actually led” is a predicate, and “Patriots” is an object
(noun). This representation permits the learning of a relational fact (Tom Brady, Patriots)
as belonging to a category (Athlete-team) using the predicate information. Unary relations
(nouns) capturememberships in a semantic type. On the other hand, binary relations (a pair of
nouns) capture semantics between entities. The predicate is referred to as a contextual pattern
which is an arbitrary phrase such as “actually led” providing a context for the relation. Hence,
we have two main facts: relations and contextual patterns. A matrix is then formed based on
the co-occurrence of relations and their contextual patterns. Using this co-occurrence matrix,
if a relation r1 (e.g., Tom Brady, Patriots) regularly co-occurs in context (e.g., “actually led”)
along with a relation r2 (e.g., Peyton Manning, Colts) and if r1 belongs to category C (e.g.,
Athlete_Team), then it is likely that r2 might also belong to category Athlete_Team. In this
paper, we address three typical issues that arise from this form of learning: i) the number of
training examples are few, i.e., relations and their known categories, ii) a relation may belong
to more than one category depending on its contextual patterns, and iii) new relations end
up being miscategorized (also known as concept drift [7,12]) in the process of never ending
learning.

To address the first issue, semi-supervised approaches are preferred where a small number
of labeled examples are used as seed (training) examples and a large number of unlabeled
instances are learnt in an iterative fashion. In every iteration, a few examples from the unla-
beled instances are “promoted” as trusted, thus growing the knowledge base. This process is
also known as bootstrapping. Significant improvements in accuracy for learning categories
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of nouns and relations have been demonstrated using bootstrapping methods highlighted
in [3,4,19,39]. The second issue translates to the challenge of using the co-occurrence infor-
mation and scoring the degree of belonging where a relation can belong to more than one
category based on its context. In CPL [4], simultaneous training of many extractors for
learning relations using mutual exclusion and type-checking relationships were employed.
In CBS [39], a probabilistic score for every candidate noun fact belonging to a category
was used. In TPL [31], a scoring mechanism based on tolerance approximation spaces [33]
derived from rough set theory [24] was used. The foundation for TPL is a tolerance relation
which is symmetrical and reflexive, but need not be transitive, and this property makes it pos-
sible to represent overlapping classes and well-suited for constructing knowledge bases of
linguistic entities. In the proposed research with FRL, instead of a crisp co-occurrence matrix
used by the above three methods, our method uses a fuzzy (graded) co-occurrence matrix.
The motivation for using a hybrid rough set method was to take advantage of the strengths
of both fuzzy and rough set methods. Fuzzy rough model for categorizating nouns which
permits the modeling of the degree of belonging in a more powerful manner was successfully
used in [2]. In this paper, a scoring mechanism is used based on fuzzy rough sets [10], where
fuzzy sets [42] are first applied to the co-occurrence information. Rough set operators are
then applied to the graded co-occurrence information to obtain the overall score. Such a
technique was successfully employed in [8] for web query expansion for document retrieval.

The third issue of the concept drift problem is common to all iterative semi-supervised
learning, where the limited number of initial labeled examples tends to be insufficient to
reliably constrain the learning process, thereby causing the prediction of new relational facts
to become less accurate with each iteration. CPL relies on three types of constraints to
handle concept drift. In CBS, Bayesian learning is used to learn several categories for nouns
simultaneously using a coupled Bayesian sets algorithm with mutual exclusion constraints.
With the tolerance rough set-based learner (TPL) algorithm [29], no external constraints were
required for learning nouns and relations. In the proposed FRL method, mutual exclusion
constraints are defined to handle concept drift.

In this paper, we present a new hybrid fuzzy rough model inspired by [6,8] to learn rela-
tions. We introduce a semi-supervised learning algorithm (FRL) with ontology derived from
a subset of examples from NELL. The proposed FRL algorithm is experimentally com-
pared with CPL and TPL algorithms. Experimental results demonstrate that FRL performs
better than TPL based on the ranking method and outperforms CPL and TPL using the
promotion-based method. The contributions of this paper are: (i) a formal fuzzy rough model
for relations, (ii) a semi-supervised learning algorithm, (iii) experimental comparison with
other machine learning algorithms: TPL and CPL, and (iv) a novel application of fuzzy rough
sets with some insights into the strengths and weakness of integration of these technologies
for categorization of linguistic entities.

The paper is organized as follows: in Sect. 2, we discuss research related to structured
(document) and unstructured text (linguistic) categorization pertinent to this paper. In this
section, we describe TPL, CBS, and CPL in some detail. In addition, we also discuss the
fuzzy rough sets model for documents. In Sect. 3, we present the proposed fuzzy rough sets
framework for nouns and relations. In Sect. 4, we describe our proposed FRL algorithm and
experiments followed by a trace of FRLwith examples. In Sect. 5,we discuss the experimental
setup and analysis of the results. Here, we illustrate the problem of concept drift with FRL.
In Sect. 6, we discuss scalability and complexity of FRL. We conclude the paper in Sect. 7.
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2 Related works

In this section, we briefly introduce CPL andCBSmethods since they are used as benchmarks
for comparison. Tolerance rough set method is discussed in considerable detail, and the TPL
framework is introduced to give the reader an insight into the lower and upper approximation
framework. We also discuss the fuzzy rough set method which was first proposed as a model
for document representation and retrieval and uses a graded (fuzzy) thesaurus.

2.1 CPL and CBSmethods

CPL is a bootstrapping algorithm based on logistic regression that uses mutual exclusion
and type-checking constraints [4]. Nouns and relations are first filtered to enforce mutual
exclusion and type-checking constraints. Next, for each category, CPL ranks the linguistic
entities using the number of promoted patterns that they co-occur with, so that candidates
that occur with more patterns are ranked higher.

CBS is based on Bayesian sets [13] and uses the co-occurrence statistics between noun
phrases and contextual patterns. CBS calculates a probabilistic score by using those co-
occurrence statistics for every candidate category. In CBS, the learned functions can be
considered as classifiers that enforce mutual exclusion constraints using positive examples
of one category as negative examples for other ones to learn high-precision instances for all
categories defined in an initial ontology. In CBS, instances are first filtered to enforce mutual
exclusion. Then, the top ranked ones are promoted as trusted instances for that category. The
promoted instances are used as seeds in subsequent iterations in a semi-supervised iterative
manner. CBS learns several categories simultaneously. Readers can refer to [39] for more
details.

2.2 Tolerance rough sets method

Rough set theory consists of an approximation space characterized by an equivalence rela-
tion [24]. Learning in rough set theory is typically accomplished using two operators: lower
and upper approximation. However, it has been demonstrated that a tolerance relation [25,33]
is more appropriate for document and named entity classification rather than an equivalence
relation [16,27,40]. This is because a tolerance relation is symmetrical and reflexive, but
need not be transitive, and this property makes it possible to represent overlapping classes
which is ideal for text categorization. Tolerance rough sets became the basis for document
representation and clustering starting from 2000 [14,16,20–22,38]. In [32], a tolerance-based
semi-supervised two-class ensemble classifier for documentswas proposed. In [37], aweight-
ing scheme for the tolerance rough sets model based on neural networks was introduced. A
lexicon-based document representation (LBDR) with tolerance rough sets was introduced by
Virginia et al. [40] and subsequently elaborated in [41]. In [27,29–31], tolerance rough sets
were used for the first time in categorizing nouns and relational facts.

A tolerance approximation space A [33] is denoted by A = (U , I , ν) where U is the
universe of objects, I defines the tolerance class of an object in the universe. In other words,
it defines the neighborhood of each object, and ν measures the degree of inclusion between
two sets. These objects can be documents, nouns, relations or contextual patterns. We now
briefly show how these parameters are used with the lower (LA) and upper approximators
(UA) in the similarity scoring mechanism for nouns by the tolerant pattern learner (TPL)
algorithm.
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Fig. 1 Four zones of recognition for contexts emerging from approximations of ni [29]

2.2.1 Tolerant pattern learner (TPL) framework

TPL learns by separating the approximation space for nouns into four zones numbered one
through four shown in Fig. 1. Each zone contributes toward a different degree of similarity
for an instance ni to be promoted as trusted. These instances are shown as white dots. Every
trusted noun instance ni of a given category cat is associatedwith three descriptor sets:C(ni ),
UA(ni ) and LA(ni ) where C(ni ) is a function that is used to determine all the co-occurring
contexts for noun ni . The fourth zone (not named) represents one that does not contribute to
the similarity determination and may be considered as a negative zone.

The lower and upper approximators are calculated as follows using the inclusion function
ν and uncertainty function I which defines the neighborhood using a threshold of θ :

LA(ni ) = {c j ∈ C : ν(Iθ (c j ),C(ni )) = 1}
UA(ni ) = {c j ∈ C : ν(Iθ (c j ),C(ni )) > 0}

A micro-score for the candidate noun phrase n j against the trusted instance ni of the
category cat is calculated as follows:

micro(ni , n j ) = ω(C(ni ),C(n j ))α

+ω(UA(ni ),C(n j ))β + ω(LA(ni ),C(n j ))γ

where ω is an overlap function and the parameters α, β, γ are weights that reflect the degrees
of similarity contribution of objects belonging to specific zones.

2.3 Fuzzy rough sets method

Combining rough and fuzzy sets as an efficient soft computing strategy for machine learn-
ing was explored in [23]. In fuzzy set theory [42], the relational counterpart generates soft
similarity classes which permits partial overlap, even when the fuzzy relation is reflexive,
symmetrical and T -transitive, i.e., a so-called fuzzy T -equivalence relation [8]. This is the
property that lies at the heart of fuzzy rough set models and lends itself to text categorization
applications [5,10]. Fuzzy rough set method was first proposed as a model for structured text
representation (document) and retrieval [34]. A fuzzy rough set is a pair (A1, A2) ∈ (X , R)

where A is a fuzzy set in X such that R ↓ A = A1 and R ↑ A = A2. R is a fuzzy relation in

123



1700 A. Bharadwaj, S. Ramanna

X [6] where ↓ represents the lower approximator and ↑ represents the upper approximator.
We now briefly describe the fuzzy rough set framework for documents.

In [8], a thesaurus which consists of web pages (as documents) is generated using a query
of two terms t1 and t2. Let Dt1 and Dt2 be the number of pages that contain t1 and t2 terms,
respectively. Then, the following measure is used to construct an initial thesaurus:

|Dt1 ∩ Dt2 |
min |Dt1 |, |Dt2 |

(1)

This initial thesaurus is then normalized by using an S-function which generates the fuzzi-
fied thesaurus. Working with fuzzy sets, it is often assumed that the relation characterizing
the approximation space is transitive. Therefore, the t-norm T is used to construct a transitive
fuzzy thesaurus where the documents with membership value of 0.5 or above are considered.

A document retrieval is then viewed as a query expansion problem where the operators of
rough sets (upper and lower) are combined with a graded (fuzzy) thesaurus. The thesaurus
is a fuzzy relation, and the query is a fuzzy set. Specifically, a query is expanded by adding
all the related terms (upper approximation) and then pruned using the lower approximation
in what is termed as a tight upper approximation. The intuition behind this operation was to
counter the disadvantage of using transitive fuzzy thesaurus where certain terms are added
to the original query with a high degree of similarity that have no relevance to the original
query.

3 Proposed fuzzy rough sets framework for relations

One can view a knowledge base as a thesaurus consisting of linguistic entities such as cate-
gorical nouns, relations, and their contextual patterns. In this section, we introduce the model
that is used by FRL. For the sake of completeness, we have included definitions for nouns
introduced in [2].

3.1 Formal model

– N = {n1, n2, . . . , nM } is the universe of nouns.
– C = {c1, c2, . . . , cP } is the universe of categories.
– R = {r1, r2, . . . , rQ} is the universe of contextual patterns.
– H = {hi j = (ni , n j ) ∈ N 2 : ∃rk ∈ R| fH(hi j , rk) > 0} is the universe of relations

described via the relational co-occurrence function fH(hi j , rk) where fH(hi j , rk) =
{k ∈ N : hi j occurs k times within the context rk}.

– T N = {n1, n2, . . . , nY } is a set of trusted nouns such that T N ⊂ N and index Y < M .
– T R = {hab, hbc, . . . , hcd} is a set of trusted relations such that T R ⊂ H and index

cd < i j .

We define the following cross mapping functions which form the basis for the co-
occurrence matrix.

– C : N → P(C) denotes a mapping of each noun to its set of co-occurring noun contexts
such that C(ni ) = {c j : fC (ni , c j ) > 0} where fC(ni , c j ) = κ ∈ N denoting that ni
occurs κ times within context c j .

– R : H → P(R) denote mapping of each relation to its set of co-occurring relational
contexts: R(hi j ) = {rk : fR(hi j , rk) > 0}

Note that the function fR(hi j , rk) is used in the thesaurus construction process.
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3.2 Relation thesaurus construction

Based on the definitions introduced in Sect. 3.1, let H be a set of relations and R be a set
of co-occurring contextual relational patterns. Let T R be a set of trusted relations such that
T R ⊂ H. Similar to the procedure given in [2,8], the first step toward creation of a fuzzy
thesaurus is by normalizing the co-occurrence information using ϑ :

ϑ(hi j , rk) = fR(hi j , rk)

fR(hi j , rk),∀k : 1 . . . Q
(2)

The next step involves fuzzifying the co-occurrence function with the S-function where
α = 0.001 and β = 0.02 are constants determined experimentally.

S(ϑ;α, β) =

⎧
⎪⎨

⎪⎩

1 if ϑ ≥ β
ϑ−α
β−α

if 0.005 ≤ ϑ < β

0, otherwise

(3)

3.3 Lower and upper approximation of the relation thesaurus

The initial thesaurus I for relations is defined as an approximation space I = (H,R,COF ),
where H denotes the universe of relations, R denotes the co-occurring contextual patterns.
The fuzzy relation COF is defined as a fuzzy set inH×R. LetHF , T RF represent the fuzzy
sets of relations and trusted relations, respectively. The upper and lower approximations of
the fuzzy setHF in I is denoted byHF ↑ COF andHF ↓ COF . The notation for upper and
lower approximation operators follows the style from [8,15,26]. The upper approximation is
defined as:

HF ↑ COF = sup
hi j∈H, hxy∈T R

(
COF (R(hi j ), hxy),HF (hxy) : COF (hi j ) ≥ COF (hxy)

)

(4)
The upper approximation will make it possible to select candidate relations hi j having a
membership co-occurrence value either equal to or more than that of the trusted relations
hxy . The lower approximation is defined as:

HF ↓ COF = inf
hi j∈H, hxy∈T R

(COF (R(hi j ), hxy),HF (hxy)

:((hi j , hxy)|R(hxy) ∩ R(hi j ) �= ∅)) (5)

Here, the lower approximationwillmake it possible to select candidate relations hi j as trusted,
when there is at least one common context with a trusted noun hxy . The micro-score for a
candidate relation hi j from H is calculated as:

micro(hi j ) = ω1 (HF ↑ COF ) + ω2 (HF ↓ COF ) (6)

where ω1 and ω2 are application dependent and in this experiment are set to 50% and 5%,
respectively.

3.4 Tight upper approximation for relations

In [8], the benefit of using tight upper approximation was discussed where a term y, will
only be added to a query, if all the terms related to y are related to at least one keyword of
the query. A similar problem occurs with learning relations, where candidate relations with
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Fig. 2 Semi-supervised learning using FRL

high membership degrees are promoted and added to the set of trusted relations, irrespective
of whether the candidate relation is related to the trusted relation. To counter this problem,
we take the upper approximation of all candidate relations hi j in H followed by lower
approximation for the remaining candidate relations which results in the following tight
upper approximation operation:

COF ↓↑ HF (hi j ) = COF ↓ (COF ↑ HF (hi j )) (7)

We then calculatemicro(hi j ) given inEq. 6 for each candidate relation.We sort those relations
identified as trusted based on their scores, and the top five relations are promoted as trusted
for the next iteration.

4 FRL learning framework

The high-level flow for learning with FRL is shown in Fig. 2. The input to FRL is an ontology
of trusted relations (seeds), unlabeled relational facts, and co-occurrence information. Steps
2 and 3 in Fig. 2 implement the fuzzy rough model in determining the similarity score for
each candidate relation. The process consists of building a fuzzy thesaurus, applying the
upper and lower approximator operators (resulting in tight upper approximation). Steps 4
and 5 form the semi-supervised learning component for promoting instances as trusted and
growing the knowledge base. Since learning is done for each category at a time, step 6 shows
the iterative nature of this process.

4.1 FRL algorithm

FRL is an iterative algorithm which is designated to run indefinitely.
Examples of input to Algorithm 1 are trusted relations T R per category such as

(e.g., Lionel Messi_FC Barcelona, Michael Jordan_Chicago Bulls), categories (e.g., Ath-
lete_Team) and a large corpus of unlabeled relationsH. Another input is a large co-occurrence
relational matrix CO representing relations and their co-occurring contextual patterns. The
matrix consisted of approximately 6.5 million relations and 11 million contextual patterns.
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Algorithm 1: Fuzzy Rough Learner
Input : An ontology O defining categories; a large corpusH, CO co-occurrence matrix, a small set of

trusted relations T R
Output: T R′ is a set of all new promoted trusted relations

1 for r = 1 → end of file do
2 for each category cat do
3 for each new trusted relations hxy belonging to cat do
4 for each candidate relation hi j do
5 Calculate Fuzzy Relation COF using Eqs. 2 and 3;
6 Calculate Upper ApproximationHF ↑ COF as in Eq. 4;
7 Calculate score ω1;
8 for each candidate relation hi j do
9 Calculate Lower Approximation HF ↓ COF using Eq. 5;

10 Calculate score ω2;

11 Calculate microcat(hi j ) using Eq. 6;

12 Sort trusted instances hxy by microcat/|cat |;
13 Promote top trusted instances, such that T R′ = T R ∪ {hxy};

The output of the FRL algorithm is a set of trusted relations categorized by their respective
categories from the ontology. We use a score-based ranking. For the category cat, after cal-
culating the score for every candidate of H, we rank the candidates by their micro-scores
normalized by the number of trusted instances of cat. Finally, we promote the top new can-
didates as trusted. After every iteration, FRL learns new trusted instances and grows its
knowledge base to make decisions in the subsequent iterations.

4.2 Illustration

In this section, we trace the steps of FRL starting with the examples of categories, trusted
relations and contextual patterns which are input to the proposed FRL. Note that a relation is
a pair of nouns. The initial seeds are identical to the ones used in TPL and CBS algorithms.

FRL Algorithm-Input
Example: Categories
{Athlete_Team, CEO_Company, City_Country, City_State, Coach_Team, Company_City,
Stadium_City, State_Capital, State_Country, Team_vs_Team}

Example: Trusted relations
{FC Barcelona‖Lionel Messi, Chelsea‖Didier Drogba, AC Milan‖Ronaldinho, Chelsea‖
Frank Lampard, Bastian Schweinsteiger‖Bayern Munich}

Example: Contextual patterns
{attacking midfielder, forward, have handed, player, prodigy}

Algo. Step 2
In this trace, we consider categoryAthlete_Team.Wewill be focusing on one trusted relation
FCBarcelona ‖LionelMessi, and two candidate relationsEngland‖StevenGerrard and Tiger
Woods‖United States.
Algo. Step 3 [Trusted Relations T R]
We start the trace with 5 trusted relations which are a pair of nouns separated by‖given as
follows:
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Table 1 Trusted relations along with their commonly co-occurring contextual patterns

Trusted nouns Attacking midfielder Forward Have handed Player Prodigy

FC Barcelona‖Lionel Messi 1 1 2 2 1

Chelsea‖Didier Drogba 1 9 2 2 1

AC Milan‖Ronaldinho 3 2 2 2 1

Chelsea‖Frank Lampard 3 1 2 2 1

Bastian Schweinsteiger‖Bayern Munich 3 1 2 2 1

Table 2 Normalized frequency ϑ for each relation

Trusted nouns Attacking midfielder Forward Have handed Player Prodigy

FC Barcelona‖Lionel Messi 1/7 1/7 2/7 2/7 1/7

Chelsea‖Didier Drogba 1/15 9/15 2/15 2/15 1/15

AC Milan‖Ronaldinho 3/10 2/10 2/10 2/10 1/10

Chelsea‖Frank Lampard 3/9 1/9 2/9 2/9 1/9

Bastian Schweinsteiger‖Bayern Munich 3/9 1/9 2/9 2/9 1/9

– FC Barcelona‖Lionel Messi, Chelsea‖Didier Drogba, AC Milan‖Ronaldinho, Chelsea‖
Frank Lampard, Bastian Schweinsteiger‖Bayern Munich

We start the trace with the following 5 initial contextual patterns for the trusted relations
given as follows:

– attacking midfielder, forward, have handed, player, prodigy

Algo. Step 4
We must first fuzzify the co-occurrence information for the trusted relations. The next three
steps (4.1 to 4.3) illustrate how the thesaurus is constructed.

Algo. Step 4.1 [Co-occurrence frequency fR].
Table 1 shows the frequencies of the trusted relations and their co-occurring contextual

patterns.

Algo. Step 4.2 [Normalized frequency ϑ].
Based on the co-occurrence information given in Table 1, we normalize the table by

calculating the normalized frequency ϑ for each relation. Table 2 shows the normalized
result for each trusted relation.

Algo. Step 4-revisited In this step, each iteration starts with only one trusted relation. Hence,
we start the trace with FC Barcelona‖Lionel Messi listed in Table 3. This in turns leads to
step 4.3.

Algo. Step 4.3 [Calculating membership value S based on Eq. 3].
We use Eq. 3 for all contextual patterns for one trusted relation FC Barcelona‖Lionel

Messi given in Table 3. Note that the S-function values are all one since ϑ ≥ β where
β = 0.02 as shown in Table 4.

Algo. Step 5 The above process is repeated for all relations in T R (trusted relations) which
results in COF (fuzzified co-occurrence).

Once we have the membership values for each of the trusted relations, we start the process
for each candidate relation. A candidate relation is a new relation that must be classified.
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Table 3 Normalized frequency ϑ

for FC Barcelona‖Lionel Messi
FC Barcelona‖Lionel Messi Normalized frequency ϑ

Attacking midfielder 1/7

Forward 1/7

Have handed 2/7

Player 2/7

Prodigy 1/7

Table 4 S-function value for FC
Barcelona‖Lionel Messi

FC Barcelona‖Lionel Messi S-function

Attacking midfielder 1

Forward 1

Have handed 1

Player 1

Prodigy 1

Table 5 S-function value for
Steven Gerrard‖England Steven Gerrard‖England S-function

Attacking midfielder 1

Forward 0

Have handed 1

Player 1

Prodigy 1

We repeat steps Algo. Step 1 to Algo. Step 5 for each candidate relation and calculate their
memberships along with the commonly co-occurring contextual patterns.

Algo. Step 6 Calculate Upper Approximation.
It is the set of all the candidate relations having a membership co-occurrence value either

equal to or more than that of the trusted relations. The threshold εu for this dataset was set
to 50%. The following members constitute a sample belonging to the upper approximation
set. These relations are possible candidates for promotion:
{StevenGerrard‖England,TigerWoods‖UnitedStates,Ronaldo‖ManchesterUnited,Michael
Jordan‖Chicago Bulls, Kobe Bryant‖LA Lakers,…}

Algo. Step 7 Calculate Weight ω1.
Here, we give the illustration in terms of two candidate relations (Steven Gerrard‖England

and TigerWoods‖United States) from the upper approximation. Noteω1 is determined based
on criteria set in Eq. 4. Table 5 shows the S-function values for the candidate relation Steven
Gerrard‖England. The contextual patterns listed are determined as common with the trusted
patterns.

The weight ω1 for Steven Gerrard‖England is calculated as the sum of the memberships
of the above patterns. Thus, ω1 = 4. Table 6 gives the S-function values for the candidate
relation Tiger Woods‖USA.

For the second candidate relation Tiger Woods‖USA, ω1 = 3.

Algo. Step 9Calculate lower approximation.Herewe apply the lower approximation operator
on the set of relations in the upper approximation. First, we find all the contextual patterns for
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Table 6 S-function value for
Tiger Woods‖USA Tiger Woods‖USA S-function

Attacking midfielder 0

Forward 0

Have handed 1

Player 1

Prodigy 1

all trusted relations. Nineteen contextual patterns for all trusted relations were found by FRL.
We only list 14 of them. The remaining 5 contextual patterns are derived from Table 1. A
candidate relation is required to have at least one common contextual pattern with the trusted
seed relation. The threshold εl for this set will be 5% of 19. In other words, a candidate not
having at least one common contextual pattern will automatically be eliminated once we
apply the lower approximation operator. The following is a list of the 14 contextual patterns:

– “about the signing of”, “along with”, “are missing”, “as striker”, “ Goal in”, “ace a”,
“added to”, “and England footballer”, “and England midfielder”, “ believes”, “have
confirmed-midfielder”, “prodigy” , “winger”

Algo. Step 10: Calculate Weight ω2 for the two candidate relations shown in two steps. ω2 is
calculated as the sum of the total number of common contextual patterns between a candidate
relation and trusted relations. Note, ω2 is determined based on criteria set in Eq. 5.

Algo. Step 10.1: Determining common contextual patterns for candidate relation Steven
Gerrard‖England. The following is a list of all contextual patterns. The bold-faced patterns
are common.

– attacking midfielder, forward, have handed, player, prodigy, about the signing of,
along with, are missing, as striker, Goal in, ace a, added to, and England footballer,
and England midfielder, believes, have confirmed-midfielder, winger

Hence, for candidate relation Steven Gerrard‖England, ω2 = 12.

Algo. Step 10.2: Determining common contextual patterns for candidate relation Tiger
Woods‖USA.
– attackingmidfielder, forward, have handed,player, prodigy, about the signing of, along

with, aremissing, as striker, Goal in, ace a, added to, and England footballer, and England
midfielder, believes, have confirmed-midfielder, winger

Hence, for candidate relation Tiger Woods‖USA, ω2 = 6.

Algo. Step 11 The microcat(hi j ) is calculated as the sum of the two weights ω1 and ω2.

– Steven Gerrard‖England, microcat(hi j ) = 4 + 12 = 16
– Tiger Woods‖USA, microcat(hi j ) = 3 + 6 = 9

From the above illustration, sinceStevenGerrard‖England is rankedmuchhigher, itwill be
promoted as trusted and added to the trusted set of relations to be used as seed for subsequent
iterations.

In summary, the normalization and S-function operations determine membership values
for contextual patterns of both trusted and candidate relations. This is the fuzzification process
based on fuzzy set theory and gives us the graded co-occurrence matrix. The approximation
operations based on rough sets are then applied to the fuzzified co-occurrence information.

123



Categorizing relational facts from the web with fuzzy rough sets 1707

Table 7 Precision@30 of TPL [29] and FRL for ranking-based method

Categories TPL FRL

Iter. 1 Iter. 5 Iter.10 Iter. 1 Iter. 5 Iter. 10

Athlete_Team 100 90 87 97 100 97

CEO_Company 100 100 100 100 100 100

City_Country 100 100 100 93 100 100

City_State 100 100 100 97 100 100

Coach_Team 93 93 93 100 100 100

Company_City 83 90 93 97 100 100

Stadium _City 97 93 80 93 70 93

State_Capital 100 97 73 93 83 76

State_Country 100 100 100 90 100 100

Team_vs_Team 93 83 80 100 100 100

Average (%) 96.6 94.6 90.6 96 95.3 96.7

The upper approximation operator removes all unrelated candidates from the set. The lower
approximation operator further prunes this set. The micro-score obtained by weighting these
two rough set operations determines the criteria for promotion of a candidate relation to the
trusted set.

5 Experiments

Throughout our experiments, we used the same ontology as in TPL [29] and CBS [39]
experiments. We used the same 11 categories as the input ontology: Athlete_Team,
CEO_Company, City_Country, City_State, Coach_Team, Company_City, Stadium _City,
State_Capital, State_Country, Team_vs_Team. We initialized each relational category with
6 seed instances and ran the experiment for 10 iterations. In every iteration, the top 5 new
relations in every category were promoted as trusted relations for subsequent iterations.

To facilitate comparison of our FRL algorithm with the other algorithms, we used Pre-
cision@N at each iteration. In each iteration, Precision@N is calculated as the ratio of the
correct instances to the N-ranked ones. Since the data was not labeled, the correctness of an
instance was judged manually.

It took us approximately 76 minutes for each iteration using a Windows 10 machine with
3.40 GHz Intel i7 processor. Table 7 shows the ranking-based Precision@30 results for each
category for iterations 1, 5 and 10 for TPL and FRL algorithms. Bold-faced values indicate
average values for all categories at the end of iteration 10.

To evaluate promotion-based results, we use the same steps implemented by CPL [4]
and TPL [29]. We sampled X pairs from all the promoted pairs and calculated the Preci-
sion@30. Table 8 gives the promotion-based results for all three algorithms. In both ranking
and promotion-based methods, correctness results were verified manually. Bold-faced values
indicate average values for all categories at the end of iteration 10.
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Table 8 Precision@30 of
TPL [29], CPL [4] and FRL for
promotion-based method

Categories TPL FRL CPL

1 5 10 1 5 10 10

Athlete_Team 100 96 87 100 100 83 100

CEO_Company 100 100 100 100 100 100 100

City_Country 100 100 100 100 93 96 93

City_State 100 100 100 100 100 100 100

Coach_Team 100 100 93 100 100 100 100

Company_City 40 84 97 100 100 100 50

Stadium _City 80 92 70 80 92 90 100

State_Capital 100 100 63 100 88 43 60

State_Country 100 100 100 100 100 100 97

Team_vs_Team 100 84 80 100 96 100 100

Average (%) 92.0 95.6 89.0 98.0 96.6 91.2 90.0

5.1 Analysis of results

Based on the results in Table 7, the average precision after 10 iterations for the proposed FRL
algorithm is significantly better than TPL using a ranking-based method. For this dataset,
one can observe that FRL is able to handle concept drift better than TPL in all categories. It
is important to note that FRL enforces mutual exclusion constraint, whereas TPL was able to
maintain high precision with no externally defined constraints. From Table 8, it can be seen
that FRL performs better than TPL and CPL. It is noteworthy that CPL enforces 3 forms
of constraints during the learning process [4]. Here FRL was able to do better than TPL in
terms of concept drift only in two categories, Athlete_Team and Team_vs_Team. With CPL,
the only result that was available was after the tenth iteration.

5.2 Handling concept drift in FRL

The concept drift problem is illustratedwith examples fromTable 9. This table is a snapshot of
promoted relation instances for all categories after the 10th iteration. Misclassified relations
are shown in bold. Notice that relation Israelites_Joshua has been incorrectly promoted to
category Athlete_Team. When the dataset is limited, after N iterations, candidates from
different categories are misidentified as trusted. The most egregious case in this table is
for the category State_Capital City which includes several misclassifications. For example,
India_Mumbai was promoted to State_Capital City category when in fact, it should have
been promoted to City_Country category. In Table 9, for category City_Country, there are
no misclassifications even after 10 iterations. The reason for these scenarios is that, in our
dataset, there were sufficient instances for category City_Country and insufficient instances
for category State_Capital City. Hence, concept drift is also an outcome of the sample size.

To overcome this problem, FRL enforces mutual exclusion by calculating a mutex score
for newly trusted relation with the top ranked relation for that iteration using Eq. 8.

mutex = ωhuv

ωhi j
× 100 (8)
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Table 9 Promoted relation instances after 10th iteration for all categories

Relations Categories

Gators‖Tebow, Colts‖Peyton Manning, Ben Roethlisberger‖Steelers, Eli
Manning‖Giants, Israelites‖Joshua

Athlete_Team

Chris Rudge‖COC, Rex Tillerson‖Exxon, John Alexander‖PBL, Richard
Scudamore‖Premier League, Nick Fry‖Honda Racing

CEO_Company

New Zealand‖Wellington, Budapest‖Hungary, Stockholm‖Sweden,
Finland‖Helsinki, Amsterdam‖Netherlands

City_Country

Lincoln‖Nebraska, Oklahoma‖Oklahoma City, Columbia‖Missouri,
Jackson‖Mississippi, Charlotte‖North Carolina

City_State

Harry Redknapp‖Portsmouth, Atletico‖Javier Aguirre, France‖Raymond Domenech,
Juande Ramos‖Tottenham, Luis Aragones‖Spain

Coach_Team

Gaza‖UN, Baghdad‖United Nations, CIA‖Langley, IBM‖New York, Ottawa‖RCMP Company_HQ City

New York‖Yankee, Indianapolis‖Lucas Oil, Omaha‖Rosenblatt, Dodger‖Los
Angeles, East Rutherford‖Giants

Stadium_City

India‖Mumbai, Delaware‖Wilmington, Canada‖Ontario, Long Island‖New
York, Delhi‖India

State_Capital City

South Carolina‖United States, Mississippi‖United States, Iowa‖United States, New
Hampshire‖United States, United States‖West Virginia

State_Country

Liverpool‖Manchester United, Packers‖Vikings, Knicks‖Lakers, Patriots‖Steelers,
Barcelona‖Real Madrid

Team_vs_Team

Table 10 Relations potentially belonging to more than one category

Relations Categories

Apple‖Jobs CEO_Company, Athlete_Team

New York‖United States City_Country, City_State

Apple‖SteveJobs, BillGates‖Microsoft, Microsoft‖Steve Ballmer CEO_Company, Coach_Team

Colorado‖Denver, Arizona‖Phoenix, Atlanta‖Georgia,
Manitoba‖Winnipeg, Madison‖Wisconsin

State_Capital, City_State

Toronto‖Ontario, Alberta‖Calgary, Boston‖Massachusetts State_Capital, City_State

where ωhi j and ωhuv are the calculated micro-scores for relations to be parsed and top ranked
trusted relations, respectively.

Example 1 The initial seed for the category State_Capital included the following set of rela-
tions:

– Manitoba‖Winnipeg, Alabama‖Montgomery, California ‖Sacramento
– Florida‖Tallahassee, Georgia‖Atlanta, Minnesota ‖Saint Paul

Note, that all samples are equally qualified as trusted instances for category City_State,
but are mutually exclusive to State_Capital and hence if promoted in any other category as
trusted were ignored.

In Table 10, we give some examples of relations that had the potential to be promoted
as trusted in two separate categories. However, these relations were ignored as their mutex
score was higher for the one category and hence excluded from the others. Categories shown
in bold had a higher mutex score; therefore, the associated relation was mutually exclusive
to that category.
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Table 11 Precision@30 of TPL [29], CBS [39] and FRL [2] for nouns

Categories Iteration 5 Iteration 10

TPL (%) CBS (%) FRL (%) TPL (%) CBS (%) FRL (%)

Company 100 100 100 100 100 100

Disease 100 100 100 100 100 100

KitchenItem 100 94 97 100 94 73

Person 100 100 100 100 100 100

PhysicsTerm 93 100 67 90 100 77

Plant 100 100 77 97 100 100

Profession 100 100 100 100 87 100

Sociopolitics 100 48 93 100 34 87

Sport 97 97 100 100 100 100

Website 90 94 97 90 90 93

Vegetable 93 83 83 63 48 47

Average 97.5 92 92 94.5 87 89

5.3 FRL for nouns

To complete the discussion of both linguistic entities (nouns and relations), we have included
the results from [2]. Here, the dataset includes 68,919 noun phrase instances and 59,325
contextual patterns for nouns. The experimental set up was exactly the same as in TPL [29]
and CBS [39] experiments. We used the same 11 categories as the input ontology: Com-
pany, Disease, KitchenItem, Person, PhysicsTerm, Plant, Profession, Sociopolitics, Website,
Vegetable, Sport.

We initialized each category with 5–6 seed instances and ran the experiment for 10 iter-
ations. In every iteration, the top 5 new noun phrases for every category were promoted as
trusted nouns for subsequent iterations. Table 11 shows the result for all categories for Pre-
cision@30. One can observe that FRL algorithm performs better than CBS but not as good
as TPL in terms of average precision value over all 11 categories and 10 iterations. In the
case of nouns, the FRL algorithm does not enforce any mutual exclusion constraints. This
was due to lack of richness of the dataset. For example, the category vegetables did not have
sufficient seeds, and as a result, all three algorithms fared poorly with this category. Here,
parameter values α and β for S-function were identical to that of the relations. Bold-faced
values indicate average values for all categories.

6 Complexity and scalability issues

The complexity of FRL is affected by several individual parameters. In FRL, step 1 has a
linear time and space complexity O(H), where H is the number of relations. Step 2 has a
complexity O(#cat)where each #cat represents number for categories. Steps 3, 4 and 8 require
O(|CO|) to form fuzzy sets where CO represents mapping for each relation in R with the
co-occurring context, and hence, the complexity is O(|R|)where R is the number of contexts
for each relation. Steps 5 to 7 and 9 to 11 are a linear pass, and repeat steps 4 and 8 have a
complexity of O(|R|), respectively.
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Considering that most of the factors remain consistent through all of the iterations, the
most expensive or time consuming part of FRL is to calculate the fuzzy thesaurus as well
as the upper and lower approximations. Thus, the time complexity of the algorithm is O(H)

for each candidate relation. For space complexity, we preprocess to filter out low cardinality
co-occurring values and hence the complexity is O(|H| × |R|) based on the number of
co-occurring nonzero values.

In terms of scalability, FRL was tested on single thread CPU in a non-continuous
(unchanged dataset) environment. Most of the tasks such as calculating fuzzy memberships
and upper and lower approximations for each category can be processed in parallel with GPU
computing. However, for a continuous ever-changing dataset environment, some sort of pre-
processing of initial data needs to be done. Also, scalability depends on (i) learning nouns vs.
relations (noun pairs), (ii) the richness of the examples, (iii) the number of categories, and
(iv) quality of linguistic entities within each categories. The last factor has a direct bearing
on the number of constraints that need to be defined to handle concept drift.

7 Conclusion

We have proposed a novel semi-supervised learning algorithm (FRL) based on fuzzy rough
sets for labeling relations using contextual pattern information. We introduced a formal
framework of the fuzzy rough set for linguistic entities. The proposed FRL algorithm was
experimentally compared with a tolerance rough set-based learner (TPL) and the coupled
pattern learner (CPL). The choice of methods for comparative study was motivated by the
fact that fuzzy rough sets and tolerance rough sets permit overlapping (or soft similarity)
of classes. CPL and CBS (for nouns) methods were used as benchmarks for this work, and
hence, the same datasets were used in all the experiments. Experimental results demonstrate
that for this dataset, FRL (for relations) performs better than TPL based on the ranking
method and outperforms CPL and TPL using the promotion-based method. In terms of
representation, with the tolerance rough set model, a crisp thesaurus is constructed using
a tolerance value ε. Determination of the optimal value of ε is a challenge. With the fuzzy
rough set model, the challenge was to determine the optimal parameters α and β for the
S-function to construct a graded thesaurus. For handling concept drift, this work also reveals
that it was necessary to define mutual exclusion constraints for FRL. CPL defines several
constraints, and TPL requires no constraints. This could be important since constraints can
add to the computational overhead as the number of categories, and the size datasets grow
in an ever learning environment typically associated with web corpora. As future work, we
plan to explore the capabilities of FRL and TPL over more categories and larger datasets for
categorizing nouns and relations.
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