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Abstract
Salient object detection in wavelet domain has recently begun to attract researchers’ effort
due to its desired ability to provide multi-scale analysis of an image simultaneously in both
frequency and spatial domains. The proposed algorithm exploits the inherent multi-scale
structure of the double-density dual-tree complex-oriented wavelet transform (DDDTCWT)
to decompose each input image into four approximate sub-band images and 32 high-pass
detailed sub-band images at each scale. These 32 detailed high-pass sub-bands at each scale
are adequate to represent singularities of any geometric object with high precision and to
mimic zooming-in and zooming-out process of human vision system. In the proposed model,
we first compute a rough segmented saliency map (RSSM) by fusing multi-scale edge-
to-texture features generated from DDDTCWT with segmentation results obtained from
bipartite graph partitioning-based segmentation approach. Then, each pixel in RSSM is cat-
egorized into either background region or salient region based on a threshold. Finally, the
pixels of the two regions are considered as samples to be drawn from a multivariate ker-
nel function whose parameters are estimated using expectation maximization algorithm, to
generate a saliencymap. The performance of the proposedmodel is evaluated in terms of pre-
cision, recall, F-measure, area under the ROC curve and computation time using six publicly
available image datasets. Extensive experimental results on six benchmark datasets demon-
strate that the proposed model outperformed the existing 29 state-of-the-art methods in terms
of F-measure on all five datasets, recall on four datasets and area under ROC curve on two
datasets. In terms of mean recall value, mean F-measure value and mean AUC value on all
six datasets, the proposed method outperforms all state-of-the-art methods. The proposed
method also takes comparatively less computation time in comparison with many existing
spatial domain methods.
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1 Introduction

The human visual system (HVS) can accurately detect the most salient object in an image,
but the goal of developing a computational model for salient object detection [39, 40, 62,
69, 93] with comparable capabilities still remains an open challenge for computer vision and
pattern recognition. The task of salient object detection is to locate the most salient object
or region in an image. In recent years, salient object detection [10, 46, 49, 89] has gained
increasing attentions for many computer vision and graphics applications, such as image
and video compression [34], image retargeting [88], image thumb nailing [67], image seg-
mentation [14, 53], object recognition [31, 70, 75], content-aware image editing [3], image
classification/retrieval [4, 45], video surveillance systems [38], photograph rearrangement
[72], image quality assessment [71], remote sensing [58], automatic image cropping [76],
displaying items on small portable screens [17], automatic target detection [43, 44], robotics
[17, 43, 76], medical imaging [50], advertising a design [43], image collection browsing
[74] and image enhancement [29]. Motivated by these applications, salient object detection
emphasizes on highlighting foreground objects.

In general, multi-scale analysis using wavelet helps in representing the images with
different resolutions and in implementing the zooming-in and zooming-out process of
human vision system (HVS). The ability of wavelet transform to represent singularities
of images plays a key role in designing wavelet-based saliency detection algorithms as
human eyes are very sensitive to orientation features. It has been verified that the multi-
scale edge-to-texture features computed using discrete wavelet transform (DWT) play a
significant role in the field of salient object detection because of its ability to provide
multi-scale analysis of an image simultaneously in both frequency and spatial domains
[41, 52]. Unfortunately, DWT-based saliency detection techniques have a limited ability
to reveal singularities in different directions as it has only three directional sub-bands,
oriented at 0°, 45° and 90°. But as natural images are comprised of smooth regions that
are punctuated with edges at several orientations, DWT may fail to represent the geo-
metric regularity along the singularities, which requires higher directional selectivity. In
2004, Selesnick [77–79] proposed 2D double-density dual-tree complex wavelet transform
(DDDTCWT) which gives rise to four approximate sub-band images and 32 high-pass
detailed sub-band images at each scale which are adequate for the representation of any
geometric object with high precision. This motivates us to use double-density dual-tree
complex wavelet transform (DDDTCWT) to detect salient object. In this paper, we first
compute detailed multi-scale edge-to-texture feature maps using inverse double-density
dual-tree complex wavelet transform (IDDDTCWT) to capture band-pass local informa-
tion with different frequency bandwidths which helps in detecting irregularities at different
bandwidths. Then, these feature maps are combined to generate a saliency map. This
DDDTCWT-based saliency map is integrated with the segmentation results obtained from
bipartite graph partitioning-based approach to generating an initial rough segmented saliency
map (RSSM). Each pixel of RSSM is assigned to be part of salient region or the back-
ground region based on its value relative to threshold value. Finally, the pixels of the
two regions are considered as samples to be drawn from a multivariate kernel function
whose parameters are estimated using expectation maximization algorithm, to yield a final
saliency map. The performance of the proposed model is evaluated in terms of precision,
recall, F-measure, area under curve and computation time on six publicly available image
datasets. Performance of the proposed model is also evaluated in terms of mean precision
value, mean recall value, mean F-measure values and mean AUC values on all six datasets.
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Both qualitative and quantitative evaluations on six publicly available benchmark datasets
demonstrate the robustness and efficacy of the proposed method against 29 state-of-the-art
methods.

The remainder of this paper is organized as follows. Section 2 reviews related state-of-the-
artmethods to detect salient object. Section 3describes the proposedmodel (DDDTCWT-SS).
Section 4 presents the experimental results and comparisons with several state-of-the-art
salient region detection methods. Section 5 concludes the proposed model with discussions.

2 Related work

Recently, a plethora of computational models have been proposed for salient object detection
[18, 19, 28, 55–57, 83–85], which can be roughly categorized into bottom-up and top-down
approaches [11–13]. Bottom-up approaches are fast, stimulus driven and task independent.
They extract certain low-level features from the image and combine them into a saliency
map. However, the top-down approaches consist of the prior knowledge of the human visual
system (HVS) and high-level data processing to support the task of salient object detection.
Therefore, top-down approaches are slow and task dependant. Such approaches are integrated
with the bottom-up approaches in order to detect the salient object. Both of the computational
models focus on producing saliency maps to detect salient object in an input image. For a
comprehensive review of related work, we refer readers to recent survey papers for detailed
discussion of 256 focused researches in computer vision [12], aswell as taxonomy and critical
comparison of 65 models [11], and qualitative and quantitative analysis of 41 different state-
of-the-art [13] methods in the two major research areas such as fixation prediction [11, 48]
and salient object detection [13].

Here, we focus on different bottom-up approaches by which salient object detection has
been designed. Inspired by the biologically plausible architecture proposed by Koch and
Ullman [54], Itti et al. [44] (IT) determined image saliency by utilizing centre-surround dif-
ferences across multi-scale image features using a difference of Gaussians (DoG) approach.
Later, Bruce and Tsotsos [15] proposed a computational model (AIM) based on informa-
tion maximization to implement saliency using joint likelihood, Shannon’s self-information
and features learned from input images using independent component analysis (ICA). Harel
et al. [35] utilized Itti et al.’s [44] method to create low-level feature maps but performed
normalization using a graph-based approach (GBVS). Liu et al. [64, 65] (SLRG) integrated
saliency cues like centre-surround histogram contrast, multi-scale contrast and colour spa-
tial distribution in a conditional random field to segment the salient object. Zhang et al.
(SUN) [94] used Bayesian framework to locate the salient object in an image. Achanta
et al. (FT) [3] computed saliency of each pixel in the image as the contrast of its colour
feature to the mean colour information of the whole image. The research work of Achanta
and Susstrunk (ASS) [2] relied on the maximum symmetric surround difference to com-
pute saliency map. Goferman et al. [30] (CASD) used contrast of the patch to the K nearest
patches in the image to compute saliency. Shen and Wu [80] solved saliency detection prob-
lem as a low-rank matrix (LRK) recovery problem, where salient objects are represented
by a sparse matrix (noise), while background is indicated by a low-rank matrix. However,
this sparse and low-rank assumption may not be satisfied in complex scenes, leading to
unsatisfactory results. The work of Liu et al. (2014) (STREE) locates salient objects by
exploiting the concept of saliency tree. Zhu et al. [96] (MSA) used multivariate normal
distribution estimation to extract salient regions in an image. Xie et al. [90] (BSM) pro-
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posed a Bayesian saliency method by utilizing the low- and mid-level cues. Sun et al. [86]
(MCA) used the concept of Markov chain absorption to detect salient object present in
the image. Jiang et al. [47] performed pre-segmentation on an input image and extracted
a bunch of discriminative features from each segmented region. Then, a random forest
regressor is adopted to map multiple features to a region saliency score. Singh et al. (SOD-C-
PSO) [82] suggested linearly weighted combination of different feature maps and estimated
the weights using constrained particle swarm optimization. Cheng et al. [19] proposed an
unsupervised saliency cut (Grab cut)-based image segmentation approach to automatically
segmenting the most salient object. They also proposed histogram-based contrast (HC)
and spatial information-enhanced region-based contrast (RC) methods for salient object
detection. Kim et al. [51] introduced a high-dimensional colour transform (HDCT)-based
saliency detection approach. The main idea of their approach is to map a low-dimensional
RGB colour to a feature vector in a high-dimensional colour space in order to separate
the salient object from the background by finding an optimal linear combination of colour
coefficients.

Recent studies [32, 36, 37] have tried to detect image saliency in transform domain [16].
Frequency domain approaches for salient object detection have been popular due to their
fast computational speed. The first spectral domain approach for detecting saliency is due to
Hou and Zhang [36], who computed image saliency in frequency domain by comparing the
dissimilarity of the characteristic spectrum with the perceived spectrum of greyscale images.
Hou et al. [37] proposed an image signature (IS) descriptor to spatially approximate the
sparse foreground position concealed in a spectrally sparse background. In 2008, Guo et al.
[33] observed that phase spectrum of the Fourier transform (PFT) in comparison with ampli-
tude spectrum contributes more to locate the position of salient object. Guo et al. [32, 33]
extended PFT model to a phase quaternion Fourier transform (PQFT) model in case of mul-
tiple channels to represent the multi-dimensional data at each pixel as a quaternion. Yu et al.
[92] used lateral surround inhibition behaviour of neurons to compute saliency in an image.
They captured this behaviour of neurons by utilizing the pulsed discrete cosine transform
(PCT). In 2008, biological prediction and comparison with spatial biological models were
verified by Bian and Zhang [7–9] in their frequency divisive normalization (FDN) model.
Bian and Zhang [7–9] proposed a saliency detection approach that integrates the speed of fre-
quency domain models with the topology of biologically based methods under the assistance
of frequency domain divisive normalization (FDN). But, this model takes global surround
into consideration. In order to relax the global surround constraint, Bian and Zhang [8, 9]
extended FDNmodel into piecewise frequency domain divisive normalization (PFDN) [8, 9]
by separating the input image into overlapping local patches and conducting FDN on every
patch in order to provide better biological plausibility. Amplitude spectrum of quaternion
Fourier transform (AQFT) [24] and modelling from bitstream (BS) [25] were proposed by
Fang et al. In 2013, Li et al. [60] proposed hypercomplex Fourier transform (HFT)-based
saliency detection approach which takes advantage of scale-space analysis of the amplitude
spectrum. Li et al. [61] (SDS) designed a saliency detector by exploiting the phase of inter-
mediate frequencies. Arya et al. [5] (HLGM) suggested a salient region detection approach
by integrating both global saliency and local saliency in the frequency domain by using fast
Walsh–Hadamard transform (FWHT) and PFDN, respectively. Arya et al. [6] (BHGT) devel-
oped a grey-level co-occurrence matrix (GLCM)-based saliency framework in both spatial
domain and frequency domain.

Recently, wavelet transform (WT) has been found to be useful in the field of salient
object detection. In 2001, Tian et al. [87] proposed a salient point detector based on wavelet
transform. As this WT-based approach detects salient points in an image rather than salient
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objects, therefore it is difficult for us to compare our proposed salient object detection model
with this approach. Murray et al. [68] (SIM) computed saliency based on a nonparametric
low-level vision approach, where the scale information is integrated through a simple inverse
wavelet transform over the set of extended contrast sensitivity function (ECSF) responses
for each colour sub-band. ECSF is a function of scale and centre-surround contrast energy
which takes care of the human sensitivity to local contrast and energy ratio of the centre-
surround regions. Moreover, they also introduced training steps on both colour appearance
and eye-fixation psychophysical data to reduce ad hoc parameters. İmamoğlu et al. [41]
(WT) proposed a salient object detection model by utilizing low-level features obtained from
the discrete wavelet transform (DWT) domain to create multi-scale feature maps, which
can represent different features from edges to texture. These multi-scale feature maps with
increasing frequency bandwidths are obtained using inverse wavelet transformwith the band-
pass filtered regions of the input image at various scales. Using these features, local saliency
at a location is modulated with its global saliency calculated based on the likelihood of
the features to generate final saliency map. However, DWT cannot be an optimal choice to
create feature maps as it gives weak line (curve) singularities because of being limited to few
directional sub-bands.

3 Proposedmodel

In this paper, we propose a double-density dual-tree complex-oriented wavelet transform
(DDDTCWT)-based salient object detectionmodel (DDDTCWT-SS), as illustrated in Fig. 1.
In this framework, an input image is first segmented using a computationally efficient bipartite
graph partitioning-based segmentation approach to capturing intrinsic structural information
of the image. For each segment, saliency is computed based onmulti-scale low-level edge-to-
texture features extracted from two-dimensional double-density dual-tree complex wavelet
transform (2DDDDTCWT). Figure 1a, b shows the respective results of segmentation proce-
dure and saliency map calculated using DDDTCWT. As humans are sensitive to orientation
features [66], an initial rough segmented saliency map (RSSM) (as shown in Fig. 1c) is gen-
erated by assigning saliency to each segment on the basis of DDDTCWT-based saliency map
which comprises specific information from 32 detailed sub-band images as shown in Fig. 3d.

Fig. 1 Proposed framework for detecting the most salient object in an image
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Then, a mean intensity value of DDDTCWT-based saliency map is used as a threshold to get
a rough estimation of salient region and background region in RSSM. In the initial RSSM,
a pixel with intensity value greater than or equal to the threshold value is considered to be a
part of salient object and is assigned a value ‘1’, and pixel with intensity value less than the
threshold value is considered to be a part of background region and is assigned a value ‘0’.
In this way, we get a thresholded RSSM which is shown in Fig. 1d. To improve the accuracy
of the thresholded initial RSSM, the Gaussian mixture model (GMM) is built over it for
saliency re-estimation of each region. The GMM parameters are updated using expectation
maximization (EM) method to obtain the final saliency map (shown in Fig. 1e).

The main contribution of the proposed method is to exploit sensitiveness of human eyes
to orientation features using multi-scale structure of the 2D DDDTCWT as natural images
are comprised of smooth regions that are punctuated with edges at several orientations. The
proposed algorithm performs a multi-scale frequency analysis of the image by representing
it at different resolutions to exploit zooming-in and zooming-out process of HVS and sets a
trade-off between the detection accuracy and computational time for achieving better detec-
tion accuracy in less computation time. The pseudo-code of the proposed algorithm is given
as follows.

Algorithm: DDDTCWT-SS
Input: An input image I and the number of segments (k=5).
Output: A saliency map

1: Segment the input image by aggregating super-pixels using a bipartite graph. 
2: Compute pixel-wise saliency in the original image using multi-scale edge-to-texture 
features extracted from 2-D DDDTCWT.
3: For each segment computed in Step 1, saliency values (computed in Step 2) of all the 
pixels belonging to that segment are averaged out to construct initial rough segmented 
saliency map (RSSM).  
4: In order to get a rough estimation of salient region and background region in RSSM, a 
threshold is calculated by taking mean of saliency values of all pixels in the image 
calculated in Step 2.
5: Refinement of initial rough segmented saliency map (RSSM) using Gaussian Mixture
Model (GMM) and Expectation Maximization (EM) algorithm to generate final saliency 
map.

3.1 Segmentation of an input image by aggregating superpixels using a bipartite
graph

As demonstrated in recent studies [47, 51, 73, 80, 91], features from superpixels [27, 28] are
effective and efficient for salient object detection. Superpixels group pixels into perceptually
meaningful atomic regions which can be used to replace the rigid structure of the pixel grid.
They capture image redundancy, provide a convenient primitive to compute image features,
and greatly reduce the complexity of subsequent image processing tasks. These are key
building blocks for many computer vision algorithms like image segmentation. There are
many approaches to generating superpixels, each with its own advantages and drawbacks
that may be better suited to a particular application. For example, graph-based method of
Felzenszwalb and Huttenlocher [26] may be an ideal choice [1] to accurately capture image
boundaries. Recently, Li et al. [59] proposed an improved image segmentation algorithm
which takes advantage of different and complementary information from various popular
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segmentation algorithms [20, 26, 81]. In order to fuse the complementary information, Li et al.
collected a variety of superpixels generated by different segmentation algorithmswith varying
parameters. Superpixels generated in this way help in capturing diverse andmulti-scale visual
patterns in the input image. To effectively aggregate these multi-layer superpixels, Li et al.
proposed a bipartite graph partitioning-based segmentation framework which is constructed
over both pixels and superpixels. These pixels and superpixels work as the vertices of the
bipartite graph and edges between these vertices are established on the basis of superpixel cues
and smoothness cues. To enforce superpixel cues, a pixel is connected to the superpixel if pixel
is a part of that superpixel while smoothness cues are enforced by connecting each superpixel
to itself and its nearest neighbour in the feature space among its spatially adjacent superpixels.
This bipartite graph segmentation framework is efficiently solved computationally by Li et al.
[59] using a linear-time spectral algorithm.

To map the relationship between pixels and superpixels, a bipartite graph is built which
consists of two parts describing the pixel–superpixel and superpixel–superpixel relationships.
In particular, taking into account the demand of sparsity for a good-quality graph, a pixel
is connected to the superpixel containing it and a superpixel is connected to neighbouring
superpixel close in feature space. For a given image I, a set of pixels and superpixels (multi-
layer) are denoted by P and S, respectively. More precisely, let G � {χ, γ ,B} denote the

bipartite graph, where χ � P ∪ S � {xi }Nχ

i�1, γ � S � {
y j

}Nγ

j�1
with Nχ � |P| + |S| and

Nγ � |S| and the number of nodes in χ and γ , respectively.
The across-affinity matrix B � (

bi j
)
Nχ×Nγ

is defined as:

bi j �
⎧
⎨

⎩

α, xi ∈ y j , xi ∈ P, y j ∈ S
e−βdi j , if xi ∼ y j , xi ∈ S, y j ∈ S
0, otherwise

, (1)

where di j signifies the distance between the features of superpixels xi and y j . We use di j �
ci − c j2, where ci and c j represent the average colour of the pixels within the superpixels
xi and y j , respectively, on the basis of colour space. ∼ signifies a certain neighbourhood
between superpixels. x ∼ y,x ∈ S, y ∈ S, if x � y, or y is adjacent to x and is most similar
to x in terms of average colour. α and β are set to greater than 0 to balance superpixel and
smoothness cues, respectively. With the help of this construction, a pixel and a superpixel
that it belongs to are likely to be grouped together due to the connections between them. Two
superpixels close in feature space are alsomore likely to be grouped together. Bipartite graph,
constructed in this manner, also enforces the smoothness over superpixels. Using bipartite
graphG, input image I is segmented into k segments by accumulating same label nodes into
a segment with the help of spectral clustering algorithm. To segment an image into k groups,
k bottom eigenvectors of generalized eigenvalue problem are computed as:

L f � λD f , (2)

where L and D represent graph Laplacian and degree matrix, respectively. D is calculated
as: D � diag(B1). Instead of solving this eigenvalue problem using Lanczos method and

singular value decomposition method, which take O
(
k
(
Nχ + Nγ

)3/2) running time [59], Li

et al. utilized unbalanced structure of the graph to solve it efficiently. The number of columns
in affinity matrix B is much larger than the number of rows (Nχ � Nγ + |I|, and I � Nγ ),
so we have Nχ � Nγ . This large variation between the number of rows and number of
columns clearly demonstrates the unbalanced structure of the bipartite graph. To exploit
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the unbalanced structure, Li et al. proposed a transfer cut method to compute bottom k
eigenvectors in reduced time as it transforms the eigenvalue problem into the following:

Lγ v � ηDγ v, (3)

where Lγ � Dγ − Wγ , Dγ � diag
(
BT1

)
and Wγ � BTD−1

χ B, where Dχ � diag(B1).
Lγ is exactly the Laplacian of the bipartite graph Gγ � {

γ ,Wγ

}
as Dγ � diag

(
BT1

) �
diag

(
Wγ 1

)
, where 1 is the vector of ones of appropriate size. The task of partitioning graph

G into k groups takes O

(
2k

(
1 + dχ

)
Nχ + kN

3
2
γ

)
time where dχ is the average number of

edges connected to each node in χ . Our work belongs to salient object detection, for which a
comprehensive discussion about segmentation approaches is beyond the scope of this paper.
We refer readers to the research article of Li et al. [59] for a detailed discussion of this
segmentation approach.

To choose the most salient region among these k segmented regions Hp, p � 1, . . . k, the
saliency value of each region, Hp , needs to be computed. To find the saliency value of each
region, we utilize double-density dual-tree complex wavelet transform (DDDTCWT), which
is discussed in Sect. 3.2.

3.2 Double-density dual-tree complex wavelet transform (DDDTCWT)-based
saliency detectionmodel

Psychophysical investigation has shown that the HVS performs a multi-scale frequency
analysis when we observe an image [21, 87]. This mechanism is similar to zooming-in and
zooming-out process of HVS. As natural images exhibit smooth regions that are punctuated
with edges at several orientations, discrete wavelet transform (DWT)may fail to represent the
geometric regularity along the singularities selectivity. In order to overcome the limitations of
directional selectivity of traditional 2D discrete wavelet transform (DWT), we utilize double-
density dual-tree complex wavelet transform (DDDTCWT) for salient object detection for
the first time in the literature. DDDTCWT possesses the properties of the dual-tree complex
wavelet transform (DTCWT) and double-density DWT (DDDWT). Both the double-density
DWT and the dual-tree complex DWT are similar in several properties. (Both are nearly shift
invariant; both are over-complete by a factor of 2; both are based onFIRperfect reconstruction
filter banks.) However, the two wavelets used in dual-tree DWT form an approximate Hilbert
transform pair, while the two wavelets used in the double-density DWT are offset by one
half. We briefly describe DTCWT and DDDWT in the following sections.

3.2.1 Dual-tree complex wavelet transform (DTCWT)

The dual-tree complex wavelet transform (DTCWT) [79] has more directional sub-bands in
comparison with 2D DWT, which has only three directional sub-bands oriented at 0

◦
, 45

◦

and 90
◦
. 1D DTCWT is implemented using two real discrete wavelet transforms Ψ h(t) and

Ψg(t) which are employed in parallel to generate the real and imaginary parts of complex
wavelet Ψ (t) � Ψ h(t) + jΨg(t). Here, Ψ h(t) is approximately analytic and Ψg(t) is
approximately the Hilbert transform of Ψ h(t)i .e. Ψg(t) ≈ H(Ψ h(t)).

2D DTCWT is realized by filtering an image separately row and column wise: two trees
are used for the rows of the image and two trees for the columns. This process computes 12
sub-bands for each scale in six main directions ±15°, ±45° and ±75°, but there are two
wavelets in each direction. One of the two wavelets can be interpreted as the real part of a
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Fig. 2 a Filter bank structures for two-dimensional DDDWT, b filter bank for two-dimensional DDDTCWT

complex-valued 2D wavelet, while the other wavelet can be interpreted as the imaginary part
of a complex-valued 2Dwavelet. Unlike 2DDWT, all of thewavelets are free of draughtboard
artefact. But six directions are also not sufficient to represent any geometric object with high
precision. To capture more information from more directions, Selesnick proposed double-
density discrete wavelet transform [77] which is explained in Sect. 3.2.2.

3.2.2 Double-density discrete wavelet transform (DDDWT)

The double-density discrete wavelet transform [77] utilizes one scaling function and two
distinct wavelets which are designed to be offset from one another by one half (Ψ2(t) �
Ψ1(t − 0.5)). It satisfies the properties of approximate shift invariant and perfect reconstruc-
tion with limited redundancy. In 2D images, this transform outperforms the standard DWT
and DTCWT as both have fewer degrees of freedom in comparison with the DDDWT. The
procedure of 2DDDDWT is shown in Fig. 2a. 2DDDDWT is realized by alternatively apply-
ing the transform first to the rows and then to the columns of the image. After such process,
one approximate sub-band image and eight detail sub-band images are attained to describe
information in eight distinct directions as shown in Fig. 2a.

3.2.3 Double-density dual-tree complex wavelet transform (DDDTCWT)

Although the 2D DDDWT utilizes more wavelets, some lack a dominant spatial orienta-
tion, which prevents them from being able to isolate those directions. To overcome this
problem, Selesnick [78] suggested double-density dual-tree DWT (DDDTCWT)which com-
bines the characteristics of the double-density DWT (DDDWT) and dual-tree complex DWT
(DTCWT). The DDDTCWT employs two different scaling functions Φh(t) and Φg(t) and
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Fig. 3 Impulse responses of a DWT, b DTCWT, c DDDWT, d DDDTCWT

four distinct wavelet functions Ψh, j (t), Ψg, j (t)( j � 1, 2), where the two wavelets Ψh, j (t)
and Ψg, j (t) are offset from one another by one half:

Ψh,1(t) � Ψh,2(t − 0.5), Ψg,1(t) � Ψg,2(t − 0.5) (4)

and the two wavelets Ψh,1(t) and Ψg,1(t) form an approximate Hilbert transform pair:

Ψg,1(t) ≈ H
{
Ψh,1(t)

}
. (5)

Similarly, the two wavelets Ψh,2(t), Ψg,2(t) form an approximate Hilbert transform pair:

Ψg,2(t) ≈ H
{
Ψh,2(t)

}
. (6)

The properties satisfied by the four wavelet functions ensure that the DDDTCWT has
improved directional selectivity. The 2D DDDTCWT is realized by employing four over-
sampling 2D DDDWT in parallel to the same image with different filter sets for the rows
and columns. We then take the sum and difference. This gives rise to 36 2D sub-band images
as shown in Fig. 2b, four of which are the 2D low-pass sub-bands and the other 32 are 2D
high-pass (detailed) sub-bands which describe more specific information in 16 directions.
The procedure of two levels 2D DDDTCWT is shown in Fig. 2b.

The impulse responses of DWT, DTCWT, DDDWT and DDDTCWT are shown in
Fig. 3a–d, respectively.

The filter banks are applied recursively to the low-pass sub-band, using the analysis filters
for the forward transform and the synthesis filters for the inverse transform. The synthesis
filters are the time-reversed versions of the analysis filters. The filter bank structure can be
implemented using FIR (finite impulse response) perfect reconstruction filter banks. It is
believed that 32 detailed sub-band images generated by 2D DDDTCWT are sufficient to
represent any geometric object exactly with high precision [95].

In Fig. 4a, an image containing a curve is purposely designed to demonstrate the improved
directionality property of DDDTCWT [95]. As shown in Fig. 4b, DWT reconstructions
can only accurately represent vertical and horizontal lines. The reconstructed curve looks
smoother with reduced artefacts in Fig. 4c, d due to more directional sub-bands of DTCWT
andDDDWT, respectively. However, the reconstructed image shown in Fig. 4e ismuch closer
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Fig. 4 Improved directionality of double-density dual-tree complex wavelet transform: a original test image;
reconstructed image using only the lowest level coefficients of bDWT, cDTCWT, dDDDWT, eDDDTCWT,
f zoomed-in original image; zoomed-in reconstructed image using only the lowest level coefficients of g
DWT, hDTCWT, iDDDWT, jDDDTCWT. Grey level is normalized between [0, 1] for all images and 4-level
transform is used

to the original image due to more number of orientations sub-bands in case of DDDTCWT.
Therefore, in this paper, we utilize DDDTCWT to compute edge-to-texture feature maps.

3.2.4 Features extraction using double-density dual-tree complex wavelet transform
(DDDTCWT)

To generate feature maps, input RGB image I is first converted into CIE Lab colour space,
which is much closer to human vision. Then, the input image I is filtered using a low-pass
filter to remove the noise:

I′ � I ∗ W, (7)

where W is a 2D Gaussian low-pass filter of size 3×3; I′ is the filtered image; ∗ represents
the convolution operation. Using Eq. 8, we compute the 2D DDDTCWT (·) of the given
image I′. The wavelet coefficients o are stored in a cell array data structure o{s}{g}{t}{d},
for s � 1, 2, . . . N , t � 1, 2, g � 1 − 2d ∈ 1 . . . 8, where g represents either the real or
imaginary part (by 1 or 2, respectively), and (t, d) represents the orientation.

[
Ac
N , (o{s}{g}{t}{d})c

] � DDDTCWTN
(
I′
)
, (8)

where 2D DDDTCWT is implemented using analysis filters (as explained in Sect. 3.2.3)
for N level decomposition; N denotes maximum scaling number for DDDTCWT, i.e. the
resolution index s ∈ {1, . . . , N } and the N th level refers to the coarsest resolution; c is the
channel of I′ as c ∈ {L, a, b}; Ac

N denotes the approximation output at N th level for channel
c. In total, DDDTCWT isolates edges by capturing information from 32 detailed high-pass
sub-band images.

The detailed wavelet coefficients (neglecting approximation coefficients Ac
N ) are utilized

to compute several featuremaps, signifying the contrast from edge to texture, by using inverse
double-density dual-tree complex wavelet transform (IDDDTCWT), which is implemented
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using synthesis filters of DDDTCWT as explained in Sect. 3.2.3. The feature map for a given
pixel, channel c and sth-level decomposition is computed using IDDDTCWT(·) as:

f cs (x, y) �
(
(IDDDTCWTs(o{s}{g}{t}{d})c

)2

η
, (9)

where η is the scaling factor. For a given input image, we obtained 3 × N feature maps.
Further, these feature maps are utilized to generate a saliency map, S(x, y), as follows:

S(x, y) �
(

N∑

s�1

argmax
(
f Ls (x, y), f as (x, y), f bs (x, y)

))

∗ P, (10)

where f Ls (x, y), f as (x, y) and f bs (x, y) represent feature maps for L, a, and b channels,
respectively, at scale s and P is a 2D low-pass Gaussian filter.

3.3 Initial rough segmented saliencymap (RSSM) generation

We use DDDTCWT coefficients to locate the salient object in an image, while superpixel
segmentation is utilized to improve the object contours. Given a segmented region Hp, p �
1, . . . k, where k is the number of segmented regions, the average intensity of each region
Hp is computed based on the corresponding DDDTCWT coefficients of the region in the
saliencymap. Each pixel x ∈ Hp is assigned the average intensity value v, which is computed
as:

v �
|Hp|∑

i�1

vi/
∣∣Hp

∣∣, ∀x ∈ Hp,, p � 1, . . . , k, (11)

where vi is the intensity value of the ith pixel xi .
∣∣Hp

∣∣ is the number of pixels in region
Hp . In this way, an initial rough segmented saliency map (RSSM) is obtained where each
segment is assigned with a saliency value calculated from DDDTCWT coefficients. Then,
we use an average intensity value of DDDTCWT coefficients as a threshold to get a rough
estimation of salient and background regions in RSSM. If a pixel intensity value in initial
RSSM is greater than or equal to the threshold, then the pixel is considered to be salient and
assigned a value of ‘1’ otherwise background by assigning it ‘0’. By examining RSSM, it is
noted for some images that the some parts of salient objects are not highlighted. It might be
because of the following reasons: (1) some pixels may be misclassified by the bipartite graph
partitioning-based segmentation approach or (2) some pixels may be wrongly detected as a
part of background object while actually being a part of the salient object (or vice versa) by
the proposed DDDTCWT-based saliency detection method.

To further improve the accuracy of the initial RSSM, the Gaussian mixture model (GMM)
is built over RSSM to re-estimate the saliency of each region. The parameters of GMM
are updated using expectation maximization (EM) method to obtain the final saliency map,
which is discussed in Sect. 3.4.

3.4 Refinement of initial rough segmented saliencymap (RSSM) using Gaussian
mixture model (GMM) and expectationmaximization (EM) algorithm

AGaussianmixture model (GMM) is useful for modelling data that come from one of several
groups: The groups might be different from each other, but data points within the same group
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can be well modelled by a Gaussian distribution. The parameters of the GMM include the
strengths (weights), means and covariances of the Gaussian distributions. Initial RSSM,
given in Sect. 3.3, has two regions: salient and background. The pixels of these two regions
in initial RSSM are regarded as two different Gaussian kernels. Then, a GMM is constructed
over these two regions with the help of the Gaussian signals’ parameters (means, variances
and strengths) estimated using expectation maximization (EM) for both the Gaussian signals.
The EM algorithm estimates the parameters of the multivariate probability density function
in the form of a Gaussian mixture distribution with a specified number of mixtures. Finally,
the GMM initialization for EM algorithm is done in the following way. The strengthsw1 and
w2 of both the Gaussian signals are given as:

w0
1 � n1

n1 + n2
and w0

2 � n2
n1 + n2

, (12)

where n1 � ∑
p∈P RSSM(p) and n2 � ∑

p∈P (1 − RSSM(p)) and P denotes the set of

image pixels. Since RSSM segments the two regions spatially, their initial spatial means μ0
1

and μ0
2 are given as I

(
U0

1

)
and I

(
U0

2

)
, respectively, where

U0
1 � 1

n1

∑

U∈SCxy

U .RSSM(U ) and U0
2 � 1

n2

∑

U∈SCxy

U .(1 − RSSM(U )), (13)

where SCxy are image spatial coordinates. Their covariances �1 and �2 are given as:

�0
1 � 1

n1 − 1

∑

p∈P

(
I(p) − μ0

1

)
.
(
I(p) − μ0

1

)T
.RSSM(p),

�0
2 � 1

n2 − 1

∑

p∈P

(
I(p) − μ0

2

)
.
(
I(p) − μ0

2

)T
.(1 − RSSM(p)). (14)

After initialization step, GMM parameters are updated using EM algorithm until conver-
gence is reached. The probability of a pixel p to be a part of either of the cluster by utilizing
the current parameters of the lth iteration is calculated as:

Probl(1|I(p)) � wl
1N

(
I(p)|μl

1,�
l
1

)

wl
1N

(
I(p)|μl

1,�
l
1

)
+ wl

2N
(
I(p)|μl

2,�
l
2

) ,

Probl(2|I(p)) � wl
2N

(
I(p)|μl

2,�
l
2

)

wl
1N

(
I(p)|μl

1,�
l
1

)
+ wl

2N
(
I(p)|μl

2,�
l
2

) . (15)

The parameters of both Gaussian signals are updated in the following manner:

wl+1
1 � 1

W × H

∑

p∈P

Probl(1|I(p)) and wl+1
2 � 1

W × H

∑

p∈P

Probl(2|I(p)),

μl+1
1 �

∑
p∈P Probl(1|I(p)).I(p)
∑

p∈P Probl(1|I(p)) and μl+1
2 �

∑
p∈P Probl(2|I(p)).I(p)
∑

p∈P Probl(2|I(p)) ,

�l+1
1 �

∑
p∈P Probl(1|I(p)).(I(p) − μl

1

)
.
(
I(p) − μl

1

)T
∑

p∈P Probl(1|I(p))
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and

�l+1
2 �

∑
p∈P Probl(2|I(p)).(I(p) − μl

2

)
.
(
I(p) − μl

2

)T
∑

p∈P Probl(2|I(p)) , (16)

where W denotes the width and H denotes the height of the image. The log-likelihood for
l + 1 iteration is computed as:

loglikelihoodl+1 �
∑

p∈P

(
log

(
wl+1
1 .N

(
I(p)|μl+1

1 ,�l+1
1

)
+ wl+1

2 .N
(
I(p)|μl+1

2 ,�l+1
2

)))
.

(17)

The inequality for the convergence condition is given as:

abs
(
loglikelihoodl+1 − loglikelihoodl

)
< 1.0e − 3. (18)

On completion of the updating procedure, the final parameter values of the GMM are used
to assign each and every pixel p to the two regions (salient or background) with a probability,
which is given as:

Prob f inal(1|I(p)) � w1N (I(p)|μ1,�1)

w1N (I(p)|μ1,�1) + w2N (I(p)|μ2,�2)
,

Prob f inal(2|I(p)) � w2N (I(p)|μ2,�2)

w1N (I(p)|μ1,�1) + w2N (I(p)|μ2,�2)
. (19)

The two segments are weighted based on a centre prior computed as:

Center_prior(i) �
∑

p∈P

Prob f inal(i |I(p)).sdistp; i � 1, 2, (20)

where sdistp is the spatial distance of the pth pixel with the image centre. Center_prior(i)
is normalized between [0, 1) , which is computed as

Center_prior(i) � Center_prior(i) − min{Center_prior( j)}2j�1

max{Center_prior( j)}2j�1

. (21)

The saliency value of a pixel p is given as:

SM(p) �
2∑

i�1

Prob f inal(i |I(p)).(1 − Center_prior(i)), (22)

where SM represents the final saliency map generated by the proposed algorithm, which is
normalized in the range 0–1.

4 Experimental set-up and results

In this section, we evaluate and compare the performances of our method (DDDTCWT-SS)
against 29 state-of-the-art algorithms on six representative benchmark datasets.
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Salient object datasets and state-of -the-art methods
Six benchmark datasets for evaluation include commonly used Microsoft Research Asia

Salient Object Database1 (MSRA SOD) image set B (5000 images), Achanta Saliency
Database (ASD2) (1000 images), SAA_GT3 (5000 images), SOD4 (500 images), SEDwhich
consists of two parts, i.e. SED15 (one object set) and SED26 (two object sets) each contain-
ing 100 images. All the images are of size 400×300 or 300×400 having intensity values in
[0255]. We compare the proposed method (DDDTCWT-SS) with 29 state-of-the-art salient
object detection methods: IT [44], AIM [15], GBVS [35], SR [36], SLRG [64, 65], SUN
[94], FT [3], ASS [2], CASD [30], LRK [80], SIM [68], WT [41], PFT [32], STREE [63],
MSA [96], PCT [92], FDN [8, 9], PFDN [8, 9], PQFT [33], AQFT [24], BS [25], HFT [60],
SDS [61], HLGM [5], IS [37], BSM [90], MCA [86], HDCT [51] and BHGT [6].

Experimental Set-up All the experiments are carried out using Windows 7 environment
over Intel(R) Xeon(R) processor with a speed of 2.27 GHz and 4 GB RAM.

4.1 Qualitative performance

The qualitative analysis of our algorithm (DDDTCWT-SS) with 29 other state-of-the-art
recently proposed saliency models is presented in Fig. 5.

We include these models based on relevance to our work, recency and availability of their
saliency maps. We randomly choose three images from MSRA dataset, two images from
SOD, two images fromSED1 and two images fromSED2datasets for qualitative comparison.
Figure 5 clearly shows that the better saliency maps are achieved by the proposed model
(DDDTCWT-SS) in comparison with 29 state-of-the-art methods (Fig. 6).

4.2 Quantitative performance

We evaluate the quantitative performance of the proposed model (DDDTCWT-SS) against
29 other state-of-the-art models in terms of precision, recall, F-measure, area under curve
(AUC) and computation time. Performance of the proposed model (DDDTCWT-SS) is also
evaluated in terms of mean precision value, mean recall value, mean F-measure values and
mean AUC values on all six datasets. The outcome of the salient object detection procedure
is a saliency map. To compare the quality of saliency maps in terms of precision, recall, F-
measure and area under curve for the task of segmenting salient objects, we rely on a ground
truth database. Therefore, a suitable threshold t [5, 82] is first applied to the saliencymap of an
image I to generate an attention maskR (also called ‘predicted condition’ or detection result)
and thenR is compared with the ground truthG (also called ‘true condition’) associated with
I. Both R and G consist of pixels with only two values 0 or 1. Based on the values of R and
G, the following terms are defined:

1 http://www.research.microsoft.com/enus/um/people/jiansun/salientobject/salient_object.htm.
2 http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/GroundTruth/binarymasks.zip.
3 E-mail at “rinki.arya89@gmail.com” or “navjot.singh.09@gmail.com”.
4 http://elderlab.yorku.ca/~vida/SOD/.
5 http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB.
6 http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB.
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MSRA-B, ASD, SAA_GT SOD SED1 SED2

Original
Image 

Ground
Truth 

IT (S)

AIM (S)

GBVS (S)

SUN (S)

SLRG  (S)

CASD (S)

BSM (S)

STREE (S)

MCA (S)

HDCT (S)

MSA (S)

LRK (S)

FT (S)

ASS (S)

SR (FD)

Fig. 5 Qualitative comparison of the proposed model with existing 29 models. S spatial domain, FD frequency
domain, W wavelet domain
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MSRA-B, ASD, SAA_GT SOD SED1 SED2

Original Image

Ground Truth

PCT (FD)

PFT (FD)

FDN (FD)

PFDN (FD)

HFT (FD)

SDS (FD)

PQFT (FD)

AQFT (FD)

BS (FD)

IS (FD)

WT (W)

SIM (W)

HLGM (FD)

BHGT (S+FD)

DDDTCWT-SS
(W) 

Fig. 5 continued

123



344 R. Arya et al.

Fig. 6 Saliency maps generated by the proposed algorithm for some challenging and complex images

• The true positive (TP) is the number of pixels correctly detected in R as belonging to the
salient object in ground truth image G.

• False positive (FP) is the number of pixels wrongly detected as salient in R as belonging
to the background in the ground truth image G.

• False negative (FN) is the number of pixels incorrectly detected as background in R as
belonging to the salient object in the ground truth image G.

• True negatives (TN) are the pixels correctly detected as background in R as belonging to
the background in the ground truth image G.

The obtained attention maskR and ground truth mapG are used to compute the precision,
recall and F-measure as:

Precision � TP

TP + FP
Recall � TP

TP + FN
Fβ �

(
1 + β2

) × Precision × Recall

β2 × Precision + Recall
, (23)

where TP � ∑

G(x,y)�1
R(x, y) FP � ∑

G(x,y)�0
R(x, y) FN � ∑

R(x,y)�0
G(x, y).

β is chosen to be 1 to give equal importance to both precision and recall. ROC curve is
used for measuring the similarity between the saliency map and ground truth, and the area
under curve (AUC) is used for quantitative comparison between different models. The ROC
curve is generated by plotting the true positive rate (TPR) on the y-axis against false positive
rate (FPR) values on the x-axis, respectively [82]. TPR and FPR are given by

TPR � TP
∑

(x,y) G(x, y)
FPR � FP

W × H − ∑
(x,y) G(x, y)

, (24)

where W and H represent the width and height of the image, respectively. A model is
considered to be good if it achieves high values for precision, recall, F-measure and AUC.
Tables 1, 2, 3, 4 and 5 show the quantitative performance analysis of the proposed method in
comparisonwith other 29 state-of-the-art methods on all the six datasets in terms of precision,
recall, F-measure, AUC and average computation time per image, respectively. The mean
value for each quantitative measure on all six datasets is also shown in the respective table
for each model.

In Fig. 7, we show the ROC curves of the state-of-the-art algorithms, including the
proposed method (DDDTCWT-SS) corresponding to the six datasets. On the basis of Fig. 7
and Tables 1, 2, 3, 4 and 5 (the best results are shown in bold), we make the following
observation:

1. Quantitative evaluation on MSRA dataset The proposed model (DDDTCWT-SS)
achieves highest F-measure for MSRA dataset. The proposed model DDDTCWT-SS
outperforms all state-of-the-art methods except HFT, SDS and MCA in terms of preci-
sion. DDDTCWT-SS outperforms all state-of-the-art methods except SIM and PFDN in
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Table 1 Quantitative comparison on six datasets in terms of precision

Model MSRA-B ASD SAA_GT SOD SED1 SED2 Mean

IT (S) 0.672 0.550 0.545 0.685 0.720 0.676 0.6083

AIM (S) 0.728 0.535 0.527 0.412 0.562 0.470 0.6085

GBVS (S) 0.800 0.666 0.658 0.520 0.695 0.542 0.7128

SUN (S) 0.598 0.542 0.668 0.379 0.561 0.417 0.6119

SLRG (S) 0.674 0.700 0.763 0.423 0.589 0.431 0.7007

CASD (S) 0.712 0.697 0.679 0.492 0.659 0.551 0.6854

BSM (S) 0.724 0.798 0.768 0.621 0.732 0.525 0.7431

STREE (S) 0.831 0.861 0.830 0.627 0.849 0.773 0.8241

MCA (S) 0.893 0.856 0.922 0.897 0.851 0.624 0.8997

HDCT (S) 0.844 0.870 0.924 0.648 0.857 0.805 0.8718

MSA (S) 0.833 0.859 0.811 0.689 0.934 0.893 0.8210

LRK (S) 0.703 0.716 0.680 0.476 0.658 0.590 0.6832

FT (S) 0.717 0.599 0.800 0.608 0.735 0.830 0.7388

ASS (S) 0.786 0.635 0.801 0.655 0.817 0.757 0.7739

SR (FD) 0.761 0.502 0.588 0.479 0.614 0.504 0.6494

PCT (FD) 0.797 0.626 0.617 0.483 0.644 0.538 0.6885

PFT (FD) 0.764 0.578 0.583 0.505 0.655 0.567 0.6571

FDN (FD) 0.663 0.573 0.550 0.398 0.579 0.503 0.5936

PFDN (FD) 0.593 0.508 0.495 0.371 0.586 0.439 0.5330

HFT (FD) 0.892 0.776 0.755 0.579 0.784 0.573 0.8065

SDS (FD) 0.872 0.725 0.722 0.560 0.758 0.494 0.7778

PQFT (FD) 0.815 0.694 0.677 0.502 0.664 0.550 0.7288

AQFT (FD) 0.671 0.638 0.593 0.446 0.579 0.578 0.6236

BS (FD) 0.767 0.746 0.703 0.509 0.719 0.571 0.7247

IS (FD) 0.741 0.596 0.567 0.422 0.616 0.496 0.6375

WT (W) 0.662 0.606 0.612 0.451 0.622 0.575 0.6257

SIM (W) 0.486 0.395 0.408 0.338 0.447 0.331 0.4369

HLGM (FD) 0.686 0.657 0.624 0.446 0.609 0.584 0.6452

BHGT (S+FD) 0.769 0.780 0.796 0.500 0.808 0.817 0.7707

DDDTCWT-SS
(W)

0.857 0.845 0.861 0.804 0.822 0.783 0.8545

S spatial domain, FD frequency domain,W wavelet domain

terms of recall. DDDTCWT-SS outperforms all state-of-the-art methods except BHGT
in terms of AUC.

2. Quantitative evaluation on ASD dataset In terms of precision, DDDTCWT-SS outper-
forms all state-of-the-art methods except MSA, HDCT, MCA and STREE. In terms
of recall, DDDTCWT-SS outperforms all state-of-the-art methods. In terms of F-
measure, DDDTCWT-SS outperforms all state-of-the-art methods. In terms of AUC
value DDDTCWT-SS outperforms all state-of-the-art methods exceptMCA andHDCT.

3. Quantitative evaluation on SAA dataset In terms of precision, DDDTCWT-SS out-
performs all state-of-the-art methods except HDCT and MCA. In terms of recall and
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Table 2 Quantitative comparison on six datasets in terms of recall

MODEL MSRA-B ASD SAA_GT SOD SED1 SED2 Mean

IT (S) 0.614 0.695 0.609 0.154 0.150 0.297 0.5925

AIM (S) 0.762 0.859 0.777 0.625 0.790 0.816 0.7715

GBVS (S) 0.692 0.634 0.612 0.584 0.597 0.600 0.6466

SUN (S) 0.857 0.848 0.764 0.431 0.611 0.659 0.7945

SLRG (S) 0.889 0.921 0.895 0.737 0.806 0.803 0.8864

CASD (S) 0.763 0.782 0.726 0.518 0.496 0.559 0.7343

BSM (S) 0.816 0.822 0.711 0.724 0.816 0.759 0.7672

STREE (S) 0.888 0.913 0.854 0.699 0.807 0.802 0.8661

MCA (S) 0.780 0.744 0.839 0.744 0.720 0.639 0.7989

HDCT (S) 0.885 0.901 0.661 0.626 0.738 0.740 0.7771

MSA (S) 0.661 0.674 0.585 0.477 0.590 0.614 0.6208

LRK (S) 0.907 0.903 0.841 0.693 0.771 0.790 0.8671

FT (S) 0.575 0.606 0.517 0.300 0.347 0.533 0.5388

ASS (S) 0.704 0.670 0.524 0.366 0.452 0.589 0.6066

SR (FD) 0.526 0.440 0.372 0.336 0.360 0.450 0.4426

PCT (FD) 0.579 0.403 0.382 0.360 0.376 0.422 0.4673

PFT (FD) 0.528 0.379 0.371 0.287 0.311 0.397 0.4349

FDN (FD) 0.899 0.831 0.774 0.714 0.733 0.758 0.8292

PFDN (FD) 0.944 0.887 0.857 0.831 0.849 0.792 0.8950

HFT (FD) 0.580 0.535 0.490 0.453 0.461 0.477 0.5304

SDS (FD) 0.366 0.319 0.272 0.274 0.343 0.256 0.3167

PQFT (FD) 0.245 0.117 0.114 0.329 0.328 0.416 0.1838

AQFT (FD) 0.675 0.636 0.544 0.446 0.465 0.600 0.6035

BS (FD) 0.783 0.757 0.696 0.623 0.603 0.617 0.7338

IS (FD) 0.692 0.585 0.556 0.585 0.515 0.559 0.6175

WT (W) 0.84 0.801 0.702 0.564 0.608 0.720 0.7629

SIM (W) 0.947 0.825 0.793 0.733 0.765 0.794 0.8588

HLGM (FD) 0.877 0.734 0.669 0.598 0.630 0.741 0.7607

BHGT (S+FD) 0.873 0.889 0.882 0.710 0.780 0.857 0.8703

DDDTCWT-SS
(W)

0.913 0.948 0.928 0.832 0.871 0.824 0.9178

S spatial domain, FD frequency domain,W wavelet domain

F-measure, DDDTCWT-SS outperforms all state-of-the-art methods. In terms of AUC
value, DDDTCWT-SS outperforms all state-of-the-art methods except HDCT.

4. Quantitative evaluation on SOD dataset In terms of precision, DDDTCWT-SS outper-
forms all state-of-the-art methods exceptMCA. In terms of recall, F-measure and AUC,
DDDTCWT-SS outperforms all state-of-the-art methods.

5. Quantitative evaluation on SED1 dataset In terms of precision, DDDTCWT-SS out-
performs all state-of-the-art methods except MSA, HDCT, MCA and STREE. In terms
of recall and F-measure, DDDTCWT-SS outperforms all state-of-the-art methods. In
terms of AUC value, DDDTCWT-SS outperforms all state-of-the-art methods except
BHGT, HDCT, MCA, STREE and BSM.
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Table 3 Quantitative comparison on six datasets in terms of F-measure

MODEL MSRA-B ASD SAA_GT SOD SED1 SED2 MEAN

IT (S) 0.642 0.614 0.575 0.252 0.248 0.413 0.5890

AIM (S) 0.745 0.659 0.628 0.500 0.657 0.597 0.6752

GBVS (S) 0.742 0.650 0.634 0.550 0.642 0.570 0.6775

SUN (S) 0.704 0.661 0.713 0.403 0.585 0.511 0.6886

SLRG (S) 0.767 0.795 0.824 0.538 0.681 0.561 0.7815

CASD (S) 0.737 0.737 0.702 0.505 0.566 0.555 0.7091

BSM (S) 0.767 0.810 0.738 0.669 0.772 0.621 0.7529

STREE (S) 0.859 0.886 0.842 0.661 0.828 0.787 0.8447

MCA (S) 0.833 0.796 0.879 0.813 0.780 0.631 0.8465

HDCT (S) 0.864 0.885 0.771 0.637 0.793 0.771 0.8149

MSA (S) 0.737 0.755 0.680 0.564 0.723 0.728 0.7066

LRK (S) 0.792 0.799 0.752 0.564 0.710 0.676 0.7641

FT (S) 0.638 0.603 0.628 0.402 0.471 0.649 0.6193

ASS (S) 0.743 0.652 0.634 0.470 0.580 0.663 0.6749

SR (FD) 0.622 0.469 0.456 0.395 0.454 0.476 0.5256

PCT (FD) 0.671 0.489 0.472 0.413 0.475 0.473 0.5560

PFT (FD) 0.625 0.458 0.454 0.366 0.422 0.467 0.5235

FDN (FD) 0.763 0.678 0.643 0.511 0.647 0.605 0.6913

PFDN (FD) 0.728 0.646 0.628 0.513 0.693 0.565 0.6674

HFT (FD) 0.702 0.633 0.594 0.508 0.581 0.521 0.6391

SDS (FD) 0.516 0.443 0.400 0.368 0.472 0.337 0.4520

PQFT (FD) 0.377 0.201 0.195 0.397 0.439 0.477 0.2864

AQFT (FD) 0.673 0.637 0.568 0.446 0.516 0.589 0.6133

BS (FD) 0.775 0.752 0.699 0.560 0.656 0.593 0.7288

IS (FD) 0.716 0.590 0.561 0.490 0.561 0.526 0.6264

WT (W) 0.741 0.690 0.654 0.501 0.615 0.639 0.6873

SIM (W) 0.642 0.534 0.539 0.463 0.564 0.467 0.5789

HLGM (FD) 0.770 0.693 0.646 0.511 0.619 0.653 0.6971

BHGT (S+FD) 0.818 0.830 0.837 0.587 0.794 0.837 0.8172

DDDTCWT-SS
(W)

0.884 0.895 0.893 0.818 0.846 0.803 0.8849

S spatial domain, FD frequency domain,W wavelet domain

6. Quantitative evaluation on SED2 dataset In terms of precision, DDDTCWT-SS out-
performs all state-of-the-art methods except BHGT, FT, MSA and HDCT. In terms of
recall and F-measure, DDDTCWT-SS outperforms all state-of-the-art methods except
BHGT. In terms of AUC, DDDTCWT-SS outperforms all state-of-the-art methods.

7. Some models are better in terms of precision and others in terms of recall. A model
is considered to be good if both precision and recall are higher. But that is difficult to
achieve. It is suggested that a model should have a higher F-measure value which is
the weighted harmonic mean of precision and recall. The proposed model furnishes the
highest F-measure value on all the six datasets.
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Table 4 Quantitative comparison on six datasets in terms of AUC

MODEL MSRA-B ASD SAA_GT SOD SED1 SED2 Mean

IT (S) 0.663 0.529 0.590 0.550 0.623 0.601 0.6146

AIM (S) 0.705 0.631 0.673 0.796 0.880 0.861 0.6917

GBVS (S) 0.698 0.579 0.636 0.813 0.868 0.821 0.6688

SUN (S) 0.681 0.602 0.641 0.716 0.851 0.776 0.6609

SLRG (S) 0.802 0.733 0.767 0.796 0.868 0.812 0.7815

CASD (S) 0.776 0.705 0.741 0.791 0.833 0.813 0.7564

BSM (S) 0.756 0.635 0.686 0.817 0.898 0.828 0.7202

STREE (S) 0.818 0.831 0.853 0.806 0.889 0.865 0.8346

MCA (S) 0.819 0.972 0.886 0.818 0.888 0.809 0.8612

HDCT (S) 0.842 0.975 0.929 0.819 0.920 0.831 0.8901

MSA (S) 0.782 0.849 0.826 0.729 0.869 0.709 0.8044

LRK (S) 0.783 0.713 0.753 0.794 0.860 0.814 0.7656

FT (S) 0.669 0.625 0.648 0.595 0.650 0.676 0.6530

ASS (S) 0.698 0.630 0.664 0.790 0.840 0.797 0.6836

SR (FD) 0.658 0.505 0.581 0.732 0.780 0.796 0.6174

PCT (FD) 0.737 0.777 0.746 0.736 0.807 0.781 0.7452

PFT (FD) 0.706 0.731 0.723 0.714 0.753 0.794 0.7169

FDN (FD) 0.782 0.826 0.795 0.775 0.838 0.795 0.7916

PFDN (FD) 0.83 0.856 0.833 0.801 0.873 0.767 0.8321

HFT (FD) 0.858 0.827 0.873 0.803 0.879 0.731 0.8585

SDS (FD) 0.734 0.779 0.753 0.725 0.817 0.683 0.7459

PQFT (FD) 0.540 0.538 0.530 0.729 0.781 0.771 0.5477

AQFT (FD) 0.728 0.807 0.764 0.702 0.733 0.729 0.7491

BS (FD) 0.849 0.853 0.834 0.799 0.829 0.766 0.8399

IS (FD) 0.778 0.849 0.833 0.766 0.832 0.743 0.8072

WT (W) 0.743 0.693 0.718 0.785 0.824 0.817 0.7312

SIM (W) 0.768 0.837 0.835 0.783 0.822 0.806 0.8040

HLGM (FD) 0.860 0.848 0.818 0.773 0.829 0.838 0.8369

BHGT (S+FD) 0.873 0.892 0.878 0.815 0.893 0.853 0.8743

DDDTCWT-SS
(W)

0.867 0.930 0.913 0.895 0.886 0.877 0.8935

S spatial domain, FD frequency domain,W wavelet domain

8. Our model covers the maximum area under the ROC curve in comparison with all state-
of-the-art methods for SOD and SED2 datasets and hence gives the highest AUC value
on these two datasets.

9. PFT [32] takes the least computation time.
10. Spatial domainmodels provide gooddetection accuracy at the cost of high computational

time while frequency domain models offer fast computational speed to meet real-time
requirements at the cost of poor detection accuracy. In order to induce a trade-off between
computational time and accuracy, our model provides high detection accuracy and takes
less time in comparison with most of the existing methods in spatial domain, which is
given in Table 5.
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Table 5 Quantitative comparison
in terms of computation time

Model Average time (in sec) per image

IT (S) 1.70

AIM (S) 50.8

GBVS (S) 59.8

SUN (S) 3.64

SLRG (S) 25.7

CASD (S) 124.0

BSM (S) 183.50

STREE (S) 104.9

MCA (S) 5.25

HDCT (S) 14.85

MSA (S) 3.51

LRK (S) 71.9

FT (S) 0.17

ASS (S) 0.31

SR (FD) 0.02

PCT (FD) 0.06

PFT (FD) 0.018

FDN (FD) 0.29

PFDN (FD) 0.25

HFT (FD) 0.69

SDS (FD) 0.17

PQFT (FD) 0.18

AQFT (FD) 6.4

BS (FD) 7.57

IS (FD) 0.04

WT (W) 6.55

SIM (W) 4.06

HLGM (FD) 0.26

BHGT (S+FD) 5.98

DDDTCWT-SS (W) 9.34S spatial domain, FD frequency
domain, W wavelet domain

11. Bipartite graph-based image segmentation and DDDTCWT-based saliency map com-
putation steps are independent from each other. Therefore, these steps are carried out
in parallel during experiments. This helps us in reducing overall execution time of the
proposed model.

12. In terms of mean precision value, DDDTCWT-SS outperforms all state-of-the-art
methods except HDCT and MCA. In terms of mean recall value, mean F-measure
value and mean AUC value, DDDTCWT-SS outperforms all state-of-the-art methods.

13. We have used a threshold which is equivalent to average intensity value of all pixels
computed using multi-scale edge-to-texture features extracted from 2D-DDDTCWT
coefficients to get a rough estimation of salient region and background region in initial
rough segmented saliencymap (RSSM).We need to choose the thresholdmore carefully
as we can lose too much of the salient pixels and sometimes get too many extraneous
background pixels while thresholding. To assign appropriate salient and background
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Fig. 7 ROC for the six datasets a MSRA-B, b ASD, c SAA_GT, d SOD, e SED1, f SED2
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Fig. 7 continued
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Fig. 7 continued
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Table 6 Average ranking of the
algorithms corresponding to
F-measure and AUC using
Friedman statistic

Algorithm Ranking for
F-measure

Ranking for AUC

IT (S) 26.25 29.17

AIM (S) 15.00 15.08

GBVS (S) 14.92 17.33

SUN (S) 18.00 23.00

SLRG (S) 10.42 12.67

CASD (S) 15.58 16.00

BSM (S) 7.25 12.33

STREE (S) 2.83 6.50

MCA (S) 5.17 5.67

HDCT (S) 4.00 2.83

MSA (S) 9.50 15.25

LRK (S) 6.75 13.75

FT (S) 21.33 27.33

ASS (S) 15.42 19.58

SR (FD) 26.83 25.33

PCT (FD) 24.67 19.50

PFT (FD) 28.08 22.00

FDN (FD) 13.25 14.92

PFDN (FD) 15.83 10.25

HFT (FD) 19.67 10.33

SDS (FD) 28.33 21.25

PQFT (FD) 28.00 26.25

AQFT (FD) 21.00 22.00

BS (FD) 10.67 11.92

IS (FD) 21.50 15.50

WT (W) 14.00 17.67

SIM (W) 24.00 14.33

HLGM (FD) 11.75 11.25

BHGT (S+FD) 3.83 3.50

DDDTCWT-SS (W) 1.17 2.50

pixels to two different Gaussian kernels for refinement process, we have chosen more
reliable way based on DDDTCWT coefficients.

14. To show the statistical significance of performance results, Friedman statistical
test is performed on F-measure and AUC performance measures, which is based on the
research work of Demšar [22] and Derrac et al. [23]. The null hypothesis assumes that
each of themodels is equivalent in terms of their performance. A comparison ofmultiple
models can be accomplished after ranking them according to their F-measure and AUC
values. For each case, rank ranging from 1 to k is associated with every model. Rank
values 1 and k denote the best and worst result, respectively. Let this rank be denoted
by r j

i (1 ≤ i ≤ N , 1 ≤ j ≤ k). For each model, j , let R j denote the average of ranks
over the N experimental observations. The ranks computed are given in Table 6 for
30 models for both performance measures. Table 6 shows that the best performing
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Images Before Refinement SM After Refinement SM

MSRA, ASD, SAA 

SOD

SED1 

SED2 

Fig. 8 Qualitative performance of the proposed algorithm before and after the refinement step

DDDTCWT-SS algorithm has the least rank value for both F-measure (1.17) and AUC
(2.50). The p values computed by Iman and Davenport [42] statistic for F-measure and
AUC are 4.0622267404084276E−55 and −2.2204454167762003E−16, respectively,
which suggest the statistical difference among all models considered in our quantitative
comparison, hence rejecting the null hypothesis.

15. We have used six datasets containing images with wide range of shapes, scales and
appearances. The proposed method produces more accurate saliency maps in various
challenging cases, e.g. salient object touching the image border (columns 6(a) and 6(b)),
multiple disconnected salient objects (columns 6(c) and 6(d)), low contrast between
salient object and background (column 6(e)) and Camouflage condition (column 6(f)),
while the proposed algorithm may not work properly for some images containing mul-
tiple objects on highly cluttered backgrounds (columns 6(g) and 6(h)). It also may not
provide better performance on images with salient objects under partial occlusion.

16. To show contribution of the refinement step using Gaussian mixture model (GMM) and
expectation maximization (EM) algorithm in the proposed algorithm, quantitative and
qualitative performance of the algorithm before and after the refinement step is shown
in Table 7 and Fig. 8, respectively. Table 7 (shown in bold) and Fig. 8 show that the
performance after refinement step is improved.
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5 Conclusion and future work

Performance assessment of the proposed model is done in terms of precision, recall, F-
measure, AUC and computation time on six publicly available image datasets. Performance
of the proposed model (DDDTCWT-SS) is also evaluated in terms of mean precision value,
mean recall value, mean F-measure values and mean AUC values on all six datasets. Exper-
imental results exhibited that the proposed model (DDDTCWT-SS) outperforms several
existing competitors in terms of F-measure on five datasets, recall on four datasets and AUC
on two datasets. The proposed method outperforms all state-of-the-art methods in terms of
mean recall value, mean F-measure value and mean AUC value on all six datasets. However,
the proposed model demands less computation time in comparison with most of the existing
methods in spatial domain. Although the proposed method (DDDTCWT-SS) is simple, still
there are several important issues which require further investigation like incorporation of
more sophisticated visual features to further improve the performance. The research work
can also be reached out to make the framework powerful by handling some difficulties like
partial occlusion, articulation, background clutter and real-time requirements. We hope to
encourage more future work along this direction. A challenging dataset related to specific
challenges like partial occlusion and background clutter with accurate annotation and appro-
priate evaluation methodology would be desirable. In future, we will also be focussing on
solving an application-oriented problem like image or video compression and video summa-
rization using visual saliency.

Acknowledgements The authors express their gratitude to the University Grant Commission (UGC), India,
and DST-Purse, India, for the obtained financial support in performing this research work.
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