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Abstract Rule-based argumentation systems are developed for reasoning about defeasible
information. As a major feature, their logical language distinguishes between strict rules
(encoding strict information) and defeasible rules (describing general behavior with excep-
tional cases). They build arguments by chaining such rules, define attacks between them,
use a semantics for evaluating the arguments and finally identify the plausible conclusions
that follow from the rules. Focusing on the family of inconsistency-based attack relations,
this paper presents the first study of the outcomes of such systems under various acceptabil-
ity semantics, namely naive, stable, semi-stable, preferred, grounded and ideal. It starts by
extending the existing list of rationality postulates that any rule-based system should satisfy.
Then, it defines the key notion of option of a theory (a theory being a set of facts, a set of
strict rules and a set of defeasible rules). For each of the cited semantics, it characterizes the
extensions of a rule-based system that satisfies all the postulates in terms of options of the
theory under which the system is built. It also fully characterizes the set of plausible con-
clusions of the system. The results show that designing a rule-based argumentation system
requires great care.

Keywords Defeasible reasoning · Rule-based systems · Argumentation

1 Introduction

Argumentation is a promising approach for reasoning about inconsistent information. It con-
sists of generating arguments that support claims, defining attacks between them, evaluating
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the arguments using a given semantics and finally identifying the plausible claims on the
basis of the strength of their arguments.

Dungproposed in [1] various semantics at an abstract level, i.e.,without taking into account
the structure of arguments or the nature of attacks. His abstract framework was instantiated
by several scholars. The idea is as follows: Start with a knowledge base whose elements are
encoded in a logical language, generate arguments using the consequence operator attached
to the language, identify the attacks and applyDung’s semantics for the evaluation task. There
were two major categories of instantiations for this abstract framework. The first category
uses deductive logics (such as propositional logic [2,3] or any Tarskian logic [4]), whereas
the second category uses rule-based languages. These languages distinguish between:

• facts which are information about particular instances like “My laptop is heavy.”
• strict rules which encode general laws about classes of instances like “First generation

laptops are heavy.” Such rules do not have exceptions.
• defeasible ruleswhich describe general behavior with exceptional cases. Defeasible rules

correspond thus to what is called defaults in [5] or conditional assertions in [6,7].

Examples of rule-based argumentation systems are: aspic [8], its extended version aspic+
[9],DeLP [10] and the systems developed in [11–15]. Despite the popularity of these systems,
the results they return have not been characterized yet, except the system discussed in [11].
The following questions are thus still open:

• what are the underpinnings of the extensions under various semantics?
• do the semantics return different results as at the abstract level?
• what is the number of extensions a system may have?
• what are the plausible conclusions with such systems?

In this paper, we answer all the four questions in three steps:We start by defining a rule-based
argumentation system over a knowledge base called theory (a set of facts, a set of strict rules
and a set of defeasible rules). The system uses a notion of derivation schema for generating
arguments from the theory. For the sake of generality, the attack relation is left unspecified.
However, it has the property of being conflict-dependent, that is, it captures the inconsistency
that may be present in the theory. It is worth mentioning that all existing attack relations (like
rebuttal and assumption attack) are conflict-dependent. A notable exception is undercutting
which aims at blocking the application of defeasible rules [16].

In a second step, we extend the list of postulates (consistency, closure under strict rules)
proposed in [17]. The aim of those postulates is to mathematically capture what humans
perceive as rationale behavior from the semantics of defeasible theories. They are thus desir-
able properties that a system should satisfy. We introduce three new postulates. The first
one, strict precedence, ensures that any claim that follows from the strict part of a theory is
a plausible conclusion of the argumentation system. The second postulate, exhaustiveness,
ensures a form of completeness of the extensions of an argumentation system. The third
postulate, closure under sub-arguments, states that an argument cannot be accepted if one of
its sub-parts is questionable.

Finally, we investigate the outputs of rule-based argumentation systems that satisfy all
the postulates. We show that naive extensions return options of the theory (an option being a
sub-theory that gathers a maximal-up to consistency-set of the facts, strict rules, and defeasi-
ble rules). Furthermore, the set of plausible conclusions under the naive semantics contains
all the conclusions that are drawn from all the options. Stable extensions return preferred
options but not necessarily all of them; it depends on the attack relation at work. Unlike
options, preferred options are options that contain the strict part. Should not all preferred
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options be picked as stable extensions, defining an attack relation that discards exactly the
spurious ones thus turns out to be tricky. The same results hold under preferred semantics.
We also characterize both ideal and grounded extensions.We show that the ideal extension of
an argumentation system is the set of arguments built from the free part of a theory (i.e., the
sub-theory that contains the strict part as well as all defeasible rules that are not involved in
any minimal conflict). The grounded extension is a subset of the ideal extension. This means
that under grounded semantics, an argumentation system may miss intuitive conclusions.

The paper is structured as follows: Section 2 recallsDung’s semantics. Section 3 introduces
the logical language that will be used in the paper. Section 4 defines rule-based argumen-
tation systems. Section 5 introduces a list of postulates that such systems should satisfy.
Section 6 studies the outcomes of rule-based systems under naive, stable, semi-stable, pre-
ferred, grounded and ideal semantics. Section 7 discusses how our results may apply to
existing systems, and the last section concludes.

2 Abstract argumentation framework

An argumentation framework consists of a set of arguments and a binary relation express-
ing attacks among the arguments. Throughout this section, the structure and the origin of
arguments are left unspecified.

Definition 1 (Argumentation framework) An argumentation framework is a pair H =
(A,R) where A is a non-empty (possibly infinite) set of arguments and R ⊆ A × A is
an attack relation. A pair (a, b) ∈ Rmeans that a attacks b. A set E ⊆ A attacks an argument
b iff ∃a ∈ E such that (a, b) ∈ R.

Notation We sometimes use the infix notation aRb to denote (a, b) ∈ R.

An argumentation framework (A,R) is represented as a graph, argumentation graph,
whose nodes are the arguments of A and its edges are the attacks in R. Arguments are
evaluated using a semantics, i.e., a set of criteria that should be satisfied by an argument
in order to be acceptable. Throughout this paper, we focus on extension-based semantics
initially introduced by Dung [1]. Such semantics look for acceptable sets of arguments,
called extensions. Each extension represents a coherent point of view and satisfies two basic
properties: conflict-freeness and defense.

Definition 2 (Conflict-freeness, defense, admissibility) LetH = (A,R)be an argumentation
framework and E ⊆ A.

• E is conflict-free iff �a, b ∈ E such that (a, b) ∈ R.
• E defends an argument a iff ∀b ∈ A, if (b, a) ∈ R, then E attacks b.
• E is an admissible set iff E is conflict-free and defends all its elements.

The following definition recalls the main semantics that were proposed in [1,18,19]. It is
worth noticing that all those semantics are based on the notion of admissibility.

Definition 3 (Semantics) Let H = (A,R) be an argumentation framework, and E ⊆ A be
a conflict-free set.

• E is a naive extension iff it is a maximal (w.r.t. ⊆) conflict-free set.
• E is a complete extension iff E is an admissible set that contains any argument it defends.
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• E is a preferred extension iff E is a maximal (w.r.t. ⊆) complete extension.
• E is a stable extension iff E attacks any argument in A\E .
• E is a semi-stable extension iff E is a complete extension and the union of the set E and

the set of all arguments attacked by E is maximal (w.r.t. ⊆).
• E is a grounded extension iff E is a minimal (w.r.t. ⊆) complete extension.
• E is an ideal extension iff E is a maximal (w.r.t. ⊆) admissible set contained in every

preferred extension.

An argumentation framework has a single grounded (respectively ideal) extension. How-
ever, it may have several naive, admissible, complete, preferred, stable and semi-stable
extensions. It may also have zero stable extensions.

Notations LetH = (A,R) be an argumentation framework. We denote by Extx (H) the set
of all extensions of H under semantics x ∈ {n, p, s, ss}, where n (respectively
p, s, ss) stands for naive (respectively preferred, stable and semi-stable). We
denote by GE(H) (respectively IE(H)) the single grounded (respectively ideal)
extension ofH. When we do not need to refer to a particular semantics, we write
Ext(H) for short.

The following result recalls some key properties of these semantics.

Property 1 [1,18,19] Let H = (A,R) be an argumentation framework.

• Exts(H) ⊆ Extn(H)

• Exts(H) ⊆ Extp(H)

• If |Exts(H)| > 0, then Exts(H) = Extss(H)

• H has one grounded (respectively ideal) extension
• GE(H) ⊆ IE(H)

When Exts(H) = Extp(H), the framework H is said to be coherent. It is also worth
recalling that an argumentation framework that has an infinite set of arguments may have an
infinite number of extensions (under multiple-extensions semantics).

Let us now illustrate the different semantics on the argumentation frameworkH1 depicted
below.

e b

c

d a f g

This framework has eight naive extensions:

• E1 = {a, c, g},
• E2 = {d, e, f },
• E3 = {b, d, f },
• E4 = {a, e, g},
• E5 = {a, b, g},
• E6 = {b, e, g},
• E7 = {b, d, g}, and
• E8 = {c, f }.
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H1 has one stable/semi-stable extension E3 and two preferred extensions: E3 and E6 = {a, g}.
Its grounded and ideal extensions are empty (GE(H1) = IE(H1) = ∅).

Consider now the following argumentation framework H2 borrowed from [19]. It lays
bare some differences between ideal and grounded semantics.

a b c d

It can be checked that:

• GE(H2) = ∅,
• Extp(H2) = {{b, c}, {b, d}}, and
• IE(H2) = {b}.
Throughout the paper, we will refer to the seven semantics of Definition 3 by the reviewed

semantics, and by extension-based semantics to any semantics, which partitions the power
set of the set of arguments into two parts: extensions and non-extensions. Note that there
are other semantics in the literature like recursive [20] and stage [21] that follow this line of
research. This distinction is important since some of the results in the next sections hold for
any extension-based semantics, while others hold under the reviewed ones.

3 Rule-based logical language

In what follows, L is a set of literals, i.e., atoms or negation of atoms. The negation of an
atom x fromL is denoted¬x . We consider two additional constants� and σ such that� /∈ L
and σ /∈ L. Three kinds of information are distinguished:

• Facts, which are elements of L ∪ {�}
• Strict rules, which are of the form x1, . . . , xn → x (x, x1, . . . , xn denoting literals in L)
• Defeasible rules, which are of the form x1, . . . , xn ⇒ x or of the form � ⇒ x

(x, x1, . . . , xn denoting literals in L)
Facts are information about particular instances.A strict rule expresses general information

that has no exception. It is read as follows: If x1, . . . , xn hold, then x always holds. A
defeasible rule of the form x1, . . . , xn ⇒ x expresses general information that may have
exceptions and is read as follows: If x1, . . . , xn hold, then generally x holds as well. A
defeasible rule of the form� ⇒ x expresses that x is a defeasible fact and is read as follows:
generally x holds. Unlike existing systems like ASPIC [8] where a strict rule with an empty
body represents a fact, in our formalismwe keep general information and factual information
separate.

LetL′ be a set of atoms used for naming rules with the constraintsL∩L′ = ∅,� /∈ L′ and
σ /∈ L′. Every rule has a unique name and two rules cannot have the same name. Throughout
the paper, rules are named r, r1, r2, . . .

Definition 4 (Theory) A theory is a triple T = (F,S,D)whereF = {�}∪ X , with X ⊆ L,
is a set of facts, and S ⊆ L′ (respectively D ⊆ L′) is a set of strict (respectively defeasible)
rules’ names. T is finite iff all three sets F , S and D are finite.

Note that � is a fact in any theory. Note also that the two sets S and D contain names of
rules and not the corresponding rules themselves. Throughout the paper, (F,S,∅) is referred
to as the strict part of a theory T = (F,S,D).
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Notations Let r ∈ L′, the functionRule(r) returns the (strict or defeasible) rulewhose name
is r . For each rule x1, . . . , xn → x (respectively x1, . . . , xn ⇒ x or � ⇒ x)
whose name is r , the head of the rule is Head(r) = x and the body of the
rule is Body(r) = {x1, . . . , xn} or Body(r) = {�}. Let T = (F,S,D) and
T ′ = (F ′,S ′,D′) be two theories. We say that T is a sub-theory of T ′, written
T  T ′, iff F ⊆ F ′ and S ⊆ S ′ and D ⊆ D′. The relation � is the strict version
of  (i.e., it is the case that at least one of the three inclusions is strict).

The notion of consistency is defined as follows:

Definition 5 (Consistency) A set X ⊆ L is consistent iff �x, y ∈ X such that x = ¬y. It is
inconsistent otherwise.

This simple definition of consistency is sufficient since the language L contains only
literals.However, it is not suitable in case of richer languages.Assume thatL is a propositional
language. Thus, the set {x, y,¬x∨¬y} is consistent with respect to the above definitionwhile
it is clearly not the case. Thus, richer languages require a stronger definition of consistency
like the one proposed in [22].

Without loss of generality, throughout the paper we make the three following assumptions
about rules.

Assumptions The body of every (strict/defeasible) rule is finite and not empty. Moreover,
for each rule r ,Body(r)∪{Head(r)} is consistent.We say that r is consistent.

Note that the fact that rules are consistent does not ensure the consistency of a set of rules.
[23] discussed different forms of rule consistency. One of them is illustrated by the example
{x ⇒ y, y ⇒ ¬x} where both defeasible rules are consistent whereas together lead to an
inconsistent rule x ⇒ ¬x .

Let us now show how new information (i.e., literal) is produced from a given theory. This
is generally the case when (strict and/or defeasible) rules are fired in a derivation schema.
Belowwe provide a definitionwhich generalizes derivations as defined by [10,24] and others.

Definition 6 (Derivation schema) Let T = (F,S,D) be a theory, x ∈ L. A derivation
schema for x from T is a finite sequence d = 〈(x1, r1), . . . , (xn, rn)〉 such that:

• xn = x
• for i ∈ {1, . . . , n},

• xi ∈ F and ri = σ , or
• xi = Head(ri ), with ri ∈ S ∪ D and Body(ri ) ⊆ {x1, .., xi−1}

Seq(d) = {x1, . . . , xn}.
Facts(d) = {xi | i ∈ {1, . . . , n}, ri = σ }.
Strict(d) = {ri | i ∈ {1, . . . , n}, ri ∈ S}.
Def(d) = {ri | i ∈ {1, . . . , n}, ri ∈ D}.

In order to improve readability, we somehow abuse the notation: we use the rules them-
selves instead of their names.

Example 1 Consider the theory T1 such that F1, S1, D1 are as follows.

F1

{
p
q

S1

⎧⎨
⎩

p → s (r1)
q → ¬s (r2)
p, s → u (r3)

D1

⎧⎨
⎩

¬s ⇒ t (r4)
t, u ⇒ v (r5)
p ⇒ q (r6)
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Each of (1)–(7) below is a derivation schema from theory T1

〈(p, σ )〉 (1)

〈(q, σ ), (¬s, r2)〉 (2)

〈(p, σ ), (s, r1), (u, r3)〉 (3)

〈(p, σ ), (s, r1), (p, σ ), (u, r3)〉 (4)

〈(p, σ ), (q, σ ), (s, r1), (u, r3)〉 (5)

〈(p, σ ), (q, r6), (¬s, r2)〉 (6)

〈(p, σ ), (q, σ ), (¬s, r2), (s, r1), (u, r3), (t, r4), (v, r5)〉 (7)

A derivation schema is not necessarily consistent (such as (7) above), as it may contain
opposite literals in the form xi = ¬x j for some i and j . (A derivation d is consistent
iff Seq(d) is consistent.) Moreover, a derivation schema is not necessarily minimal (for set
inclusion) as shown in Example 1: compare (3) with (4). The former is a proper sub-sequence
of the latter.

Definition 7 (Minimal derivation schema) Let T be a theory and x ∈ L. A derivation schema
for x from T isminimal iff none of its proper subsequences is a derivation schema for x from
T .

Interestingly enough, there are two ways for a derivation schema not to be minimal for
set inclusion: (i) involving superfluous literals, i.e., literals that do not serve toward inferring
the conclusion as is illustrated by (5) in Example 1 (q is of no use there), (ii) involving
redundancy (hence, repeated literals) as illustrated by (4) in Example 1 (p is repeated twice).

Definition 8 (Focused derivation schema) Let T = (F,S,D) be a theory and x ∈ L. A
derivation schema d = 〈(x1, r1), . . . , (xn, rn)〉 for x from T is focused iff it can be reduced
to a minimal one by just deleting repeated pairs (xi , ri ).

Property 2 Let T = (F,S,D) be a theory and x ∈ L. A derivation schema d =
〈(x1, r1), . . . , (xn, rn)〉 for x from T is minimal iff d is focused and the literals x1, . . . , xn
are pairwise distinct.

Notations For a theory T , CN(T ) denotes the set of all literals that have a derivation schema
from T . We call CN(T ) the potential consequences drawn from T (for short,
consequences) but they need not be definitive as they may happen to be dismissed
by opposite conclusions.

The following property applies to the consequences drawn from a given theory.

Property 3 Let T = (F,S,D) be a theory.

• CN(T ) ⊆ F ∪ {Head(r) | r ∈ S ∪ D} ⊆ L
• If T is finite, then CN(T ) is finite
• F ⊆ CN((F,S,∅)) ⊆ CN(T )

• � ∈ CN(T )

• CN(T ) = {�} iff F = {�} and �r ∈ D such that Body(r) = {�}.
• If d is a derivation schema from T , Seq(d) ⊆ CN(T )

Some rules may not be activated (i.e., the literals in their body have no derivation schema).
Let us consider the following example.
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Example 2 Let T2 = (F2,S2,D2) be a theory such that

F2

{
p
q

S2
{
p → t (r1)
s → u (r2)

D2

{
p ⇒ q (r3)
u ⇒ v (r4)

There are rules herewhose head is not a consequence of T2. In symbols,CN(T2) = {p, q, t} ⊂
{p, q, t, u, v} = F2 ∪ {Head(r) | r ∈ S2 ∪ D2}. Namely, the two rules r2 and r4 are not
activated.

It is also easy to show that CN is monotonic. Note that a similar result was shown in [25]
for the logic underlying the ASPIC system [8].

Property 4 Let T and T ′ be two theories. If T  T ′ then CN(T ) ⊆ CN(T ′).

Let us now introduce the key notion of option which is useful for characterizing the
extensions of argumentation systems under various semantics. An option is a maximal (for
set inclusion) consistent sub-theory of a given theory.

Definition 9 (Option) Let T = (F,S,D) be a theory. An option of T is a sub-theory
T ′ = (F ′,S ′,D′) of T such that:

• F ′ ⊆ F , S ′ ⊆ S and D′ ⊆ D
• CN(T ′) is consistent
• �T ′′  T such that T ′ � T ′′ and CN(T ′′) is consistent.

Opt(T ) denotes the set of all options of T .

Let us illustrate this new notion by the following example.

Example 3 Consider T3 such that F3, S3, D3 are as follows.

F3

⎧⎨
⎩

p
q
¬s

S3
{
t, v → s (r1) D3

⎧⎨
⎩

p ⇒ t (r2)
q ⇒ u (r3)
u ⇒ v (r4)

The theory T3 has seven options:

• O1 = (F3,S3, {r2, r3})
• O2 = (F3,S3, {r2, r4})
• O3 = (F3,S3, {r3, r4})
• O4 = (F3,∅,D3)

• O5 = ({p, q},S3,D3)

• O6 = ({p,¬s},S3,D3)

• O7 = ({q,¬s},S3,D3)

A theory has at least one option which is the theory itself in case it is consistent. This is
the case in Example 2: Opt(T2) = {T2}.
Property 5 Let T = (F,S,D) be a theory.

• Opt(T ) �= ∅.
• Opt(T ) = {T } iff CN(T ) is consistent.

We show next that options are all pairwise distinct.

Proposition 1 For all O,O′ ∈ Opt(T ), if CN(O) = CN(O′), then O = O′.
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The definition of option does not make any difference between the strict part of a the-
ory (i.e., its facts and strict rules) and its defeasible part. In rule systems [24], the former
takes precedence over the latter since it represents the “certain” information of a theory. For
instance, in default logic the certain part belongs to every extension of a theory [5]. This
precedence is captured by the following notion of preferred option.

Definition 10 (Preferred option) Let T = (F,S,D) be a theory. A preferred option of T is
a sub-theory T ′ = (F ′,S ′,D′) of T such that:

• F ′ = F and S ′ = S, D′ ⊆ D,
• CN(T ′) is consistent,
• ∀r ∈ D\D′, CN((F,S,D′ ∪ {r})) is inconsistent.

POpt(T ) denotes the set of all preferred options of T .

Let us illustrate this notion by an example.

Example 3 (Cont) The theory T3 has three preferred options: O1, O2 and O3. ��
Unlike options, the defeasible rules of a theory do not necessarily belong to at least one

preferred option of the theory as shown by the following example.

Example 4 The theory T4 such that

F4

{
p
q

S4
{
p → s (r1) D4

{
p ⇒ ¬s (r2)

has a single preferred option O = (F4,S4,∅) which does not contain the unique defeasible
rule r2.

Every preferred option is an option. The converse holds only when the theory is consistent
in which case the latter is the only (preferred) option (cf. Property 5).

Property 6 Let T = (F,S,D) be a theory.

• POpt(T ) ⊆ Opt(T ).
• Opt(T ) ⊆ POpt(T ) iff CN(T ) is consistent.

A theory may not have preferred options. This is in particular the case when the strict part
(the set of facts and strict rules) is inconsistent.

Property 7 Let T = (F,S,D) be a theory.

• POpt(T ) = ∅ iff CN((F,S,∅)) is inconsistent.
• For all r ∈ D, if CN((F,S, {r})) is consistent, then there exists a preferred option O

such that (F,S, {r})  O.

Notice that the set of consequences of an (preferred) option is not necessarily maximal
for set inclusion as shown by Example 3.

Example 3 (Cont) We have CN(O1) = {p, q,¬s, t, u} and CN(O2) = {p, q,¬s, t}. Thus,
CN(O2) ⊆ CN(O1). ��
Notations For a set B of theories, we denote the set of its maximal elements as Max(B) =

{T ∈ B | �T ′ ∈ B such that CN(T ) � CN(T ′)}.
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Note that in general, maximal preferred options may be different from maximal options.
Consider, for instance, the theory in Example 3. Its maximal options are O4 and O5, while
its maximal preferred options are O1 and O3.

Let us now introduce the concept of free part of a theory T = (F,S,D). It is the sub-
theory that is made of the set of facts, the set of strict rules and the defeasible rules which
are involved in every preferred option of T .

Definition 11 (Free sub-theory) The free sub-theory of a theory T = (F,S,D) is
Free(T ) = (F,S,

⋂
(F,S,Di )∈POpt(T )

Di ).

The following result summarizes some basic properties of this sub-theory.

Property 8 Let T be a theory.

• For any O ∈ POpt(T ), Free(T )  O
• CN(Free(T )) is consistent

4 Rule-based argumentation systems

In this section, we propose an instantiation of Dung’s framework that allows reasoning
about defeasible information, i.e., drawing conclusions from a theory T = (F,S,D). The
instantiation is referred to as argumentation system keeping thus the term framework for the
abstract formalism of Dung. The backbone of an argumentation system is naturally the notion
of argument. Intuitively, an argument is a justification of a claim, i.e., it provides evidence
that the claim is true. Thus, it should satisfy at least the three following basic properties:
(i) internal coherence, (ii) relevance to the claim it justifies and (iii) truth preserving (i.e.,
it guarantees the truth of the claim). It is true that humans’ arguments may be inconsistent,
but they are seen as fallacious by reasonable people. Furthermore, the topic of the paper is
not reasoning about humans’ arguments. It is rather reasoning about inconsistent theories by
using arguments as a building block of the proposed logic.

Definition 12 (Argument) Let T = (F,S,D) be a theory. An argument defined from T is
a pair (d, x) such that:

• x ∈ L
• d is a derivation schema for x from T (Truth preserving)
• Seq(d) is consistent (Internal coherence)
• �T ′ � (Facts(d),Strict(d),Def(d)) such that x ∈ CN(T ′) (Relevance)

An argument (d, x) is strict iff Def(d) = ∅.
Example 1 (Cont) Below are the nine arguments that are built from the theory T1.

• (〈(p, σ )〉, p)
• (〈(q, σ )〉, q)

• (〈(p, σ ), (q, r6)〉, q)

• (〈(p, σ ), (s, r1)〉, s)
• (〈(q, σ ), (¬s, r2)〉,¬s)
• (〈(p, σ ), (q, r6), (¬s, r2)〉,¬s)
• (〈(p, σ ), (s, r1), (u, r3)〉, u)
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• (〈(q, σ ), (¬s, r2), (t, r4)〉, t)
• (〈(p, σ ), (q, r6), (¬s, r2), (u, r3)〉, t)

Note that there is no argument in favor of v since all derivation schemas for v are inconsistent.
Derivations (4) and (5) do not give birth to arguments since they are not minimal. ��
Notations Let T be a theory, Arg(T ) denotes the set of all arguments built from T in the

sense of Definition 12. If a = (d, x) is an argument, then Conc(a) = x . For a
set E of arguments, Concs(E) = {x | (d, x) ∈ E} and Th(E) is a theory such
that

Th(E) =
⎛
⎝ ⋃

(d,x)∈E
Facts(d),

⋃
(d,x)∈E

Strict(d),
⋃

(d,x)∈E
Def(d)

⎞
⎠ .

The following result shows that an argument provides a minimal derivation schema for a
conclusion.

Theorem 1 Let T be a theory. For any consistent sequence d = 〈(x1, r1), . . . , (xn, rn)〉 from
T , the following two statements are equivalent:

• (d, x) is an argument (from T )
• d is a focused derivation schema from T such that x = xn

An argument may have several sub-parts, each of which may give birth to an argument,
called sub-argument of the original argument.

Definition 13 (Sub-argument) An argument (d, x) is a sub-argument of (d ′, x ′) iff
(Facts(d), Strict(d), Def(d))  (Facts(d ′), Strict(d ′), Def(d ′)).

Notations The function Sub(.) returns the set of all sub-arguments of a given argument.

Example 1 (Cont) The argument (〈(q, σ ), (¬s, r2)〉,¬s) has two sub-arguments: (〈(q, σ )〉,
q) and itself. By contrast, (〈(q, σ )〉, q) is not a sub-argument of (〈(p, σ ), (q, r6)〉, q). ��
Property 9 If (d, x) is a sub-argument of (d ′, x ′), then Seq(d) ⊆ Seq(d ′).

The converse is not true as shown next.

Example 5 Consider the two arguments a and b:

• a = (〈(p, σ ), (t, p → t)〉, t)
• b = (〈(p, σ ), (q, p → q), (t, q ⇒ t)〉, t)

Note that Seq(a) = {p, t} ⊆ {p, q, t} = Seq(b) but a is not a sub-argument of b since the
theory ({p}, {p → t}, σ ) is not a sub-theory of ({p}, {p → q}, {q ⇒ t}).

Argumentation systems that use a Tarskian logic such as propositional logic may have
infinite sets of arguments even when the theories (called knowledge bases) over which they
are built are themselves finite (cf. [26]). We show that this is not the case for rule-based
argumentation systems. Indeed, the sets of arguments are finite as soon as the theories are
finite.

Proposition 2 If a theory T is finite, then Arg(T ) is finite.
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The set of arguments built from a given theory cannot be empty since the set of facts of a
theory contains at least �.

Property 10 For a theory T = (F,S,D), Arg(T ) �= ∅.
The construction of arguments in all existing structured argumentation systems is a

monotonic process. By structured systems, we mean argumentation systems that build their
arguments from knowledge bases encoded in particular logics. These include ASPIC [8],
ASPIC+ [9], DeLP [10], ABA [27] and those discussed in [4]. Thus, unlike Dung’s frame-
work where arguments are abstract entities, in structured systems arguments have a clear
origin and a precise structure. Hunter studied in [25] the properties of the logics underlying
existing structured systems. The results show that the set of arguments built from a knowl-
edge base cannot be shrunk when the base is extended by new information. The following
result shows that this property holds also for the kind of logic discussed in this paper.

Proposition 3 Let T and T ′ be two theories. If T  T ′, then Arg(T ) ⊆ Arg(T ′).

A rule-based instantiation of Dung’s abstract framework is defined as follows:

Definition 14 (Argumentation system) An argumentation system defined over a theory T =
(F,S,D) is a pair H = (Arg(T ),R) where Arg(T ) is the set of arguments built from T
in the sense of Definition 12 and R ⊆ Arg(T ) × Arg(T ) is an attack relation.

For the sake of generality, the attack relation of an argumentation system is left unspecified
in the sequel. Thus, it may be instantiated in different ways. In existing rule-based argumen-
tation systems like the ASPIC system as defined in [8,17] and its extended version ASPIC+
[9], three kinds of attack relations are used: (i) rebut, initially proposed in [28], which requires
that two arguments have opposite conclusions, (ii) assumption attack, proposed also in [28],
according to which an argument undermines a premise of another argument, and (iii) under-
cut, proposed in [16], which allows an argument to prevent the application of a defeasible
rule in another argument. The two first relations are conflict-dependent, i.e., they capture
the inconsistency of the theory over which an argumentation system is built. Such relations
should show no attack from argument a to b unless their derivation schemas contain opposite
literals.

Definition 15 (Conflict-dependency) Let H = (Arg(T ), R) be an argumentation sys-
tem. The attack relation R is conflict-dependent iff for all (d, x), (d ′, x ′) ∈ Arg(T ), if
(d, x) R (d ′, x ′) then Seq(d) ∪ Seq(d ′) is inconsistent.

An important feature of conflict-dependent attack relations is that they do not admit self-
attacking arguments, mainly since arguments are consistent.

Proposition 4 Let H = (Arg(T ), R) be an argumentation system. If R is conflict-
dependent, then for all a ∈ Arg(T ) (a, a) /∈ R.

Conflict-dependency is somehow related to the notion of conflict-freeness of sets of argu-
ments. Indeed, when the attack relation is conflict-dependent, the set of arguments built from
any consistent theory is conflict-free with respect to this relation.

Proposition 5 Let H = (Arg(T ),R) be an argumentation system built over a theory T .
For every T ′  T , if CN(T ′) is consistent and R is conflict-dependent, then Arg(T ′) is
conflict-free.
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Another feature of all the attack relations in existing rule-based argumentation systems is
the fact that they privilege strict arguments.

Definition 16 (Strict argument precedence) Let H = (Arg(T ),R) be an argumentation
system built over a theory T . An attack relation R privileges strict arguments iff for all
a = (d, x), b = (d ′, x ′) ∈ Arg(T ), if a is strict and Seq(d) ∪ Seq(d ′) is inconsistent, then
aRb.

A consequence of this property is that the set Arg(Free(T )) is admissible (i.e., it is
conflict-free and defends all its elements). We will show in a subsequent section that this
result is crucial for characterizing ideal extension.

Theorem 2 Let H = (Arg(T ),R) be an argumentation system built over a theory T =
(F,S,D) such that CN((F,S,∅)) is consistent. If R is conflict-dependent and privileges
strict arguments, then Arg(Free(T )) is an admissible set of H.

Unless stated otherwise, in what follows we do not make any assumption about the attack
relation of a rule-based argumentation system. However, the arguments of the latter are
evaluated using any of the semantics recalled in Definition 3. The extensions of a system
are used for defining the plausible conclusions to be drawn from the theory over which the
system is built. A literal is a plausible conclusion of a system iff it is a common conclusion
to all the extensions.

Definition 17 (Plausible conclusions) Let H = (Arg(T ),R) be an argumentation system
built over a theory T . The set of plausible conclusions of H under semantics x is

Output(H) =
{ {z ∈ L | ∀E ∈ Extx (H), ∃a ∈ E s.t. Conc(a) = z} if Extx (H) �= ∅

∅ else

The set of plausible conclusions coincides with the set of common conclusions of the
extensions, of course when extensions exist.

Property 11 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that Extx (H) �= ∅ where x is any of the reviewed semantics. The equality Output(H) =⋂

Ei∈Extx (H) Concs(Ei ) holds.

Finally, it is obvious that the plausible conclusions of an argumentation system are con-
sequences of the theory over which it is built.

Property 12 LetH = (Arg(T ),R) be an argumentation system built over a theory T . The
inclusion Output(H) ⊆ CN(T ) holds under any extension-based semantics.

It is worth noticing that under admissible semantics, the set of plausible conclusions of any
argumentation system is empty. This is mainly due to the fact that the empty set is always
an admissible extension. This makes this semantics unsuitable for defeasible reasoning.
Complete semantics suffers from the same problem. Indeed, since under this semantics
extensions are not maximal for set inclusion, the empty set may be an extension leading
thus to an empty set of plausible conclusions. Stable semantics may also be unsuitable for
argumentation systems that do not have extensions.However,we show in a subsequent section
that rule-based systems that satisfy some desirable properties do have stable extensions, in
particular when the attack relation is conflict-dependent.

123



556 L. Amgoud, P. Besnard

5 Postulates for rule-based argumentation systems

Like any reasoning model, argumentation systems should enjoy some desirable properties or
rationality postulates that ensure their soundness. The first work on postulates in argumen-
tation was done by [17] in the context of rule-based systems. Starting from the observation
that some existing systems like those proposed in [12,29] suffer from two main problems: (i)
returning inconsistent sets of plausible conclusions and (ii) forgetting intuitive conclusions,
the authors proposed three postulates which prevent the encountered problems. In what fol-
lows, we recall the three postulates and propose three new ones. The first postulate proposed
in [17] concerns the consistency of the set of conclusions supported by every extension.

Postulate 1 (Consistency) An argumentation system H = (Arg(T ),R) built over a theory
T = (F,S,D) satisfies consistency under semantics x iff for any E ∈ Extx (H), Concs(E)

is consistent.

A rule-based system which satisfies this postulate has necessarily a consistent set of
plausible conclusions.

Property 13 [17] If an argumentation systemH = (Arg(T ),R) satisfies consistency under
semantics x (x being any extension-based semantics), then Output(H) is consistent.

The second postulate ensures a form of “completeness” of the outputs of an argumentation
system. It says that if there is an argument with conclusion x in an extension of the system,
and there exists a strict rule x → y in the theory over which the system is built, then y
should also be supported by an argument in the same extension. Recall that a strict rule has
no exception. Thus, as soon as x is true, y holds for sure.

Postulate 2 (Closure under strict rules) An argumentation system H = (Arg(T ),R) built
over a theory T = (F,S,D) is closed under strict rules under semantics x iff for any
E ∈ Extx (H), Concs(E) = CN((Concs(E),S,∅)).

If an argumentation system is closed under strict rules, then its set of plausible conclusions
is also closed under strict rules.

Property 14 [17] Let H = (Arg(T ), R) be an argumentation system built over a theory
T = (F,S,D). If H is closed under strict rules under semantics x (x being any extension-
based semantics), then Output(H) = CN((Output(H),S,∅)).

A third postulate, called indirect consistency, was proposed in [17]. It ensures that every
closed (under strict rules) extension should satisfy consistency. It was shown that a system that
satisfies consistency and closure under strict rules satisfies this form of indirect consistency.

Property 15 [17] Let H = (Arg(T ), R) be an argumentation system built over a theory
T = (F , S, D). IfH satisfies consistency and is closed under strict rules under semantics x
(x being any extension-based semantics), then for any E ∈ Extx (H),CN((Concs(E),S,∅))

is consistent.

It is worth mentioning that the three previous results hold for any attack relation and
under any extension-based acceptability semantics, thus under any of the semantics recalled
in Definition 3 and others like recursive semantics [20].
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In any axiomatic approach, the axioms (or postulates) should ideally all be independent
from each other, i.e., none is deduced from the others. Thus, in the sequel indirect consistency
is abandoned since it follows from Postulates 1 and 2. We propose next three new postulates
which were already defined in [30] for argumentation systems that use a logic in the sense of
[22]. The first one says that if an argument belongs to an extension, then all its sub-arguments
should be in the extension. Thus, an argument cannot be accepted if one of its sub-parts is
questionable. This is a natural requirement since plausible conclusions inferred from a theory
rely on their supporting arguments which should be unassailable.

Postulate 3 (Closure under sub-arguments) An argumentation system H = (Arg(T ), R)

built over a theory T = (F,S,D) is closed under sub-arguments under semantics x iff for
any E ∈ Extx (H), if a ∈ E then Sub(a) ⊆ E .

Argumentation systems that satisfy both consistency and closure under sub-arguments
enjoy a strong version of consistency. Indeed, the set of consequences that follow from the
theory of an extension is consistent.

Proposition 6 Let H = (Arg(T ), R) be an argumentation system built over a theory T =
(F,S,D) such that Extx (H) �= ∅ (x being any extension-based semantics). If H satisfies
consistency and closure under sub-arguments, then for any E ∈ Extx (H), CN(Th(E)) is
consistent.

Let us illustrate this result with an example.

Example 6 Let T5 = (F5,S5,D5) be a theory such that S5 = ∅ and

F5

{
x
¬x

D5

{
x ⇒ y (r1)
¬x ⇒ z (r2)

Consider the two arguments (d1, y), (d2, z) with d1 = 〈(x, σ ), (y, r1)〉 and d2 =
〈(¬x, σ ), (z, r2)〉. Assume that the set E = {(d1, y), (d2, z)} is an extension of (Arg(T5),R)

under a given semantics. Clearly, CN((Concs(E),S,∅)) = {y, z} is consistent. However,
Th(E) = T and CN(T ) = {x,¬x, y, z} is inconsistent. Proposition 6 ensures that the argu-
mentation system (Arg(T5),R) violates at least one of the consistency or closure under
sub-arguments postulates.

Since facts and strict rules are the certain part in a theory (facts being observable and
strict rules having no exceptions), they should be plausible conclusions of any argumentation
system. It is worth mentioning that this principle is applied, for instance, in default logic
where the non-defeasible information of a default theory is part of all extensions [5]. Of
course this makes sense when the non-defeasible information is consistent.

Postulate 4 (Strict precedence) An argumentation system H = (Arg(T ), R) built over a
theory T = (F,S,D) satisfies strict precedence under semantics x iff CN((F,S,∅)) ⊆
Output(H).

Notice that argumentation systems that have no extensions violate this postulate. Similarly,
systems that evaluate their arguments using a semantics which considers the empty set as an
extension (like admissible semantics) violate strict precedence. Such systems are thus not
suitable for defeasible reasoning since they may miss intuitive conclusions.

Proposition 7 Let H = (Arg(T ), R) be an argumentation system built over a theory
T = (F,S,D) such that ∅ ∈ Extx (H). H violates strict precedence under semantics x.
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We show next that if an argumentation system satisfies consistency and strict precedence,
then the strict part of the theory over which it is built is consistent.

Proposition 8 Let H = (Arg(T ),R) be an argumentation system built over a theory T =
(F,S,D) such that Extx (H) �= ∅. If H satisfies consistency and strict precedence under
semantics x, then CN((F,S,∅)) is consistent.

The last postulate ensures a form of completeness of the extensions of an argumentation sys-
tem under any semantics. It says that if the sequence of an argument is part of the conclusions
of a given extension, then the argument should belong to the extension. Informally: If each
step in the argument is good enough to be in the extension, then so is the argument itself. It
is worth pointing out that this postulates holds for both strict and defeasible rules.

Postulate 5 (Exhaustiveness) An argumentation system H = (Arg(T ),R) built over a
theory T = (F,S,D) satisfies exhaustiveness under semantics x iff for any E ∈ Extx (H),
for any (d, x) ∈ Arg(T ), if Seq(d) ⊆ Concs(E), then (d, x) ∈ E .

Argumentation systems that satisfy exhaustiveness and closure under sub-arguments have
complete extensions, i.e., they are closed in terms of arguments.

Proposition 9 LetH = (Arg(T ),R) be an argumentation system such that Extx (H) �= ∅
(x being any extension-based semantics). If H is closed under sub-arguments and satisfies
exhaustiveness under semantics x, then for all E ∈ Extx (H), E = Arg(Th(E)).

When an argumentation system satisfies strict precedence and exhaustiveness, then its
strict arguments are part of any extension. This holds under any extension-based semantics.

Proposition 10 LetH = (Arg(T ),R) be an argumentation system such that Ext(H) �= ∅
(under an extension-based semantics). If H satisfies exhaustiveness and strict precedence,
then for any E ∈ Ext(H), Arg((F,S,∅)) ⊆ E .

An axiomatic approach should obey an important feature: The postulates should be com-
patible, i.e., they can be satisfied all together by an argumentation system under a given
semantics. Fortunately, this is the case of the five postulates discussed in this section.

Proposition 11 The five postulates are compatible.

The four postulates (consistency, closure under sub-arguments, closure under strict rules,
strict precedence) are independent. None of them follows from a subset of the three others.
However, as will be shown in the next section, exhaustiveness follows from consistency and
closure under sub-arguments when an argumentation system uses a conflict-dependent attack
relation and naive or stable semantics for evaluating arguments.

6 Outcomes of rule-based argumentation systems

This section analyzes the outputs of rule-based argumentation systems under the reviewed
semantics, i.e., those recalled in Definition 3, that are suitable for defeasible reasoning. Recall
that complete semantics is not a good candidate for such reasoning since its extensions are
not maximal (for set inclusion) and may thus lead to an empty set of plausible conclusions,
and missing intuitive conclusions. We analyze the extensions under each semantics. Indeed,
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we characterize the set Concs(.) of conclusions and the theory Th(.) of each extension. We
also characterize the set Output(.) of plausible conclusions that are drawn by a rule-based
argumentation system from a theory.

Note that the argumentation systemdescribed in Sect. 4 is not fully specified since its attack
relation is left undefined and may thus be instantiated in different ways. For the purpose of
our study, we do not need to consider a particular attack relation. Since any reasonable
argumentation system should satisfy the discussed postulates, throughout this section we
only focus on systems that satisfy the postulates. Such systems exist and ASPIC, defined
in [17], is one of them. Indeed, it was shown in [17] that ASPIC, which uses restricted
rebut as attack relation, satisfies consistency and closure under both sub-arguments and strict
rules under all Dung’s semantics. Furthermore, the attack relation in ASPIC privileges strict
arguments (by definition) and the strict part of a theory is assumed to be consistent. Thus, the
system satisfies strict precedence under the same semantics. Finally, from our Proposition
15 (respectively Proposition 13), it follows that it also satisfies exhaustiveness under stable
(respectively naive) semantics. The results we provide next hold for any instantiation of the
attack relationR. This means that whatever the attack relation that is considered, the outcome
will be the same. This shows also that all the reasonable rule-based argumentation systems
that can be built over the same theory are equivalent [31,32], in the sense they provide the
same extensions and the set of plausible conclusions under a given semantics.

Before presenting the formal results concerning the reviewed semantics, below are some
results that hold under any extension-based semantics, thus under all the reviewed semantics
but also under several other semantics (e.g., recursive semantics [20], the one used in DeLP
system [10], stage semantics [21], …). The first result characterizes the set of conclusions of
each extension of an argumentation system which is closed under sub-arguments.

Proposition 12 Let H = (Arg(T ), R) be an argumentation system such that Ext(H) �=
∅ (under an extension-based semantics). If H is closed under sub-arguments, then for any
E ∈ Ext(H),

• Concs(E) = X ∪ {Head(r) | r ∈ Y ∪ Z} where Th(E) = (X, Y, Z)

• Concs(E) = CN(Th(E))

• ∀(d, x) ∈ Arg(Th(E)), Seq(d) ⊆ Concs(E)

The next result shows that if an argumentation system over a theory satisfies strict prece-
dence, closure under both sub-arguments and strict rules, then the set of literals deduced
from Th(E), the theory of an extension E , is exactly the same set that is obtained from Th(E)

extended by all facts and strict rules which are not in Th(E).

Theorem 3 Let H = (Arg(T ), R) be an argumentation system built over a theory T =
(F,S,D) such that Ext(H) �= ∅ (under an extension-based semantics). IfH satisfies strict
precedence and closure under both strict rules and sub-arguments, then for any E ∈ Ext(H),

CN (Th(E)) = CN

⎛
⎝

⎛
⎝F,S,

⋃
(d,x)∈E

Def(d)

⎞
⎠

⎞
⎠ .

We also show that the theory of an extension can be extended into a sub-theory (of the
argumentation system) which infers, using the notion of derivation, all the conclusions that
are supported by arguments of the extension. This (i.e., Theorem 4) will be useful in proving
various results in the next sections.
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Theorem 4 Let H = (Arg(T ),R) be an argumentation system built over a theory T =
(F,S,D) such that Ext(H) �= ∅ (under an extension-based semantics). IfH satisfies strict
precedence, and closure under both strict rules and sub-arguments, then for anyE ∈ Ext(H),

Concs(E) = CN(O) for O = (F,S, ζ ) such that

ζ =
⎛
⎝ ⋃

(d,x)∈E
Def(d)

⎞
⎠ ∪ {

r | r ∈ D and Body(r) � CN(Th(E))
}
.

6.1 Naive semantics

Before characterizing the extensions as well as the plausible conclusions of a rule-based
argumentation system, let us first show some additional links between the postulates in the
particular case of naive semantics. The first result shows that exhaustiveness follows from
consistency and closure under sub-arguments. This is the case when the attack relation is
conflict-dependent.

Proposition 13 Let H = (Arg(T ),R) be an argumentation system built over a theory T
such thatR is conflict-dependent. IfH satisfies consistency and closure under sub-arguments
under naive semantics, H satisfies exhaustiveness under naive semantics.

The second result shows thatwhen an argumentation system is closed under sub-arguments
and satisfies the consistency postulate under naive semantics, then every naive extension of
the system is closed in terms of arguments.

Proposition 14 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under sub-
arguments under naive semantics. For any E ∈ Extn(H), E = Arg(Th(E)).

Strict precedence is problematic in case of naive semantics since it may be violated by a
rule-based argumentation system. This is mainly due to the fact that the orientation of attacks
is not taken into account when computing naive extensions; thus, there is no way to enforce
the postulate. We show next that strict arguments are part of any naive extension only when
they neither are attacked nor attack any argument.

Theorem 5 Let H = (Arg(T ),R) be an argumentation system built over a theory T =
(F,S,D) such that R is conflict-dependent. For any E ∈ Extn(H), Arg((F, S,∅)) ⊆ E iff
for any a ∈ Arg((F, S,∅)), �b ∈ Arg(T ) such that aRb or bRa.

We have previously shown that the five postulates are compatible in the general case.
Indeed, under stable and preferred semantics, it was shown that the ASPIC system satisfies
all the postulates. In case of naive semantics, this is not always true. Strict precedence is
not compatible with consistency when the strict part is inconsistent, or it is consistent but
in conflict with the defeasible part. For instance, any argumentation system built over the
theory of Example 3 will violate at least one of the two postulates under naive semantics.

Theorem 6 Let H = (Arg(T ),R) be an argumentation system built over a theory T =
(F,S,D) such thatR is conflict-dependent. If∃a, b ∈ Arg(T ) such that a ∈ Arg((F,S,∅))

and Conc(a) = ¬Conc(b), then H cannot satisfy both strict precedence and consistency
under naive semantics.
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In case of the ASPIC system, the argument b cannot be strict since the strict part (i.e.,
CN(F,S,∅)) is assumed to be consistent. Moreover, there is only one conflict between a and
b and which emanates from a since strict arguments cannot be attacked by defeasible ones.
Thus, strict precedence is violated.

We show next that, assuming consistency and closure under sub-arguments, naive exten-
sions are maximal.

Theorem 7 Let H = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies consistency and closure under sub-arguments
under naive semantics. For all E, E ′ ∈ Extn(H), if Concs(E ′) ⊆ Concs(E) then E = E ′.

The following theorem characterizes naive extensions. It says that every naive extension
of an argumentation systemwhich satisfies consistency and closure under sub-arguments has
a unique corresponding maximal option in the theory at hand.

Theorem 8 Let H = (Arg(T ),R) be an argumentation system built over a theory T
such that R is conflict-dependent and H satisfies consistency and closure under sub-
arguments under naive semantics. For any E ∈ Extn(H), there exists a unique option
O ∈ Max(Opt(T )) such that Th(E)  O and Concs(E) = CN(O).

Note that the inclusion Th(E) ⊆ O is due to the fact that a theory Th(E) of an extension
E contains only activated (strict and defeasible) rules, while maximal options may contain
non-activated ones. Thus, the elements which in O but not in Th(E) are non-activated rules.

Notations For E any extension ofH such that O in Max(Opt(T )) satisfies Th(E)  O and
Concs(E) = CN(O), let

Option(E)
def= O.

We prove that no two naive extensions return the same option. Moreover, every extension is
exactly the set of all arguments that can be built from its corresponding option.

Theorem 9 Let H = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies consistency and closure under sub-arguments
under naive semantics.

• For all E, E ′ ∈ Extn(H), if Option(E) = Option(E ′), then E = E ′
• For any E ∈ Extn(H), E = Arg(Option(E))

We have shown that each naive extension captures exactly one maximal option and it
supports all, and only, the consequences of that option. Theorem 10 states that every maximal
option has a corresponding naive extension. So, there is a bijection from the set of naive
extensions to the set of maximal options.

Theorem 10 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies consistency and closure under sub-arguments
under naive semantics.

• For any O ∈ Max(Opt(T )), Arg(O) ∈ Extn(H)

• For any O ∈ Max(Opt(T )), O = Option(Arg(O))

• For all O,O′ ∈ Max(Opt(T )), if Arg(O) = Arg(O′) then O = O′
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Example 3 (Cont) The theory T3 has seven options, of which only two are maximal:
Max(Opt(T3)) = {O4,O5}. For all argumentation system H built over T3, if the attack
relation of H is to be conflict-dependent and consistency and closure under sub-arguments
satisfied, then Extn(H) = {Arg(O4),Arg(O5)}.

From the previous results, it follows that there is a bijection between the set of naive
extensions of an argumentation system and the maximal options of the theory over which the
system is built.

Corollary 1 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies consistency and closure under sub-arguments
under naive semantics. There is a bijection between Extn(H) and Max(Opt(T )).

Theprevious results require only the satisfaction of twopostulates: consistency and closure
under sub-arguments. We show next that when a rule-based argumentation system satisfies
all the five postulates, there is a bijection between the set of naive extensions of the system
and the maximal preferred options of the theory over which it is built. The reason is that in
such a case, the maximal options of the theory coincide with the maximal preferred ones.
Recall that in general, maximal preferred options may be different from maximal options.

Theorem 11 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
thatR is conflict-dependent andH satisfies consistency, strict precedence and closure under
both strict rules and sub-arguments under naive semantics. The equality Max(POpt(T )) =
Max(Opt(T )) holds.

Corollary 2 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
thatR is conflict-dependent andH satisfies consistency, strict precedence and closure under
both strict rules and sub-arguments under naive semantics. There is a bijection between
Extn(H) and Max(POpt(T )).

It is possible to delimit the number of naive extensions of any argumentation system that
satisfies consistency and closure under sub-arguments. It is exactly the number of maximal
options of the theory at hand.

Corollary 3 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies consistency and closure under sub-arguments
under naive semantics. The equality |Extn(H)| = |Max(Opt(T ))| holds.

It follows also that when a theory is finite, then any system built over it has a finite number
of naive extensions.

Corollary 4 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies consistency and closure under sub-arguments
under naive semantics. If T is finite, then H has a finite number of naive extensions.

What about the plausible conclusions that are drawn from a theory using an argumentation
system that satisfies the postulates? From the previous results, it is easy to show that they are
the literals that follow from all the maximal options.

Theorem 12 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies consistency and closure under sub-arguments
under naive semantics.

Output(H) =
⋂

Oi∈Max(Opt(T ))

CN(Oi )
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Example 3 (Cont) Any argumentation systemH that can be built over the theory T3 and has a
conflict-dependent attack relation and satisfies consistency and closure under sub-arguments
will have as output the set Output(H) = CN(O4) ∩ CN(O5) = {p, q, t, u, v}.

Let us summarize the main results: under naive semantics, any rule-based argumentation
system may violate strict precedence. However, the other postulates can be satisfied. In such
a case , if the attack relation is conflict-dependent, then any argumentation system will infer
exactly the literals that follow from all the maximal options of the theory over which the
system is built. This is due to the bijection that holds between the set of naive extensions and
the set of maximal options. In case the system satisfies also strict precedence and closure
under strict rules, then themaximal options of the theory coincide with themaximal preferred
options.

6.2 Stable semantics

As for naive semantics, exhaustiveness follows from consistency and closure under sub-
arguments in case of stable semantics.

Proposition 15 Let H = (Arg(T ),R) be an argumentation system built over a theory T
such thatR is conflict-dependent. IfH satisfies consistency and closure under sub-arguments
under stable semantics, then the following two properties hold:

• H satisfies exhaustiveness under stable semantics.
• For any E ∈ Exts(H), E = Arg(Th(E)).

Stable extensions of rule-based argumentation systems satisfying the five postulates return
maximal preferred options. This means that if one instantiates Dung’s framework and does
not get maximal preferred options with stable extensions, then the instantiation certainly
violates at least one of the postulates. Note that strict precedence may be satisfied by an
argumentation system under stable semantics while it is violated by the same system under
naive semantics. This is due to the fact that the orientation of attacks plays an important
role in stable semantics, then strict precedence can be enforced by choosing an appropriate
orientation.

Theorem 13 Let H = (Arg(T ),R) be an argumentation system defined over a theory T
such that R is conflict-dependent. If H satisfies consistency, strict precedence and closure
under both sub-arguments and strict rules under stable semantics, and Exts(H) �= ∅, then
for any E ∈ Exts(H), there exists a unique option O ∈ Max(POpt(T )) such that:

• Th(E)  O
• Concs(E) = CN(O)

• E = Arg(O)

Two stable extensions cannot capture the same maximal preferred option.

Theorem 14 Let H = (Arg(T ),R) be an argumentation system defined over a theory T
such that R is conflict-dependent. If H satisfies consistency, strict precedence and closure
under both sub-arguments and strict rules under stable semantics and Exts(H) �= ∅, then
for all E, E ′ ∈ Exts(H), if Option(E) = Option(E ′) then E = E ′.

The previous results characterize the stable extensions of rule-based argumentation sys-
tems that satisfy the postulates. However, they do not guarantee that each maximal preferred
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option of a theory has a corresponding stable extension. To put it differently, it does not guar-
antee a bijection between the sets Exts(H) and Max(POpt(T )) and thus does not ensure
the equality |Exts(H)| = |Max(POpt(T ))|. In case of argumentation systems that use a
Tarskian logic for representing information and for computing arguments, it was shown in
[4] that this equality depends on the attack relation that is chosen. We show next that this is
also the case for rule-based systems.

Given T , let�s be the set of all attack relations that are conflict-dependent and that ensure
the five postulates under stable semantics:

�s = {R ⊆ Arg(T ) × Arg(T ) | R is conflict-dependent and (Arg(T ),R) satisfies
the five postulates under stable semantics for any theory T }.

This set contains three disjoints subsets of attack relations, i.e., �s = �s1 ∪ �s2 ∪ �s3 :

• �s1 : the set of relations such that |Exts(H)| = 0
• �s2 : the set of relations such that |Exts(H)| = |Max(POpt(T ))|
• �s3 : the set of relations such that |Exts(H)| < |Max(POpt(T ))|
Let us analyze separately each category of attack relations. The following result shows

that the set�s1 is empty, meaning that there is no attack relation which prevents the existence
of stable extensions. To say it differently, any argumentation system which satisfies the
postulates has at least one stable extension.

Theorem 15 �s1 = ∅.
A consequence of this postulate is that stable extensions coincide with semi-stable ones.

Indeed, it was shown in [18] that when stable extensions exist, they coincide with semi-stable
extensions.

Corollary 5 For all argumentation system H = (Arg(T ),R), if R ∈ �s2 ∪ �s3 , then
Exts(H) = Extss(H).

From the previous results, it is possible to delimit the number of stable extensions of
rule-based argumentation systems that satisfy the five postulates.

Corollary 6 Let H = (Arg(T ),R) be an argumentation system defined over a theory T
such that R is conflict-dependent. If H satisfies the five postulates, then

1 ≤ |Exts(H)| ≤ |Max(POpt(T ))|.
It follows that when a theory is finite, any argumentation system built over it has a finite

number of stable extensions.

Corollary 7 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies the five postulates. If T is finite, then H has a
finite number of stable extensions.

Attack relations of category �s2 induce a bijection between the set of stable extensions of
an argumentation system and the set of maximal preferred options of the theory over which
the system is built. Indeed, every preferred option gives a stable extension.

Theorem 16 LetH = (Arg(T ),R) be an argumentation system over a theory T such that
R ∈ �s2 . For any O ∈ Max(POpt(T )), Arg(O) ∈ Exts(H).
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Example 3 (Cont) The theoryT3 has seven options, ofwhich only two are preferredmaximal:
Max(POpt(T3)) = {O1,O3}. Thus, for all argumentation system H built over T3, if the
attack relation of H is of category �s2 , then Exts(H) = {Arg(O1),Arg(O3)}. Recall
that under naive semantics, there is no argumentation system over T3 that can satisfy strict
precedence. The ones that guarantee consistency and closure under sub-arguments will all
have the following naive extensions: Extn(H) = {Arg(O4),Arg(O5)}.

Argumentation systems with an attack relation from �s2 are coherent, meaning that the
preferred extensions exhaust all the stable ones. It follows thus that the three semantics (semi-
stable, stable, preferred) coincide. This means that semi-stable and preferred semantics have
no added value with respect to stable semantics since they guarantee the same results.

Theorem 17 For any argumentation systemH = (Arg(T ),R) such thatR ∈ �s2 , it holds
Exts(H) = Extss(H) = Extp(H).

In case an argumentation system satisfies strict precedence under naive semantics (see
Theorem 5), then its extensions coincide with the stable ones. To put differently, in case
naive semantics can guarantee strict precedence, stable semantics becomes useless since it
provides no added value with respect to naive semantics.

Theorem 18 For all argumentation system H = (Arg(T ), R) such that R ∈ �s2 , if H
satisfies the postulates under naive semantics, then

Extn(H) = Exts(H) = Extss(H) = Extp(H).

Plausible conclusions of rule-based argumentation systems that use attack relations in
category �s2 are exactly the literals that follow from all the maximal preferred options of the
theory at hand.

Theorem 19 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R ∈ �s2 .

Output(H) =
⋂

Oi∈ Max(POpt(T ))

CN(Oi ).

Systems that use relations in �s3 choose a proper subset of the maximal preferred options
of T and make inferences from them. Their output sets are as follows:

Theorem 20 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R ∈ �s3 .

Output(H) =
⋂

Oi∈X
CN(Oi )

with X = {Oi ∈ Max(POpt(T )) | Ei = Arg(Oi ) ∈ Exts(H)}.
These attack relations introduce a critical discrimination between the maximal preferred

options of a theory. Hence, great care must be exercised when designing rule-based argumen-
tation systems based on stable semantics: The principles governing the interaction between
⇒ andRmust be both rigorously and meticulously specified so as to avoid trouble of which
the following example is an easy case.
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Example 7 Consider T6 such that F6, S6, D6 are as follows:

F6

{
p
q

S6 = ∅ D6

{
p ⇒ s (r1)
q ⇒ ¬s (r2)

The theory T6 has two maximal preferred options:

• O1 = (F6,S6, {r1})
• O2 = (F6,S6, {r2})
For a system H whose attack relation is in �s3 either (i) Arg(O1) or (ii) Arg(O2) is its

unique stable extension. In case (i), s ∈ Output(H) and ¬s /∈ Output(H).
In case (ii), ¬s is the plausible conclusion. By the obvious symmetry (don’t be misled by

negation!1), either choice would be arbitrary, and this is an instance where an attack relation
from �s2 is alright.

To sum up, attack relations satisfying the postulates can be split into two categories: �s2
and�s3 . Relations from�s2 make semi-stable semantics and preferred semantics to collapse
into stable semantics. They offer no added value with respect to the latter. Stable semantics
may, however, be more valuable than naive semantics. Indeed, the theories for which strict
precedence cannot be satisfied under naive semantics are handled correctly under stable
semantics. This latter can enforce the satisfaction of strict precedence if the attack relation
is defined in an appropriate way. For those theories where the postulate is satisfied, stable
semantics collapses into naive semantics. With attack relations from category �s3 , pitfalls
threaten as preferred options are discarded, and a lot of caremust be exercisedwhen designing
such an argumentation system.

6.3 Preferred semantics

Preferred semantics was originally proposed in order to overcome the limitation of stable
semantics which does not guarantee the existence of extensions. Indeed, any argumentation
system has at least one preferred extension which may be empty. We show that in case of
rule-based systems the empty set cannot be an extension.

Theorem 21 Let H be an argumentation system built over a theory T = (F,S,D) such
that H satisfies the strict precedence postulate under preferred semantics. Extp(H) �= {∅}.

Unlike the cases of naive and stable extensions, a preferred extensionmay capture a proper
sub-part of a maximal preferred option. For instance, it is not impossible that a preferred
extension captures only the strict part of theory T6 in Example 7.

Theorem 22 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
thatR is conflict-dependent andH satisfies the five postulates under preferred semantics. For
any E ∈ Extp(H), ∃O ∈ Max(POpt(T )) such that Th(E)  O and Concs(E) ⊆ CN(O).

Each preferred extension corresponds to exactly one maximal preferred option. It either
returns all the consequences of that option, or chooses a subset. The latter contains all the
conclusions that follow from the strict part and some conclusions that follow using defeasible
rules. We show next that there is at least one maximal preferred option which is captured by
a preferred extension. This is mainly due to the fact that stable extensions exist.

1 There is an apparent asymmetry between s and ¬s but it is meaningless because we can choose an atom
t to represent the intuitive statement formalized by ¬s and then the intuitive statement formalized by s gets
represented as ¬t . As an illustration about numbers, by letting odd instead of even, or vice versa, to be an
atom of L, asymmetry about negation could be reversed, while in both cases the meaning would be the same.
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Theorem 23 Let H = (Arg(T ),R) be an argumentation system built over a theory T =
(F,S,D) such thatR is conflict-dependent andH satisfies the five postulates under preferred
semantics. There exists O ∈ Max(POpt(T )) such that Arg(O) ∈ Extp(H).

Example 7 (Cont) At least one of Arg(O1) and Arg(O2) is a preferred extension of an
argumentation system H = (Arg(T6),R) which satisfies the five postulates.

Two preferred extensions refer to different preferred options.

Theorem 24 Let H = (Arg(T ),R) be an argumentation system such that R is conflict-
dependent andH satisfies exhaustiveness and closure under sub-arguments under preferred
semantics. Let E, E ′ ∈ Extp(H) andO ∈ Max(POpt(T )). If Th(E)  O and Th(E ′)  O,
then E = E ′.

We show next that the free part of a theory, i.e., the sub-theory, which consists of the set
of facts, the set of strict rules and the defeasible rules which are involved in every preferred
option, is part of any preferred extension of argumentation systems that satisfy the postulates.
Indeed, the set Arg(Free(T )) is part of every preferred extension of any argumentation
system which satisfies consistency, exhaustiveness, strict precedence and closure under sub-
arguments.

Theorem 25 Let H = (Arg(T ),R) be an argumentation system over a theory T =
(F,S,D) such that R is conflict-dependent and privileges strict arguments (recall Defi-
nition 16), and H satisfies consistency, exhaustiveness, strict precedence and closure under
sub-arguments under preferred semantics.

Arg(Free(T )) ⊆
⋂

Ei∈Extp(H)

Ei .

From the previous results, it follows that the number of preferred extensions does not
exceed the number of maximal preferred options of the theory over which the system is built.

Theorem 26 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies the five postulates under preferred semantics.

1 ≤ |Extp(H)| ≤ |Max(POpt(T ))|
When a theory is finite, any argumentation system built over it has a finite number of

preferred extensions.

Corollary 8 LetH = (Arg(T ),R) be an argumentation system built over a theory T such
thatR is conflict-dependent andH satisfies the five postulates under preferred semantics. If
T is finite, then H has a finite number of preferred extensions.

Let us now characterize the plausible conclusions that are drawn from a theory T by an
argumentation system H satisfying the rationality postulates under preferred semantics. Let
�p be the set of all attack relations that ensure the postulates under preferred semantics:

�p = {R ⊆ Arg(T ) × Arg(T ) | R is conflict-dependent and (Arg(T ),R)

satisfies the five postulates under preferred semantics}.
In his seminal paper [1], Dung has shown that the stable extensions of an argumentation

system are also preferred extensions of the system. Consequently, the set �p is a subset of
�s .
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Property 16 �p ⊆ �s .

Then, �p contains three disjoint subsets of attack relations: �p = �p1 ∪ �p2 ∪ �p3 :

• �p1 : the relations which are in �p ∩ �s1 .
• �p2 : the relations which are in �p ∩ �s2 .
• �p3 : the relations which are in �p ∩ �s3 .

Let us analyze each category of attack relations separately. The first set is empty (i.e.,
�p1 = ∅) since we have shown previously that there is no attack relation which prevents an
argumentation system from having stable extensions (�s1 = ∅).

Attack relations of category�p2 lead to coherent argumentation systems (i.e.,Exts(H) =
Extp(H)) as shown in Theorem 17. Thus, preferred semantics does not provide an added
value with respect to stable semantics. Moreover, there is a bijection between the two sets:
Extp(H) and Max(POpt(T )).

Corollary 9 Let H = (Arg(T ),R) be an argumentation system over a theory T such that
R ∈ �p2 .

• For any E ∈ Extp(H), ∃O ∈ Max(POpt(T )) such that Concs(E) = CN(O) and
Th(E)  O.

• For any O ∈ Max(POpt(T )), Arg(O) ∈ Extp(H).
• For any O ∈ Max(POpt(T )), O = Option(Arg(O)).

In the case of attack relations of category�p2 , Arg(Free(T )) is equal to the intersection
of all preferred extensions.

Theorem 27 Let H = (Arg(T ),R) be an argumentation system over a theory T . If R ∈
�p2 , then

Arg(Free(T )) =
⋂

Ei∈Extx (H)

Ei

where x ∈ {p, s, ss}.

The output of an argumentation system is in this case the same as under stable semantics,
i.e., the plausible conclusions given in Theorem 19.

Let us now analyze attack relations of category �p3 . Remember that in this case stable
semantics chooses only somemaximal preferred options of the theory at hand. Four situations
may be encountered:

1. The stable extensions and the preferred extensions of an argumentation system coincide.
Thus, preferred semantics has no added value with respect to stable semantics. Moreover,
it may lead to arbitrary results as discussed in the previous subsection when R ∈ �s3
(see Example 7 where one of the defeasible rules is chosen in an arbitrary way).

2. The preferred extensions consider additional but not allmaximal preferred options (other
than the ones chosen by stable semantics). This case is similar to the previous one, and the
argumentation system may return arbitrary results. Note that Example 7 is not sufficient
to show this case since stable semantics will return one of O1 and O2 while preferred
semantics will return the second one, which corresponds more to the case above. In order
to exemplify this case, consider the following theory T7.
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Example 8 Consider T7 such that F7, S7, D7 are as follows:

F7

{
p
t

S7 = ∅ D7

⎧⎪⎪⎨
⎪⎪⎩

p ⇒ q (r1)
q ⇒ s (r2)
t ⇒ ¬s (r3)
t ⇒ ¬q (r4)

The theory T7 has three maximal preferred options:

• O1 = (F7,S7, {r1, r2})
• O2 = (F7,S7, {r1, r3})
• O3 = (F7,S7, {r3, r4})

Assume that Arg(O1) is the single stable extension of an argumentation system H =
(Arg(T7),R)which satisfies the five postulates. Thus, Arg(O1) is also a preferred extension
ofH. Case 2 suggests either Arg(O2) or Arg(O3) (not both) is another preferred extension.
Thus, as in Example 7, some rules are discarded in an arbitrary way.

3. The preferred extensions return all the maximal preferred options of the theory. This
means that stable semantics chooses some maximal preferred options and preferred
semantics considers the remaining ones. This case coincides exactly with the case of
attack relations of category �p2 (see Theorem 19). Indeed, the argumentation system
returns all the conclusions that follow from all maximal preferred options of the theory.
Note that this output is also ensured by stable semantics when R ∈ �s2.

4. Some of the preferred extensions provide proper sub-parts of maximal preferred options.
In this case, the result of the argumentation system may be arbitrary as can be seen on
the following example.

Example 8 (Cont) Consider an argumentation system H = (Arg(T7),R) such that R ∈
�p3 . Assume that H has two preferred extensions: E1 and E2. From Theorem 23, one of
them captures necessarily a maximal preferred option. Let E1 be such extension, and let
Option(E1) = O1. Case 4 suggests that there is at least another preferred extension, say
E2 such that Option(E2) � Oi (i = 2, 3). Assume that i = 2 and Th(E2) = (F7,S7, {r3}).
Note that since preferred extensions are maximal for set inclusion, it cannot be the case that
Th(E2) = (F7,S7, {r1}) (since E2 would be a subset of E1). One can notice that among the
four rules, r4 is not used, which is unjustified.

To sum up, attack relations of category �p3 may lead either to arbitrary results or to
results which can be provided by stable semantics.

6.4 Grounded: ideal semantics

This section analyzes the outcomes of rule-based systems under grounded and ideal seman-
tics. Recall that both semantics ensure only one extension, which may be empty, for an
argumentation system. Moreover, the grounded extension GE(H) of an argumentation sys-
tem H is a sub-part of the ideal extension IE(H) of the same system. Consequently, the
conclusions supported by the former are also supported by the latter, i.e., Concs(GE(H)) ⊆
Concs(IE(H)). Note also that the output set of an argumentation system is exactly
Concs(GE(H)) (respectively Concs(IE(H))) in case of grounded (respectively ideal)
semantics. Before presenting the formal results, it is worth mentioning that an argumentation
system that satisfies the postulates under preferred semantics does not necessarily satisfy the
postulates under grounded/ideal semantics. Similarly, a system that satisfies the postulates
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under ideal semantics may violate some of the postulates under grounded semantics. That is
why in the following we study each semantics separately.

The ideal extension, introduced in [19], is a maximal (for set inclusion) admissible set that
is a subset of each preferred extension. In case of a rule-based argumentation system which
satisfies the postulates, it returns a sub-part of one of the preferred options of the theory over
which the system is built. Formally:

Theorem 28 If an argumentation system H satisfies the five postulates under ideal seman-
tics, then there exists a preferred option O ∈ POpt(T ) such that Th(IE(H))  O and
CN((F,S,∅)) ⊆ Concs(IE(H)) ⊆ CN(O).

Note that the outcome under ideal semantics may be arbitrary. This is in particular the case
when the semantics selects one preferred option and draws all the conclusions that follow
from this option. However, when the attack relation is of category �p2 and privileges strict
arguments (recall Definition 16), then the ideal extension is exactly the set Arg(Free(T )).

Theorem 29 If an argumentation systemH satisfies the five postulates under ideal semantics
and R ∈ �p2 and privileges strict arguments, then IE(H) = Arg(Free(T )).

The above result shows that ideal semantics allows the inference of literals only from the
free part of a theory.

Corollary 10 If anargumentation systemH satisfies the fivepostulates under ideal semantics
and R ∈ �p2 and privileges strict arguments, then Output(H) = CN(Free(T )).

Note that in this case grounded extension may be more cautious than ideal one and may
miss intuitive (free) conclusions since GE(H) ⊆ Arg(Free(T )).

The grounded extension of any argumentation system which satisfies the postulates under
grounded semantics captures a sub-part of a preferred option, i.e., it behaves exactly like
ideal extension.

Theorem 30 If an argumentation system H satisfies the five postulates under grounded
semantics, then there exists a preferred option O ∈ POpt(T ) such that Th(GE(H))  O
and CN((F,S,∅)) ⊆ Concs(GE(H)) ⊆ CN(O).

7 Related work

The abstract argumentation framework proposed by Dung [1] was used for reasoning about
defeasible information, and more generally for handling inconsistency. It was thus instanti-
ated in different ways, considering different logical languages for representing information.
Examples of such languages are propositional language (e.g.,[2,3]) and rule-based ones (e.g.,
[8,9,11,27,29,33]).

All the instantiations are defined in a similar way: define arguments and attacks, then
apply Dung’s semantics on the defined graph, and infer the formulas that follow from all
extensions. Some of these works are incomplete since there is one important step which is
missing: characterizing the set of inferences that are drawn from a theory/knowledge base,
i.e., describing formally how the output relates to the theory.

For filling this gap, in [4], we considered argumentation systems that use Tarskian log-
ics, covering thus the systems studied in [2,3]. In [11,33], we focused on rule-based logics.
Here we faced two issues: First, the logical languages that are considered in the literature
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are different. In ASPIC [8], defeasible rules express defaults and any uncertain informa-
tion. In ABA [27], uncertain information is encoded by assumptions. In ASPIC+ [9], several
types of information are considered (axioms, ordinary premises, issues, assumptions, strict
rules and defeasible rules). The differences between all these types are unclear, especially
between strict rules and axioms (both represent certain and non-defeasible information), and
between ordinary premises, assumptions and defeasible rules (which all represent uncertain
and defeasible information). Consequently, we have chosen the logical language used in the
ASPIC system [8,17]. It considers facts and strict rules (for encoding strict information) and
defeasible rules (for encoding assumptions, defeasible rules, ordinary premises). Another
issue with rule-based argumentation systems is that there are two types of attack relations:
inconsistency-based ones and undercut which amounts to blocking the application of defea-
sible rules. For a better understanding of each type of attack relation, we studied in [11]
argumentation systems that use undercut as their sole attack relation, and in this paper we
studied the impact of inconsistency-based ones.

Our formalismuses the same logical language asASPIC and amore general inconsistency-
based attack relation. Our results apply thus to ASPIC when its undercut relation is empty.
Note that our results and those from [11] should be combined for characterizing the outcomes
of the ASPIC system when it uses the two kinds of relations. This is left for future work.

ASPIC+ uses a “richer” logical language since its aim was to unify all existing argumen-
tation systems. It can thus be seen a union of several elementary systems: ABA for dealing
with assumptions, ASPIC for dealing with strict/defeasible information, and the systems
defined in [4] for dealing with Tarskian logics. In [4], we have characterized this sub-class
of ASPIC+. In this paper, we characterized the sub-class capturing ASPIC.

The last well-known argumentation system, called ABA, cannot be compared to our for-
malism since the two systems use different logical languages. While ABA uses assumptions
for capturing the defeasible information in a theory, our formalism uses defeasible rules.

8 Conclusion

The paper provides the first investigation on the outputs of rule-based argumentation systems
that use inconsistency-based attack relations. The study is general in the sense that it keeps
the attack relation unspecified. Thus, the system can be instantiated with any of the attack
relations that are used in existing systems. The results show that under naive semantics, the
systems return the literals that follow from all the options of the theory at hand. Stable and
preferred semantics either do not provide an added value with respect to naive semantics
or the attack relation of a system should be formalized in a very rigorous way in order to
avoid arbitrary results. Ideal semantics returns the free part of a theory, whereas the grounded
semantics returns a sub-part of the free part meaning that it may miss interesting conclusions.

Acknowledgements The authors are very grateful to the reviewers for their many insightful comments.

Appendix: Proofs

Proof of Property 2 LetT = (F,S,D)be a theory and x ∈ L. Letd = 〈(x1, r1), . . . , (xn, rn)〉
be a derivation schema for x from T .
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(−→) Let us assume that there exist xi and x j such that xi = x j but i �= j .
Clearly, we can further assume i < j without loss of generality. For each (xk, rk)
in d where k > j , x j ∈ Body(rk) is trivially equivalent to xi ∈ Body(rk)
hence Body(rk) ⊆ {x1, . . . , x j−1, x j+1, . . . , xk−1}. Therefore, 〈(x1, r1), . . . , (x j−1, r j−1),
(x j+1, r j+1), . . . , (xn, rn)〉 is also a derivation schema, but it is a proper subsequence
of d , a contradiction arises. Now, let us assume that d fails to be focused. There
exists i ∈ {1, . . . , n − 1} such that xi /∈ Body(r j ) for every j > i . Consequently,
〈(x1, r1), . . . , (xi−1, ri−1), (xi+1, ri+1), . . . , (xn, rn)〉 is also a derivation schema for x in
T , contradicting the minimality of d .

(←−) Let us assume that d fails to be minimal although d is focussed and the literals
x1, . . . , xn are pairwise distinct. As d is not minimal, there exists a proper subsequence d ′
of d which is a derivation schema for x in T . Let us write 〈(xk+1, rk+1), . . . , (xn, rn)〉 for
the largest common final subsequence of d and d ′. Now, k exists (and k > 0) because d ′ is
a proper subsequence of d . As d ′ is a derivation schema for xn and d ′ is a subsequence of
d and x1, . . . , xn are pairwise distinct, k < n ensues. Since d is focussed, xk ∈ Body(r j )
for some j > k. So, (x j , r j ) is in 〈(xk+1, rk+1), . . . , (xn, rn)〉. As d ′ is a derivation schema,
Body(r j ) ⊆ {x1, . . . , xk−1} (remember, d ′ is a subsequence of 〈(x1, r1), . . . , (xk−1, rk−1),
(xk+1, rk+1), . . . , (xn, rn)〉). Hence, xk ∈ {x1, . . . , xk−1}. That is, x1, . . . , xn are not pairwise
distinct. ��

Proof of Property 3 Let T = (F,S,D) be a theory.

• The inclusions CN(T ) ⊆ F ∪ {Head(r) | r ∈ S ∪ D} ⊆ L follow trivially from
Definition 6.

• If T is finite, then F,S,D are finite. Thus, the set F ∪ {Head(r) | r ∈ S ∪ D} is finite.
From the first item, CN(T ) is finite.

• For any x ∈ F , the sequence 〈(x, σ )〉 is a derivation schema for x from T . Thus,
x ∈ CN(T ) and this proves the inclusion F ⊆ CN(T ).

• � ∈ CN(T ) since � ∈ F and F ⊆ CN(T ).
• Assume that F = {�} and �r ∈ D such that Body(r) = {�}. Thus, since the body of

any other rule in T is assumed to be non-empty, no rule in S ∪ D can be applied, hence
CN(T ) = {�}. Conversely, if CN(T ) = {�}, then F = {�} (since F ⊆ CN(T )) and
�r ∈ D such that Body(r) = {�} (since each such rule is applicable when it exists).

• Let d = 〈(x1, r1), . . . , (xn, rn)〉 be a derivation schema for x ∈ L from T . From Defini-
tion 6, for each xi (i = 1, . . . , n), there exists a derivation schema from T for xi . Thus,
Seq(d) ⊆ CN(T ). ��

Proof of Property 4 Let T = (F,S,D) and T ′ = (F ′,S ′,D′) be two theories such that
T  T ′. Let x ∈ CN(T ). So, there exists a derivation schema d = 〈(x1, r1), . . . , (xn, rn)〉
for x from T . Since T  T ′, Facts(d) ⊆ F ′ and Strict(d) ⊆ S ′ and Def(d) ⊆ D′.
Therefore, d is also a derivation schema for x from T ′. ��

Proof of Property 5 The two properties follow trivially from the definition of option. ��

Proof of Property 6 The inclusion POpt(T ) ⊆ Opt(T ) follows trivially from Definitions 9
and 10.

Assume that CN(T ) is consistent. From Property 5, Opt(T ) = {T }. Since (F,S,∅)  T ,
POpt(T ) = {T }. Assume now that Opt(T ) ⊆ POpt(T ). Since Opt(T ) �= ∅, for all
O ∈ Opt(T ) it holds that O ∈ POpt(T ). Thus, for all O ∈ Opt(T ), (F,S,∅)  O. It
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follows that (F,S,∅)  Free(T ).2 Assume that CN(T ) is inconsistent. Then, there exists
a minimal conflict2 C = (X, Y, Z)  T . Since (F,S,∅)  Free(T ), X = Y = ∅. But,
by assumption, the body of every defeasible rule is not empty. Thus, CN(C) = ∅. This
contradicts the fact that CN(C) is inconsistent. ��
Proof of Property 7 Let T = (F,S,D) be a theory.

Assume that CN((F,S,∅)) is consistent. Thus, there exists a preferred optionO such that
either (i) for all r ∈ D, CN((F,S, {r})) is inconsistent meaning that O = CN((F,S,∅)) or
(ii) there exists r ∈ D such that CN((F,S, {r})) is consistent thus (F,S,∅) � O. In both
cases, POpt(T ) �= ∅. Assume now that CN((F,S,∅)) is inconsistent. SinceF and S should
be part of any preferred option and the set of consequences of a preferred option should be
consistent, then POpt(T ) = ∅.

Let r ∈ D and assume thatCN((F,S, {r})) is consistent. FromDefinition 10, (F,S, {r}) is
either a preferred option (iff for all r ′ ∈ D such that r �= r ′,CN((F,S, {r, r ′})) is inconsistent).
Or, there exists a preferred option O = (F,S, {r} ∪ D′) where D′ ⊆ D\{r}. ��
Proof of Property 8 Let T = (F,S,D) be a theory and Free(T ) = (F,S,D′). From
the definition of Free(T ), Free(T )  O for all O ∈ POpt(T ). From Property 4,
CN(Free(T )) ⊆ CN(O). Since CN(O) is consistent, then so is for CN(Free(T )). ��
Proof of Property 9 Let (d, x) be a sub-argument of (d ′, x ′). Let xi ∈ Seq(d). There are
two possibilities:

• xi ∈ Facts(d), thus xi ∈ Facts(d ′) since Facts(d) ⊆ Facts(d ′). So, xi ∈
Seq(d ′).

• xi = Head(r) with r ∈ Strict(d) ∪ Def(d); thus, r ∈ Strict(d ′) ∪ Def(d ′) since
Strict(d) ⊆ Strict(d ′) and Def(d) ⊆ Def(d ′). So, xi ∈ Seq(d ′).

��
Proof of Property 10 Let T = (F,S,D) be a theory. Since � ∈ F by Definition 4,
(〈�, σ 〉,�) ∈ Arg(T ) and thus Arg(T ) �= ∅. ��
Proof of Property 11 Let H = (Arg(T ),R) be an argumentation system over a theory
T and Ext(H) its set of extensions under any extension-based semantics. Assume that
Ext(H) �= ∅.

Let x ∈ Output(H). Thus, for all E ∈ Ext(H), ∃a ∈ E such that Conc(a) = x . It
follows that x ∈ Concs(Ei ), ∀Ei ∈ Ext(H) and hence x ∈ ⋂

Ei∈Ext(H) Concs(Ei ).
Assume now that x ∈ ⋂

Ei∈Ext(H) Concs(Ei ). Thus, ∀Ei , ∃ai ∈ Ei such that Conc(ai ) =
x . Consequently, x ∈ Output(H). ��
Proof of Property 12 LetH = (Arg(T ),R) be an argumentation system built over a theory
T . Let x ∈ Output(H). From Definition 17, ∃(d, x) ∈ Arg(T ). From Definition 12, d is
a derivation for x from T . Thus, x ∈ CN(T ). ��
Proof of Property 16 LetR ∈ �p and letH = (Arg(T ),R) be a rule-based argumentation
system built over a theory T = (F,S,D). Since H satisfies the five postulates, thus for all
E ∈ Extp(H),

2 LetT be a theory.Free(T ) is a sub-theory (X, Y, Z)ofT such that for allminimal conflictC = (X ′, Y ′, Z ′)
of T , it holds that X ∩ X ′ = ∅ and Y ∩Y ′ = ∅ and Z ∩ Z ′ = ∅. Aminimal conflict of theory T is a sub-theory
C of T such that CN(C) is inconsistent and �C ′ � C such that CN(C ′) is inconsistent.
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• Concs(E) is consistent
• Concs(E) = CN(Concs(E),S,∅)

• For all a ∈ E , Sub(a) ⊆ E
• for all (d, x) ∈ Arg(T ), if Seq(d) ⊆ Concs(E), then (d, x) ∈ E .

From Property 1, Exts(H) ⊆ Extp(H), then for all E ∈ Exts(H), E satisfies the above
four properties. Thus, H satisfies consistency, exhaustiveness and closure under both sub-
arguments and strict rules. Let us now show that it also satisfies strict precedence under
stable semantics. From Property 11, Output(H) = ⋂

Ei∈Extp(H) Concs(Ei ). Thus, for
all E ∈ Extp(H), Output(H) ⊆ Concs(E). Since H satisfies strict precedence under
preferred semantics, CN(F,S,∅) ⊆ Concs(E). Thus, the property is satisfied by every
stable extension. ��
Proof of Proposition 1 Let T = (F,S,D). Let O,O′ ∈ Opt(T ) be such that CN(O) =
CN(O′). Let O = (X, Y, Z) and O′ = (X ′, Y ′, Z ′). For all x ∈ X , x ∈ CN(O) and thus
x ∈ X ′. The same holds for all x ′ ∈ X ′. Thus, X = X ′.

Let r ∈ Y ∪ Z . There are two cases: (i) Body(r) � CN(O). Consequently, Body(r) �
CN(O′). Thus, CN(O′ ⊕ r) is consistent. So, r ∈ Y ′ ∪ Z ′ (by definition of an option).

(ii) Body(r) ⊆ CN(O). Consequently, Body(r) ⊆ CN(O′). Thus, CN(O′ ⊕ r) is consis-
tent. So, r ∈ Y ′ ∪ Z ′ (by definition of an option). ��
Proof of Proposition 2 If T is finite, then CN(T ) is finite (apply Property 3). Consequently,
Arg(T ) is finite. ��
Proof of Proposition 3 Let T and T ′ be two theories such that T  T ′. Let (d, x) be an
argument defined from T . All items in Definition 12 are independent from T except for d
being a derivation schema for x from T . Hence, for (d, x) to be an argument defined from
T ′, it is enough that d be a derivation schema for x from T ′. Now, this is equivalent to
x ∈ CN(T ′). By Property 4, the latter follows from x ∈ CN(T ) (which is itself proved from
the fact that d is a derivation schema for x from T ). Thus, (d, x) is an argument defined from
T ′. ��
Proof of Proposition 4 Let H = (Arg(T ), R) be an argumentation system such that R is
conflict-dependent. Let a = (d, x) ∈ Arg(T ) be such that (a, a) ∈ R. Since R is conflict-
dependent, Seq(d) is inconsistent. This is impossible since a is an argument (thus Seq(d)

should be consistent). ��
Proof of Proposition 5 Let H = (Arg(T ),R) be an argumentation system built over a
theory T such that CN(T ) is consistent and R is conflict-dependent. Assume that Arg(T )

is not conflict-free. Thus, there exist (d, x), (d ′, x ′) ∈ Arg(T ) such that (d, x)R(d ′, x ′).
Consequently,Seq(d)∪Seq(d ′) is inconsistent. Besides, fromProperty 3,Seq(d) ⊆ CN(T )

and Seq(d ′) ⊆ CN(T ). Thus, CN(T ) is inconsistent. Contradiction. ��
Proof of Proposition 6 Let H be an argumentation system which satisfies consistency and
closure under sub-arguments. FromProposition 12,∀E ∈ Ext(H)Concs(E) = CN(Th(E)).
Since H satisfies consistency, ∀E ∈ Ext(H) Concs(E) is consistent. Thus, so is for
CN(Th(E)). ��
Proof of Proposition 7 LetH = (Arg(T ),R)be an argumentation systembuilt over a theory
T = (F,S,D) such that ∅ ∈ Ext(H). Thus, Output(H) = ∅. Assume that H satisfies
strict precedence, then CN((F,S,∅)) ⊆ Output(H). Since � ∈ F and from Property 3, it
holds that F ⊆ CN((F,S,∅)), then � ∈ Output(H). ��
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Proof of Proposition 8 Let H = (Arg(T ),R) be an argumentation system built over a
theory T = (F,S,D). Assume that H satisfies consistency and strict precedence. From
Property 13, it holds that Output(H) is consistent. From strict precedence, CN((F,S,∅))

⊆ Output(H). Thus, CN((F,S,∅)) is consistent. ��
Proof of Proposition 9 Let H = (Arg(T ),R) be an argumentation system such that
Ext(H) �= ∅ (under an extension-based semantics). Assume that H is closed under
sub-arguments and satisfies exhaustiveness. Let E ∈ Ext(H). From the monotonicity of
Arg, it holds that E ⊆ Arg(Th(E)). Let (d, x) ∈ Arg(Th(E)). From Proposition 12,
Seq(d) ⊆ Concs(E). From the exhaustiveness postulate, (d, x) ∈ E . ��
Proof of Proposition 10 Let H = (Arg(T ),R) be an argumentation system such that
Ext(H) �= ∅ (under an extension-based semantics). Assume thatH satisfies exhaustiveness
and strict precedence. Since H satisfies strict precedence, CN((F,S,∅)) ⊆ Output(H).
From Property 11, for all E ∈ Ext(H), CN((F,S,∅)) ⊆ Concs(E). Let (d, x) ∈
Arg((F,S,∅)). Thus, Seq(d) ⊆ CN((F,S,∅)). From exhaustiveness, (d, x) ∈ E . ��
Proof of Proposition 11 In order to prove the compatibility of the postulates, it is sufficient
to give an example of a system which satisfies all the five postulates. This system is ASPIC
as defined in [17]. Proposition 1 in [17] shows that the system is closed under sub-arguments
under any Dung’s semantics. Proposition 8 in [17] shows that the system is closed under
strict rules under complete semantics, thus under stable semantics. Property 2 in [17] shows
that the system satisfies consistency under any Dung’s semantics. From Proposition 13, the
system satisfies exhaustiveness. Let us now show that the system satisfies strict precedence.
This follows from the definition of attack relation (Definition 16 in [17]) according to which
a strict argument cannot be attacked. Thus, it belongs to any stable extension. ��
Proof of Proposition 12 Let H be an argumentation system such that Ext(H) �= ∅ where
Ext(H) is its set of extensions under an extension-based semantics. Assume thatH is closed
under sub-arguments and let E ∈ Ext(H) and Th(E) = (X, Y, Z).

• Let x ∈ Concs(E). Thus, ∃(d, x) ∈ E where d is a derivation for x from (Facts(d),
Strict(d), Def(d)). From Property 3, x ∈ Facts(d) (thus x ∈ X ), or x = Head(r)
where r ∈ Strict(d) (thus r ∈ Y ) or x ∈ Def(d) (thus x ∈ Z ).
Assume now that x ∈ X . Thus, ∃(d, y) ∈ E such that x ∈ Facts(d). Besides,
(〈(x, σ )〉, x) is a sub-argument of (d, y). Since H is closed under sub-arguments,
(〈(x, σ )〉, x) ∈ E , and thus, x ∈ Concs(E).
Let r ∈ Y ∪ Z . Thus, ∃(d, x) ∈ E such that r ∈ Strict(d) ∪ Def(d). Let
d = 〈(x1, r1), . . . , (xi , r), (xi+1, ri+1) . . . , (xn = x, rn)〉 with xi = Head(r). Thus,
there exists a sub-sequence d ′ of d which is a derivation for xi . This derivation is minimal
(for set inclusion since (d, x) is an argument). Thus, (d ′, xi ) is an argument. Moreover,
it is a sub-argument of (d, x). Since H is closed under sub-arguments, (d ′, xi ) ∈ E .
Consequently, xi ∈ Concs(E). Thus, Concs(E) = X ∪ {Head(r) | r ∈ Y ∪ Z}.

• From the definitions of the two functions Concs and Th, it follows that Concs(E) ⊆
CN(Th(E)). From Property 3, CN(Th(E)) ⊆ X ∪ {Head(r) | r ∈ Y ∪ Z}. From above,
CN(Th(E)) ⊆ Concs(E).

• Assume now that a = (d, x) ∈ Arg(Th(E)). For all xi ∈ Seq(d), xi ∈ CN(Th(E)).
Since H is closed under sub-arguments, CN(Th(E)) = Concs(E). Then, xi ∈
Concs(E). Thus, Seq(d) ⊆ Concs(E).

��
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Proof of Proposition 13 Let H = (Arg(T ),R) be an argumentation system built over a
theory T such that R is conflict-dependent and H satisfies consistency and closure under
sub-arguments. Assume that H violates exhaustiveness. Thus, there exists E ∈ Extn(H)

and there exists a = (d, x) ∈ Arg(T ) such that Seq(d) ⊆ Concs(E) but (d, x) /∈ E . So,
∃b = (d ′, x ′) ∈ E such that aRb or bRa. SinceR is conflict-dependent, Seq(d) ∪ Seq(d ′)
is inconsistent. Thus, ∃y ∈ Seq(d) such that ¬y ∈ d ′. But, y,¬y ∈ CN(Th(E)). Since H
is closed under sub-arguments, CN(Th(E)) = Concs(E). Thus, y,¬y ∈ Concs(E). This
contradicts the fact that H satisfies consistency. ��
Proof of Proposition 14 Let H = (Arg(T ),R) be an argumentation system built over a
theory T such thatR is conflict-dependent andH satisfies consistency and closure under sub-
arguments. From Proposition 13, H satisfies exhaustiveness. From Proposition 9, it follows
that for all E ∈ Extn(H), E = Arg(Th(E)). ��
Proof of Proposition 15 The proof is similar to that of Propositions 13 and 14. ��
Proof of Theorem 1 Let T be a theory and d = 〈(x1, r1), . . . , (xn, rn)〉 a consistent sequence
from T .

(−→) Assume that (d, x) is an argument from T . d = 〈(x1, r1), . . . , (xn, rn)〉 yields
x = xn (Definition 12). Assume that d is not focused. Let d∗ be obtained from d by deleting
all repeated pairs. Since d is not focused, d∗ is not minimal. Therefore, there exists (xk, rk) in
d∗ (hence in d) such that depriving d∗ from (xk, rk) still gives a derivation of x from T . Since
d∗ contains no repeated pair, for every (xi , ri ) in d∗, if i �= k then either xi �= xk or ri �= rk .
For rk �= σ , the former implies the latter hence ri �= rk whenever i �= k. Thus, depriving
d∗ from (xk, rk) gives a derivation d ′ of x from T such that Facts(d ′) ⊆ Facts(d) and
Strict(d ′) ⊆ Strict(d) and Def(d ′) ⊆ Def(d), with one of the latter two inclusions
being strict. That is, there exists T ′ � (Facts(d),Strict(d),Def(d)) such that x ∈
CN(T ′), thereby contradictingDefinition 12. The remaining case is rk = σ . Since d∗ contains
no repeated pair, no (xi , ri ) in d∗ is (xk, σ ) except for i = k and it follows that d∗ deprived
from (xk, rk) gives a derivation d ′ of x from T such that Facts(d ′) ⊂ Facts(d) while
Strict(d ′) ⊆ Strict(d) and Def(d ′) ⊆ Def(d). As above, a contradiction arises.

(←−) Assume that d is a focused derivation schema from T such that xn = x . By
the definitions, x ∈ L and d is a derivation schema for x from T . Due to the hypoth-
esis in the statement of the theorem, Seq(d) is consistent. Assume that there exists
T ′ = (F ′,S ′,D′) � (Facts(d),Strict(d),Def(d)) such that x ∈ CN(T ′). That is, there
exists a derivation d ′ = 〈(x ′

1, r
′
1), . . . , (x

′
m, r ′

m)〉 for some m < n such that Facts(d ′) = F ′
and Strict(d ′) = S ′ and Def(d ′) = D′. Let d∗ be a minimal derivation schema for x from
T obtained from d by deleting all repeated pairs. Accordingly,Facts(d∗) = Facts(d) and
Strict(d∗) = Strict(d) and Def(d∗) = Def(d). Since Strict(d ′) ⊆ Strict(d)

and Def(d ′) ⊆ Def(d), if (x ′
i , r

′
i ) is in d ′ with r ′

i �= σ then there exists k such that (xk, rk)
is in d∗ where rk = r ′

i (also, xk = x ′
i because x

′
i = Head(r ′

i ) = Head(rk) = xk). Similarly,
since Facts(d ′) ⊆ Facts(d), if (x ′

i , r
′
i ) is in d ′ with r ′

i = σ then there exists k such that
(xk, rk) is in d∗ where x ′

i = xk and rk = r ′
i = σ . That is, d ′ is a proper subsequence of a

reordering of d∗, thereby contradicting the minimality of d∗.
Indeed, let us show that no initial proper fragment of a reordering d∗

ι of d∗ is a
minimal derivation of x . Assume a reordering d∗

ι = 〈(x∗
ι1, r

∗
ι1), . . . , (x

∗
ιp, r

∗
ιp)〉 of d∗ =

〈(x∗
1 , r

∗
1 ), . . . , (x∗

p, r
∗
p)〉 such that dι = 〈(x∗

ι1, r
∗
ι1), . . . , (x

∗
ιq , r

∗
ιq)〉 is a minimal derivation of

x from T for some q < p. Let j be the greatest index from 1 . . . p such that x∗
j is in Seq(d∗)

but not in Seq(dι) (clearly, j < p). Since d∗ is minimal, there must exist h > j such that
x∗
j ∈ Body(r∗

h ) (otherwise d∗ deprived of (x∗
j , r

∗
j ) would give a proper subsequence also
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being a derivation of x). By Property 2, x∗
h �= x∗

i for i �= h. Hence,Head(r∗
i ) �= x∗

h for i �= h.
Together with x∗

j /∈ Seq(dι) and x∗
j ∈ Body(r∗

h ), this entails x∗
h /∈ Seq(dι). Therefore, j is

not the greatest index such that x∗
j is in Seq(d∗) but not in Seq(dι). ��

Lemma 1 Let H = (Arg(T ),R) be an argumentation system built over a theory T =
(F,S,D) such that CN((F,S,∅)) is consistent and R is conflict-dependent and privileges
strict arguments. For all a ∈ Arg(Free(T )), b ∈ Arg(T ), if aRb or bRa, then ∃a′ ∈
Sub(a) such that a′ is strict and a′Rb.

Proof LetH = (Arg(T ),R) be an argumentation system built over a theory T = (F,S,D)

such that CN((F,S,∅)) is consistent. Assume that R is conflict-dependent and privileges
strict arguments.

Assume that ∃a = (d, x) ∈ Arg(Free(T )) and ∃b = (d ′, x ′) ∈ Arg(T ) such that
bRa or bRa. Since R is conflict-dependent, Seq(d) ∪ Seq(d ′) is inconsistent and thus
CN(Th({a})) ∪CN(Th({b})) is inconsistent (since from Property 3, Seq(d) ⊆ CN(Th({a}))
and Seq(d ′) ⊆ CN(Th({b}))).

Let Th({a}) = (X, Y, Z) and Th({b}) = (X ′, Y ′, Z ′). Let us show that CN((F,S, Z ′)) is
inconsistent. Assume that CN((F,S, Z ′)) is consistent. Thus, there exists a preferred option
O ∈ POpt(T ) such that (F,S, Z ′)  O. Since (X, Y, Z)  Free(T ) and Free(T )  O,
(F,S, Z ∪ Z ′)  O. From Property 4, CN((F,S, Z ∪ Z ′)) ⊆ CN(O). Thus, CN(O) is
inconsistent. This contradicts the fact that O is an option.

Let Z∗ be the smallest (for set inclusion) subset of Z ′ such that CN((F,S, Z∗)) is incon-
sistent. Thus, for all r ∈ Z∗, CN((F,S, Z∗\{r})) is consistent. It follows that for all r ∈ Z∗,
there exists a preferred option O ∈ POpt(T ) such that (F,S, Z ∪ Z∗\{r})  O by Prop-
erty 8.

Assume that for every strict a′′ ∈ Sub(a), Seq(d ′′) ∪ Seq(d ′) is consistent. How-
ever, Seq(d) ∪ Seq(d ′) is inconsistent (since aRb or bRa while R is conflict-dependent).
Hence, Head(Def(d)) ∪ Head(Def(d ′)) is inconsistent, say y ∈ Head(Def(d)) and
¬y ∈ Head(Def(d ′)). Should no such y be inF∪Head(S), then there would be a preferred
option O = (F, S, DO ) with ¬y ∈ Head(DO ). A contradiction arises, because a = (d, x)
being in Arg(Free(T )) means that Def(d) is a subset of DO for every preferred option
O = (F, S, DO ).

That is, there exists a′′ = (d ′′, x ′′) ∈ Sub(a) such that a′′ is strict and Seq(d ′′)∪Seq(d ′)
is inconsistent. Since R privileges strict arguments, a′′Rb. ��
Proof of Theorem 2 Let H = (Arg(T ),R) be an argumentation system built over a theory
T = (F,S,D) such that CN((F,S,∅)) is consistent. Assume that R is conflict-dependent
and privileges strict arguments.

We show first that Arg(Free(T )) is conflict-free. From Property 8, CN(Free(T )) is
consistent. Since R is conflict-dependent, from Proposition 5, Arg(Free(T )) is conflict-
free.

Let us now show that Arg(Free(T )) defends its elements. Assume that ∃a = (d, x) ∈
Arg(Free(T )) and ∃b = (d ′, x ′) ∈ Arg(T ) such that bRa. From Lemma 1, there exists
a′ = (d ′′, x ′′) ∈ Sub(a) such that a′ is strict, hence a ∈ Arg(Free(T )), and a′Rb. ��
Proof of Theorem 3 Let H = (Arg(T ), R) be an argumentation system built over a theory
T = (F,S,D) such that Ext(H) �= ∅. Assume that H satisfies strict precedence and
closure under both strict rules and sub-arguments. Let E ∈ Ext(H) and Th(E) = (X, Y, Z).
Since X ⊆ F and Y ⊆ S, (X, Y, Z)  (F,S, Z). From Property 4, CN((X, Y, Z)) ⊆
CN((F,S, Z)).
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Let us now show that CN((F,S, Z)) ⊆ CN((X, Y, Z)). Since H satisfies strict prece-
dence, CN((F,S,∅)) ⊆ Output(H). From Property 11, Output(H) ⊆ Concs(E).
SinceH is closed under sub-arguments, Concs(E) = CN(Th(E)) by Proposition 12. Hence,
CN((F,S,∅)) ⊆ CN((X, Y, Z)). Furthermore, from Property 3, F ⊆ CN((F,S,∅)). Thus,
X = F , i.e., Th(E) = (F, Y, Z). Let x ∈ CN((F,S, Z)). Then, there exists a derivation
schema

d = 〈(x1, r1), . . . , (xn, rn)〉
for x from (F,S, Z). There are two cases:

• For any i = 1, . . . , n, ri ∈ {σ } ∪ Y ∪ Z . Hence, d is also a derivation schema for x from
(F, Y, Z). Thus, x ∈ CN((F, Y, Z)).

• There exists 1 < i ≤ n such that ri ∈ S\Y (note that the two theories (F, Y, Z) and
(F,S, Z) differ only on S\Y ). Let i be the first step where an element of S\Y is used
in the derivation d . Note also that i > 1 since strict rules have non-empty bodies. Thus,
for any j < i , r j ∈ {σ } ∪ Y ∪ Z and 〈(x1, r1), . . . , (x j , r j )〉 is a derivation schema of x j
from (F, Y, Z). Thus, x j ∈ CN((F, Y, Z)). Furthermore,Body(ri ) ⊆ {x1, . . . , xi−1}, so
Body(ri ) ⊆ CN((F, Y, Z)). Since Concs(E) = CN(Th(E)), Body(ri ) ⊆ Concs(E).
Since H is closed under strict rules, Head(ri ) ∈ Concs(E) = CN((F, Y, Z)), i.e., xi ∈
CN((F, Y, Z)). We repeat the same reasoning for showing that each xi ∈ CN((F, Y, Z))

and conclude that x ∈ CN((F, Y, Z)).

��

Proof of Theorem 4 Let H = (Arg(T ),R) be an argumentation system built over a theory
T = (F,S,D) such that H satisfies strict precedence, and closure under both strict rules
and sub-arguments.

Let E ∈ Ext(H) and Th(E) = (X, Y, Z). From Theorem 3 and Proposition 12, it holds
that

CN(Th(E)) = CN((F,S, Z)) = Concs(E). (*)

Let O = (F,S, Z ∪ Z ′) where Z ′ = {r | r ∈ D\Z and Body(r) � CN(Th(E))}. Since
(F,S, Z)  O, then from Property 4 and (*), Concs(E) ⊆ CN(O). Let us now show that
CN(O) ⊆ Concs(E). Let x ∈ CN((F,S, Z ∪ Z ′)). Then, there exists a derivation schema

d = 〈(x1, r1), . . . , (xn, rn)〉
for x from (F,S, Z ∪ Z ′). There are two cases:

• For any i = 1, . . . , n, ri ∈ {σ } ∪ S ∪ Z . Hence, d is also a derivation schema for x from
(F,S, Z). Thus, x ∈ CN((F,S, Z)), and from (1), x ∈ Concs(E).

• Assume that there exists 1 < i ≤ n such that ri ∈ Z ′ (note that the two theories (F,S, Z)

and (F,S, Z ∪ Z ′) differ only on Z ′). Let i be the first step where an element of Z ′ is
used in the derivation d . Since the bodies of defeasible rules are not empty, i > 1. It
follows that for any j < i , ri ∈ {σ } ∪ S ∪ Z , thus 〈(x1, r1), . . . , (x j , r j )〉 is a derivation
schema of x j from (F,S, Z). Thus, x j ∈ CN((F,S, Z)). Furthermore, by Definition 6,
Body(ri ) ⊆ {x1, . . . , xi−1}. Then, Body(ri ) ⊆ CN((F,S, Z)). This contradicts the fact
that ri ∈ Z ′ and thus such ri does not exist.

��
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Proof of Theorem 5 Let H = (Arg(T ),R) be an argumentation system built over a theory
T = (F,S,D) such that R is conflict-dependent. Assume that for all E ∈ Extn(H),
Arg((F,S,∅)) ⊆ E . Assume now that ∃a ∈ Arg((F,S,∅)) and ∃b ∈ Arg(T ) such
that aRb or bRa. Since R is conflict-dependent, (b, b) /∈ R (cf. Proposition 4). Thus,
∃E ∈ Extn(H) such that b ∈ E . Consequently, a, b ∈ E , this contradicts the fact that E is
conflict-free (since it is a naive extension).

Assume now that for all a ∈ Arg((F,S,∅)), �b ∈ Arg(T ) such that aRb or bRa. This
means that arguments of Arg((F,S,∅)) are not attacked. Thus, they belong to every naive
extension. ��

Proof of Theorem 6 Let H = (Arg(T ),R) be an argumentation system built over a theory
T = (F,S,D) such that R is conflict-dependent. Assume that ∃a, b ∈ Arg(T ) such that
a ∈ Arg((F,S,∅)) and Conc(a) = ¬Conc(b). Thus, (b, b) /∈ R and ∃E ∈ Extn(H)

such that b ∈ E . If H satisfies strict precedence, then Conc(a) ∈ Concs(E) meaning that
Concs(E) is inconsistent. Thus, H violates consistency. If H satisfies consistency, then
Conc(a) /∈ Concs(E) meaning that H violates strict precedence. ��

Proof of Theorem 7 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under sub-
arguments. Let E, E ′ ∈ Extn(H) such that Concs(E ′) ⊆ Concs(E).

Assume that∃a = (d, x) ∈ E\E ′. Thus,∃b = (d ′, x ′) ∈ E ′ such thataRb or bRa. SinceR
is conflict-dependent,Seq(d)∪Seq(d ′) is inconsistent.ButH is closedunder sub-arguments.
Thus, Proposition 12 gives Concs(E) = CN(Th(E)) and Concs(E ′) = CN(Th(E ′)).
Besides, Seq(d) ⊆ CN(Th(E)) and Seq(d ′) ⊆ CN(Th(E ′)) using Propositions 12 and 14.
Since CN(Th(E ′)) ⊆ CN(Th(E)), Seq(d) ∪ Seq(d ′) ⊆ CN(Th(E)). Thus, CN(Th(E)) is
inconsistent. This contradicts the fact that H satisfies consistency.

The same reasoning holds for a = (d ′, x ′) ∈ E ′\E . ��

Proof of Theorem 8 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under sub-
arguments. Let E ∈ Extn(H).

From Proposition 6, CN(Th(E)) is consistent. Thus, ∃O ∈ Opt(T ) such that Th(E) 
O. From Property 4, CN(Th(E)) ⊆ CN(O). Since H is closed under sub-arguments,
CN(Th(E)) = Concs(E) by Proposition 12. Thus, Concs(E) ⊆ CN(O). Assume now
that ∃x ∈ CN(O)\Concs(E). Then, there exists a minimal derivation d for x from O. From
Property 3, Seq(d) ⊆ CN(O). Since CN(O) is consistent, (d, x) is an argument. In addition
(d, x) /∈ E . Then, ∃(d ′, x ′) ∈ E such that (d, x)R(d ′, x ′) or (d ′, x ′)R(d, x). Since R is
conflict-dependent, then Seq(d) ∪ Seq(d ′) is inconsistent. But, Seq(d ′) ⊆ Concs(E).
So, Seq(d) ∪ Seq(d ′) ⊆ CN(O). This contradicts the fact that O is an option. So,
CN(O) ⊆ Concs(E).

Since both Concs(E) ⊆ CN(O) and CN(O) ⊆ Concs(E) have now been proved, the
required CN(O) = Concs(E) follows.

Let us now show that O ∈ Max(Opt(T )). Assume that ∃O′ ∈ Opt(T ) such that
CN(O) ⊆ CN(O′). Thus, ∃x ∈ CN(O′) and x /∈ CN(O). Thus, there exists a minimal deriva-
tion d for x from O′. Since CN(O′) is consistent and Seq(d) ⊆ CN(O′) (from Property 3),
(d, x) is an argument. In addition (d, x) /∈ E (since x /∈ CN(O)). Then, ∃(d ′, x ′) ∈ E such
that (d, x)R(d ′, x ′) or (d ′, x ′)R(d, x). SinceR is conflict-dependent, Seq(d) ∪ Seq(d ′) is
inconsistent. But, Seq(d ′) ⊆ Concs(E). So, Seq(d)∪Seq(d ′) ⊆ CN(O′). This contradicts
the fact that O′ is an option.
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From Proposition 1, it follows that for allO,O′ ∈ Max(Opt(T )), if CN(O) = CN(O′) =
Concs(E), then O = O′. ��
Proof of Theorem 9 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under sub-
arguments.

• LetE, E ′ ∈ Extn(H). FromTheorem8,∃O,O′ ∈ Max(Opt(T )) such thatConcs(E) =
CN(O) and Concs(E ′) = CN(O′). If O = O′, then Concs(E) = Concs(E ′). From
Theorem 7, E = E ′.

• Let E ∈ Extn(H) and O = Option(E). Thus, Th(E)  O and Concs(E) = CN(O).
From Proposition 3, Arg(Th(E)) ⊆ Arg(O). From Proposition 14, Arg(Th(E)) = E .
Thus, E ⊆ Arg(O). Assume now that ∃a = (d, x) ∈ Arg(O) and a /∈ E . Thus,
∃b = (d ′, x ′) ∈ E and aRb or bRa. SinceR is conflict-dependent, Seq(d)∪Seq(d ′) is
inconsistent. Besides, Seq(d) ⊆ CN(O) and Seq(d ′) ⊆ CN(Th(E)). Since H is closed
under sub-arguments, CN(Th(E)) = CN(O). Thus, Seq(d) ∪ Seq(d ′) ⊆ CN(O). This
contradicts the fact that O is an option.

��
Proof of Theorem 10 LetH = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under sub-
arguments.

• Let O ∈ Max(Opt(T )). Thus, CN(O) is consistent. From Proposition 5, since R is
conflict-dependent, Arg(O) is conflict-free. Assume now that Arg(O) /∈ Extn(H).
Thus, ∃a = (d, x) ∈ Arg(T ) such that a /∈ Arg(O) and Arg(O) ∪ {a} is conflict-
free. Consequently, ∃E ∈ Extn(H) such that Arg(O) ∪ {a} ⊆ E . It follows that
Concs(Arg(O) ∪ {a}) ⊆ Concs(E). Since CN(O) is consistent, Concs(Arg(O)) =
CN(O). Thus, CN(O) ∪ {x} ⊆ Concs(E). From Theorem 8, ∃O′ ∈ Max(Opt(T )) such
that Concs(E) = CN(O′). Then, CN(O) ∪ {x} ⊆ CN(O′). This contradicts the fact that
O is a maximal option.

• Let O ∈ Max(Opt(T )). By definition of Th, Th(Arg(O))  O. From Property 4,
CN(Th(Arg(O))) ⊆ CN(O). Besides, from first item, Arg(O) ∈ Extn(H). From The-
orem 8, ∃O′ ∈ Max(Opt(T )) such that Th(Arg(O))  O′ and Concs(Arg(O)) =
CN(O′). SinceH is closed under sub-arguments,CN(Th(Arg(O))) = Concs(Arg(O)).
Consequently, CN(O′) ⊆ CN(O). From Proposition 1, O = O′.

• Let O,O′ ∈ Max(Opt(T )). Assume that Arg(O) = Arg(O′).
It follows that Option(Arg(O)) = Option(Arg(O′)). From item 2, it follows that
O = O′.

��
Proof of Theorem 11 Let H = (Arg(T ),R) be an argumentation system built over a the-
ory T = (F,S,D) such that R is conflict-dependent and H satisfies consistency, strict
precedence and closure under both strict rules and sub-arguments.

Let us show that Max(Opt(T )) ⊆ Max(POpt(T )). Let O ∈ Max(Opt(T )). From
(item 1) of Theorem 10, Arg(O) ∈ Extn(H). From Theorem 8, Concs(Arg(O)) =
CN(Option(Arg(O))). From Corollary 1, Option(Arg(O)) = O. Hence, Concs
(Arg(O)) = CN(O). From Theorem 4, there exists O′ = (F,S, Z) such that

Z =
⎛
⎝ ⋃

(d,x)∈Arg(O)

Def(d)

⎞
⎠ ∪ {

r | r ∈ D and Body(r) � CN (Th (Arg(O)))
}
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and Concs(Arg(O)) = CN(O′). Since Concs(Arg(O)) = CN(O) and using Proposition
12, Concs(Arg(O)) = CN(Th(Arg(O))), then CN(Th(Arg(O))) = CN(O) and we get

Z =
⎛
⎝ ⋃

(d,x)∈Arg(O)

Def(d)

⎞
⎠ ∪ {

r | r ∈ D and Body(r) � CN(O)
}

and CN(O) = CN(O′). From Proposition 1, it follows that O = O′. Furthermore, O ∈
Max(Opt(T )) and is maximal (for set inclusion) up to consistency and contains the strict
part of T , then O ∈ Max(POpt(T )).

Let us now show that Max(POpt(T )) ⊆ Max(Opt(T )). Let O ∈ Max(POpt(T )). By
definition of preferred option, CN(O) is consistent. Since R is conflict-dependent, Arg(O)

is conflict-free by Proposition 5. Assume now that Arg(O) /∈ Extn(H). Thus, ∃a ∈
Arg(T )\Arg(O) such that Arg(O) ∪ {a} is conflict-free. Consequently, ∃E ∈ Extn(H)

such that Arg(O) ∪ {a} ⊆ E . Thus, Concs(Arg(O) ∪ {a}) ⊆ Concs(E). Since CN(O) is
consistent,Concs(Arg(O)) = CN(O). Thus,CN(O)∪{Conc(a)} ⊆ Concs(E). FromThe-
orem 8, ∃O′ ∈ Max(Opt(T )) such that Concs(E) = CN(O′). Then, CN(O)∪{Conc(a)} ⊆
CN(O′). This means that O′ ∈ POpt(T ) (since it contains all consequences of the strict
part of T ). This contradicts the fact that O is a maximal preferred option. Consequently,
Arg(O) ∈ Extn(H). From Theorem 8, O ∈ Max(Opt(T )). ��
Proof of Theorem 12 LetH = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under sub-
arguments. From Property 11, Output(H) = ⋂

Ei∈Extn(H)

Concs(Ei ). From Theorem 8, for

allEi ∈ Extn(H), there exists a uniqueOi ∈ Max(Opt(T )) such thatConcs(Ei ) = CN(Oi ).
Also, Corollary 1 guarantees that Max(Opt(T )) does not have any additional elements that
do not have a mapping in Extn(H). Thus,

Output(H) =
⋂

Oi∈Max(Opt(T ))

CN(Oi ).

��
Lemma 2 Let H = (Arg(T ),R) be an argumentation system built over a theory T =
(F,S,D) such that R is conflict-dependent and H satisfies the five postulates. For any
E ∈ Exts(H), it holds that (F,S, Z) ∈ Max(POpt(T )) whenever

Z =
⎛
⎝ ⋃

(d,x)∈E
Def(d)

⎞
⎠ ∪ {

r | r ∈ D and Body(r) � CN(Th(E))
}
.

Proof Let H = (Arg(T ),R) be an argumentation system built over a theory T such that
R is conflict-dependent and H satisfies the five postulates. Let E ∈ Exts(H) and Th(E) =
(X, Y, Z). Let O = (F,S, Z ∪ Z ′) where Z ′ = {r | r ∈ D\Z and Body(r) � CN(Th(E))}.
Clearly, Th(E)  O. From Theorem 4, Concs(E) = CN(O). Since H satisfies consistency,
then Concs(E) is consistent, and thus, CN(O) is consistent as well. Since (F,S,∅)  O
and CN(O) is consistent, from Property 7, ∃O′ ∈ POpt(T ) such that O  O′. From Propo-
sition 3, Arg(Th(E)) ⊆ Arg(O) ⊆ Arg(O′). From Proposition 9, E = Arg(Th(E)).
Hence, E ⊆ Arg(O) ⊆ Arg(O′). Since R is conflict-dependent, CN(O) and CN(O′) are
consistent, then from Proposition 5 Arg(O) and Arg(O′) are both conflict-free. From Prop-
erty 1, E ∈ Extn(H). Then, E is maximal (for set inclusion) among conflict-free sets.
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Thus, E = Arg(O) = Arg(O′). From consistency of CN(O) and CN(O′), it follows that
Concs(Arg(O)) = CN(O) and Concs(Arg(O′)) = CN(O′). Then, CN(O) = CN(O′) and
O ∈ POpt(T ).

Let us now show that O ∈ Max(POpt(T )). Assume that ∃O′ ∈ POpt(T ) such that
CN(O) ⊆ CN(O′). Since Concs(E) = CN(O), Concs(E) ⊆ CN(O′). Let x ∈ CN(O′) and
x /∈ Concs(E). SinceCN(O′) is consistent, there exists an argument (d, x) ∈ Arg(O′), i.e.,d
is a derivation of x fromO′. Clearly, (d, x) /∈ E . Thus, ∃(d ′, x ′) ∈ E such that (d ′, x ′)R(d, x).
SinceR is conflict-dependent,Seq(d)∪Seq(d ′) is inconsistent. But,Seq(d ′) ⊆ CN(Th(E))

and Seq(d) ⊆ CN(O′). Proposition 13 gives CN(Th(E)) = Concs(E). Then, CN(Th(E)) ⊆
CN(O′). Finally, Seq(d) ∪ Seq(d ′) ⊆ CN(O′). This contradicts the fact that CN(O′) is
consistent. ��
Proof of Theorem 13 LetH = (Arg(T ),R) be an argumentation system built over a theory
T such thatR is conflict-dependent andH satisfies consistency, exhaustiveness, strict prece-
dence and closure under both strict rules and sub-arguments. Assume that Exts(H) �= ∅.
Let E ∈ Exts(H) and Th(E) = (X, Y, Z). From Lemma 2, the option O = (F,S, Z ′) ∈
Max(POpt(T )) with Z ′ = Z ∪ {r | r ∈ D\Z and Body(r) � CN(Th(E))}. Since X ⊆ F ,
Y ⊆ S and Z ⊆ Z ′, Th(E)  O. From Theorem 4, Concs(E) = CN(O).

Let us show that E has a unique corresponding preferred maximal option. Assume that
∃O1,O2 ∈ Max(POpt(T )) such that Th(E)  O1, Concs(E) = CN(O1), Th(E)  O2

and Concs(E) = CN(O2). Obviously, CN(O1) = CN(O2). However, O1,O2 ∈ POpt(T )

according to Property 6 hence Proposition 1 gives O1 = O2.
Let us now show that E = Arg(O). SinceTh(E)  O, fromProposition 3,Arg(Th(E)) ⊆

Arg(O). From Proposition 15, E ⊆ Arg(O). Assume now that ∃a = (d, x) ∈ Arg(O) such
that a /∈ E . Thus, ∃b = (d ′, x ′) ∈ E and bRa. Since R is conflict-dependent, Seq(d) ∪
Seq(d ′) is inconsistent. Besides, Seq(d) ⊆ CN(O) and Seq(d ′) ⊆ CN(Th(E)). Since H
is closed under sub-arguments, CN(Th(E)) = CN(O) by Proposition 12. Thus, Seq(d) ∪
Seq(d ′) ⊆ CN(O). This contradicts the fact that O is an option. ��
Proof of Theorem 14 Let H = (Arg(T ),R) be an argumentation system built over a the-
ory T such that R is conflict-dependent and H satisfies consistency, strict precedence
and closure under both strict rules and sub-arguments. Assume that Exts(H) �= ∅. Let
E, E ′ ∈ Exts(H). From Theorem 13, ∃O ∈ Max(POpt(T )) such that Concs(E) = CN(O)

and ∃O′ ∈ Max(POpt(T )) such that Concs(E ′) = CN(O′). If O = O′, then Concs(E) =
Concs(E ′). Assume that ∃a = (d, x) ∈ E\E ′. Thus, ∃b = (d ′, x ′) ∈ E ′ such that bRa.
Since R is conflict-dependent, Seq(d) ∪ Seq(d ′) is inconsistent. But H is closed under
sub-arguments. Thus, Concs(E) = CN(Th(E)) and Concs(E ′) = CN(Th(E ′)). Besides,
Seq(d) ⊆ CN(Th(E)) and Seq(d ′) ⊆ CN(Th(E ′)). Since CN(Th(E ′)) = CN(Th(E)),
Seq(d) ∪ Seq(d ′) ⊆ CN(Th(E)). Thus, CN(Th(E)) is inconsistent. This contradicts the
fact that H satisfies consistency. The same reasoning holds for a = (d ′, x ′) ∈ E ′\E . ��
Proof of Theorem 15 Any argumentation system H = (Arg(T ),R) that satisfies strict
precedence should haveF as plausible conclusions, i.e.,F ⊆ CN((F,S,∅)) ⊆ Output(H).
Since � ∈ F , then Output(H) �= ∅. However, since R ∈ �s1 , Exts(H) = ∅. Thus,
Output(H) = ∅. ��
Proof of Theorem 16 Let H = (Arg(T ), R) be an argumentation system over a theory
T such that R ∈ �s2 . Let O ∈ Max(POpt(T )). Since |Exts(H)| = |Max(POpt(T ))|,
from Theorems 13 and 14, ∃E ∈ Exts(H) such that E = Arg(O), hence Arg(O) ∈
Exts(H). ��
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Proof of Theorem 17 Let H = (Arg(T ),R) be an argumentation system built over a
theory T such that R ∈ �s2. From Corollary 5, Exts(H) = Extss(H). Assume that
∃E ∈ Extp(H)\Exts(H). From Theorem 22, there exists O ∈ Max(POpt(T )) such that
Th(E)  O. Since |Exts(H)| = |Max(POpt(T ))|, fromTheorem 16,Arg(O) ∈ Exts(H).
From Theorems 13 and 14, O = Option(Arg(O)). From Theorem 24, E = Arg(O). ��
Proof of Theorem 18 LetH = (Arg(T ),R) be an argumentation system such thatR ∈ �s2 .
IfH satisfies all the postulates under naive semantics, then fromCorollary 1 and Theorem 11,
there is a bijection between Extn(H) and Max(POpt(T )). From Theorems 13 and 16,
|Exts(H)| = |Max(POpt(T ))|. Since every stable extension is a naive one, Extn(H) =
Exts(H). ��
Proof of Theorem 19 LetH = (Arg(T ),R) be an argumentation system built over a theory
T such that R ∈ �s2 . From Property 11,

Output(H) =
⋂

Ei∈Exts (H)

Concs(Ei ).

From Theorems 13 and 14, for all Ei ∈ Exts(H), there exists a uniqueOi ∈ Max(POpt(T ))

such that Concs(Ei ) = CN(Oi ). Thus,

Output(H) =
⋂

Oi∈Max(Opt(T ))

CN(Oi ).

��
Proof of Theorem 20 LetH = (Arg(T ),R) be an argumentation system built over a theory
T such that R ∈ �s3 . From Property 11,

Output(H) =
⋂

Ei∈Exts (H)

Concs(Ei ).

From Theorem 13, for all Ei ∈ Exts(H), there exists a unique Oi ∈ Max(POpt(T )) such
that Concs(Ei ) = CN(Oi ). Since R ∈ �s3 , |Exts(H)| < |Max(POpt(T ))|. Thus,

Output(H) =
⋂

Oi∈X
CN(Oi )

with X = {Oi ∈ Max(POpt(T )) | Ei = Arg(Oi ) ∈ Exts(H)}. ��
Proof of Theorem 21 Let H be an argumentation system built over a theory T = (F,S,D)

such that H satisfies the strict precedence postulate, i.e., F ⊆ Output(H). Since � ∈ F ,
Output(H) �= ∅. Hence, Extp(H) �= {∅}. ��
Proof of Theorem 22 LetH = (Arg(T ),R) be an argumentation system built over a theory
T such thatR is conflict-dependent andH satisfies the five postulates. Let E ∈ Extp(H) and
Th(E) = (X, Y, Z). From Theorem 4, Concs(E) = CN(O) where O = (F,S, Z ∪ Z ′) and
Z ′ ⊆ D\Z . Clearly Th(E)  O. From consistency, Concs(E) is consistent. Then, CN(O)

is consistent as well. Then, there exists O′ ∈ Max(POpt(T )) such that O  O′. Therefore,
CN(O) ⊆ CN(O′). Thus, Concs(E) ⊆ CN(O′). ��
Proof of Theorem 23 Let H = (Arg(T ),R) be an argumentation system built over a the-
ory T = (F,S,D) such that R is conflict-dependent and H satisfies the five postulates
under preferred semantics. Since Exts(H) ⊆ Extp(H), H satisfies the postulates under
stable semantics. Consequently, from Theorem 15, Exts(H) �= ∅. Let E ∈ Exts(H). From
Theorem 13, ∃O ∈ Max(POpt(T )) such that E = Arg(O). ��
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Proof of Theorem 24 LetH = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies exhaustiveness and closure under sub-
arguments. Let E, E ′ ∈ Extp(H) and O ∈ Max(POpt(T )) such that Th(E)  O and
Th(E ′)  O. We show that E ∪ E ′ is a preferred extension (which contradicts the fact that E
and E ′ are preferred extensions).

FromProposition 3,Arg(Th(E)) ⊆ Arg(O) andArg(Th(E ′)) ⊆ Arg(O). SinceH satis-
fies exhaustiveness and closure under sub-arguments, from Proposition 9, Arg(Th(E)) = E
and Arg(Th(E ′)) = E ′. Thus, E ∪ E ′ ⊆ Arg(O). Since CN(O) is consistent and R is
conflict-dependent, from Proposition 5 Arg(O) is conflict-free. Consequently, E ∪ E ′ is also
conflict-free. Moreover, E ∪ E ′ defends its elements since E and E ′ are preferred extensions.
Thus, E ∪ E ′ is an admissible set. Due to E and E ′ being preferred extensions, it follows that
E ∪ E ′ = E = E ′. ��
Proof of Theorem 25 LetH = (Arg(T ),R) be an argumentation system built over a theory
T = (F,S,D) such that R is conflict-dependent and privileges strict arguments, and H
satisfies consistency, exhaustiveness, strict precedence and closure under sub-arguments.
From consistency and strict precedence, it follows by Proposition 8 that CN((F,S,∅)) is
consistent.

The conclusion of the theorem, i.e., Arg(Free(T )) ⊆ ⋂
Ei∈Extp(H) Ei , is trivial in the

case that Arg(Free(T )) is empty. Consider a ∈ Arg(Free(T )). Let E ∈ Extp(H).
Let us show that E ∪ {a} is conflict-free. Assume that ∃b = (d2, x2) ∈ E such that aRb

or bRa. From Lemma 1, there exists a′ ∈ Sub(a) such that a′ = (d ′
1, x

′
1) ∈ Arg((F,S,∅))

and a′Rb. Then, Seq(d ′
1) ∪ Seq(d2) is inconsistent. SinceH satisfies strict precedence and

exhaustiveness, Arg((F,S,∅)) ⊆ E by Proposition 10, so a′ ∈ E . Consequently, Seq(d ′
1)∪

Seq(d2) ⊆ CN(Th(E)) by Proposition 12. Since H satisfies consistency and closure under
sub-arguments, by Proposition 6 Concs(E) = CN(Th(E)) is consistent. Contradiction.

Let us show that E defends a. Consider b ∈ Arg(T ) such that bRa. From Lemma 1,
there exists a′ ∈ Sub(a) such that a′ ∈ Arg((F,S,∅)) and a′Rb. Since H satisfies strict
precedence and exhaustiveness, Arg((F,S,∅)) ⊆ E , thus a′ ∈ E .

Summing up, E ∪ {a} is an admissible set. However, E ∈ Extp(H) means that E is a
maximal admissible set; hence, E ∪ {a} ⊆ E . Therefore, a ∈ E . ��
Proof of Theorem 26 Let H = (Arg(T ),R) be a system built over a theory T such that
R is conflict-dependent and H satisfies the five postulates. From Theorem 22, for all E ∈
Extp(H), ∃O ∈ Max(POpt(T )) such that Th(E)  O and Concs(E) ⊆ CN(O). From
Theorem 24, there cannot exist twomaximal preferred extensions E and E ′ such thatTh(E) 
O and Th(E ′)  O for some O ∈ Max(POpt(T )). Thus, every maximal preferred option is
captured by at most one preferred extension. Then, |Extp(H)| ≤ |Max(POpt(T ))|. ��
Proof of Theorem 27 LetH = (Arg(T ),R) be an argumentation system built over a theory
T = (F,S,D). Assume that R ∈ �p2 . The following equalities hold by Theorems 16
and 17: Extp(H) = Exts(H) = Extss(H) = {Arg(Oi ) | Oi ∈ Max(POpt(T ))}. Let us
now show the equality ⋂

Oi∈Max(POpt(T ))

Arg(Oi ) = Arg(
⋂

Oi∈Max(POpt(T ))

Oi ).

Let Max(POpt(T )) = {O1 = (F,S,D1), . . . ,On = (F,S,Dn)}. Assume that (d, x) ∈
n⋂

i=1
Arg(Oi ). For any i = 1, . . . , n, (d, x) ∈ Arg(Oi ) and thus

(Facts(d),Strict(d),Def(d))  Oi .
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This means that Def(d) ⊆ ⋂n
i=1 Di . Consequently, d is also a derivation schema from

(F,S,
⋂n

i=1 Di ) = ⋂n
i=1 Oi . Finally, (d, x) ∈ Arg(

⋂n
i=1 Oi ).

Assume now that (d, x) ∈ Arg(
⋂n

i=1 Oi ). Then, d is a derivation schema from
(F,S,

⋂n
i=1 Di ). Hence, Def(d) ⊆ ⋂n

i=1 Di . Hence, for any i = 1, . . . , n, Def(d) ⊆ Di .
Thus, d is a derivation schema from each theory Oi and (d, x) is an argument in each
Arg(Oi ).
From above, it follows that ⋂

Oi∈Max(POpt(T ))

Arg(Oi ) = Arg(Free(T )).

��
Proof of Theorem 28 Let H be an argumentation system which satisfies the five postulates.
From strict precedence and the fact that Output(H) = Concs(IE(H)), it holds that
CN((F,S,∅)) ⊆ Concs(IE(H)). From Theorem 4, Concs(IE(H)) = CN(O) such that
O = (F,S, Z) where

Z =
⎛
⎝ ⋃

(d,x)∈IE(H)

Def(d)

⎞
⎠ ∪ {

r | r ∈ D and Body(r) � CN(Th(IE(H)))
}
.

It holds thatTh(IE(H))  O. From consistency postulate, it follows thatCN(O) is consistent
(since Concs(IE(H)) is consistent). Thus, there exists O′ ∈ POpt(T ) such that O  O′.
From Property 4, CN(O) ⊆ CN(O′). Consequently, Concs(IE(H)) ⊆ CN(O′). ��
Proof of Theorem 29 Let H = (Arg(T ),R) be an argumentation system built over a
theory T . Assume that R ∈ �p2 and privileges strict arguments. From Theorem 27,⋂

Ei∈Extp(H) Ei = Arg(Free(T )). From Theorem 2, Arg(Free(T )) is an admissible
extension of H. Thus, IE(H) = Arg(Free(T )). ��
Proof of Theorem 30 The proof is similar to that of Theorem 28. ��
Proof of Corollary 1 It follows directly from Theorems 8 and 10. ��
Proof of Corollary 2 It follows directly from Theorem 11 and Corollary 1. ��
Proof of Corollary 3 It follows from Corollary 1. ��
Proof of Corollary 4 It follows from Corollary 3, i.e., the equality |Extn(H)| = |Max(Opt
(T ))| and the fact that if a theory T is finite, then it has a finite number of options, thus of
maximal options. ��
Proof of Corollary 5 LetH = (Arg(T ),R) be such thatR ∈ �s2 ∪�s3 . From Theorem 15,
Exts(H) �= ∅. From Property 1, Exts(H) = Extss(H). ��
Proof of Corollary 6 LetH = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies the five postulates. From Theorem 15,
Exts(H) �= ∅. From Theorem 13, |Exts(H)| ≤ |Max(POpt(T ))|. ��
Proof of Corollary 7 LetH = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies the five postulates. If T is finite, then T
has a finite number of maximal preferred options. From Corollary 6, H has a finite number
of stable extensions. ��
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Proof of Corollary 8 It follows immediately from Theorem 26. ��

Proof of Corollary 9 It follows immediately from Theorems 17, 13 and 16. ��

Proof of Corollary 10 Let H = (Arg(T ),R) be an argumentation system over a the-
ory T such that R ∈ �p2 and privileges strict arguments. From Theorem 29, IE(H) =
Arg(Free(T )). Then,Output(H) = Concs(IE(H)) = Concs(Arg(Free(T ))). Since
CN(Free(T )) is consistent, CN(Free(T )) = Concs(Arg(Free(T ))). ��
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