
Knowl Inf Syst (2019) 61:661–693
https://doi.org/10.1007/s10115-018-1213-y

REGULAR PAPER

Leveraging external information in topic modelling

He Zhao1 · Lan Du1 · Wray Buntine1 · Gang Liu2

Received: 20 December 2017 / Revised: 4 April 2018 / Accepted: 6 May 2018 /
Published online: 12 May 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract Besides the text content, documents usually come with rich sets of meta-
information, such as categories of documents and semantic/syntactic features of words, like
those encoded in word embeddings. Incorporating such meta-information directly into the
generative process of topic models can improve modelling accuracy and topic quality, espe-
cially in the case where the word-occurrence information in the training data is insufficient.
In this article, we present a topic model calledMetaLDA, which is able to leverage either doc-
ument or word meta-information, or both of them jointly, in the generative process. With two
data augmentation techniques, we can derive an efficient Gibbs sampling algorithm, which
benefits from the fully local conjugacy of the model. Moreover, the algorithm is favoured by
the sparsity of the meta-information. Extensive experiments on several real-world datasets
demonstrate that our model achieves superior performance in terms of both perplexity and
topic quality, particularly in handling sparse texts. In addition, our model runs significantly
faster than other models using meta-information.
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1 Introduction

With the rapid growth of the internet, huge amounts of text data are generated in social
networks, online shopping and news websites, etc. These data are generally short but may
contain rich and complex kinds of information that can be difficult to find in traditional
information sources [44], therefore create demand for both effective and efficient machine
learning techniques. Probabilistic topicmodels such as Latent Dirichlet Allocation (LDA) [4]
are among the popular approaches for this task. In topic modelling, a document is assumed
to be generated from a mixture of topics, where each topic is a probability distribution
over a vocabulary. However, most existing topic models discover topics purely based on the
word-occurrences, ignoring the meta-information (a.k.a., side information) associated with
the content, which often results in degraded performance. We argue that meta-information
associated with diverse texts can play the role of background knowledge in human text
comprehension. When we humans read text, it is natural for us to leverage metadata, such
as categories, authors, timestamps, words’ semantic/syntactic information, to improve our
understanding of the text. Therefore, it is reasonable to expect topic models can also benefit
from the meta-information and yield improved modelling accuracy and topic quality.

In practice, various kinds of meta-information are associated to tweets, product reviews,
blogs, etc. They are often available at both the document level and the word level. At the doc-
ument level, labels of documents can be used to guide topic learning so that more meaningful
topics can be discovered. It is likely that documents with common labels should discuss sim-
ilar topics, which can be modelled by similar distributions over topics. In the case of tweets,
as shown in Fig. 1, they can have an author, hashtag, timestamp, etc. Previous work on tweet
pooling [12,19] has shown that aggregating tweets according to their authors or hashtags can
significantly improve topic modelling. Furthermore, if we use authors as labels for scientific
papers, the research topics of the papers published by the same researcher can be closely
related, and authors having similar research topics are more likely to collaborate [34].

At the word level, different semantic/syntactic features are also accessible. For example,
there are features regarding word relationships, such as synonyms obtained from Word-
Net [22], word co-occurrence patterns obtained from a large corpus, and linked concepts
from knowledge graphs. It is preferable that words having similar meaning but different
morphological forms, like “dog” and “puppy”, are likely to be assigned to the same topic,

Fig. 1 Meta-information associated with a tweet
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Leveraging external information in topic modelling 663

even if they barely co-occur in the modelled corpus. Recently, word embeddings generated
by GloVe [27] and word2vec [20,21] have attracted a lot of attention in natural language
processing and related fields. It has been shown that the word embeddings can capture both
the semantic and syntactic features of words so that similar words are close to each other
in the embedding space. It is reasonable to expect that these word embeddings will improve
topic modelling [8,26]. Figure 1 also shows some word-level meta-information associated
with the tweet.

It is known that most conventional topic models can suffer from a large performance
degradation on short texts (e.g., tweets and news headlines) due to insufficient word co-
occurrence information. In such cases, meta-information of documents and words can play
the role of auxiliary information in analysing short texts, which can compensate for the lost
information in word co-occurrences. At the document level, we can leverage the hashtags,
users, locations, and timestamps of tweets so that the data sparsity problem can be alleviated.
At the word level, word semantic similarity and embeddings obtained or trained on large
external corpus (e.g., Google News orWikipedia) can also be built into the generative process
of topic models [17,26,36].

Recently, significant research effort has been devoted to handle short texts in topic mod-
elling. Models along this line often take classical topic models, like LDA, as a building block,
and manipulate the graphical structure to incorporate meta-information into the generative
process [23,26,30]. However, what we found is that those models make use of either the
document level or the word level meta-information, rather than both. The limitation is often
caused by their complicated model structures, which lose conjugacy favoured by sampling
methods, and further result in inefficient inference algorithms.

In this article, we propose MetaLDA,1 a new topic model that can effectively and effi-
ciently make use of arbitrary document and word meta-information encoded in binary form.
Specifically, the labels of a document in MetaLDA are incorporated in the prior of the
per-document topic distributions. If two documents have similar labels, their topic distribu-
tions should be generated with similar Dirichlet priors. Analogously, at the word level, the
features of a word are incorporated in the prior of the per-topic word distributions, which
encourages words with similar features to have similar proportions across topics. Therefore,
both document and word meta-information, if and when they are available, can be flexibly
and simultaneously incorporated in the generative process. MetaLDA has the following key
properties:

1. MetaLDA jointly incorporates various kinds of document and word meta-information
for both regular and short texts, yielding better modelling accuracy and topic quality.

2. With data augmentation techniques, the inference ofMetaLDAcan be done by an efficient
and closed-form Gibbs sampling algorithm that benefits from the full local conjugacy of
the model.

3. The simple structure of incorporating meta-information and the efficient inference algo-
rithm give MetaLDA advantage in terms of running speed over other models with
meta-information.

4. MetaLDA has an improved interpretability. For example, the inclusion of the document
labels directly in the generative process gives the ability of both explaining each label
with topics and assigning labels to each topic.

We conduct extensive experiments with several real datasets including regular and short
texts in various domains. The experimental results demonstrate that MetaLDA outperforms

1 Code at https://github.com/ethanhezhao/MetaLDA/.
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664 H. Zhao et al.

all the competitors we considered in terms of perplexity, topic coherence and running time.
The rest of the article, which extends our earlier contribution [42], is organised as follows.We
first briefly discuss the related work in Sect. 2. Then, we elaborate on MetaLDA and derive
its sampling algorithm in Sects. 3 and 4, respectively. The experimental results derived on
several real-world datasets are reported in Sect. 5. We conclude the article in Sect. 6.

2 Related work

In this section, we review three lines of related work: models with document meta-
information, models with word meta-information, and models for short texts.

At the document level, Supervised LDA (sLDA) [18] models document labels by learning
a generalised linearmodelwith an appropriate link function and exponential family dispersion
function. But the restriction for sLDA is that one document can only have one label. Labelled
LDA (LLDA) [29] assumes that each label has a corresponding topic and a document is
generated by a mixture of the topics. Although multiple labels are allowed in LLDA, it
requires that the number of topics must equal to the number of labels, i.e., exactly one topic
per label. As an extension to LLDA, Partially Labelled LDA (PLLDA) [30] relaxes this
requirement by assigning multiple topics to a label. The Dirichlet Multinomial Regression
(DMR) model [23] incorporates document labels on the prior of the topic distributions like
our MetaLDA but with the logistic-normal transformation. As full conjugacy does not exist
in DMR, a part of the inference has to be done by numerical optimisation, which is slow
for large sets of labels and topics. Similarly, in the Hierarchical Dirichlet Scaling Process
(HDSP) [14], conjugacy is broken aswell since the topic distributions have to be renormalised.
A Poisson factorisation model with hierarchical document labels is introduced in [13], but
the technique cannot be applied to regular topic models as the topic proportion vectors are
also unnormalised.

There has been growing interest in incorporating word features in topic models. For
example, DF-LDA [2] incorporates word must-links and cannot-links using a Dirichlet forest
prior in LDA; MRF-LDA [35] encodes word semantic similarity in LDA with a Markov
random field; WF-LDA [28] extends LDA to model word features with the logistic-normal
transform; LF-LDA [26] integrates word embeddings into LDA by replacing the topic-word
Dirichlet multinomial component with a mixture of a Dirichlet multinomial component and
a word embedding component; Instead of generating word types (tokens), Gaussian LDA
(GLDA) [8] directly generates word embeddings with the Gaussian distribution. Despite the
exciting applications of the above models, their inference is usually less efficient due to the
non-conjugacy and/or complicated model structures.

Analysis of short text with topic models has been an active area with the development of
social networks. Generally, there are twoways to deal with the sparsity problem in short texts,
either using the intrinsic properties of short texts or leveraging meta-information. For the first
way, one popular approach is to aggregate short texts into pseudo-documents, for example,
[12] introduces amodel that aggregates tweets containing the sameword; Recently, PTM [46]
aggregates short texts into latent pseudo-documents. Another approach is to assume one topic
per short document, known asmixture of unigrams or DirichletMultinomialMixture (DMM)
such as [36,39]. For the second way, document meta-information can be used to aggregate
short texts, for example, [12] aggregates tweets by the corresponding authors and [19] shows
that aggregating tweets by their hashtags yields superior performance over other aggregation
methods. Closely related work to ours are models that use word features for short texts. For
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example, [36] introduces an extension of GLDA on short texts which samples an indicator
variable that chooses to generate either the type of a word or the embedding of a word and
GPU-DMM [17] extends DMM with word semantic similarity obtained from embeddings
for short texts. Although with improved performance, there still exist challenges for existing
models:

– for aggregation-based models, it is usually hard to choose which meta-information to use
for aggregation;

– the “single topic” assumptionmakes DMMmodels lose the flexibility to capture different
topic ingredients of a document;

– the incorporation of meta-information in the existing models is usually less efficient.

To our knowledge, the attempts that jointly leverage document andwordmeta-information
are relatively rare. For example, meta-information can be incorporated by first-order logic in
Logit-LDA [3] and score functions in SC-LDA [37]. However, the first-order logic and score
functions need to be defined for different kinds of meta-information and the definition can
be infeasible for incorporating both document and word meta-information simultaneously.

3 The MetaLDA model

Given a corpus, LDAuses the sameDirichlet prior for all the per-document topic distributions
and the same prior for all the per-topic word distributions [33]. While in MetaLDA, each
document has a specific Dirichlet prior on its topic distribution, which is computed from
the meta-information of the document, and the parameters of the prior are estimated during
training. Similarly, each topic has a specific Dirichlet prior computed from the word meta-
information. In this section we elaborate on our MetaLDA, in particular on how the meta-
information is incorporated. Hereafter, we will use labels as document meta-information,
unless otherwise stated. Table 1 summarises the notations used in this section.

The basic formulation mirrors that of standard LDA. Given a collection of D documents
D, MetaLDA generates document d ∈ {1, . . . , D} with a mixture of K topics and each topic
k ∈ {1, . . . , K } is a distribution over the vocabulary with V tokens, denoted by φk ∈ R

V+. For
document d with Nd words, to generate the i th (i ∈ {1, . . . , Nd}) word wd,i , we first sample
a topic zd,i ∈ {1, . . . , K } from the document’s topic distribution θd ∈ R

K+ , and then sample
wd,i from φzd,i

. Now this is extended with meta-information. Assume the labels of document

d are encoded in a binary vector fd ∈ {0, 1}Ldoc where Ldoc is the total number of unique
labels. fd,l = 1 indicates label l is active in document d and vice versa. MetaLDA allows
each document to have multiple labels. Similarly, the Lword features of token v are stored in
a binary vector gv ∈ {0, 1}Lword . Therefore, the document and word meta-information asso-
ciated with D are stored in the matrix F ∈ {0, 1}D×Ldoc and G ∈ {0, 1}V×Lword , respectively.
Although MetaLDA incorporates binary features, categorical features and real-valued fea-
tures can be converted into binary values with proper transformations such as discretisation
and binarisation [10].

Figure 2 shows the graphical model of MetaLDA and the generative process is as follows:

1. For each topic k:

(a) For each doc-label l: Draw λl,k ∼ Ga(μ0, μ0)

(b) For each word-feature l ′: Draw δl ′,k ∼ Ga(ν0, ν0)

(c) For each token v: Compute βk,v = ∏Lword
l ′=1 δ

gv,l′
l ′,k

(d) Draw φk ∼ DirV (βk)
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666 H. Zhao et al.

Table 1 List of notations

Notation Description

D Number of documents

V Size of vocabulary

K Number of topics

Nd Number of words in document d

Ldoc Dimension of document labels

Lword Dimension of word features

fd Binary label vector of document d

gv Binary feature vector of word v

wd,i i th word in document d

zd,i Topic of the i th word in document d

θd Normalised topic weights (topic distribution) of document d

φk Normalised word weights (word distribution) of topic k

αd Dirichlet parameter of the topic distribution of document d

βk Dirichlet parameter of the word distribution of document k

λl,k Weight between document label l and topic k

δl′,k Weight between word feature l ′ and topic k
μ0 Hyper-parameter of λl,k

ν0 Hyper-parameter of δl′,k

zd,i

wd,i

θdαd

fd,l
λl,k

μ0

φk

βk

δl ,k

gv,l

ν0

∀ k

∀ l

∀ v

∀ l

∀ i

∀ d

∀ k

Fig. 2 The graphical model of MetaLDA
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2. For each document d:

(a) For each topic k: Compute αd,k = ∏Ldoc
l=1 λ

fd,l
l,k

(b) Draw θd ∼ DirK (αd)

(c) For each word in document d:
(i) Draw topic zd,i ∼ CatK (θd)

(ii) Draw word wd,i ∼ CatV (φzd,i
)

where Ga(·, ·), Dir(·), Cat(·) are the gamma distribution with shape and rate parameters, the
Dirichlet distribution, and the categorical distribution, respectively. K , μ0, and ν0 are the
hyper-parameters.

To incorporate document labels, MetaLDA learns a specific Dirichlet prior over the topics
for each document by using the label information. Specifically, the information of document
d’s labels is incorporated in αd , the parameter of Dirichlet prior on θd . As shown in Step 2a,
αd,k is computed as a log linear combination of the labels fd,l . Since fd,l is binary, αd,k is
indeed the multiplication of λl,k over all the active labels of document d , i.e., {l | fd,l = 1}.
Drawn from the gamma distribution with mean 1, λl,k controls the impact of label l on topic
k. If label l has no or less impact on topic k, λl,k is expected to be 1 or close to 1, and then
λl,k will have no or little influence on αd,k and vice versa. The hyper-parameter μ0 controls
the variation of λl,k . The incorporation of word features is analogous but in the parameter of
the Dirichlet prior on the per-topic word distributions as shown in Step 1c.

The intuition of our way of incorporating meta-information is as follows. At the document
level, if two documents have more labels in common, their Dirichlet parameter αd will be
more similar, resulting in more similar topic distributions θd ; At the word level, if two words
have similar features, their βk,v in topic k will be similar and then we can expect that their
φk,v could be more or less the same. Finally, the two words will have similar probabilities of
showing up in topic k. In other words, if a topic “prefers” a certain word, we expect that it will
also prefer other words with similar features to that word. Moreover, at both the document
and the word level, different labels/features may have different impact on the topics (λ/δ),
which can be automatically learnt in MetaLDA from the data.

4 Inference

Unlike most existing methods, our way of incorporating the meta-information facilitates the
derivation of an efficient Gibbs sampling algorithm. With two data augmentation techniques
(i.e., the introduction of auxiliary variables),MetaLDAadmits the local conjugacy that further
gives us a close-form Gibbs sampling algorithm. Note that MetaLDA incorporates the meta-
information on the Dirichlet priors, so we can still use LDA’s collapsed Gibbs sampling
algorithm for the topic assignment zd,i . Thus, there is no need to use a hybrid learning
algorithm (i.e., optimisation + sampling), such as those in [23,26]. Moreover, as shown in
Step 2a and 1c, we only need to consider nonzero entries of F and G in computing the full
conditionals, which further reduces the inference complexity, particularly when the feature
space is sparse. This is often the case in real-world scenarios. In the rest of this section, we
will focus on the derivation of the full conditionals for sampling the two Gamma random
variables, λ and δ, used to modelling the influence of document labels and word features on
topics. Table 2 shows the statistics that we need while running the inference.
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Table 2 Summary of statistics

Notation Description

md,k Number of words in document d assigned to topic k

nk,v Number of word v assigned to topic k

qd Beta distributed axillary variable for document d

td,k Axillary table counts drawn from CRP for document d and topic k

q̂k Beta distributed axillary variable for topic k

t ′d,k Axillary table counts drawn from CRP for document k and word v

Given φ1:K and θ1:D , the complete model likelihood (i.e., joint distribution) of MetaLDA
is exactly the same as LDA’s likelihood, which is as follows:

Pr(w1:D, z1:D|θ1:D,φ1:K ) =
D∏

d=1

Nd∏

i=1

θd,zd,i φzd,i ,v =
D∏

d=1

K∏

k=1

θ
md,k
d,k

K∏

k=1

V∏

v=1

φ
nk,v
k,v (1)

where nk,v = ∑D
d

∑Nd
i=1 1(wd,i=v,zd,i=k) counts the number of words v assigned to topic k,

md,k = ∑Nd
i=1 1(zd,i=k) counts the number of words in document d assigned to topic k, and

1(·) is the indicator function. In the standard LDA model, we can marginalise out φ and θ

using the Dirichlet multinomial conjugacy, and then yield

Pr(z1:D,w1:D;α1:D,β1:K )

=
∫

θ

D∏

d=1

Γ
(∑K

k=1 αd,k

)

∏K
k=1 Γ (αd,k)

K∏

k=1

θ
md,k+αd,k−1
d,k

∫

φ

K∏

k=1

Γ
(∑V

v=1 βk,v

)

∏V
v=1 Γ (βk,v)

V∏

v=1

φ
nk,v+βk,v−1
k,v ·

=
D∏

d=1

BetaK (αd + md)

BetaK (αd)

K∏

k=1

BetaV (βk + nk)
BetaV (βk)

(2)

where Γ (·) is the Gamma function, BetaN (·) is a N-dimensional beta function as

BetaN (x) =
∏

n Γ (xn)

Γ
(∑

n xn
)

and here we assume that the Dirichlet priors are document and topic specific. Given βk and
αd , it is straightforward to compute the full conditional for sampling topic assignment zd,i ,
i.e.,

Pr(zd,i = k | z−zd,i
1:D ,w1:D,α1:D,β1:K ) = Pr(zd,i = k, z

−zd,i
1:D ,w1:D,α1:D,β1:K )

Pr(z
−zd,i
1:D ,w1:D,α1:D,β1:K )

∝ (αd,k + md,k)
βk,v + nk,v
βk,· + nk,·

. (3)

In MetaLDA, we have replaced αd and βk with a log linear model in order to build
informative priors from various side information associated with both documents and words.
They are deterministically computed from a set of Gamma random variables, as shown
in Step 2a and 1c in the generative process. Equation (3) can still be used in MetaLDA to
sample the topic assignments. However, the major challenge is to sample the Gamma random
variables, λ and δ without significantly complicating the inference procedure.
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4.1 Sampling Gamma random variable λl,k

λl,k is involved in computing the Dirichlet prior over θ1:D via the parameter α1:D . To sample
λl,k , we expand the first Beta ratio in Eq. (2) with Gamma functions as follows:

D∏

d=1

BetaK (αd + md)

BetaK (αd)
=

D∏

d=1

Γ (αd,·)
Γ (αd,· + md,·)
︸ ︷︷ ︸

Gamma ratio 1

K∏

k=1

Γ (αd,k + md,k)

Γ (αd,k)
︸ ︷︷ ︸

Gamma ratio 2

(4)

where αd,· = ∑K
k=1 αd,k , and md,· = ∑K

k=1 md,k . It is not easy to directly work with these

Gamma functions, while we replace αk with
∏Ldoc

l=1 λ
fd,l
l,k . In order to retain the sampling

efficiency of the standard LDA model, we appeal to data augmentation.
Gamma ratio 1 in Eq. (4) can be seen to be the marginalisation of a set of Beta ran-

dom variables, therefore can be augmented as (similar to the sampling of the Pitman–Yor
concentration parameter in [9]):

Γ (αd,·)
Γ (αd,· + md,·)
︸ ︷︷ ︸

Gamma ratio 1

∝
∫

qd
q

αd,·−1
d (1 − qd)

md,·−1 (5)

where for each document d , qd ∼ Beta(αd,·,md,·). Given a set of q1:D for all the documents,
Gamma ratio 1 can be approximated by the product of q1:D , i.e.,

∏D
d=1 q

αd,·
d .

Gamma ratio 2 in Eq. (4) is the Pochhammer symbol for a rising factorial, which can be
augmented with an auxiliary variable td,k [7,31,40,45] as follows:

Γ (αd,k + md,k)

Γ (αd,k)
︸ ︷︷ ︸

Gamma ratio 2

=
md,k∑

td,k=0

S
md,k
td,k

α
td,k
d,k (6)

where Smt indicates an unsigned Stirling number of the first kind. Gamma ratio 2 is indeed
a normalising constant for the probability of the number of tables in the Chinese Restaurant
Process (CRP) [5], td,k can be sampled by a CRP with αd,k as the concentration and md,k as
the number of customers:

td,k =
md,k∑

i=1

Bern

(
αd,k

αd,k + i

)

(7)

where Bern(·) samples a sequence of binary variables from the Bernoulli distribution. The
complexity of sampling td,k by Eq. (7) is O(md,k). For large md,k , as the standard deviation
of td,k is O(

√
logmd,k) [5], one can sample td,k in a small window around the current value

in complexity O(
√
logmd,k).

By ignoring the terms unrelated to α, the augmentation of Eq. (6) can be simplified to a
single term α

td,k
d,k . With those auxiliary variables, we can simplify Eq. (4) as:

D∏

d=1

q
αd,.

d

K∏

k=1

α
td,k
d,k =

D∏

d=1

K∏

k=1

q
αd,k
d α

td,k
d,k (8)
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Now, replacing αd,k with λl,k (i.e., αd,k = ∏Ldoc
l=1 λ

fd,l
l,k ), we get:

(
D∏

d=1

K∏

k=1

eαd,k log qd

) ⎛

⎝
D∏

d=1

K∏

k=1

(
Ldoc∏

l=1

λ
fd,l
l,k

)td,k
⎞

⎠

=
(

D∏

d=1

K∏

k=1

e
−αd,k log

1
qd

) (
Ldoc∏

l=1

K∏

k=1

λ

∑D
d=1 fd,l td,k

l,k

)

=
(

K∏

k=1

e
−∑D

d=1 αd,k log
1
qd

) (
Ldoc∏

l=1

K∏

k=1

λ

∑D
d=1 fd,l td,k

l,k

)

(9)

Recall that all the document labels are binary and λl,k is involved in computing αd,k if
and only if fd,l = 1. Extracting all the terms related to λl,k in Eq. (9), we get the posterior
likelihood of λl,k :

e
−λl,k

(∑D
d=1: fd,l=1

αd,k
λl,k

log 1
qd

)

λ

∑D
d=1 fd,l td,k

l,k

where αd,k
λl,k

is the value ofαd,k withλl,k removedwhen fd,l = 1.With these data augmentation
techniques, the likelihood is transformed into a form that is conjugate to the gamma prior of
λl,k .

Pr(λl,k) ∝ e
−λl,k

(∑D
d=1: fd,l=1

αd,k
λl,k

log 1
qd

)

λ

∑D
d=1 fd,l td,k

l,k λ
μ0−1
l,k e−λl,kμ0

= e
−λl,k

(
μ0−∑D

d=1: fd,l=1
αd,k
λl,k

log qd
)

λ
μ0+∑D

d=1 fd,l td,k−1
l,k

Therefore, it is straightforward to yield the following sampling strategy for λl,k :

λl,k ∼ Ga(μ′, μ′′) (10)

μ′ = μ0 +
D∑

d=1: fd,l=1

td,k (11)

μ′′ = μ0 −
D∑

d=1: fd,l=1

αd,k

λl,k
log qd (12)

Before λl,k is sampled, the value of αd,k can be computed and cached. After a new value
of λl,k is sampled, αd,k is updated by:

αd,k ← αd,kλ
′
l,k

λl,k
, ∀ 1 ≤ d ≤ D : fd,l = 1 (13)

where λ′
i,k is the newly sampled value of λi,k .

To sample/compute Eqs. (10)–(13), one only iterates over the documents where label l
is active (i.e., fd,l = 1). Thus, the sampling for all λ takes O(D′K Ldoc) where D′ is the
average number of documents where a label is active (i.e., the column-wise sparsity of F). It
is usually that D′ 	 D because if a label exists in nearly all the documents, it provides little
discriminative information and can then be neglected. This demonstrates how the sparsity
of document meta-information is leveraged. Moreover, sampling all the tables t takes O(Ñ )

(Ñ is the total number of words in D) which can be accelerated with the window sampling
technique explained above.
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4.2 Sampling Gamma random variable δl ′,k

The derivation of sampling δl ′,k is analogous to λl,k . Here, we use the same data augmentation
methods for re-parameterising the second Beta ratio in Eq. (2), i.e.,

K∏

k=1

BetaV (βk + nk)
BetaV (βk)

=
∏

k

Γ (βk,·)
Γ (βk,· + nk,·)

∏

v

Γ (βk,v + nk,v)

Γ (βk,v)
(14)

as

K∏

k=1

V∏

v=1

q̂
βk,v
k β

t ′k,v
k,v (15)

where q̂k ∼ Be(βk,., nk,.) and t ′k,v = ∑nk,v
i=1 Bern

(
βk,v

βk,v+i

)
. Now, we replace βk,v with

∏Lword
l ′=1 δ

gv,l′
l ′,k ,

(
K∏

k=1

V∏

v=1

e
−δl′,k

βk,v
δl′,k log 1

q̂k

) ⎛

⎝
K∏

k=1

V∏

v=1

(
Lword∏

l ′=1

δ
gv,l′
l ′,k

)t ′k,v
⎞

⎠

=
K∏

k=1

e
−δl′,k

(
∑V

v=1
βk,v
δl′,k

)

log 1
q̂k

(
K∏

k=1

Lword∏

l ′=1

δ

∑V
v=1 gv,l′ t ′k,v

l ′,k

)

and then extract all the terms related to δl ′,k in Eq. (15), and add the Gamma prior, we derive
the posterior of δl ′,k :

Pr(δl ′,k) ∝ e
−δl′,k

(

ν0−log q̂k
∑V

v=1:g
v,l′ =1

βk,v
δl′,k

)

δ
ν0+∑

v gv,l′ t ′k,v−1

l ′,k

We can then sample δl ′,k from a Gamma distribution parameterised with

δl ′,k ∼ Ga(ν′, ν′′) (16)

ν′ = ν0 +
V∑

v=1:gv,l′=1

t ′k,v (17)

ν′′ = ν0 − log q̂k

V∑

v=1:gv,l′=1

βk,v

δl ′,k
(18)

βk,v can be updated in a similar way to αd,k , i,e,

βk,v ← β ′
k,vδ

′
l ′,k

δl ′,k
, ∀ 1 ≤ k ≤ K : gv,l ′ = 1 (19)

where δ′
l ′,k is newly sampled value of δl ′,k . Sampling all δ takes O(V ′K Lword) where V ′ is

the average number of tokens where a feature is active (i.e., the column-wise sparsity of G
and usually V ′ 	 V ) and sampling all the tables t ′ takes O(Ñ ). Figure 3 illustrates the full
sampling algorithm.
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Require: D, F (if available), G (if available), K, μ0, ν0, MaxIteration
Ensure: topic assignments for all words: zd,i

1: Randomly initialise zd,i, λl,k (Step 1a), δl ,k (Step 1b)
2: Compute αd,k (Step 2a), βk,v (Step 1c), md,k, nk,v

3: for iter ← 1 to MaxIteration do
4: for all document d do
5: for all word wd,i = v (zd,i = k) in d do
6: md,k = md,k − 1, nk,v = nk,v − 1
7: Sample new topic k according to Eq. (3)
8: zd,i = k , md,k = md,k + 1, nk ,v = nk ,v + 1
9: end for
10: end for
11: for all document d do
12: Sample qd by qd ∼ Beta(αd,·, md,·)
13: for all topic k do
14: Sample td,k according to Eq. (7)
15: end for
16: end for
17: for all document label l and topic k do
18: Sample λl,k according to Eq. (10) to Eq. (12)
19: Update αd,k according to Eq. (13)
20: end for
21: for all topic k do
22: Sample q̂k by q̂k ∼ Beta(βk,·, nk,·)
23: for all word v do
24: Sample tk,v by tk,v =

nk,v

i=1 Bern
βk,v

βk,v+i

25: end for
26: end for
27: for all word feature l and topic k do
28: Sample δl ,k according to Eq. (16) to Eq. (18)
29: Update βk,v according to Eq. (19)
30: end for
31: end for

Fig. 3 Collapsed Gibbs sampling algorithm for MetaLDA

4.3 MetaLDA as a hyper-parameter sampling approach

Besides the observed labels/features associated with the datasets, a default label/feature for
each document/word is introduced in MetaLDA, which is always equal to 1. The default
can be interpreted as the bias term in α/β, which is supposed to capture the information
unrelated to the labels/features. When working without document labels with the default,
MetaLDAsamples theDirichlet parameters (i.e.,Hyper-parameters ofLDA)of the document-
topic distributions, α, according to the statistics in the target corpus. Similarly, without
word features, the Dirichlet parameters of the topic-word distributions, β, are sampled. We
demonstrate this by taking the document-topic distributions as an example.

Now assume each document only has a default label that is always equal to 1, i.e., fd,0 = 1
and fd,l = 0 for all l > 0. According to our construction (Step 1 and 2a), ad,k = λ0,k for all
the document. In other words, all the documents share the same asymmetric Dirichlet prior
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on the document-topic distributions (θd ) which is constructed as follows:

αk ∼ Ga(μ0, ν0) (20)

θd ∼ DirK (α) (21)

In this case, we can sample αk as follows:

αk ∼ Ga

(

μ0 + t·,k, μ0 −
D∑

d=1

log qd

)

(22)

Alternatively, we can vary MetaLDA to have a symmetric Dirichlet prior:

α ∼ Ga(μ0, μ0) (23)

θd ∼ DirK (α, . . . , α) (24)

In this case, we can sample α as follows:

α ∼ Ga

(

μ0 + t·,·, μ0 −
D∑

d=1

log qd

)

(25)

Discussed in [6,33], sampling the Dirichlet priors can gain significant performance
improvement in topic models. In the case where document labels/word features are not used,
MetaLDA offers an alternative hyper-parameter sampling approach to the methods such as
fixed-point iterations [24] and Newton–Raphson [32]. These methods use MAP to optimise
the hyper-parameters while ours uses MCMC sampling. We would like to point out that Met-
aLDA’s sampling of symmetric Dirichlet prior is similar to the approach introduced in [31].
However the sampling of asymmetric prior was not considered in [31]. Compared with the
built-in hyper-parameter sampling methods in Mallet2 which are based on histograms of the
statistics, our approach is more robust in the case where the statistics are not sufficient (e.g.,
short texts). This is further discussed with experiments in Sect. 5.4.3.

5 Experiments

In this section, we evaluate the proposed MetaLDA against several recent alternatives that
also incorporate meta-information, using 6 real datasets including both regular and short
texts. We will focus on the evaluation of

– the modelling accuracy of MetaLDA in terms of perplexity, a standard measure used
in topic modelling. The goal is to study how the meta-information contributes to the
predictive likelihood of unseen documents.

– the quality of topics learned byMetaLDA. It is interesting to see whether or not the meta-
information will positively affect the topic coherence. We will report both quantitative
and qualitative analyses.

– the running time of MetaLDA. The introduction of meta-information increases the
modelling complexity to some extend. However, as we discussed in previous sections,
MetaLDA can benefit from the local conjugacy given by the data augmentation methods,
and also be parallelised using the same distributed framework [25] in Mallet. Therefore,
we will empirically study the efficiency of MetaLDA.

2 http://mallet.cs.umass.edu.
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Besides, we will also study how word embeddings learnt by different techniques affect both
perplexity and topic coherence.

5.1 Datasets

In the experiments, we used three regular and three short text datasets, which are as follows:

– Reuters is a widely used corpus extracted from the Reuters-21578 dataset where doc-
uments without any labels are removed.3 There are 11,367 documents and 120 labels.
Each document is associated with multiple labels. The vocabulary size is 8817, and the
average document length is 73.

– 20NG 20 Newsgroups is a widely used dataset consists of 18,846 news articles with 20
categories. The vocabulary size is 22,636 and the average document length is 108.

– NYT NewYorkTimes is extracted from thedocuments in the category “Top/News/Health”
in the New York Times Annotated Corpus.4 There are 52,521 documents and 545 unique
labels. Each document is with multiple labels. The vocabulary contains 21,421 tokens,
and there are 442 words in a document on average.

– WS Web Snippets, used in [17], contains 12,237 web search snippets and each snippet
belongs to one of 8 categories. The vocabulary contains 10,052 tokens, and there are 15
words in one snippet on average.

– TMN Tag My News, used in [26], consists of 32,597 English RSS news snippets from
Tag My News. With a title and a short description, each snippet belongs to one of 7
categories. There are 13,370 tokens in the vocabulary, and the average length of a snippet
is 18.

– AN ABC News, is a collection of 12,495 short news descriptions and each one is in
multiple of 194 categories. There are 4255 tokens in the vocabulary, and the average
length of a description is 13.

All the datasets were tokenised by Mallet (see footnote 2) and we removed the words that
exist in less than 5 documents and more than 95% of the documents.

5.2 Meta-information settings

At the document level, the labels associated with documents in each dataset were used as
the meta-information. At the word level, we used a set of binarised word embeddings as
word features (see footnote 3), which are obtained from real-valued word embeddings such
as GloVe or word2vec. To binarise word embeddings, we first adopted the following method
similar to [11]:

g′
v, j =

⎧
⎪⎨

⎪⎩

1, if g′′
v, j > Mean+(g′′

v)

− 1, if g′′
v, j < Mean−(g′′

v)

0, otherwise

(26)

where g′′
v is the original embedding vector for word v, g′

v, j is the binarised value for j th
element of g′′

v , andMean+(·) andMean−(·) are the average value of all the positive elements
and negative elements, respectively.

3 MetaLDA is able to handle documents/words without labels/features. But for fair comparison with other
models, we removed the documents without labels and words without features.
4 https://catalog.ldc.upenn.edu/ldc2008t19.
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The insight is that we only consider features with strong opinions (i.e., large positive or
negative value) on each dimension. To transform g′ ∈ {− 1, 1} to the final g ∈ {0, 1}, we
use two binary bits to encode one dimension of g′

v, j : the first bit is on if g′
v, j = 1 and the

second is on if g′
v, j = − 1. This means that if the original embeddings are 100-dimensional,

the binarised embeddings will be with 200 dimensions. In our experiments, we also tried
some other word embedding binarisation methods including the one in [10]. However, the
performance with those binarisation methods is not comparable with the one we proposed
above. Therefore, the experimental results with different binarisation methods will not be
reported.

In the perplexity and topic coherence evaluation, i.e., Sects. 5.4 and 5.5, we will use the
50-dimensional GloVe word embeddings pre-trained on Wikipedia5 as the source of word
features. We then study how different word embedding sources influence the performance
of our model in Sect. 5.6. It is noteworthy that MetaLDA can also work with other word
features such as semantic similarity.

5.3 Compared models and parameter settings

We evaluate the performance of the following models:

– MetaLDA and its variants: the proposed model and its variants. Here we useMetaLDA to
indicate the model considering both document labels and word features. Several variants
ofMetaLDAwith document labels andword features separately were also studied, which
are shown in Table 3. These variants differ in the method of estimating α and β. All the
models listed in Table 3 were implemented on top of Mallet. The hyper-parameters μ0

and ν0 were set to 1.0.
– LDA [4]: the baseline model. The Mallet implementation of SparseLDA [38] is used.
– LLDA, Labelled LDA [29] and PLLDA, Partially Labelled LDA [30]: two models that

make use of multiple document labels. The original implementation6 is used.
– DMR, LDA with Dirichlet Multinomial Regression [23]: a model that can use multiple

document labels. The Mallet implementation of DMR based on SparseLDA was used.
Following Mallet, we set the mean of λ to 0.0 and set the variances of λ for the default
label and the document labels to 100.0 and 1.0, respectively.

– WF-LDA, Word Feature LDA [28]: a model with word features. We implemented it on
top of Mallet and used the default settings in Mallet for the optimisation.

– LF-LDA, Latent Feature LDA [26]: a model that incorporates word embeddings. The
original implementation7 was used. Following the original paper, we used 1500 and 500
MCMC iterations for initialisation and sampling, respectively, and set λ to 0.6, and used
the original 50-dimensional GloVe word embeddings as word features.

– GPU-DMM, Generalized PólyaUrnDMM[17]: amodel that incorporates word semantic
similarity. The original implementation8 was used. The word similarity was generated
from the distances of the word embeddings. Following the original paper, we set the
hyper-parameters μ and ε to 0.1 and 0.7, respectively, and the symmetric document
Dirichlet prior to 50/K .

5 https://nlp.stanford.edu/projects/glove/.
6 https://nlp.stanford.edu/software/tmt/tmt-0.4/.
7 https://github.com/datquocnguyen/LFTM.
8 https://github.com/NobodyWHU/GPUDMM.
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Table 3 MetaLDA and its variants

Compute α with Compute β with

MetaLDA Document labels Word features

MetaLDA-dl-def Document labels Default feature

MetaLDA-dl-0.01 Document labels Symmetric 0.01 (fixed)

MetaLDA-def-wf Default label Word features

MetaLDA-0.1-wf Symmetric 0.1 (fixed) Word features

MetaLDA-def-def Default label Default feature

Table 4 Summary of the
compared models

Meta Info used Model

None LDA [4]

PTM [46]

MetaLDA-def-def

Document labels LLDA [29]

PLLDA [30]

DMR [23]

MetaLDA-dl-def

MetaLDA-dl-0.01

Word features WF-LDA [28]

LF-LDA [26]

MetaLDA-def-wf

MetaLDA-0.1-wf

GPU-DMM [17]

Both MetaLDA

– PTM, Pseudo document based Topic Model [46]: a model for short text analysis. The
original implementation9 was used. Following the paper, we set the number of pseudo-
documents to 1000 and λ to 0.1.

All the models, except where noted, the symmetric parameters of the document and the
topic Dirichlet priors were set to 0.1 and 0.01, respectively, and 2000 MCMC iterations are
used to train the models. We summarise the compared models in terms of their usage of
meta-information in Table 4.

5.4 Perplexity evaluation

Perplexity is a measure that is widely used [33] to evaluate the modelling accuracy of topic
models. The lower the score, the higher the modelling accuracy. To compute perplexity, we
randomly selected some documents in a dataset as the training set and the remaining as the
test set. We first trained a topic model on the training set to get the word distributions of
each topic k (φtrain

k ). Each test document d was split into two halves containing every first
and every second word, respectively. We then fixed the topics and trained the models on the
first half to get the topic proportions (θ testd ) of test document d and compute perplexity for

9 http://ipv6.nlsde.buaa.edu.cn/zuoyuan/.
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predicting the second half. With regard to MetaLDA, we fixed the matrices �train and �train

output from the training procedure. On the first half of test document d , we computed the
Dirichlet prior αtest

d with�train and the labels f testd of test document d (See Step 2a), and then
point-estimated θ testd . We ran all the models 5 times with different random number seeds and
report the average scores and the standard deviations.

In testing, we may encounter words that never occur in the training documents (a.k.a.,
unseen words or out-of-vocabulary words). There are two strategies for handling unseen
words for calculating perplexity on test documents: ignoring them or keeping them in com-
puting the perplexity. Here we investigate both strategies:

5.4.1 Perplexity computed without unseen words

In this experiment, the perplexity is computed only on the words that appear in the training
vocabulary. Herewe used 80%documents in each dataset as the training set and the remaining
20% as the test set.

Tables 5 and 6 show10 the average perplexity scores with standard deviations for all the
models. Note that: (1) The scores on AN with 150 and 200 topics are not reported due to
overfitting observed in all the compared models. (2) Given the size of NYT, the scores of
200 and 500 topics are reported. (3) The number of latent topics in LLDA must equal to the
number of document labels. (4) For PLLDA, we varied the number of topics per label from
5 to 50 (2 and 5 topics on NYT). The total number of topics used by PPLDA is the product
of the number of labels and the number of topics per label.

The results show that the proposed MetaLDA outperformed all the competitors in terms
of perplexity on nearly all the datasets, showing the benefit of using both document and word
meta-information. Specifically, we have the following remarks:

– By looking at the models using only the document-level meta-information, we can see
the significant improvement of these models over LDA, which indicates that document
labels can play an important role in guiding topic modelling. Although the performance
of the two variants of MetaLDA with document labels and DMR is comparable, our
models run much faster than DMR, which will be studied later in Sect. 5.8.

– It is interesting that PLLDA with 50 topics for each label has better perplexity than
MetaLDA with 200 topics in the 20NG dataset. With the 20 unique labels, the actual
number of topics in PLLDA is 1000. However, if 10 topics for each label in PLLDA
are used, which is equivalent to 200 topics in MetaLDA, PLLDA is outperformed by
MetaLDA significantly.

– At the word level, MetaLDA-def-wf performed the best among the models with word
features only.Moreover, our model has a clear advantage in running speed (see Table 13).
Furthermore, comparing MetaLDA-def-wf with MetaLDA-def-def and MetaLDA-0.1-
wf with LDA, we can see using the word features indeed improved perplexity.

– The scores show that the improvement gained by MetaLDA over LDA on the short text
datasets is larger than that on the regular text datasets. This is expected because meta-
information serves as complementary information in MetaLDA and can have significant
impact when the data is sparse.

– It can be observed that models usually gained improved perplexity, if the Dirichlet param-
eter α is sampled/optimised, in line with [33]. We further study this in Sect. 5.4.3.

10 For GPU-DMM and PTM, perplexity is not evaluated because the inference code for unseen documents
is not public available. The random number seeds used in the code of LLDA and PLLDA are pre-fixed in the
package. So the standard deviations of the two models are not reported.
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– On the AN dataset, there is no statistically significant difference between MetaLDA and
DMR. On NYT, a similar trend is observed: the improvement in the models with the
document labels over LDA is obvious but not in the models with the word features.
Given the number of the document labels (194 of AN and 545 of NYT), it is possible that
the document labels already offer enough information and the word embeddings have
little contribution in the two datasets.

5.4.2 Perplexity computed with unseen words

To test the hypothesis that the incorporation of meta-information in MetaLDA can signifi-
cantly improve the modelling accuracy in the cases where the corpus is sparse, we varied
the proportion of documents used in training from 20 to 80% and used the remaining for
testing. It is natural that when the proportion is small, the number of unseen words in test-
ing documents will be large. Instead of simply excluding the unseen words in the previous
experiments, here we compute the perplexity with unseen words for LDA, DMR, WF-LDA
and the proposed MetaLDA. For perplexity calculation, φtest

k,v for each topic k and each token
v in the test documents is needed. If v occurs in the training documents, φtest

k,v can be directly
obtained. While if v is unseen, φunseen

k,v can be estimated by the prior:

βunseen
k,v

ntraink,· + β train
k,· + βunseen

k,·
.

For LDA and DMR which do not use word features, βunseen
k,v = β train

k,v ; For WF-LDA and
MetaLDA which are with word features, βunseen

k,v is computed with the features of the unseen

token. Following Step 1c, for MetaLDA, βunseen
k,v = ∏Lword

l ′ δ
gunseenv,l
l ′,k .

Figure 4 shows the perplexity scores on Reuters, 20NG, TMN and WS with 200, 200,
100 and 50 topics, respectively. MetaLDA outperformed the other models significantly with
a lower proportion of training documents and relatively higher proportion of unseen words.
The gap betweenMetaLDAand the other threemodels increaseswhile the training proportion
decreases. It indicates that the meta-information helps MetaLDA to achieve better modelling
accuracy on predicting unseen words.

5.4.3 Perplexity evaluation for using MetaLDA as a hyper-parameter sampling
approach

We further study how MetaLDA performs in terms of perplexity when used as a hyper-
parameter sampling approach without meta-information. The experimental settings are the
same as the ones used in Sect. 5.4.1. Table 7 shows the results of different variants of
MetaLDA on hyper-parameter sampling.Wewould like to point out thatMetaLDA-0.1-asym
is equivalent toMetaLDA-0.1-def,MetaLDA-asym-0.01 is equivalent toMetaLDA-def-0.01,
and MetaLDA-asym-asym is equivalent to MetaLDA-def-def in Table 3. Here we use the
former to make the comparison clear. We have the following observations:

– In general, the best perplexity score is derived with the use of both asymmetric α and
asymmetric β.
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Fig. 4 Perplexity comparison with unseen words in different proportions of the training documents. Each
pair of the numbers on the horizontal axis are the proportion of the training documents and the proportion
of unseen tokens in the vocabulary of the test documents, respectively. For each setting, the four coloured
bars from left to right correspond to LDA, WF-LDA, DMR and MetaLDA. The error bars are the standard
deviations over 5 runs. a Reuters with 200 topics, b 20NG with 200 topics, c TMN with 100 topics, d WS
with 50 topics

– If we fix the setting for the topic side and vary the setting for the document side (for
example, compare MetaLDA-0.1-0.01, MetaLDA-sym-0.01 and MetaLDA-asym-0.01),
we can derive that 1) the use of sampled priors (either symmetric or asymmetric) can
significantly lower the perplexity scores, This is in line with the findings in [33]; 2) using
asymmetric prior can further decrease perplexity.

– Similarly, fixing the setting for the document side and varying the setting for the topic
side (for example, comparing MetaLDA-sym-0.01, MetaLDA-sym-sym and MetaLDA-
sym-asym), we found that sampling either symmetric or asymmetric prior on per-topic
word distributions does not significantly affect the perplexity scores, which also complies
with [33]. However, there is a subtle difference: for our method an asymmetric prior on
per-topic word distributions is marginally better, whereas it is often worse in [33].

– Now comparing the last row in Table 7 with the corresponding results in Tables 5 and
6 shows that constructing the priors with meta-information can further decrease the
perplexity scores, which further proves our assumption that it is beneficial to use meta-
information in topic modelling.
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Table 7 Perplexity on 20NG with 200 topics, Reuters with 200 topics, WS with 100 topics

MetaLDA variants 20NG-200 Reuters-200 WS-100

MetaLDA-0.1-0.01 (LDA) 1762±3 631±1 878±8

MetaLDA-0.1-sym 1774±4 633±1 888±4

MetaLDA-0.1-asym 1764±6 629±2 884±6

MetaLDA-sym-0.01 1652±7 557±5 744±7

MetaLDA-sym-sym 1652±6 557±2 748±6

MetaLDA-sym-asym 1641±8 545±2 743±8

MetaLDA-asym-0.01 1618±10 543±1 726±10

MetaLDA-asym-sym 1618±11 542±1 741±11

MetaLDA-asym-asym 1626±4 540±1 733±6

5.5 Topic coherence evaluation

We further evaluate the semantic coherence of the words in a topic learnt by LDA, PTM,
DMR, LF-LDA, WF-LDA, GPU-DMM and MetaLDA. Here we use the normalised point-
wise mutual information (NPMI) [1,16] to calculate topic coherence score for topic k with
top T words:

NPMI(k) =
T∑

j=2

j−1∑

i=1

log
p(w j , wi )

p(w j )p(wi )
/ − log p(w j , wi ),

where p(wi ) is the probability of word i , and p(wi , w j ) is the joint probability of words i and
j that co-occur together within a sliding window. Those probabilities were computed on an
external large corpus, i.e., a 5.48GB Wikipedia dump in our experiments. The NPMI score
of each topic in the experiments is calculated with top 10 words (T = 10) by the Palmetto
package.11 Again, we report the average scores and the standard deviations over 5 random
runs.

It is known that conventional topic models directly applied to short texts suffer from low
quality topics, caused by the insufficient word co-occurrence information. Here we study
whether or not the meta-information helps MetaLDA improve topic quality, compared with
other topic models that can also handle short texts. Table 8 shows the NPMI scores on the
three short text datasets. Higher scores indicate better topic coherence. All the models were
trained with 100 topics. Besides the NPMI scores averaged over all the 100 topics, we also
show the scores averaged over top 20 topics with highest NPMI, where “rubbish” topics are
eliminated, following [37]. It is clear that MetaLDA performed significantly better than all
the other models in WS and AN dataset in terms of NPMI, which indicates that MetaLDA
can discover more meaningful topics with the document and word meta-information. We
would like to point out that on the TMN dataset, even though the average score of MetaLDA
is still the best, the score of MetaLDA overlaps with the others’ when allowing for standard
deviation, which indicates the difference is not statistically significant.

11 http://palmetto.aksw.org.
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Table 9 Perplexity comparison
for MetaLDA with different word
embeddings on WS and TMN

Dataset WS TMN

#Topics 50 100 50 100

GloVe-50 774±9 627±6 1657±4 1415±16

SkipGram-50 782±11 643±5 1678±3 1449±10

CBOW-50 781±6 636±9 1683±11 1430±6

GloVe-100 776±3 648±3 1653±8 1418±12

SkipGram-100 786±14 651±5 1685±17 1444±4

CBOW-100 778 ±3 645±7 1675±11 1442±16

Table 10 Topic coherence (NPMI) comparison for MetaLDA with different word embeddings on WS and
TMN

All 100 topics Top 20 topics

WS TMN WS TMN

GloVe-50 0.0311±0.0038 0.0451±0.0034 0.1511±0.0093 0.1584±0.0072

SkipGram-50 0.0251±0.0052 0.0385±0.0046 0.1405±0.0081 0.1521±0.0086

CBOW-50 0.0324±0.0035 0.0430±0.0048 0.1580±0.0055 0.1532±0.0027

GloVe-100 0.0286±0.0043 0.0455±0.0026 0.1473±0.0082 0.1522±0.0043

SkipGram-100 0.0277±0.0041 0.0424±0.0046 0.1508±0.0058 0.1545±0.0051

CBOW-100 0.0308±0.0046 0.0408±0.0035 0.1439±0.0092 0.1505±0.0102

5.6 Changing word embeddings

In the above experiments, we used the binarised 50-dimensional GloVe embeddings as word
features to demonstrate the superiority of MetaLDA over all the other competitors. It is also
interesting to study how the performance of MetaLDA changes while we use different word
embeddings. In this set of experiments, we varied the sources (i.e., the methods used to train
the word embeddings) as well as the dimensions of those word embeddings. Here we used
the embeddings pre-trained by three methods: GloVe, SkipGram12 and CBOW [20].12 For
each word embedding method, 50 and 100 dimensional embeddings were used.

Tables 9 and 10 show the perplexity and topic coherence performance of MetaLDA,
respectively, on the WS and TMN datasets. We followed the experiment settings used in the
previous sections, except for the word features.MetaLDAworkmarginally better with GloVe
embeddings thanwithword2vec embeddings.However, the difference is not significant, given
the standard errors. The reasons might be:

1. The binarisation could water down the differences betweenword embeddings. Therefore,
minor differences in word embedding might not significantly influence the performance.
But it is interesting to develop a model that can directly utilise the real-valued word
embeddings.

2. Using the embeddings as the prior information could make MetaLDA insensitive to the
quality of binarised word embeddings.

12 http://vsmlib.readthedocs.io/en/latest/tutorial/getting_vectors.html.
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Table 11 Top 5 related topics of the document labels in the WS dataset with 100 topics

Label Topic number Top 5 words λl,k

Business 72 Exchange stock estate
currency trading

12.11

93 Trade capital export venture
import

8.63

94 Jobs marketing job stress
advertising

7.99

49 Bank financial banking
finance insurance

7.06

28 Business management
services resources solutions

6.51

Computers 20 intel device digital apple chip 9.49

66 Internet bandwidth speed
connection test

6.57

35 Computer software
engineering architecture
graphics

6.19

48 Linux operating system unix
library

5.10

86 Memory computer virtual
cache security

4.77

Culture&Arts&Entertainment 47 Art arts museum painting
surrealism

11.16

45 Guitar piano jazz orchestra
instruments

6.87

7 Religion ancient culture
roman christian

6.41

41 Album tom beatles band julia 6.32

22 Culture American Chinese
history Japanese

5.54

Education and science 68 Journal journals international
conference research

7.36

19 Theoretical models model
reasoning framework

7.21

81 Thesis dissertation technical
empirical edu

7.04

15 Physics quantum theory
mechanics mathematics

6.40

37 Research discovery scientific
science scientists

5.77

Engineering 70 wheels car rims custom truck 5.95

24 Electrical products equipment
electric motor

5.80

74 Car cars automobile models
howstuffworks

5.68

80 Automatic gear transmission
China manual

4.84

88 Engine diesel fuel cylinder
turbine

4.72
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Table 11 continued

Label Topic number Top 5 words λl,k

Health 51 Diet calorie nutrition health
energy

6.65

96 HIV disease aids prevention
heart

6.55

98 Drug system respiratory
effects drugs

5.89

82 Physical therapy american
therapists checkup

5.85

52 Cancer lung tobacco smoking
risk

5.69

Politics & Society 97 Cabinet prime minister
appointment pbs

7.59

18 System republic government
parliamentary election

7.58

83 Military revolution force
navy army

7.27

89 House gov congress
legislation senate

5.21

16 Democracy party democratic
communist social

5.04

Sports 10 Football league rugby team
stadium

11.21

38 Tennis golf tournament
woods volleyball

10.17

27 Match cricket quarterfinal
game playoff

8.45

21 Tickets chicago bulls
basketball boxing

6.68

14 Soccer goalkeeper diego
maradona kick

5.58

5.7 Qualitative analysis

Nowwe show that besides better quantitative performance,MetaLDAwithmeta-information
also allows more informative and interesting interpretation of the discovered topics.

As discussed in Sect. 3, the latent variable λl,k is the weight measuring the association
between document label l and topic k. Each label can be interpreted as an unnormalised
mixture of topics, represented by a K -dimensional vector λl . Therefore, similar to finding
the top words for each topic, ranking λl,k can give us the most related topics for each label.
Table 11 shows the top 5 related topics among100discovered byMetaLDAfor the 9 document
labels in the WS dataset. For each topic, the top 5 words (ranked with φk,v) are listed. The
results show that the topics are closely related to the labels. For example, the top 5 topics
for the “Computers” category describe hardware, software, internet, and system, which are
different aspects of computers. The “Sports” category broadly covers football, rugby, tennis,
golf, cricket, etc. The major topics discussed in the “Health” related documents include diet,
infectious diseases, lung cancer and its causes, and so on.
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Table 12 Top 3 related labels of the topics in the WS dataset with 100 topics

Topic number Top 5 words Labels

46 Programming web java server code Computers

Education and science

Engineering

54 Diet calorie nutrition health energy Health

Engineering

Business

20 Intel device digital apple chip Computers

Culture&Arts&Entertainment

Business

17 Movie fiction documentary film soundtrack Culture&Arts&Entertainment

Education and Science

Sports

Furthermore,MetaLDA can also automatically assign the labels to the latent topics, which
is known as automatic topic labelling [15]. The method proposed in [15] generates label from
the top-ranked topic terms and the titles of Wikipedia articles containing these terms. It is
an ad hoc process. In contrast, MetaLDA automatically learns the association between the
document labels and the latent topics via the association matrix λ. Specifically, for each
topic k, we rank the labels according the weight λl,k , and then retrieve the most likely labels
for each topic. Table 12 shows some examples derived one the WS dataset. For instance,
topic 46 is about web programming. The most probable label for this topic assigned by
MetaLDA is “Computers”. The second and third probable labels are also very related to
this topic. Topic 17 is about movies, and the most probable label found by MetaLDA is
“Culture&Arts&Entertainment”. It is clear that topics and their most probable labels are
well correlated. All these findings demonstrate that MetaLDA is able to discover meaningful
topics and label the topics automatically.

5.8 Running time

In this section, we empirically study the efficiency of the models in term of per-iteration
running time. The implementation details of our MetaLDA are as follows:

– The SparseLDA framework [38] reduces the complexity of LDA to be sub-linear by
breaking the conditional of LDA into three “buckets”, where the “smoothing only” bucket
is cached for all the documents and the “document only” bucket is cached for all the tokens
in a document. We adopted a similar strategy when implementing MetaLDA. When
only the document meta-information is used, the Dirichlet parameters α for different
documents in MetaLDA are different and asymmetric. Therefore, the “smoothing only”
bucket has to be computed for each document, but we can cache it for all the tokens, which
still gives us a considerable reduction in computing complexity. However, when the word
meta-information is used, the SparseLDA framework no longer works in MetaLDA as
the β parameters for each topic and each token are different.
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Fig. 5 MetaLDA’s running time
(seconds per iteration) on the
NYT dataset with 500 topics with
different proportions of training
documents and different number
of threads
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– By adapting the Distributed framework in [25], our MetaLDA implementation runs in
parallel with multiple threads, which makes MetaLDA able to handle larger document
collections. The parallel implementation was tested on the NYT dataset.

The per-iteration running time of all the models is shown in Table 13. Note that:

– On the Reuters and WS datasets, all the models ran with a single thread on a desktop PC
with a 3.40GHz CPU and 16GB RAM.

– Due to the size of NYT, we report the running time for the models that are able to run
in parallel. All the parallelised models ran with 10 threads on a cluster with a 14-core
2.6GHz CPU and 128GB RAM.

– All the models were implemented in JAVA.
– As the models with meta-information add extra complexity to LDA, the per-iteration

running time of LDA can be treated as the lower bound.

At the document level, bothMetaLDA-df-0.01 andDMRuse priors to incorporate the doc-
ument meta-information and both of them were implemented in the SparseLDA framework.
However, our variant is about 6 to 8 times faster than DMR on the Reuters dataset and more
than 10 times faster on the WS dataset. Moreover, it can be seen that the larger the number of
topics, the faster our variant is over DMR. At the word level, similar patterns can be observed:
our MetaLDA-0.1-wf ran significantly faster than WF-LDA and LF-LDA especially when
more topics are used (20–30 times faster on WS). It is not surprising that GPU-DMM has
comparable running speed with our variant, because only one topic is allowed for each doc-
ument in GPU-DMM. With both document and word meta-information, MetaLDA still ran
several times faster than DMR, LF-LDA, and WF-LDA. On NYT with the parallel settings,
MetaLDA maintains its efficiency advantage as well.

To further examine our model’s scalability, we report the per-iteration running time of
MetaLDA on NYT with 500 topics in Fig. 5. For this, we varied the proportion of training
documents from 20 to 80% as well as the number of threads from 1 to 8. For the single thread
version, when the training proportions change from 40 to 80% the per-iteration running
time becomes 4 times slower. However, with multi-threading, our model scales much better.
The per-iteration running time is only doubled while the training proportions quadruple. In
terms of speed-up, the per-iteration running time increases nearly linearly with the number
of threads. For example, given 60% training data, the per-iteration running time is reduced
to half while the number of thread doubles.
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6 Conclusion

In this article, we have presented a topic modelling framework named MetaLDA that can
efficiently incorporate document and word meta-information. This results in a significant
improvement over other models in terms of perplexity and topic quality. With two data
augmentation techniques, MetaLDA enjoys full local conjugacy, allowing efficient Gibbs
sampling, demonstrated by superiority in the per-iteration running time. MetaLDA1 has been
implemented within Mallet using the DistributedLDA framework, and works efficiently
in a multicore context. Furthermore, without losing generality, MetaLDA can work with
both regular texts and short texts. The improvement of MetaLDA over other models that also
use meta-information is remarkable, particularly when the word-occurrence information is
insufficient.Moreover,MetaLDAefficiently demonstrates that asymmetric-asymmetric LDA
does beat regular symmetric LDA.

MetaLDA takes a particular approach for incorporatingmeta-information on topicmodels.
However, the approach is general enough to be applied to other Bayesian probabilistic models
that go beyond topics modelling, such as multi-label learning with sparse features [43].
Moreover, it would be interesting to extend our method to use real-valued meta-information
directly without binarisation [41], which is the subject of future work.
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