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Abstract This paper presents the DIS-C approach, which is a novel method to assess the
conceptual distance between concepts within an ontology. DIS-C is graph based in the sense
that the whole topology of the ontology is considered when computing the weight of the
relationships between concepts. The methodology is composed of two main steps. First, in
order to take advantage of previous knowledge, an expert of the ontology domain assigns
initial weight values to each of the relations in the ontology. Then, an automatic method
for computing the conceptual relations refines the weights assigned to each relation until
reaching a stable state. We introduce a metric called generality that is defined in order to
evaluate the accessibility of each concept, considering the ontology like a strongly connected
graph. Unlike most previous approaches, the DIS-C algorithm computes similarity between
concepts in ontologies that are not necessarily represented in a hierarchical or taxonomic
structure. So, DIS-C is capable of incorporating a wide variety of relationships between
concepts such as meronymy, antonymy, functionality and causality.

Keywords Conceptual distance · Semantic similarity · Ontology · Graph

1 Introduction

With the enormous success of the Information Society and the World Wide Web, the amount
of available information has significantly increased. In this context, computational text anal-
ysis has attracted great interest from the research community in order to enable a proper
exploitation, management, classification and retrieval of textual data. In fact, considerable
efforts have beenmade to standardize our understanding of various fields bymeans of ontolo-
gies, which allow us to model domains through sets of concepts and semantic relationships
established between these concepts [24]. However, one of themost basic problemswhen aim-
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ing to interpret textual data or electronic documents is the assessment of semantic likeness
between terms. According to Goldstone [21], psychological experiments have demonstrated
that semantic likeness acts as a fundamental organizing principle by which human beings
organize and classify objects.

Semantic similarity states how taxonomically near two terms are, because they share some
aspects of their meaning (e.g., dogs and cats are similar to the extend they are mammals). On
the other hand, the more general concept of semantic relatedness does not necessary rely on a
taxonomic relation (e.g., car and wheel or pencil and paper); other non-taxonomic relation-
ships (e.g., meronymy, antonymy, functionality, cause–effect) are also considered. Similarly,
bronchitis and flu are similar because both are disorders of the respiratory system. Further-
more, words can also be related in non-taxonomicways (e.g., diuretics help in the treatment of
hypertension); in this more general case, one talks about semantic relatedness. In both cases,
they are based on the evaluation of the semantic evidence observed in a knowledge source
(such as ontologies or domain corpora). In other words, semantic similarity is understood as
the degree of taxonomic proximity between terms. Similarity measures assign a numerical
score that quantifies this proximity as a function of the semantic evidence observed in one
or several knowledge sources [62]. Usually, these resources consist of taxonomies and more
general ontologies, which provide a formal and machine-readable way to express a shared
conceptualization bymeans of a unified terminology and semantic inter-relations fromwhich
semantic similarity can be assessed [68].

In information systems, semantic similarity plays an important role because it supports the
identification of objects that are conceptually close but not identical [58]. It is a key feature
in the development of semantic search technology [51]. It also facilitates the comparison of
information resources in different types of knowledge domains [73,82].

Relevant applications depend directly on semantic similarity computation, such as infor-
mation retrieval techniques for improving accuracy [1,2,9,27], to discovermappings between
ontology entities [34,52], to validate or repair ontology mappings [41], for question answer-
ing systems [79], for basic natural language processing tasks as word sense disambiguation
[48,76], recommending systems [7,39], information extraction [5,65,78], multimedia con-
tent search [56], semantic information integration [17,33], ontology learning in which new
terms related to existing concepts, should be acquired from textual resources [60], text cluster-
ing [77], biomedical domain [6,13,49,61], geographic information science [45,46,57,73,75],
and cognitive science. This has been applied to learning about human cognition, reasoning
and categorization about differences in conceptualizations [22,43,81], and Semantic Web,
when dealing with automatic annotation of documents [10,66]. Thus semantic similarity is
a fundamental part in the semantic processing task.

Ontology-based semantic similarity measures compare how similar the meanings of con-
cepts are, according to the taxonomic evidences modeled in the ontology. The exploitation
of multiple ontologies provides additional knowledge that can improve the similarity esti-
mation and solve situations in which terms are not represented in an individual ontology [2].
A plethora of measures have been proposed over the last decades. Although some context-
independent semantic similarity measures have been proposed [31,53,54,83], most measures
were designed in an ad hoc manner and were expressed on the basis of domain-specific or
application-oriented formalisms [61]. Therefore, most of these approaches target a specific
audience and fail to benefit other communities. In this way, a non-specialist can only interpret
the large diversity of state-of-the-art proposals as an extensive list of measures. As a conse-
quence, the selection of an appropriate measure for a specific usage context is a challenging
task [24].
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Despite the large number of contributions related to ontology-based semantic similarity
measures, the understanding of their foundations is limited. For a practitioner, some funda-
mental questions remain: Why does a measure work better than another one? How does one
choose or design a measure? Is it possible to distinguish families of measures sharing spe-
cific properties? How can one identify the most appropriate measures according to particular
criteria? Therefore, it is difficult to decide which measure should be used for a particular
application or to compare results from different similarity theories [29].

In this paper, we propose an approach based on a network model that uses an algorithm
that iteratively evaluates how close two concepts are, based on the semantics that an ontology
explicitly expresses. Network models are employed in knowledge representation in the form
of semantic networks. These structures are composed of nodes (concepts) and edges (rela-
tionships), in which nodes represent knowledge units such as objects, concepts or properties.
While the edges linking nodes with each other represent explicit relationships between them.
Although the model of representation always has the same structure, network models may
differ restricting the direction of the relationship. This means that similarity measures based
on the network model depend on the context [58] and describe the ontology semantics.

To sketch out our proposal, we present the following question: how far is the concept
“mountain” from the concept“valley”?Possible answers for this question could be numerical
values such as 10, 2, 3.5543. In general, the distance is expressed by the proximity between
two objects. So, conceptual distance is defined by the space that separates two conceptswithin
a conceptualization. Mathematically, the distance between two points in the Euclidean space
is equal to the longitude of the line segment that numerically joins those points. Thus, the
computation of the distance among objects depends directly on the space, in which they are
located.

According to the literature, a conceptual distance is related to the semantic similarity
based on a network model, which consists of graphs or conceptual representations such as
semantic networks, hierarchies or ontologies [72]. The distance represents how similar or
semantically related two concepts are [58]. The semantic similarity is a key issue in the
semantic processing area and has a long tradition in cognitive science because it can be
used for several purposes. Rada et al. [53] defined conceptual distance as the length of
the shortest path that connects the concepts in a conceptualization, which represents the
semantic similarity in is-a hierarchies. Thus, in this approach, similarity measures must
have the resolvable property, which means that the representation must be rich enough so
that there is a path between every concept. Therefore, one cannot compute the conceptual
distance between concepts that are not connected. In fact, this measure is guided by two
observations: the behavior analysis of conceptual distance and the proportionality of the
conceptual distance between nodes in the hierarchy. Therefore, this measure is the minimum
average of the path length over all the pairwise combinations of nodes between two subsets
of nodes. Moreover, similarity measures in the network model assume that each relationship
is important to determine a judgment on themselves [72].

This work presents the DIS-C approach, which is used to compute the conceptual distance
between concepts of an ontology. The method is based on the fact that an ontology can be
represented as a strongly connected graph. In the proposed approach, the topology of the
graph defines the relationships between concepts; and from them, weight values are assigned
to each relation taking into consideration the proximity between concepts. Initially, theweight
values can be defined by a domain expert or even defined arbitrarily. So, in order to remove
this arbitrariness, the use of a measure called generality is proposed. It describes how visible
a concept is to any other concept of the ontology. The generality is computed considering
the incoming and outgoing relations from one concept. For optimizing the values of the
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weights, an iterative refinement is performed. It allows the DIS-C algorithm to automatically
assesses the distance, and to remove the subjectivity of the weightings defined by a user.
The network model applicable to DIS-C, allows any type of relationship, not only taxonomic
(like hierarchies, hyponomies and partonomies). Moreover, DIS-C in conjunction with the
GEONTO-MET methodology [80] can be used to compute similarity in other knowledge
representation models such as the feature-based model [58].

The rest of the paper is organized as follows. Section 2 presents the related work with
respect to similarity approaches and their applications. Section 3 describes the theoretical
foundation of conceptual distance under our perspective as well as a set of examples that
were developed to illustrate our proposal. Section 4 presents the proposed algorithm and the
results of a set of experiments that characterize its performance. Finally, Sect. 5 presents a
discussion of our proposal in the context of previous and future works.

2 Related work

Many works have been developed in the last years, especially with the increasing interest
on the Semantic Web. Ontologies have been of great interest for the semantic similarity
research community as they offer a structured and unambiguous representation of the knowl-
edge in the form of conceptualizations interconnected by means of semantic pointers [64].
These structures can be exploited in order to assess the degree of semantic proximity or con-
ceptual distance between terms. According to the theoretical foundations where similarity
computation is based on the way in which an ontology is processed and complemented with
other sources, different approaches to measure the similarity can be identified in [84]. Other
approaches have been proposed to assess semantic similarity among concepts represented by
words within lexicographic databases [4]. In this context, Li et al. [38] proposed a method-
ology to compute similarity between short sentences through semantic similarity. Basically,
similarity based on distance methods aim at assessing a score between a pair of words by
exploiting some information sources, in which application are centered in search engines
[8,11] or a well-defined semantic network such as WordNet or MeSH [44].

According to Pirró [51], many approaches to assess similarity have been proposed, which
can be classified on the basis of information source they exploit. Thus, different families of
methods have been defined, taking into account the theoretical foundations and the way in
which ontologies are analyzed in order to estimate the similarity.Ontology-based approaches
[53], assesses semantic similarity by counting the number of nodes/edges separating two con-
cepts within semantic networks. This measure was mainly designed to semantic networks
with taxonomic relationships. It measures between two concepts or two set of nodes the
average of the minimal distance among each pair of nodes related to the sets. Information
content-based approaches assess the similarity between concepts by probabilistic models
and as a function of information content that both concepts have in common in a specific
ontology [31,40,55]. In the past, information content was typically computed from con-
cept distribution in tagged textual corpora. Nowadays, methods for inferring information
content of concepts in an intrinsic manner from knowledge structure modeled in an ontol-
ogy have been proposed [61,63,74,85]. Hybrid approaches combine multiple information
sources and weights are used to set the contribution of each information source in order to
be adjusted [37,58,70,71]. Feature-based approaches estimate similarity according to the
weighted sum of the amount of common and non-common features [39,64]. By features,
Sánchez et al. [68] usually considered taxonomic and non-taxonomic information modeled
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in an ontology, in addition to concept descriptions retrieved from dictionaries [50,57]. Due to
the additional semantic evidences established during the assessment, they potentially improve
edge-counting approaches.However, non-taxonomic features are considered because they are
rarely found in ontologies [15] and require fine-tuning of weighting parameters for integrat-
ing heterogeneous semantic evidences [50]. Moreover, edge-counting approaches consider
the similarity assessment on the number of taxonomic links of minimum path, separating two
concepts contained in a given ontology [35,37,53,83]. However, Meng et al. [42] argued that
all measures can be grouped into four classes: path length-based, information content-based,
feature-based, and hybrid measures.

On the other hand, other works are focused on ontology alignment techniques. Cross and
Hu [14] described a semantic method to measure the similarity between concepts that exist
in two different ontologies by means of the matchers of ontology alignment systems. These
matchers belong to various categories depending on the context of the similarity measure,
such as lexical, structural, or extensional matchers. Other proposals combine the context and
similarity to achieve the interoperability among different databases [32]. Methods focused
on computing the semantic similarity with multiple ontologies have been proposed. Sánchez
and Batet [62] defined a method to extend information content-based semantic similarity
measures when multiple ontologies are available. It allows estimating the similarity when a
term or a pair of term is missing in certain ontology but it is found in another one. Han et
al. [23] present the ADSS approach to determine semantic similarity among a set of entities
from different ontologies. This approach takes into consideration the similarity between two
entities and their similarity reflected in context. The ranking score is defined as a function of
some particular parameters. ADSS is different from other methods because it combines an
efficient Tabu search algorithm established with multi-objective programming algorithm for
improving the precision.

Other ontology-based approaches have been defined to compute and assess similarity in
biomedical domain; for example, Batet et al. [6] proposed a similarity measure that can
achieve a level of accuracy similar to corpus-based approaches but retaining the low com-
putational complexity and lack of constraints of path-based measures. The method is based
on the path-based measure because it exploits the geometrical model of the ontology no
pre-calculus or pre-processing is needed, which makes them more computationally efficient.
Harispe et al. [24] presented a unifying framework that aims to improve the understanding
of semantic measures, to highlight their equivalences and propose bridges between their
theoretical bases for the biomedical domain. Zadeh and Reformat [84] proposed a method
for determining semantic similarity between concepts defined in an ontology. In contrast to
other techniques that use ontological definition of concepts for similarity assessment, this
approach is focused on relations between concepts and their semantics. It is able to determine
similarity not only at the definition/abstract level, but also it is able to evaluate similarity of
concrete pieces of information that are instances of concepts. In addition, the method allows
for context-aware similarity assessment when only specific sets of relations, identified by
the context, are taken into consideration. A new ontology-based measure relying on the
exploitation of taxonomic features extracted from an ontology is proposed by Sánchez et al.
[64]. It considers the similarity assessment and the way in which ontologies are exploited
or complemented with other sources. The measure follows a similar principle proposed in
the Tversky’s model [81], in which considers that the similarity between two concepts can
be computed as a function that relies on taxonomic information. Likewise, Sánchez et al.
[67] described that the problem of integrating heterogeneous knowledge sources is tackled
by means of simple terminological matching between ontological concepts. Sánchez et al.
[68] aimed to improve methods by analyzing the similarity between the modeled taxonomic

123



38 R. Quintero et al.

knowledge and the structure of different ontologies by means of two methods. The first one,
relying on the principles of knowledge representation, considers explicit knowledge mod-
eled in the ontology to estimate the semantic overlapping between taxonomic ancestors of
different ontologies. The second one exploits the net of semantic links and the structural
similarities between several ontologies as an indication of implicit semantics.

Moreover, Saruladha et al. [69] presented a computational approach for assessing semantic
similarity among concepts from different and independent ontologies, without constructing
a shared ontology. The work has explored the possibility of adapting the existing single
ontology information content-based approaches andproposedmethods for assessing semantic
similarity among concepts from different multiple ontologies. The approaches are corpus
independent and they correlated well with human judgments. Albertoni and De Martino [4]
proposed a framework to assess semantic similarity among instances within an ontology. It
aimed to define a sensitive measure of semantic similarity, which takes into account different
hints hidden in the ontology definition and explicitly considered the application context.
An ontology-based method for assessing similarity based on Formal Concept Analysis is
proposed by Formica [18]. The method is intended to support the ontology engineering in
difficult activities that are becoming fundamental in the development of the Semantic Web,
such as ontology merging and ontology mapping.

Other ontology-based approaches are focused on similarity computation between two
concepts from an ontology. Albacete et al. [3] proposed a similarity function based on five
dimensions like sort, compositional, essential, restrictive and descriptive. The obtained sim-
ilarity values are weighted and aggregated in order to obtain a global similarity measure.
The proposal has been evaluated by using the WordNet knowledge base. Goldstone [20]
proposed a method for measuring similarity in which subjects rearrange items (psycholog-
ical similarity), so that their proximity on a computer screen can be proportional to their
similarity.

Thus, the most common ways for structuring knowledge are hierarchies and ontologies.
Up to date, general ontologies have been developed, such as WordNet [16], SUMO [47],
PROTON [28], DOLCE [19], SNOMED-CT [25], Gene Ontology [12], Kaab [80], among
others. These ontologies allow us to analyze knowledge by using a graph-based model,
describing concepts and their relationships with nodes and edges.

The semantic similarity computation in graph-based models has been realized in differ-
ent manners. For instance, by using graph theory techniques to compute similarity values
[35,53,83]. These measures are used in hierarchies and taxonomies, due to the knowl-
edge subjacency that is considered by computing the similarity. The main problem of those
approaches is the homogeneity dependency and the coverage of the relations in the ontology.
Examples of ontologies like WordNet are good candidates to apply those measures, due to
their homogeneity distribution of relations and their coverage between different domains
[31]. In addition, Resnik [55] described a similarity measure based on the notion of infor-
mation content. This similarity between two terms is estimated as the amount of information
that they share within the conceptual representation. In a taxonomy, this information is rep-
resented by the Least Common Subsumer (LCS) of both terms. Multiple variations of this
measure have been developed; for example, Resnik-like measures depend on two aspects: the
way of computing information content and the organization of the subsumption hierarchy.

At this point, it is necessary to meditate about if the conceptual distance is adequate to
measure the semantic similarity between concepts. In this work, we assume that two concepts
could be conceptually near; however, they can be semantically non-similar. For instance, lakes
and reservoirs, mountains and valleys are involved in specific conceptualizations, in which
their conceptual distances are closer, but their semantic similarities are far according to their
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meanings. Our approach does not try to measure the semantic similarity, but it consists of
measuring the conceptual distance, considering some ideas presented by Rada et al. [53]
and Resnik [55]. For example, how similar are “credit card” and “food”? According to the
semantic similarity, two concepts are weakly similar, but conceptually, it could be said that
you can buy “food” by using the “credit card”. In fact, we consider that semantic similarity
is different from the conceptual distance, the latter is a measure that tells us how strong
two concepts are related, while semantic similarity indicates how similar they are. As we
mentioned, conceptual distance can be used to compute semantic similarity. Some approaches
presented above work with ontologies based on taxonomic relationships, which restrict their
application. The DIS-C algorithm does not have this limitation and it is applicable to any type
of ontology. Furthermore, the algorithm is intended to operate without the need for someone
to assign a value to each relationship.

3 Theoretical foundation of the DIS-C approach

In this work, the conceptual distance is defined by the space that separates two concepts
within a specific conceptualization, which is represented by an ontology. Another conceptual
distance assumption is related to the difference of information content provided by two
concepts with their own particular definitions.

The proposed approach is applicable to any type of conceptualization and ontology or dif-
ferent conceptual structures such as hierarchies, taxonomies, semantic networks. The novelty
of the proposed algorithm is to assign a distance value to each type of relation in the ontology,
and transform the latter into a weighted directed graph (called conceptual graph), in which
each concept is a node and each relationship is a pair of edges (one for direct and other for
inverse relation sense).

Once the conceptual graph is built, different techniques of graph theory are applied in
order to process the underlying knowledge codified in the ontology. The natural step is to
compute the shortest path in order to find the distance between concepts that are not directly
related.

3.1 The basic algorithm

Let be K (C,�, R) a conceptualization where C is the set of concepts, � is the set of types
of relations and R is the set of relationships in the conceptualization. Then, for each relation
ρ ∈ �, the values of δρ for relation ρ are directly set depending on the type of relation, and
δ
ρ
for the reverse of relation ρ.

1. For each type of relation ρ ∈ �, assign a conceptual distance or the weight to such
relationship. This weighting is defined in each direction of the relationship. For example,
if we have the relation “is” and the sentence “cat is an animal”, then, the distances from
“cat” to “animal” and “animal” to “cat” are set as follows: distance(cat, animal) = 1

and distance(animal, cat) = 0, or using the proposed notation, δis = 0 and δ
is = 1.

2. The graph GK (V, A) is created for the conceptualization K . First, each concept c ∈ C
is added as a vertex in the graph GK , which means that V = C .

3. For each relationship aρb ∈ R, where a, b ∈ C and ρ ∈ �, add the edges (a, b, δρ) and
(b, a, δ

ρ
) to the set A of edges.

4. The length of shortest paths between each pair of vertex are computed. As a result, the
conceptual distance is disseminated to all concepts in a conceptualization K .
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Algorithm 1 Basic Conceptual Distance
Input: Ontology K (C, �, R) defining a conceptualization and a weighting table δρ for each type of relation

ρ ∈ �
Output: The shortest path table describing the conceptual distance between each pair of concepts c ∈ C
V ← C
A ← ∅
foreach relation (aρb) ∈ R do

A ← A ∪ {(a, b, δρ), (b, a, δ
ρ
)}

end
GK ← graph(V, A)

return minimal_paths(GK )

Algorithm 1 shows the basic procedure for computing conceptual distance.1

3.1.1 Application of DIS-C in the GEONTO-MET approach

In Torres et al. [80], we presented a methodology for conceptualizing the geographic domain.
This approach will be used as an application example of the DIS-C basic algorithm.

According to Algorithm 1, the following three steps are applied: (1) assign a weight to
each type of relation, (2) create the graph, and (3) compute the table of shortest paths.

In GEONTO-MET there are three axiomatic relations: “is”, “has” and “does”. The “is”
relation is widely used in the literature and it establishes a hierarchical relationship. For
example, if we have the relationship “cat is an animal”, then the distance of “cat” to “animal”
and “animal” to “cat” must be set. So, it is represented by distance(cat, animal) = 1 and
distance(animal, cat) = 0. Thus, we propose that if a(is)b ∈ R, then δis(a, b) = 0 and

δ
is

(a, b) = 1.
The “has” relation defines properties, in this case the distance is inversely proportional to

the number of concept occurrences. For example, if the “urban area” concept “has” “street of
first order”, then the conceptual distance between the concepts “urban area” and “street” will
be inversely proportional to the number of streets in the urban area. That is, if a(has)b ∈ R,
then δhas(a, b) = 1

o(p) , whereo(p) is the number of occurrences of the property p = a(has)b
in R. On the other hand, the conceptual distance of “street” to “urban area” is likewise
inversely proportional to the number of streets in the urban area and directly proportional to
the total number of properties of the urban area (streets, buildings, parks, etc.). Formally, if

a(has)b ∈ R, then δ
has

(a, b) = |P(a)|
o(p) , where P(a) = {x | a(has)x ∈ R} for any concept

x ∈ C and o(p) is the number of property occurrences p = a(has)b in R.
Similarly, the “does” relation defines abilities, thus the conceptual distance is defined in

both directions of the relationship, inversely proportional to the number of times that an
ability is referred by a concept. Likewise, the inverse relationship is directly proportional to
the total number of concept abilities.

In summary, the distance values for each type of relationship in the GEONTO-MET are
as follows:

1. If a(is)b ∈ R

(a) δis(a, b) = 0.

1 Formally, the output is not a distance, since some conditions are not met, such as symmetry and triangle
inequality.
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Fig. 1 Example of an ontology, which was built by using the GEONTO-MET approach

(b) δ
is

(a, b) = 1.

2. If a(has)b ∈ R

(a) δhas(a, b) = 1
o(p) , where o(p) is the number of property occurrences p = a(has)b

in R (this value is normally 1).

(b) δ
has

(a, b) = |P(a)|
o(p) , where P(a) = {x | a(has)x ∈ R} for any concept x ∈ C and

o(p) is the number of property occurrences p = a(has)b in R.

3. If a(does)b ∈ R

(a) δdoes(a, b) = 1
o(h)

, where o(h) is the number of ability occurrences h = a(does)b
in R (this value is normally 1).

(b) δ
does

(a, b) = |H(a)|
o(h)

, where H(a) = {x | a(does)x ∈ R} for any concept x ∈ C and
o(h) is the number of ability occurrences h = a(does)b in R.

As example, the ontology depicted in Fig. 1 was developed by using the GEONTO-MET
approach. Figure 2 shows the graph that was obtained by applying steps 2 and 3 of basic
algorithm. Finally, in Table 1 the conceptual distance between all concepts are presented.

3.2 Generality

Resnik [55] proposed that − log p (c) describes information content of a concept c; where
p is the probability that the concept c is presented in the definition of any concept, dividing
the sum of concepts that has the concept c as ascendant, by the total number of concepts;
that is, dividing the number of concepts related to c (including concept c itself) by the total
number of concepts. This way of counting the amount of information makes sense, because
the inheritance in taxonomies allocates concepts that are “deep in the taxonomy”, which
contain all information of their ascendants, adding its own. Therefore, it is logical to think
that the amount of information is proportional to the “depth” into the taxonomy.

Analogous to Resnik’s proposal [55], the generality is a way of describing information
content that a concept has, but here we are not only dealing with taxonomies, but also
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Fig. 2 Resulting conceptual graph obtained from the ontology depicted in Fig. 1
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with ontologies that may have multiple types of relationships at once (not only taxonomic
ones). Thus, the generality is proposed to characterize information content of concepts in an
ontology according to how related they are to each other. In addition, generality is used to
quantify how is a concept connected with the entire ontology.

If concept x ∈ C is not related to any other concepts (do not use information from others
to their own definition), it means that few information is required to identify it and denote that
the concept is very abstract or general. Therefore, its conceptual distance to other concepts
will be large (on average), because if it is only related to a few concepts, then the paths
for connecting it to most of the other concepts will be larger. Conversely, the more specific
concepts are defined in terms of other more general ones; so, if x is a very general concept,
then the other concepts will be close to x in their definitions. Therefore, if x is a very general
concept, then the average distance from other concepts in the ontology to x will be small.
In conclusion, the generality of a concept x is defined as the ratio of information content
required by x from the other concepts for their definitions, and the sum of this value plus
information content that x contributes to other concepts in the ontology.

Now, information content of a concept x in an ontology is defined as − log g (x), where
g(x) is a function that indicates the generality of a concept (probability that concept x
is “present” in the definition of other concepts). We propose that g(x) is defined as the
ratio of information that is provided by other concepts to x , and all information related
to x (information provided to x from all other concepts plus information provided from
x to all other concepts). That is, the average of conceptual distances from concept x to
all other concepts divided by the sum of average of conceptual distances and all concepts
into the ontology. Thus, let K (C,�, R) be a conceptualization, x, y ∈ C concepts of that
conceptualization and�K (x, y) the conceptual distance from x to y, then ∀x ∈ C generality
g(x) is defined as shown in Eq. 1.

g(x) =
∑

y∈C �K (x,y)
|C|

∑
y∈C �K (x,y)

|C| +
∑

y∈C �K (y,x)
|C|

=
∑

y∈C �K (x, y)
∑

y∈C (�K (x, y) + �K (y, x))
. (1)

3.3 Automatic weighting method

In order to apply the DIS-C algorithm, the conceptual weighting for each type of conceptual
relationship and its inverse must be established. In this section, we introduce a method for
the automatic computation of these conceptual weights. In general, there are not rules in the
literature that give us some notion of what are the desirable features of these values in a
conceptualization. Most proposals are too specific and the metrics are specifically tailored
for a particular methodology of conceptualization. However, we believe that it is possible
to compute the conceptual distance values of each type of relationship in an ontology by
using only its own structure, and regardless of the type of the ontology, amount or type of
relationships.

The idea of the algorithm consists of considering the ontology as a graph and computing
theweight that each edgemust have, taking into account the generality of each node (concept).
But, why do we have to calculate the generality for determining the conceptual distance?
Because we want to use the intention/semantics as the ontologist has given to the concepts.
Surely, more related concepts are more important in the domain that describe the ontology.
So, generality of a concept provides information about the relations in the conceptualization
and hence, we attempt to use this information for determining the weight that each edge.
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At this point, we reach a deadlock because generality is based on the conceptual distance,
and the conceptual distance is computed with the generality as part of the input. Therefore,
as a starting point we assume that all nodes/concepts are equally generic.

In addition, the topology of the ontology is other aspect to consider, because it ”cap-
tures” the intention/semantics of the ontology. To take into consideration the topology, input
and output degrees of each vertex are used. For computing the generality of concepts and
conceptual distances, the following foundations are proposed.

Given a conceptualization K (C,�, R) as defined above, the directed graph GK (VG , AG)

is created by making each concept c ∈ C a node in the graph GK : VG = C . Now, for each
relation aρb ∈ R, where a, b ∈ C , the edge (a, b, ρ) is added to AG .

The next step is to iteratively generate fromGK , theweighted directed graph�
j
K (V j

γ , A j
γ ).

For this purpose, in j th iteration we make V j
γ = VG , A

j
γ = ∅ and, for each edge (a, b, ρ) ∈

AG , edges (a, b, ω j
ab) and (b, a, ω

j
ba) are added to �

j
K , where ω

j
ab is the geometric average

of the estimation of conceptual distance from the vertex a to the vertex b at j th iteration.
These are calculated by Eq. 2,

ω
j
ab = pw

(
g j−1
a ωo

a + g j−1
b ωi

b

)
+ (1 − pw) [δρ] j−1

ω
j
ba = pw

(
g j−1
b ωo

b + g j−1
a ωi

a

)
+ (1 − pw)

[
δ̄ρ

] j−1
, (2)

where pw ∈ [0 − 1] is a parameter that indicates how much importance is given to recent
values, and consequently, the importance given to past values. Normally, pw = 1

2 and g j
x is

the generality of vertex x ∈ VG at j th iteration (the value of g j
x is calculated by using the

graph �
j
K ). We set that ∀x ∈ VG , g0x = 1, i.e., the initial value of generality for all nodes

is equal to 1. Furthermore, the terms [δρ] j and
[
δ̄ρ

] j
are involved, and they are values of

conceptual distance of the relationship between a and b (forward and reverse, respectively);

whose values are being sought. Initially, those distances are 0, i.e., [δρ]0 = 0 and
[
δ̄ρ

]0 = 0
for any ρ ∈ �.

Moreover, ωi
x is the cost of “getting” at vertex x ∈ VG , which is defined as the probability

of not finding an edge arriving to vertex x , i.e., ωi
x = 1 − ix

ix+ox
. Thus, ωo

x is the cost of
”leaving” vertex x ∈ VG , defined as the probability of not finding an edge leaving vertex x ,
i.e., ωo

x = 1− ox
ix+ox

, where ix is the in-degree of vertex x and ox is the out-degree of vertex
x .

Figure 3 presents an example ontology, where concept a has two concepts related to it (b
and c), so the in-degree value ia = 2 (the number of relationships that “arrive” at concept
a). In addition, concept a is not associated with any other concept in the ontology, so the
out-degree oa = 0 (no relationship “leaves” concept a).

We can set the cost of “getting” to concept a as ωi
a = 1 − ia

ia+oa
= 1 − 2

2+0 = 0, and the

cost of “leaving” concept a as ωo
a = 1 − oa

ia+oa
= 1 − 0

2+0 = 1. Similarly, for the concept
b: ib = 1 (one relationship “enters” to b), ob = 2 (two relationships “leaves” from b); then,
ωi
b = 1 − ib

ib+ob
= 1 − 1

1+2 = 2
3 and ωo

b = 1 − ob
ib+ob

= 1 − 2
1+2 = 1

3 . Now, suppose that
the first iteration is computed, i.e., j = 1; then the value of edge that goes from a to b is

ω1
ab = pw

(
g0aω

o
a + g0bω

i
b

) − (1 − pw) [δρ]0; since pw = 1
2 , g

0
a = g0b = 1 and

[
δis

]0 = 0,

then ω1
ab = 1

2

(
ωo
a + ωi

b

) = 1
2

(
1 + 2

3

) = 5
6 . Similarly, ω1

ba = 1
6 .

The resulting graph of applying this process (Algorithm 2, line 5) to the ontology depicted
in Fig. 3 is shown in Fig. 4.
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Fig. 3 Ontology example to
clarify the process of
relationships

Fig. 4 Conceptual graph
obtained by applying the
generality measure in the
ontology shown in Fig. 3
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Now, from the graph �
j
K , the adjacency matrix M

�
j
K
is built (see Eq. 3).

M
�

j
K

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω
j
aa ω

j
ab ω

j
ac ω

j
ad ω

j
ae

ω
j
ba ω

j
bb ω

j
bc ω

j
bd ω

j
be

ω
j
ca ω

j
cb ω

j
cc ω

j
cd ω

j
ce

ω
j
da ω

j
db ω

j
dc ω

j
dd ω

j
de

ω
j
ea ω

j
eb ω

j
ec ω

j
ed ω

j
ee

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

Meanwhile ω
j
xy = 0, if x = y and ω

j
xy = ∞, if there is not an edge in �

j
K that goes from

vertex x to the vertex y, then, following the same example, for j = 1 the matrix M�1
K
is

obtained and shown in Eq. 4 (Algorithm 2, line 16).

M�1
K

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 5
3

4
3 ∞ ∞

1
3 0 2

3
5
6 ∞

2
3

4
3 0 ∞ 5

3

∞ 7
6 ∞ 0 3

2

∞ ∞ 1
3

1
2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Next step is to propagate these weights to the vertexes that are not directly connected.
Thus, the new matrix M�1

K
is shown in Eq. 5 (Algorithm 2, line 22).

M�1
K

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 5
3

4
3

5
2 3

1
3 0 2

3
5
6

7
3

2
3

4
3 0 13

6
5
3

3
2

7
6

11
6 0 3

2

1 5
3

1
3

1
2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)

With this adjacency matrix, the values of generality for each vertex are calculated, in the
jth iteration, by using Eq. 1, and considering �K = M

�
j
K
. In this example, the generality for

the vertex a is g1a = 0+ 5
3+ 4

3+ 5
2+3

0+ 1
3+ 2

3+ 3
2+1

= 17
2
7
2

= 17
7 (Algorithm 2, line 23).

In addition, it calculates a newvalue of the conceptual distance for each type of relationship
in �. This value is obtained by the average of the distances ω j between edges that share the
same type of relationship, Eq. 6 (Algorithm 2, line 26).

[δρ] j =
∑

(a,b,ρ)∈ρ∗ ω
j
ab

|ρ∗|
[
δ̄ρ

] j =
∑

(a,b,ρ)∈ρ∗ ω
j
ba

|ρ∗|
, (6)

where ρ∗ = {(a, b, ρ) ∈ AG} is the set of edges that represents a relationship ρ. The ontology
presented in Fig. 1 was built with the GEONTO-MET approach Torres et al. [80], thus, it has
three types of relations “is”, “has” and “does”.With the sameexample, the conceptual distance

for“is” relation in its normal and reverse direction would be:
[
δis

]1 = 2
3+ 1

3+ 7
6+ 1

3
4 = 5

8 and
[
δ̄is

]1 = 4
3+ 5

3+ 5
6+ 5

3
4 = 11

8 .
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Algorithm 2 DIS-C algorithm with automatic weighting
Input:
The corresponding graph GK (VG , AG ), to the ontology K (C, �, R).
The convergence threshold εK and the value of pw .
Output:
The corresponding graph �K (V j

γ , A j
γ ) to the generality computation.

1 foreach relation ρ ∈ � do
2

[
δρ

]0 ← 0

3
[
δ̄ρ

]0 ← 0
4 end
5 foreach node a ∈ VG do
6 ia ← card

(⋃{x}, (x, a,−) ∈ AG
)

7 oa ← card
(⋃{x}, (a, x,−) ∈ AG

)

8 ωi
a ← 1 − ia

ia+oa
9 ωo

a ← 1 − oa
ia+oa

10 g0a ← 1
11 end
12 j ← 1
13 repeat

14 V j
γ ← VG

15 A j
γ ← ∅

16 foreach edge e(a, b, ρ) ∈ AG do

17 ω
j
ab ← pw

(
g j−1
a ωo

a + g j−1
b ωi

b

)
+ (1 − pw)

[
δρ

] j−1

18 ω
j
ba ← pw

(
g j−1
b ωo

b + g j−1
a ωi

a

)
+ (1 − pw)

[
δ̄ρ

] j−1

19 A j
γ ← Aγ ∪

{
(a, b, ω j

ab), (b, a, ω
j
ba)

}

20 end

21 �
j
K ← graph(V j

γ , A j
γ )

22 M
�
j
K

← shortest paths(� j
K )

23 foreach node a ∈ Vγ do

24 ga ←
∑

b∈Vγ
M

�
j
K

(a,b)
∑

b∈Vγ
M

�
j
K

(b,a)

25 end
26 foreach relation ρ ∈ � do
27 ρ∗ ← {(a, b, ρ) ∈ AG }
28 δρ ←

∑
(a,b,ρ)∈ρ∗ ω

j
ab

card(ρ∗)

29 δ̄ρ ←
∑

(a,b,ρ)∈ρ∗ ω
j
ba

card(ρ∗)

30 end

31 until

∑

x∈V j
γ

(
g j
x−g j−1

x

)2

card(V j
γ )

≤ εK ;

32 return �
j
K
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Fig. 5 The DIS-C graph obtained from the ontology depicted in Fig. 1

The process starts with j = 1, and increases the value of j by one, until it meets the
condition of Eq. 7, where εK is the threshold of maximum change (Algorithm 2, line 31).

∑
x∈Vγ

(
g j
x − g j−1

x

)2

card(V )
− εK = 0 (7)
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Fig. 6 Hierarchy of living beings Levachkine and Guzmán-Arenas [36]

4 Experimental analysis

According to the example presented in Fig. 1, the results of applying the proposed algorithm
are depicted in Fig. 5 and described in Table 2. In this case, it can be seen that more precision
is obtained in the distances depicted in the DIS-C graph (see Fig. 5), even when acquiring
smaller distance values with respect to the basic algorithm (see Table 2).

4.1 DIS-C applied to ontologies

In this section we present the results of a series of experiments aimed at demonstrating
that DIS-C is a general procedure for computing conceptual distances whose results are
consistent with more particular approaches which are tailored to specific ontologies such
as hierarchies. We used the confusion theory (CONF) [36], the information content (IC)
proposed by Resnik [55] and the distance measure (DIS) provided by Rada [53] in order to
evaluate the DIS-C algorithm. This comparison was performed with respect to the results
presented by Levachkine and Guzmán-Arenas [36], where a hierarchy of living beings is
proposed (see Fig. 6).

In Tables 3, 4, 5 and 6, the results of similarity values of the proposed hierarchy, applying
the aforementioned methods, including the DIS-C algorithm are presented. Table 7 shows
the correlation between the results obtained with different approaches.2 As it can be seen in
this table, the results obtained by DIS-C are strongly correlated with the values of the other
methods; in fact, DIS-C has the highest correlation average with respect to the others.

Form these results, it can be observed that the correlation with CONF is very high, if the
values obtained with DIS-C were rounded,3 we will obtain about 80% of identical values
to those of CONF. In other words, DIS-C provides greater accuracy in the estimation of the
difference between two concepts and at the same time it supports the results of CONF.

Other interesting aspect is that DIS-C is strongly correlated to CONF (95%) as well
as to DIS (94%); however, the correlation between them is not of the same order (78%).
This suggests that DIS-C provides results that are congruent with those two methods, and a
measure that is consistent with both views.

2 The distance is inversely proportional in the absolute value of the correlation.
3 Simple rounding.
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Table 7 Correlation of the
DIS-C with other network-based
methods

DIS-C CONF AINF DIS

DIS-C 1 0.9546 0.6405 0.9360

CONF 0.9546 1 0.5397 0.7885

AINF 0.6405 0.5397 1 0.6845

DIS 0.9360 0.7885 0.6845 1

Average 0.8827 0.8207 0.7161 0.8522

4.2 DIS-C applied to word similarity using WordNet

In order to test our algorithm with large datasets, we compare our results to other similarity
measures using WordNet.

Rubentein and Goodenough [59] recorded synonymy judgments for 65 pairs of nouns,
where they invited 51 judges who assigned to every pair a score between 0 and 4 indicating
the semantic similarity. Later, Miller and Charles [44] repeated the experiment restricting
themselves to 30 pairs of nouns selected from the previous list, divided equally among words
with high, intermediate and low similarity.

In Jarmasz and Szpakowicz [30], the authors repeated both experiments and presented
the results of other six similarity measures that rely on WordNet. The first WordNet measure
used is edge counting. It serves as a baseline, as it is the simplest and most intuitive measure.
The next measure, from Hirst and St-Onge Hirst et al. [26], relies on the path length as well
as on the number of changes of direction in the path; these changes are defined in terms of the
WordNet semantic relations. Jiang and Conrath [31] proposed a combined approach based on
edge counting enhanced by the node-based approach of the information content calculation
proposed by Resnik [54]. Leacock and Chodorow [35] count the path length in nodes rather
than links, and adjust it to take into account the maximum depth of the taxonomy. Lin [40]
calculates semantic similarity using a formula derived from information theory. Resnik [54]
calculates the information content of the concepts that subsume them in the taxonomy. These
similarity measures as well as the similarities4 measured by our algorithm appear in Table 8.

Table 9 presents the correlation coefficient between the human judgments (presented by
Miller and Charles [44]) and the values achieved by the methods, including ours. As it can
be seen, our method attains the best correlation coefficient among all the methods. These
results indicate that the conceptual distances computed by DIS-C algorithm are consistent
with human judgments.

5 Conclusions

In this paper, a formal definition and application of the conceptual distance measure have
been presented. First, we have argued that the conceptual distance term has been used as
synonym of semantic similarity, and it has been treated like that. However, we discussed that
this equivalence between terms is only given when taxonomies are used, whose relations
allow us to infer that if two concepts are close in the taxonomy, then those concepts are

4 As we have mentioned, the conceptual distance is not symmetric (∃a, b ∈ C |�K (a, b) �= �K (b, a)). So,
we present the conceptual distance from word A to word B (column DIS-C(to)), from word B to word A
(column DIS-C(from)), the average of these two distances (column DIS-C(avg), the minimum (DIS-C(min))
and the maximum (column DIS-C(max)).

123



DIS-C: conceptual distance in ontologies, a graph-based… 57

Ta
bl
e
8

Si
m
ila
ri
ty

of
pa
ir
s
of

no
un
s
pr
op
os
ed

in
M
ill
er

an
d
C
ha
rl
es

[4
4]

W
or
d
A

W
or
d
B

M
ill
er

an
d

C
ha
rl
es

[4
4]

W
or
dN

et
ed
ge
s

H
ir
st
et

al
.[
26
]

Ji
an
g
an
d

C
on

ra
th

[3
1]

L
ea
co
ck

an
d

C
ho

do
ro
w

[3
5]

L
in

[4
0]

R
es
ni
k

[5
4]

D
IS
-C

(t
o)

D
IS
-C

(f
ro
m
)

D
IS
-C

(a
vg

)
D
IS
-C

(m
in
)

D
IS
-C

(m
ax
)

as
yl
um

m
ad
ho

us
e

3.
61

29
.0
0

4.
00

0.
66

2.
77

0.
98

11
.2
8

1.
22

1.
64

1.
43

1.
22

1.
64

bi
rd

co
ck

3.
05

29
.0
0

6.
00

0.
16

2.
77

0.
69

5.
98

0.
63

0.
33

0.
48

0.
33

0.
63

bi
rd

cr
an
e

2.
97

27
.0
0

5.
00

0.
14

2.
08

0.
66

5.
98

1.
51

1.
35

1.
43

1.
35

1.
51

bo
y

la
d

3.
76

29
.0
0

5.
00

0.
23

2.
77

0.
82

7.
77

0.
96

0.
96

0.
96

0.
96

0.
96

br
ot
he
r

m
on

k
2.
82

29
.0
0

4.
00

0.
29

2.
77

0.
90

10
.4
9

0.
33

0.
63

0.
48

0.
33

0.
63

ca
r

au
to
m
ob

ile
3.
92

30
.0
0

16
.0
0

1.
00

3.
47

1.
00

6.
34

1.
26

0.
59

0.
92

0.
59

1.
26

ce
m
et
er
y

w
oo

dl
an
d

0.
95

21
.0
0

0.
00

0.
05

1.
16

0.
07

0.
70

3.
21

2.
49

2.
85

2.
49

3.
21

ch
or
d

sm
ile

0.
13

20
.0
0

0.
00

0.
07

1.
07

0.
29

2.
89

2.
67

3.
95

3.
31

2.
67

3.
95

co
as
t

fo
re
st

0.
42

24
.0
0

0.
00

0.
06

1.
52

0.
12

1.
18

1.
84

2.
89

2.
37

1.
84

2.
89

co
as
t

hi
ll

0.
87

26
.0
0

2.
00

0.
15

1.
86

0.
69

6.
38

1.
22

1.
58

1.
40

1.
22

1.
58

co
as
t

sh
or
e

3.
70

29
.0
0

4.
00

0.
65

2.
77

0.
97

8.
97

0.
33

0.
63

0.
48

0.
33

0.
63

cr
an
e

im
pl
em

en
t

1.
68

26
.0
0

3.
00

0.
09

1.
86

0.
39

3.
44

1.
55

1.
82

1.
69

1.
55

1.
82

fo
od

fr
ui
t

3.
08

23
.0
0

0.
00

0.
09

1.
39

0.
12

0.
70

0.
85

1.
58

1.
21

0.
85

1.
58

fo
od

ro
os
te
r

0.
89

17
.0
0

0.
00

0.
06

0.
83

0.
09

0.
70

2.
10

1.
94

2.
02

1.
94

2.
10

fo
re
st

gr
av
ey
ar
d

0.
84

21
.0
0

0.
00

0.
05

1.
16

0.
07

0.
70

2.
27

1.
55

1.
91

1.
55

2.
27

fu
rn
ac
e

st
ov
e

3.
11

23
.0
0

5.
00

0.
06

1.
39

0.
24

2.
43

1.
26

0.
62

0.
94

0.
62

1.
26

ge
m

je
w
el

3.
84

30
.0
0

16
.0
0

1.
00

3.
47

1.
00

12
.8
9

0.
58

1.
31

0.
94

0.
58

1.
31

gl
as
s

m
ag
ic
ia
n

0.
11

23
.0
0

0.
00

0.
06

1.
39

0.
12

1.
18

2.
08

2.
58

2.
33

2.
08

2.
58

jo
ur
ne
y

ca
r

1.
16

17
.0
0

0.
00

0.
08

0.
83

0.
00

0.
00

1.
24

1.
59

1.
42

1.
24

1.
59

123



58 R. Quintero et al.

Ta
bl
e
8

co
nt
in
ue
d

W
or
d
A

W
or
d
B

M
ill
er

an
d

C
ha
rl
es

[4
4]

W
or
dN

et
ed
ge
s

H
ir
st
et

al
.[
26

]
Ji
an
g
an
d

C
on

ra
th

[3
1]

L
ea
co
ck

an
d

C
ho

do
ro
w

[3
5]

L
in

[4
0]

R
es
ni
k

[5
4]

D
IS
-C

(t
o)

D
IS
-C

(f
ro
m
)

D
IS
-C

(a
vg

)
D
IS
-C

(m
in
)

D
IS
-C

(m
ax
)

jo
ur
ne
y

vo
ya
ge

3.
84

29
.0
0

4.
00

0.
17

2.
77

0.
70

6.
06

0.
26

0.
68

0.
47

0.
26

0.
68

la
d

br
ot
he
r

1.
66

26
.0
0

3.
00

0.
07

1.
86

0.
27

2.
46

1.
55

2.
16

1.
85

1.
55

2.
16

la
d

w
iz
ar
d

0.
42

26
.0
0

3.
00

0.
07

1.
86

0.
27

2.
46

1.
55

2.
23

1.
89

1.
55

2.
23

m
ag
ic
ia
n

w
iz
ar
d

3.
50

30
.0
0

16
.0
0

1.
00

3.
47

1.
00

9.
71

0.
94

0.
94

0.
94

0.
94

0.
94

m
id
da
y

no
on

3.
42

30
.0
0

16
.0
0

1.
00

3.
47

1.
00

10
.5
8

0.
95

0.
95

0.
95

0.
95

0.
95

m
on

k
or
ac
le

1.
10

23
.0
0

0.
00

0.
06

1.
39

0.
23

2.
46

2.
78

2.
49

2.
63

2.
49

2.
78

m
on

k
sl
av
e

0.
55

26
.0
0

3.
00

0.
06

1.
86

0.
25

2.
46

1.
90

1.
47

1.
69

1.
47

1.
90

no
on

st
ri
ng

0.
08

19
.0
0

0.
00

0.
05

0.
98

0.
00

0.
00

2.
49

2.
86

2.
68

2.
49

2.
86

ro
os
te
r

vo
ya
ge

0.
08

11
.0
0

0.
00

0.
04

0.
47

0.
00

0.
00

2.
53

3.
10

2.
81

2.
53

3.
10

sh
or
e

w
oo

dl
an
d

0.
63

25
.0
0

2.
00

0.
06

1.
67

0.
12

1.
18

1.
92

1.
92

1.
92

1.
92

1.
92

to
ol

im
pl
em

en
t

2.
95

29
.0
0

4.
00

0.
55

2.
77

0.
94

6.
00

0.
68

0.
26

0.
47

0.
26

0.
68

123



DIS-C: conceptual distance in ontologies, a graph-based… 59

Table 9 Correlation between the
human judgments and similarity
methods

Correlation

Miller and Charles [44] 1.00

WordNet edge counting 0.73

Hirst et al. [26] 0.69

Jiang and Conrath [31] 0.70

Leacock and Chodorow [35] 0.82

Lin [40] 0.82

Resnik [54] 0.78

DIS-C—From word A to B 0.80

DIS-C—From word B to A 0.81

DIS-C—Average of distances 0.84

DIS-C—Min distance 0.84

DIS-C—Max distance 0.83

similar. This is not necessarily true for ontologies, where non-taxonomic relationships exist,
in which the proximity of two conceptual entities does not mean that they are similar.

On the other hand, the conceptual distance calculation is based on the distance between
concepts directly related, which is a-priori assigned by the author of the ontology. The pro-
posed algorithm for the propagation of conceptual distances, establishes that each relationship
must have an associated conceptual distance, both in the normal or direct orientation of the
relationship, as in the reverse orientation. With this information, a strongly connected graph
in which each concept is a vertex and each relation is associated with two edges (one in the
original direction and the other in the opposite direction of the relation) is created. By using
a shortest path algorithm, we disseminate local distances to determine the distance between
two concepts within the ontology which are not directly connected by a relation. As case
study, the conceptual distance between concepts of an ontology was applied. This ontology
was developed using the GEONTO-MET approach.

Moreover, an automatic computation of the conceptual distance, based on the topology
of the ontology is proposed. We introduced the metric of generality, which is defined by the
ratio between information provided by a concept and the information received by the same
concept. Thus, an algorithm called DIS-C is proposed; it is based on the topology and on
successive approximations, which determine the generality values of each concept, taking
into account the conceptual distance between any pair of concepts and the conceptual distance
associated with each type of relationship in the ontology.

We presented a comparison of the results obtained by DIS-C with other three network-
based methods (CONF, AINF and DIS). According to the correlation of the results, we
demonstrate that DIS-C provides consistent results with respect to the other methods. DIS-C
reaches the highest average of correlation among the methods discussed above. Likewise,
DIS-C is strongly correlated with approaches that do not correlate together. Although it has
been compared with other algorithms that use the network model for representing ontologies,
we believe that this metric could be extended to other representations, such as the feature-
based model. This model can be expanded as a linear combination of the conceptual distance
of the features that define the concepts.

We also presented a comparative analysis against methods for computing similarity in
the context of WordNet. These experiments are based on a set of pairs of words which was
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originally proposed by Milles and Charles in 1991 where a group of people evaluated the
similarity of these pairs of words. Again, the results obtained by DIS-C exhibit the highest
correlation with the results obtained by the group of people. These results indicate that DIS-C
is able to capture the human notion of similarity.

Future works are oriented toward analyzing the performance and the accuracy of the
proposedmeasurewith other ontologies and domains such as SNOMED-CT,Mesh, andGene
Ontology. In addition, we are investigating the complexity to incorporate hybrid techniques
in order to provide a more cognitive measure that relies on the human perception about the
similarity between concepts.
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