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Abstract With the increase in stream data, a demand for stream processing has become
diverse and complicated. Tomeet this demand, several streamprocessing engines (SPEs) have
been developed which execute continuous queries (CQs) to process continuous data streams.
Event-driven stream processing, which is one of the important requirements, continuously
gets the incoming stream data and, however, generates query results only on the occurrence
of specified events. In the basic query execution scheme, even when no event is raised, input
stream tuples are continuously processed by query operators, though they do not generate
any query result. This results in increased system load and wastage of system resources. For
this problem, we propose a smart event-driven stream processing scheme, which makes use
of smart windows to buffer the stream tuples during the absence of an event. When the event
is raised, the buffered tuples are flushed and processed by the downstream operators. If the
buffered tuples in the smart window expire due to the window size before the occurrence
of an event, they are deleted directly from the smart window. Since CQs once registered
are executed for several weeks, months or even years, SPEs usually execute several CQs
in parallel and merge their query plans whenever possible to save processing cost. Due to
the presence of smart window, existing multi-query optimization techniques cannot work for
smart event-driven stream processing. Hence, this work proposes a multi-query optimization
for the proposed smart scheme to cover the cases where multiple continuous queries are
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registered. Extensive experiments are performed on real and synthetic data streams to show
the effectiveness of the proposed smart scheme and its multi-query optimization.

Keywords Data stream processing · Event-driven processing · Smart query execution ·
Smart window · Multi-query optimization · Gate operator

1 Introduction

Big data is usually defined by 3Vs: volume, velocity and variety [1]. The focus of this
work is velocity, which refers to the speed at which streaming data is generated. For
instance, on average 510 comments are posted, 293,000 statuses are updated, and 136,000
photos are uploaded on Facebook per minute,1 350,000 tweets are posted on twitter per
minute,2 52,500 searches per second are made on Google,3 etc. In order to process the high
velocity data, several stream processing engines (SPEs) have been developed [2–8]. SPE
executes continuous queries (CQs) to process continuously arriving data streams and gen-
erates continuous results. End-users are not always interested in all the results generated
by continuous queries, but in the results generated for some specific classes of incom-
ing data and events. This is known as event-driven stream processing [9]. An event-driven
query is activated by the occurrence of an event and is deactivated after the expiry of that
event or after the execution for a fixed time duration. An event can be simple, i.e., a traf-
fic accident, a purchase made at a grocery store, a sudden rise/fall of some stock price,
etc., or it can be complex, i.e., a sequence of correlated simple events. There exist a lot
of works on simple and complex event detection and their processing [9–11]; however,
the focus of this work is not the event detection but the efficient event-driven processing.
Here we assume that the events have already been detected or they are available as sepa-
rate event streams and the goal is to process the non-event data streams efficiently based on
the events available from the event streams. Event-driven stream processing is one of the
important research issues among the data stream researchers and has many applications. For
instance:
Event-based surveillance Let there is an audio stream and a video stream from a surveillance
device mounted to monitor an area. Rather than recording all the video from the surveillance
camera, users may be interested in recording the video for some fixed time duration after
there is an abnormal sound detected, to save the storage space.
Tsunami detection If there is an earthquake of magnitude greater than some threshold, users
may be interested in monitoring the sea/ocean waves for some fixed time duration for the
possible tsunami waves. In this case, an earthquake of magnitude greater than threshold is a
triggering event.

In order to express the tsunami detection application as a CQ, consider two data streams:
earthquake notification streamand tsunami detection stream.Whenever there is an earthquake
notification of magnitude greater than m from the earthquake notification stream, end-user
wants tomonitor the tsunami detection stream for the duration of τ time units, for the possible
tsunamiwaves.ACQLstyle event-driven query for the tsunami detection application is shown
below.

1 https://zephoria.com/—accessed 01/21/2017.
2 http://www.internetlivestats.com/—accessed 01/21/2017.
3 http://www.internetlivestats.com/—accessed 01/21/2017.
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Select tsunamiStream.waveMagnitude
From earthquakeStream[Range τ], tsunamiStream[Rows

n]
Where earthquakeStream.regionID = tsunamiStream.

regionID
And earthquakeStream.magnitude > m

Query. Event-driven query for tsunami detection

Although the above-mentioned event-driven stream processing can be achieved by join
query utilizing time-basedwindow for event stream, the use of time-basedwindowgenerates a
lot of useless intermediate tuples. In the basic query execution scheme available inmost of the
existing stream processing engines including Spark Streaming [12], STREAM [5], Borealis
[3], Aurora [2] and Storm [4], an event-driven query continuously processes the incoming
data streams, i.e., event-driven query operators keep their synopses updated with the newly
arrived tuples, however, generates query results on the occurrence of an event. Although
the absence of an event does not generate any query result, SPEs need to process all the
incoming tuples from ordinary (non-event) streams continuously, so that correct query results
may be generated on the arrival of an event stream tuple. These tuples are also processed by
some of the query downstream operators to update their synopses. Continuous processing of
these tuples in the absence of event stream tuples unnecessarily consumes system resources
resulting in reduced system throughput. To address this problem, a smart event-driven stream
processing scheme is introduced in this work. We focus on join queries using time-based
windows expressing event-driven stream processing. The smart scheme uses smart windows
to buffer the tuples arriving from ordinary streams during the absence of event stream tuples.
(We say the query is inactive.) Hence during the query inactive duration or in the absence
of event, ordinary stream tuples are only processed (and buffered) by our proposed smart
window operator and are not sent to the other query operators, thus reducing the system
load. The tuples in the smart window buffers are flushed and processed by the downstream
operators only on the arrival of tuples from the event stream(s). (We say the query is active.)
In addition, the buffered tuples which get expired due to the window sizes are deleted directly
from the window buffers without being processed by the downstream operators. This results
in reduced system load and eventually improved system throughput. The proposed scheme
is especially useful for the cases where the event stream input rate is lower than the ordinary
streams.

An SPE must be capable of executing multiple CQs simultaneously because once a CQ
is registered to an SPE it is usually executed for several days, weeks, months or even years.
Therefore, at any time anSPEmaybe executing severalCQs.Manyexisting streamprocessing
engines make use of different multi-query optimization techniques to merge similar partial
query plans whenever possible to save computation cost. However, the existing multi-query
optimization techniques cannot work in their present form with the proposed smart event-
driven stream processing scheme due the introduction of smart windows. Hence, this work
proposes a multi-query optimization scheme for the smart scheme, which is an extension of
the multi-query optimization scheme to share sub-query plans studied by many researchers
[13–15]. The smart windows contain buffering functionality, which must be retained for all
the queries sharing smart windows when merging multiple smart windows. For this sake
a gate operator is introduced in Sect. 6.2. We have developed a prototype SPE, JsSpinner,
which implements the proposed smart scheme and multiple query optimization for the smart
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Table 1 Symbols and abbreviations used in the manuscript

Symbol/abbreviation Description

S Stream

R Relation

e Stream tuple

Γ Discrete, ordered time domain

t Timestamp assigned to stream tuples from Γ

+ Flag assigned to insertion tuple

− Flag assigned to deletion tuple

〈e, t,+/−〉 A JsSpinner element with tuple e and timestamp t

n Row-based window size

τ Time-based window size

Ie Event stream tuples arrival interval (s)

We Event stream window size (s)

Ro Ordinary stream arrival rate (tuples\s)
Wo Ordinary stream window size (number of rows)

SPE Stream processing engine

CQ Continuous query

CQL Continuous query language

SQL Structured query language

scheme. JsSpinner is written in C++, is capable of processing semi-structured JSON data
[16,17] and enables users to register CQL queries.

Thiswork is an extendedversionof our previouswork [18]. In [18], a smart query execution
scheme for event-driven stream processing is given for which experiments are performed on
synthetic data stream. The main contributions of this work can be summarized as follows:

– A multi-query optimization approach for smart event-driven stream processing.
– An extensive experimental evaluation on synthetic and real data streams to prove the

effectiveness of the smart event-driven stream processing scheme and its multi-query
optimization approach.

– A discussion on smart event-driven stream processing scheme and its multi-query opti-
mization costs and benefits.

Table1 lists the symbols and abbreviations used in the manuscript. The rest of the paper is
organized as follows. Section2 discusses the related work. Section3 presents preliminaries
and assumptions. In Sect. 4, the basic event-driven stream processing is presented. In Sect. 5,
smart scheme for event-driven stream processing is introduced. Themulti-query optimization
for the smart scheme is presented in Sect. 6. In Sect. 7, an extensive experimental study is pre-
sented while Sect. 8 presents a discussion on smart scheme and its multi-query optimization
costs and benefits. Section 9 concludes this paper and discusses future directions.

2 Related work

Since the focus of this work is the continuous event-driven query execution and multi-query
optimization, we divide this section into two parts.
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Execution strategies for CQs There are two main execution strategies for CQs: timer-based
[19,20] and change-based [2,3,21–23] [4]. Timer-based (periodic) CQs are triggered only at
the time specified by the user and are executed periodically for some constant time interval.
Each time the timer-based CQ is triggered; it evaluates the newly arrived data. The timer-
based CQs are analogous to the event-driven CQs, where the occurrence of an event or
arrival of data from event stream triggers the query. On the other hand, change-based CQs
are triggered as soon as new data become available.

Since a data stream is an infinite sequence of tuples, window management within lim-
ited memory is also an important research issue. The works [24,25] proposed methods for
approximate join computation over data streams by using sliding windows. GrubJoin [26]
considers sliding-window join with CPU load shedding. Grubjoin uses window-harvesting
which picks the most profitable segments of individual windows for the join processing, in an
effort to maximize the join output rate. However, the proposed smart scheme tries to improve
system throughput by reducing system load. That is, the proposed smart scheme uses smart
windows which allow only those tuples to the downstream operators which can contribute to
query results.

The queries in this paper are based on the CQL query language [27]. Although the main
focus of CQL is change-based CQs, we can use time-based windows to achieve the func-
tionality of event-driven CQs. For this sake, the interval between the arrivals of event stream
tuples serves as the interval between consecutive query triggering, and the size of the time-
based window serves as the duration for which the query remains active. In this paper, a CQ
which employs the time-based windows is called an event-driven CQ. This work proposes a
smart scheme for efficient processing of event-driven continuous queries.
(Multi-)query optimization for CQsHow to efficiently execute CQs is one of the most impor-
tant research areas among the data streamcommunity.According to [28], reordering operators
in query plans contributes to reducing redundant intermediate results. The optimizer in [28]
rewrites query plans to push down operators which have strict conditions and short compu-
tational time. Such reordering filters out a lot of unnecessary tuples at early stages.

A costmodel to estimate the resource utilization and output rate of a query plan is proposed
in [29]. To treat unstable data streams (with unstable data statistics and arrival rates), [29]
finds an execution plan suitable for the available computational resources. When resources
are sufficient, it finds an execution plan that minimizes the resource usage andwhen resources
are insufficient it finds an execution plan that sheds some of the input load. [30] proposes an
adaptive reordering method for pipelined filters. It monitors selectivities and correlations of
filters to decide the optimal order. In [31], an operator eddy is proposed for adaptive query
processing. Eddy controls tuples routing paths among operators, i.e., for each tuple, eddy
dynamically determines the next operator.

A multi-query optimization scheme to share sub-query plans for static queries is studied
by [13]. In their proposed scheme, the optimizer finds common sub-query plans from mul-
tiple queries registered to a system and generates a query plan sharing common sub-query
plans. Their optimization scheme is also applicable to the CQs and was later used by CACQ
[14] and PSoup [15] to share operators of change-based CQs. NiagaraCQ [32] deals with
both timer-based CQs and change-based CQs and can share operators triggered by differ-
ent events. NiagaraCQ proposes incremental grouping of CQs by identifying and merging
sub-query plans to reduce computation cost and primary memory usage. However, their pro-
posed grouping approach cannot work with the smart event-driven stream processing where
the queries are activated by the arrival of their respective events. Hence, this work proposes
the use of a special gate operator when multiple smart windows related to multiple queries,
respectively, are merged. The gate operator enables merging of multiple similar smart event-
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driven query plans to save processing and memory costs by keeping the advantage of smart
processing intact. In NiagaraCQ [32], resource sharing for specific operators is also con-
sidered. The problem of resource sharing when a large number of CQs are being processed
simultaneously is also studied by [33]. However, their focus is sliding-window aggregates
over data streams. An adaptive cache placement and removal technique for multi-way join
is studied by [34] to reuse intermediate join results.

The multi-query optimization schemes discussed above are not applicable to the proposed
smart scheme due to the special working of smart windows. Hence, this work extends a
multi-query optimization to deal with sharing smart windows and introduced a gate operator
to retain its functionality.

3 Preliminaries and assumptions

In order to process and query continuously evolving data streams, many SPEs have been
developed. STREAM [5], Borealis [3], Aurora [2] and Storm [4] are a few examples of the
well-known and commonly used SPEs. When a user registers a CQ on an SPE, it is executed
continuously on the incoming stream tuples and generates continuous output. Like SQL
(StructuredQuery Language) [35], which is a standard declarative query language for storing,
manipulating and retrieving static data in databases, CQL (Continuous Query Language)
[27] is a declarative query language for CQs over data streams. Unlike SQL queries, which
are executed once to generate one-time results, CQL queries are executed continuously to
generate continuous results. CQL is a state-of-the-art continuous query language, initially
developed for STREAM, the prototype Data Stream Management System (also known as
STanford stREam datA Manager) [5]. CQL is more general than many other continuous
query languages and is therefore adopted by many SPEs. The prototype SPE, JsSpinner,
developed for the proposed smart query execution scheme also supports CQL queries. For
completeness, we summarize the CQL abstract semantics, its query plan and its incremental
computation from [5,27], which are required to understand the proposed smart scheme. For
details of CQL, readers are encouraged to refer to [5,27].

3.1 CQL abstract semantics

The CQL abstract semantics is based on two data types, streams and relations. Let Γ be
discrete, ordered time domain then a stream is an unbounded multiset of pairs 〈e, t〉, where
e is a tuple and t ∈ Γ is the timestamp that denotes the arrival time of tuple e on stream
S. Similarly, a relation is a time-varying multiset of tuples. The multiset at time t ∈ Γ is
denoted by R(t), where R(t) is an instantaneous relation.

The abstract semantics uses three classes of operators over streams and relations. (1)
relation-to-relation operator takes one or more relations as input and produces a relation as
output. (2) stream-to-relation operator takes a stream as input and produces a relation as
output. (3) relation-to-stream operator takes a relation as input and produces a stream as
output. A CQ Q is a tree of operators belonging to the three classes. Q uses leaf operators to
receive inputs which could be streams and relations, and a root operator to produce output
which could be either a stream or a relation. At time t , an operator of Q produces new outputs
corresponding to t which depends on its inputs up to t .

CQL is defined by instantiating the operators of the abstract semantics. For the relation-
to-relation operators, CQL uses existing SQL constructs. The stream-to-relation operators
in CQL are based on sliding window over a stream, which are specified using window
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specification language derived fromSQL-99. Awindow at any point of time holds a historical
snapshot of a finite portion of the stream. In thiswork, two classes of sliding-windowoperators
are used. (1) tuple-based window operator on a stream S is specified using an integer n. At
any time t it returns a relation R of n most recent tuples from stream S. (2) time-based
window takes a parameter τ and at any time t returns a relation R containing tuples with
timestamps between t − τ and t from stream S. CQL has three relation-to-stream operators
which are also adopted in our framework: i-stream, d-stream and r-stream. At time t , the
i-stream (insert stream) applied to relation R results in a stream element 〈e, t〉 whenever
tuple e is in R(t) − R(t − 1).4 The d-stream (delete stream) returns a stream element 〈e, t〉
from R whenever tuple e is in R(t − 1) − R(t). The r-stream (relation stream) applied to R,
results in a stream element 〈e, t〉 whenever tuple e is in R.

An example of a query written in CQL [27] is shown in Query 1, which performs contin-
uous binary join with respect to common integer attribute A of streams S1 and S2.

Select S1.B, S2.C
From S1[Range τ ], S2[Rows n]
Where S1.A = S2.A

Query 1 A simple CQL query

3.2 CQL query plan

A CQL query is translated into a query plan and is executed continuously. Query plans are
composed of operators, queues and synopses. Operators perform actual processing on data
streams. The data arrive at an operator as a sequence of timestamped tuples, where each
tuple is additionally flagged as either an insertion (+) or deletion (−) as explained later.
These tuple-timestamp-flag triplets are referred as elements. Each operator reads from one
or more input queues, processes the input and writes any output to the output queue. Queues
buffer elements as they move between operators. Synopsis is a buffer which belongs to a
specific operator. It stores an operator’s state that may be required for future evaluation of
that operator.

A query plan for Query 1 is shown in Fig. 1. The query plan in Fig. 1 consists of seven
operators: a root, an i-stream, a binary join, two instances of window operators and two
instances of leaf operators. Note that the projection is performed as part of the binary join,
so no separate projection operator or synopsis is employed. Queues q1 and q2 hold the
input stream elements read by their respective leaf operators. Queues q3 and q4 hold ele-
ments representing the relations S1[Range τ ] and S2[Rows n], respectively. Queue q5
holds elements for the result of joining relations S1[Range τ ] and S2[Rows n]. Queue
q6 holds the elements coming out of the i-stream operator, which may lead to output or
input to other query. The query plan has five synopses, synopsis1–synopsis5. Each win-
dow operator has a synopsis so that it can hold the current window elements and generate
“−” elements when elements expire from the sliding window. The binary-join operator has
two synopses, one for each input, to materialize each of its relational inputs. The i-stream
operator has a synopsis to convert its relational input to stream output depending upon its
semantics.

4 For simplicity, we assume that a new tuple arrives at every time instant t .
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window

window

binary
join

synopsis1

synopsis2

synopsis3

synopsis4

synopsis5

leaf

i-stream root

leaf

Synopsis

Operator

Queue

Fig. 1 Query plan for query 1

3.3 Incremental computation

A CQL query logically outputs elements based on R(t) and R(t − 1), but computations
required for R(t) and R(t−1)often have a lot of overlap. To eliminate redundant computation,
incremental computation is used.

Considering the query plan shown in Fig. 1, the window operator on S1, on being executed
reads element 〈e, t,+〉. It inserts element e in synopsis1, and if an old element e′ expires,
it removes that element from the synopsis. The window then outputs elements 〈e, t,+〉 and
〈e′, t,−〉 to q3 to reflect the addition and deletion of elements e and e′, respectively. The
other window operator executes in the similar fashion. When the binary-join operator is
executed, it reads the newly arrived element from one of its two input queues, i.e., q3 or
q4. If it reads an element 〈e, t,+〉 from q3, then it inserts e into synopsis3 and joins e with
the contents of synopsis4, generating output elements 〈e. f, t,+〉 for each matching element
f in synopsis4. Similarly, if the binary-join operator reads an element 〈e′, t,−〉 from q3, it
generates 〈e′. f, t,−〉 for each matching element f in synopsis4. The same process is done
for the elements read from q4. The output elements from the binary join are enqueued to q5.
The i-stream operator reads the data from q5, inserts it into synopsis5, converts the relational
input to stream output and enqueues it to q6 which is then output by the root operator.

4 Event-driven stream processing

Event-driven stream processing can be defined as the processing of a CQ activated by the
occurrence of an event. The event-driven stream processing can be achieved by the use of
time-based window available in most of the existing SPEs; however, their use in the basic
form results in unnecessary system load. In this section, we discuss how the existing SPEs
can handle the event-driven stream processing and the problem of the basic scheme. Key
terms used in the following discussion are summarized below.

– Event-driven query A continuous query Q is event-driven if it generates any query result
only after arrival of tuples from specified streams.

– Event stream The above specified stream is called an event stream. The event stream has
its associated time-based window.
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   Time (s) 

S2 (Ordinary)  

S1 (Event) 

A C 
w 3 

A C 
y 1 

A C 
w 8 

A C 
z 9 

5 2 
B C 
4 1 

   Time (s) 
Input streams Output stream 

t=t=t=t=t=

A C 
v 8 

5 2 
A B 
y 4 

t=t=t=t=t=

Fig. 2 Input and output streams for Examples 1 and 2

– Ordinary stream A non-event stream.
– ActiveAn event-driven query Q is activewhen the time-basedwindowof the event stream

is not empty.
– Active duration The duration for which Q remains active. The active duration of Q is

equivalent to the size of the time-based window.
– Inactive An event-driven query Q is inactive when the time-based window of the event

stream is empty.

4.1 Basic scheme for event-driven stream processing

Query 1 shows a simple event-driven querywritten in CQL. In the query, S1 is an event stream
whose tuples activate the query, whereas S2 is an ordinary stream. The query is executed
continuously and generates output using the tuples arriving during the query active duration
and the tuples available in the window when the query is activated. Even during the inactive
duration, ordinary stream tuples are processed by some of the query operators; however, they
may not contribute to the query results. The basic scheme works quite similar to that of the
state-of-the-art SPE, STREAM [5].

Example 1 Figure2 shows sample tuples from S1 and S2 and the output tuple generated
from the query. For this example we assume n = 2 for Query 1. At timestamp t1, a tuple
〈w, 3〉 arrives from S2, for which a corresponding “+” element 〈w, 3, t1,+〉 is generated,
stored in synopsis2 and sent downstream. Since there is no tuple from S1 at t1, no join output
is generated. The states of the five query synopses (synopsis1–synopsis5) at timestamps t1,
t2 and t3 are shown in Table 2. At t2, the query is still inactive due to the absence of tuples
from S1; however, a corresponding element for the tuple arriving from S2 is generated and
sent downstream, resulting in no output. The query becomes active with the arrival of a tuple
from S1 at t3 and “+” elements for the tuples arriving from S1 and S2 are stored in respective
window synopsis and sent to the respective downstream operators. Since n = 2, arrival of
a tuple from S2 at t3 causes the tuple which arrived at t1 to expire. For an expired element,
corresponding “−” element is generated by its window operator and sent downstream to
informother operators about its expiration. Since there are elements available in synopsis3 and
synopsis4 at t3, join is performed and the result is generated and a “+” element corresponding
to the join result is sent to the i-stream operator. The query is executed in the similar fashion
at t4, t5 and at later timestamps.

4.2 The problem of the basic scheme

As shown above, the ordinary stream tuples that arrive during the query inactive durationmay
not contribute to the query results. However, in the basic scheme, they are added to thewindow

123



350 S. A. Shaikh et al.

Table 2 Synopses snapshots of
the basic scheme

Synopsis t1 t2 t3

1 〈y, 4, t3, +〉
2 〈w, 3, t1, +〉 〈w, 3, t1, +〉 〈w, 3, t1, +〉

〈z, 9, t2, +〉 〈z, 9, t2, +〉
〈w, 3, t3, −〉
〈y, 1, t3, +〉

3 〈y, 4, t3, +〉
4 〈w, 3, t1, +〉 〈w, 3, t1, +〉 〈w, 3, t1, +〉

〈z, 9, t2, +〉 〈z, 9, t2, +〉
〈w, 3, t3, −〉
〈y, 1, t3, +〉

5 〈4, 1, t3, +〉

synopsis and corresponding “+” elements are sent to the downstream operators. Similarly, for
each element that expires from the window, a “−” tuple is sent to the downstream operators
to cancel the corresponding “+” element as shown in Table 2. The “+” and “−” tuples are
also processed by the downstream operators and unnecessarily increase system load.

5 Smart scheme for event-driven stream processing

The basic scheme for event-driven stream processing generates a lot of useless intermediate
tuples which may not contribute to the query results. To avoid this, we propose a smart
scheme for event-driven stream processing. The key idea is that ordinary stream tuples need
to be processed to maintain the current status of row-based windows to guarantee correct
query results on the arrival of an event stream tuple. However, corresponding “+” elements
do not need to be sent to the downstream operators when the query is inactive. The smart
scheme makes use of a smart window to buffer the tuples arriving from the ordinary stream
during the absence of event stream tuples. In the smart scheme, when a tuple e arrives from
an ordinary stream, the system checks whether the query is active or inactive. If the query is
inactive, the smart window operator buffers e inside the smart window and does not output
any “+” element. If the query is active, the smart window outputs “+” element corresponding
to e. On the query activation, the smart window generates “+” elements for all the buffered
elements. During the query inactive duration, the buffered elements which expire due to the
window size are deleted directly from the smart window without the need to generate “−”
tuples for them.

5.1 Smart window

The synopsis of the smartwindowoperator is divided into two parts: output and suspended.
Both the output and suspended parts keep recent incoming tuples of the ordinary stream. If
the query is inactive, a new arriving tuple is first put into the suspended part. When the query
is activated due to the arrival of a tuple from the event stream, “+” elements corresponding
to the tuples inside the suspended part are output to the downstream operators. In addition,
the elements in the suspended part are moved to the output part. When elements in the output
part get expired, corresponding “−” elements are sent to the downstream operators. However,
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Table 3 Synopses snapshots of
the smart scheme

Synopsis t1 t2 t3

1 〈y, 4, t3, +〉
2 S 〈w, 3, t1, +〉 S 〈w, 3, t1, +〉 S 〈w, 3, t1, +〉

S 〈z, 9, t2, +〉 S 〈w, 3, t3, −〉
O 〈z, 9, t2, +〉
O 〈y, 1, t3, +〉

3 〈y, 4, t3, +〉
4 〈z, 9, t2, +〉

〈y, 1, t3,+〉
5 〈4, 1, t3, +〉

when the elements in the suspended part get expired, no “+” or “−” elements are sent to the
downstream operators. Algorithms 1 and 2 show the working of the smart window when a
new tuple arrives and when query becomes active, respectively.

Example 2 Once again consider the input tuples from streams S1 and S2 shown in Fig. 2.
Assuming n = 2 for Query 1, arrival of a tuple 〈w, 3〉 from S2 at timestamp t1 causes the
generation of a corresponding “+” element 〈w, 3, t1,+〉which is stored in the suspended part
of synopsis2. (The characters “S” (suspended) and “O” (output)with the elements in synopsis2
showwhether the elements belong to the suspended or output part of the smart window.) Note
that in the smart scheme in contrast to the basic scheme, for the elements arriving during
the query inactive duration, no “+” element is sent to the downstream operators. Since there
is no tuple from S1 at t1, no join output is generated. The states of the five query synopses
(synopsis1–synopsis5) at timestamps t1, t2 and t3 are shown in Table3. At t2, the query is
still inactive due to the absence of tuples from S1, however a corresponding “+” element for
the tuple arriving from S2 is generated and stored in the suspended part of synopsis2. The
query becomes active with the arrival of a tuple from S1 at t3 and “+” elements for the tuples
arriving from S1 and S2 are generated and stored in the respective window synopsis. Since
n = 2, arrival of a tuple from S2 at t3 causes the tuple which arrived at t1 to expire. The
expired element is deleted directly from the smart window synopsis without the need to send
“−” tuple to the downstream operators, in contrast to the basic scheme. Furthermore, the
elements in the suspended part of the smart window are moved to the output part and their
corresponding “+” elements are sent to the downstream operators. Since there are elements
available in synopsis3 and synopsis4 at t3, join is performed and the result is generated and
a “+” element corresponding to the join result is sent to the i-stream operator. The query is
executed in the similar fashion at t4, t5 and at later timestamps.

Comparing the synopses snapshots of the basic and smart schemes in Tables2 and 3,
respectively, one can observe that the smart scheme generates less intermediate elements. At
timestamps t1 and t2, in contrast to the basic scheme, synopsis4 in the smart scheme does
not need to hold any element. This is because the elements which arrived during the inactive
duration are buffered in the suspended part of the smart window. Even when the query gets
active at t3, synopsis4 in the smart scheme contains smaller number of tuples than the basic
scheme. This results in the reduced system load.
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Algorithm 1 Smart Window (Wo): When new tuple arrives
1: for each arrival of ordinary stream tuple e ∈ Q at timestamp t do
2: if isActive(Q) then
3: Insert e in the output part and send 〈e, t, +〉 downstream
4: else
5: Buffer e in the suspended part
6: end if
7: if # of elements ∈ Wo > size of Wo then
8: Find e′; {e′: oldest element in Wo}
9: if e′ ∈ suspended part then
10: delete e′
11: else
12: delete e′ and send 〈e′, t,−〉 downstream
13: end if
14: end if
15: end for

Algorithm 2 Smart Window (Wo): When query activates
1: if query Q becomes active with the arrival of an event stream tuple then
2: Move elements from the suspended to the output part and send corresponding “+” elements downstream
3: end if

5.2 Effectiveness of the smart scheme

The smart scheme is especially useful when one or more event streams have low arrival rate.
In the event-driven stream processing, the query is activated only on the arrival of a tuple
from the event stream and remains active for the duration of time-based window size.

In order to evaluate the effectiveness of the smart scheme for a simple join query like
Query 1, consider Ie, We, Ro and Wo defined in Table 1. The main advantage of the smart
scheme comes from the ordinary stream tuples being deleted directly from the suspended
part of the smart window. The number of ordinary stream tuples arriving during the inactive
duration can be given by (Ie − We) ∗ Ro. Hence, the smart scheme is advantageous if the
number of ordinary stream tuples arriving during the inactive duration is greater than Wo:

(Ie − We) ∗ Ro > Wo (1)

6 Multi-query optimization for smart scheme

A stream processing engine must be capable of executing multiple continuous queries in
parallel because once a continuous query is registered to a stream processing engine it is
usually executed for several days, weeks, months or even years. Therefore at any time a
stream processing engine is usually executing several continuous queries and many times
on the same data sources. To avoid wastage of computational and memory resources, most
of the existing stream processing engines make use of different multi-query optimization
techniques to merge similar partial query plans whenever possible. Most of the existing
solutions to merge query operators or sub-query plans work by first identifying common data
sources among the registered queries [13] and then identifying and merging downstream
query operators. However, the existing multi-query optimization techniques cannot work in
their present form with the proposed smart event-driven stream processing scheme due the
introduction of smart windows. The smart window provides a buffering mechanism during
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Table 4 Operators mergeability rules

Operator Classa Rule

Selection r-to-r Have the same selection condition

Projection Have the same projection condition

Binary join Have the same join condition

Aggregation Have the same aggregate attribute and the list of group by attributes

Window s-to-r Have the same input stream source, window type and size

i-stream r-to-s If preceding operators can be merged

d-stream If preceding operators can be merged

r-stream If preceding operators can be merged

ar relation, s stream

query inactive duration which cannot work if two similar smart windows from two different
queries are merged with different event streams.

Example 3 Assume two simple join queries Q1 and Q2. Let the Q1 is a join query between
event stream S1 with time window size 1 s and ordinary stream S2 with row window size
1000 rows, while Q2 being join query between ordinary stream S2 with row window size
1000 rows and event stream S3 with time window size 5 s. Further assume that the event
stream arrival interval of S1 is 5 s and of S3 is 30 s. Since Q1 and Q2 share ordinary stream
S2 and its window size, existing multi-query optimization schemes can simply merge the
two queries by merging the stream source S2 and its window. However in doing so, the
smart stream processing functionality of the proposed smart scheme is lost. In other words,
the query activation time instance and the activation interval of the two queries are different
due to different event stream sources and their window sizes. Therefore, the merged smart
window of stream S2 must buffer stream tuples for two different durations for two queries
Q1 and Q2, respectively, which is not possible

To solve the above-mentioned problem, this work proposes a multi-query optimization
scheme for the smart scheme, which is an extension of the multi-query optimization scheme
to share sub-query plans studied by many researchers [13,14] [15]. To retain the buffer-
ing functionality of smart windows while merging them and to enable smart processing of
ordinary stream tuples, a gate operator is proposed in this work.

6.1 Merging query plans

When a continuous query Q is registered to our prototype SPE, JsSpinner, it is translated
into a query plan. A query plan consists of a tree of operators, where each operator belongs
to a class mentioned in Table4, to execute in turn. The proposed multi-query optimization
approach merges the common sub-query plans including smart windows of the registered
queries whenever possible. In order to merge query plans of two queries, their operators are
compared one by one starting from the leaf (the first operator in any query plan responsible for
reading data). If the first operator can bemerged, the next operator is checked formergeability
and so on. In the following, the details of operatorsmerging are discussed.Wedivide operators
merging into two groups, i.e., (1) Merging ordinary operators and (2) Merging window
operators, due to the special case of smart window operator.
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Merging ordinary operators Two operators from two different query plans are mergeable
if and only if they are same and follow the rule of mergeability. Table 4 lists the rules of
mergeability for different operators. Assuming that the operators O1 and O2 of queries Q1

and Q2, respectively, are mergeable according to Table4. To merge O2 into O1, the output
queue of O2 is replaced by the output queue of O1 and O2 is deleted. The process of merging
query plans starts from their leaf operators. If the input sources are same, their leaf operators
can bemerged. Aftermerging the leaf operators, next operators in the query plans are checked
formergeability. On the other hand, if the leaf operators cannot bemerged, none of their query
plan operators can be merged.
Merging window operators According to Table 4, two windows can be merged if they have
the same window type and size. In this work we consider tuple-based and time-based sliding
windows. The smart scheme converts the tuple-based sliding window associated with an
ordinary (non-event) stream into a smart window which contains buffering functionality
during the query inactive duration. Hence, the merging of window operators can be classified
as follows.

– Time-based windows merging Two time-based windows can be merged if they have the
same stream source and the window size. In smart scheme, time-based windows are
associated with event streams. If two time-based windows related to two event streams
of two different queries are merged into one, it activates both the queries simultaneously
for the same time duration.

– Tuple-based windows merging Two tuple-based windows can be merged if they have
the same stream source and the window size. The smart scheme converts tuple-based
windows into smart windows, and their merging follows the rule of smart windows
merging as discussed below.

– Smart windows merging Smart windows are associated with the ordinary (non-event)
streams. Smart windows buffer tuples during the query inactive duration and either
directly delete the buffered tuples on their expiration or forward them to the downstream
operators on the corresponding query activation. If two smart windows associated with
two different queries are merged, their activation timings may differ since they may be
activated by different event streams. If we simply merge smart windows, the resulting
smart window will output the buffered tuples to all the queries’ downstream operators if
any of the queries becomes active. This causes problem for the inactive queries, as the
output tuples are also processed by their downstream operators. In order to deal with this
problem, a gate operator is introduced which retains the functionality of smart window
by providing buffering, forwarding and direct deletion functionality of stream tuples and
is discussed in Sect. 6.2.

6.2 The gate operator

The gate operator is proposed in this work to retain the buffering, forwarding and direct
deletion functionality of smart windows tuples when they are merged. The gate operators are
placed at the end of the shared sub-query plans starting at the smart window, one for each
merged query as shown in Fig. 3. When two smart windows are merged into one, it behaves
like an ordinary row-based window rather than a smart window. A gate operator decides
when to pass the incoming “+” or “−” tuples downstream, and its behavior is very similar to
the smart window operator. If one or both the queries sharing the merged sub-query plan are
inactive, the corresponding gate operator buffers the incoming “+” tuples. Furthermore, when
the gate operator receives a “−” tuple from upstream, it directly deletes the corresponding
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Fig. 3 Merging query plans

“+” tuple if it is in the buffer. On the other hand when the query becomes active with the
arrival of event stream tuple(s), the buffered “+” tuples are forwarded by the corresponding
gate operator to the downstream operators. Figure3 shows a simple case for explanation,
however the proposed scheme is general and is applicable to more complex cases.

Consider two queries Q1 and Q2 shown in Fig. 3. Q1 and Q2 share stream source S2
and lets assume that the window size of S2 is same in both the queries. Hence, accord-
ing to the rules queries Q1 and Q2 can be merged by merging the common stream source
S2. In order to enable both the queries to retain their smart query processing functional-
ity, a gate operator is placed for each query after the merged smart window as shown on
the right of Fig. 3. Hence, when the query Q1 is active while the query Q2 is inactive,
the gate operator for query Q2 buffers the incoming stream tuples from the shared smart
window while the gate operator for query Q1 let the stream tuples flow to the downstream
operators.

7 Experiments

7.1 Experimental setup

In this section we present a detailed experimental study to evaluate the effectiveness of the
smart scheme [18] and the proposed multi-query optimization for smart scheme. For the sake
of experiments a prototype SPE, JsSpinner, which enables users to register CQL queries is
used. The JsSpinner source program consists of about 13,000 lines of C++ code. JsSpinner
supports both the basic and the smart event-driven streamprocessing schemes. It also supports
multiple queries. Experiments are performed on Dell Precision T3400 with Intel Core2 Quad
(Q6700 @ 2.66GHz x 4) CPU and 4 GB RAM running Ubuntu 14.10 OS.
Data streams For the experiments, we used both the synthetic and the real data streams.
In total four synthetic data streams are used for experiments, i.e., S0, S1, S2 and S3. The
schemas of S0, S1, S2 and S3 are as follows: S0(A, E, G), S1(A, B), S2(A, C) and S3(A,
D). Here A is a common string attribute of all the streams, B, C, D and G are the integer
attributes, and E is a string attribute. The synthetic data streams are generated at different
rates using random strings for the string attributes and random integer values for the integer
attributes.
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The real data streams include Tokyo metropolitan people flow stream (people flow for
short) [36] and Tsukuba mobility stream.5 The people flow is a spatio-temporal data stream
of around 580,000 people in Tokyo city of Japan, who report their location coordinates along
with some other attributes every minute. The original stream contains 14 attributes; however
we extracted some useful attributes for our experiments. The people flow stream schema used
in this work is as follows: peopleFlow (PID char, PDate datetime, Longitude double, Latitude
double, Sex int, Age int, Work char). The Tsukuba mobility is a spatio-temporal data stream
of taxis and buses in Tsukuba city of Japan, collected by National Institute for Land and
Infrastructure Management, Japan. The stream contains the location coordinates along with
some other attributes reported by the taxis and buses GPS system periodically. The Tsukuba
mobility stream schema used in this work is as follows: tsukuMobility (ObservationID char,
RecordTimestamp datetime, Latitude double, Longitude double, GeneratedTimestamp date-
time, Validity char). Since the arrival rates of the real data streams are not so high, we used
a simulator to feed the real data streams to the JsSpinner at a faster rate.
Evaluated queries To prove the effectiveness of the proposed smart scheme and its multi-
query optimization, we evaluated the system load and maximum system throughput on the
Queries 1, 2 and 3. The system load is defined as the total number of tuples processed by all
the query operators, whereas the maximum system throughput is defined as the total number
of input streams (including event and ordinary) tuples processed by the system per unit time.
In each query, the stream with the time-based window is an event stream, and arrival of data
from it activates the query. The query remains active for the duration of the time-base window
size. Queries 1 and 2 are join queries involving one and two event streams, respectively. Query
2 with two event streams is active when both time-based windows are not empty. Query 3 is a
join query with an aggregate function and a group-by clause. Each query is executed for 60 s
and each experiment is performed 5 times and their average values and standard deviations
are used in the graphs. Unless otherwise stated, the following default parameter values are
used in the experiments: Ie = 5s, We = 1s, Ro = 300k tuples/s and Wo = 10 rows.

Select S0.E, S1.B, S3.D
From S0[Rows n], S1[Range τ1], S3[Range τ2]
Where S0.A=S1.A And S1.A=S3.A
And S0.E = "abc"

Query 2 Multiple event stream

Select S0.E, avg(S0.G)
From S0[Rows n], S1[Range τ ]
Where S0.A = S1.A
Group by S0.E

Query 3 Aggregation query

7.2 Experimental evaluation

Since there are two major contributions of this work, i.e., smart scheme and its multi-query
optimization, the experimental evaluation is divided into smart scheme and multi-query.

5 Tsukuba mobility data stream is provided by Tsukuba city, National Institute for Land and Infrastructure
Management and University of Tsukuba.
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7.2.1 Smart scheme

The objective of the experiments in this section is to show the advantage of the proposed
smart scheme. The experiments are performed by varying the parameters Ie,We, Ro andWo.
We further sub-divided the experiments in this section into synthetic and real data streams.
Evaluation on synthetic data streamsHere we evaluate the maximum system throughput and
the system load of our proposed smart scheme.

Varying Ie In this part of experimental evaluation, we compare the maximum system
throughput and the system load of the smart scheme with the basic scheme and two state-
of-the-art stream processing engines, STREAM [5] and Spark Streaming [12]. STREAM,
also known as stanford stream data manager, is based on incremental stream processing
framework. STREAM executes CQL queries to process continuous data stream. In gen-
eral, our prototype system JsSpinner works quite similar to that of STREAM SPE when
executed in the basic mode. Apache Spark Streaming on the other hand processes data in
mini batches. Spark streaming queries are usually written in Scala, Python and R scripting
languages.

Firstly we perform experiments to compare the maximum system throughput. Since the
JsSpinner, STREAM and Spark are different stream processing engines with different archi-
tectures and data processing models, we compared the percent increase in the maximum
system throughput to keep the comparison fair. To measure the percent increase, we mea-
sured themaximumsystem throughput of the smart scheme andother comparative approaches
by varying Ie from 1 to 9s. To recall, at Ie = 1s with We ≥ 1s, Eq.1 does not hold, i.e.,
the query remains active all the time. If the query is active always, smart scheme behaves
like basic scheme or ordinary processing in STREAM and Spark Streaming. We would like
to measure the percentage increase in the system throughput when the query is inactive for
some duration which can be managed by varying the parameter Ie.

Since at Ie = 1s smart scheme behaves similar to that of ordinary stream processing,
percent increase in maximum system throughput is taken as 0 for all the queries as shown
in Fig. 4. For Ie > 1s, the percent increase in maximum system throughput is computed by
comparing it against the system throughput at Ie = 1s. With Ie > 1s and We = 1s Eq. 1
holds, i.e., the query remains inactive for the duration of Ie −We. Once the query is inactive,
ordinary incoming stream tuples are buffered by smart scheme in smart window whereas
basic scheme and other SPEs process them, though not generating any output. Thus smart
scheme results in sharp increase in the percentage of system throughput compared to basic
scheme, STREAM and Spark Streaming. Similar phenomenon can be observed for all the
queries, i.e., Queries 1, 2 and 3 in Fig. 4a–c, respectively. Furthermore it can be observed
from Fig. 4 that the advantage is higher in case of Queries 2 and 3. This is due to the larger
number of operators in Queries 2 and 3 compared to Query 1. Hence, more complex the
query is, higher the advantage will be as the smart scheme stops the incoming stream tuples
from being delivered to the downstream operators in the absence of event.

Next we compare the system load of the proposed smart scheme with the basic scheme
and the STREAM SPE. Here we do not compare our scheme with the Spark Streaming, as
the query processing model of it is quite different from our prototype system. From Fig.
5, it is clear that the system load is smaller for the proposed smart scheme than the basic
scheme and the STREAM SPE for all the queries. However, the system load of both the
schemes (smart and basic) and the STREAM SPE are equal at Ie = 1s because at this value,
Eq. 1 does not hold for the default parameter values and the smart scheme works like the
basic scheme. For the higher Ie values, the smart window buffers and deletes directly a lot
of tuples (as can be observed from Fig. 6a) resulting in reduction in average system load. On
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Fig. 4 Percent increase in system throughput evaluation on synthetic data stream (We = 1 s and Wo =
10 rows). a Query 1, b query 2, c query 3
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Fig. 5 Average system load evaluation on synthetic data stream (Ro = 20 k tuples/s, We = 1 s and Wo =
10 rows). a Query 1, b query 2, c query 3

the other hand, basic scheme and STREAM SPE continue to be overloaded even during the
query inactive duration, i.e., at Ie > 1s. This is due to the fact that the basic query execution
scheme and other ordinary stream processing engines continue to maintain query operators’
synopses during the query inactive duration resulting in higher system load. One can further
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Fig. 6 Directly deleted tuples and average system load evaluation (Ie = 5 s, Ro = 20 k tuples/s, We = 1 s
and Wo = 10 rows). a Directly deleted tuples, b avg. system load

observe that the system load is higher for Queries 2 and 3 compared to Query 1. This is
because the Queries 2 and 3 contain larger number of operators than Query 1, where each
operator (except a few operators) maintains a synopsis. Since each synopsis stores a number
of tuples to maintain its state, larger number of operators results in higher overall system
load.

Figure6b compares the average system load ofQueries 1, 2 and 3. The smart scheme seems
to be more efficient for Query 2. This is because of the large number of operators in Query 2
compared to Queries 1 and 3 following the smart window. During the query inactive duration,
the basic scheme and the STREAM SPE process the ordinary stream tuples among many
operators before they are deleted by their respective “−” tuples. However, direct deletion of
tuples from the smart window in the smart scheme during the query inactive duration reduces
system load.

Varying Ro, We and Wo From Figs. 4 and 5, we found that the basic scheme and the
STREAM SPE behave similarly. Furthermore, we found that the percentage increase in the
system throughput in case of Spark Streaming is far less than the Smart scheme. Hence in
the rest of the experiments, the smart scheme is compared only with the basic scheme while
omitting comparison with STREAM SPE and Spark Streaming.

Figures7 and 8 compare the basic and the proposed smart schemes for the average system
load and the system throughput by varying parameters Ro,We andWo on Query 1. Note that
here we measure the maximum system throughput and not the percent increase in maximum
system throughput, as both the schemes are executed on the same stream processing engine,
i.e., the JsSpinner. From Fig.7a, it can be observed that the proposed scheme behaves better
than the basic scheme, i.e., the average system load of the smart scheme is always smaller
than the basic scheme as the smart scheme does not send unnecessary tuples to the query
downstream operators during the query inactive duration. In Fig. 7b, average system load is
measured by varying the time-based window size (We) from 1 to 10,000ms. Here again, the
smart scheme system load is smaller than the basic scheme except for theWe = 10 k, because
for We = 10 k Eq.1 does not hold and the smart scheme behaves like the basic scheme. We
also measured the average system load by varying the ordinary stream window size from 1 to
10,000 rows. Figure 7c clearly shows the advantage of the smart scheme, i.e., lower average
system load compared to the basic scheme.

In Fig. 8, maximum system throughput is evaluated for Query 1 by varying parameters
Ro, We and Wo. In Fig. 8a we varied the ordinary stream arrival rate (Ro) and measured the
system throughput in tuples/second instead of maximum system throughput. In other words
we supplied JsSpinner SPE with increasing number of ordinary stream tuples to find which
approach can handle the load smoothly. From the figure one can observe that the smart scheme
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can manage increase in Ro quite smoothly as compared to the basic scheme. In other words,
smart scheme can better handle the fast arriving data streams. This is due to the lower system
load of the smart scheme as shown in Fig. 7a, enabling to handle higher input streams. On
the other hand, higher system load causes the basic scheme to handle far less data compared
to the smart scheme.

Next we evaluated maximum system throughput by varying We and Wo for Query 1.
From Fig. 8b it can be observed that the smart scheme results in higher maximum system
throughput than the basic scheme except for We = 10 k, for which Eq. 1 does not hold.
Similarly, we compared maximum system throughput by varying the parameterWo and from
Fig. 8c we can observe the clear advantage of the smart scheme, i.e., the smart scheme results
in higher overall system throughput.
Evaluation on real data streams For the experiments on real data streams we did not use
any event stream; however we activate the query periodically for some fixed time duration.
We used two real data streams for the experiments, i.e., peopleFlow and tsukuMobility, the
query on these streams contains only the projection operation, i.e.,

πP I D,Longitude,Lati tude,Sex (peopleFlow)

and

πObservationI D,Longitude,Lati tude(tsukuMobili t y)

The experiments on the real streams are performed by varying (i) the time period after
which the query activates (Ie), (ii) the query activation duration (We), and (iii) the real stream
window size (Wo). Since the arrival rate of the real streams is low, we developed a simulator
to feed the buffered streams at around 100,000 tuples/s.

Figures9 and 10 compare the average system load of the smart schemes with the basic
scheme for the people flow and Tsukuba mobility data streams, respectively. Both the fig-
ures show variation of different parameters. In Fig. 9a, parameter Ie is varied from 1 to 9s
with a step of 2 s. The figure shows clear advantage of smart scheme over basic scheme for
the people flow data stream as the later one results in smaller overall system load for all
Ie values except for Ie = 1s where Eq.1 does not hold. Fig. 9b and c presents the eval-
uation of overall system load against the variation of event stream window size (We) and
ordinary stream window size (Wo), respectively. Here again the system load for the smart
scheme is lower compared to the basic scheme for all the values of We and Wo, except
for We = 10,000ms, where Eq. 1 does not satisfy and the smart scheme behaves like the
basic scheme. Similar graphs could be observed for the Tsukuba mobility data stream in
Fig. 10.

Figures11 and 12 show the comparison of the maximum system throughput for the two
real data streams. As can be observed from the figures, smart scheme’s throughput is almost
twice to that of basic scheme in all cases. The higher system throughput of the smart scheme
is the consequence of the lower average system load of the smart scheme discussed for Figs.
9 and 10.

7.2.2 Multi-query

This section evaluates the system throughput when multiple continuous queries are regis-
tered to our prototype system, JsSpinner. Since enough comparison between smart and basic
schemes have been presented in Sect. 7.2.1, this section focuses on evaluating the advantage
of using the proposed gate operator when multiple continuous smart queries are registered
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Fig. 9 Average system load evaluation on People Flow data stream. a Varying Ie (We = 1 s and Wo =
10 rows), b varying We (Ie = 5 s and Wo = 10 rows), c varying Wo (Ie = 5 s and We = 1 s)
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Fig. 10 Average system load evaluation on Tsukuba Mobility data stream. a Varying Ie (We = 1 s and
Wo = 10 rows), b varying We (Ie = 5 s and Wo = 10 rows), c varying Wo (Ie = 5 s and We = 1 s)

to our SPE. To recall, when multiple continuous queries are registered to our prototype sys-
tem, smart windows corresponding to same data sources are merged and gate operators are
appended to the merged query plan tree to guarantee smart query processing. We divide the
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Fig. 11 Maximum system throughput evaluation on People Flow data stream. a Varying Ie (We = 1 s and
Wo = 10 rows), b varying We (Ie = 5 s and Wo = 10 rows), c varying Wo (Ie = 5 s and We = 1 s)
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Fig. 12 Maximum system throughput evaluation on Tsukuba Mobility data stream. a Varying Ie (We = 1 s
and Wo = 10 rows), b varying We (Ie = 5 s Wo = 10 rows), c varying Wo (Ie = 5 s and We = 1 s)

evaluation in this section into the following: (1) Advantage of the gate operator, and (2)
Effectiveness of merging window operators.
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Select S1.B, S2.C
From S1[Range τ ], S2[Rows n]
Where S1.A=S2.A

Select S2.C, S3.D
From S2[Rows n], S3[Range τ ]
Where S2.A=S3.A
...

Select S(2N-1).X, S(2N).Y
From S(2N-1)[Range τ ], S(2N)[Rows n]
Where S(2N-1).A=S(2N).A

Query 4 Multiple queries

Advantage of the Gate operator To prove the effectiveness of the gate operator, we merged
Query 3 with the one with S1 replaced by S3. The two queries share S0 but have different
event streams S1 and S3, respectively. When the two queries are merged, gate operators
are appended to the shared query plan, one for each query. For the experiments, the default
parameter values are used except for the parameters Ie(S1) and Ie(S3), which are set to 5 and
3s, respectively. Figure13 compares the maximum system throughput with and without gate
operators for the above query setting. From the figure it is clear that the use of gate operators
results in higher system throughput. This is due to the fact that the gate operator buffers the
tuples during query inactive duration and directly deletes the expired tuples from its synopsis
without sending corresponding “−” tuples downstream just like the smart window resulting
in reduction in the processing load of the downstream operators.
Effectiveness of merging window operators To understand the advantage of merging similar
window operators, we evaluated the maximum system throughput by varying the parame-
ter Ie for the following four cases: (1) Sharing both time-based and tuple-based windows,
(2) Sharing only time-based window, (3) Sharing only tuple-based window, (4) No shar-
ing. Although other operators can also be merged and can further improve the system

Sharing Smart Window w/ Gate
Sharing Smart Window w/o Gate

Shared Smart Window Size (rows)

M
ax

 S
ys

te
m

 T
hr

ou
gh

pu
t (

tu
pl

es
/s

)

1k 2k 3k 4k 5k

0
10

00
0

20
00

0
30

00
0

40
00

0

Fig. 13 Effect of gate operator (#Queries: 2, Ie(S1) = 5, Ie(S3) = 3)
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Fig. 14 Multi-query plan W

G

G
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throughput, here we focus only on merging of window operators and the addition of gate
operator.

For the experiments, we use a set of queries listed in Query 4, whose query plan is shown
in Fig. 14. The first query is similar to Query 1. The first query in multi-query experiments is
Q1 with stream input sources S1 and S2, where S1 is an event stream and S2 is an ordinary
stream. The second query Q2 is again with two stream input sources S2 and S3, where S2 is
an ordinary common input stream and S3 is an event stream.Note that S2 is shared byQueries
Q1 and Q2. Assuming even number of queries, the set of query used in the experiments is
shown in Query 4.

The multi-query experiments are performed by varying Ie for 10, 20, 30, 40 and 50
queries sharing the common input stream sources (leaf and window operators). From Fig.
15a–e it is evident that merging query plans can significantly improve the system throughput.
In most of the cases in the figures, improvement in throughput reaches to about 2.5 times
when sharing only window operators i.e., tuple-based and time-based (smart) windows. The
throughput is expected to increase far more than this for complex queries sharing multiple
operators.

8 Discussion: smart scheme and multi-query optimization costs and
benefits

Experiments prove that the proposed smart scheme can outperform the basic scheme and the
other state-of-the-art SPEs in relativemaximum system throughput and is capable of reducing
overall system load. Implementation of smart scheme and itsmulti-query optimization require
the following two operators in addition to the existing CQL operators: (1) Smart Window
and (2) Gate.

Smart window is just like a CQL row-based window operator, however its synopsis is
divided into two parts i.e., suspended and output. It does not require any additional memory
space; however a negligible additional processing cost is needed to hash the incoming stream
tuples to correct window synopsis part based on the query state, i.e., active or inactive. This
division of smart window operator’s synopsis on the other hand saves a lot of computation
time and memory space by buffering the stream tuples during the query inactive duration.
Furthermore, a small processing overhead is incurred once the query changes its state from
inactive to active, where all the buffered tuples need to be sent and processed by the down-
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Fig. 15 Merging query plans (Ro = 100 k tuples/s,We = 1 s,Wo = 10 rows). a #Queries:10, b #Queries:20,
c #Queries:30, d #Queries:40, e #Queries:50

stream operators. The overhead depends on the smart window size. Smaller the smart window
size, smaller the overhead is.

When multiple continuous event-driven queries are registered to our prototype system,
their query plan trees are merged, whenever possible, to reduce computation and memory
cost. Since smart windows are different from ordinary windows, when two queries each with
a smart window are merged, a gate operator is placed one for each smart window. This seems
to be a computation and memory overhead in the first place as two operators are replaced by
three (i.e., two smart windows are replaced by a smart window and two gate operators as can
be observed from Fig. 3), however gate operators buffer incoming stream tuples during the
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query inactive duration just like smart window operators, reducing the computational and
memory overhead from the downstream operators. This results in reduced system load and
improved throughput. On the other hand if both the merged queries remain active all the time
(the case of continuous event generation), there is a small computation andmemory overhead
in the merged query plan depending on the window size.

9 Conclusion and future work

In this work, we have proposed a smart scheme for event-driven stream processing and a
multi-query optimization for it. The proposed smart scheme reduces system load resulting
in increased system throughput by the use of the proposed smart window. Furthermore,
multi-query optimization proposed in this work enables execution of multiple smart queries
simultaneously by sharing their query plans, whenever possible, to save computational cost.
Multi-query optimization makes use of the proposed gate operator to achieve this. In addi-
tion, we have developed a prototype SPE, JsSpinner, implementing the proposed smart
event-driven stream processing scheme and its multi-query optimization. In order to show
the effectiveness of the proposed smart scheme and its multi-query optimization, detailed
experiments are performed on real and synthetic data streams. The experiments prove that
the proposed smart scheme is capable of reducing system load which results in increased
system throughput. In addition, the multi-query experiments prove that the proposed gate
operator can effectively merge multiple smart queries by retaining the advantage of smart
windows. In the future, we have plans to work on sophisticated query optimization tech-
niques incorporating the proposed smart scheme and complex event-driven distributed data
processing.
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