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Abstract Heart is one of the essential operating organs of the human body and its failure is
a major contributing factor toward the human deaths. Coronary heart disease may be asymp-
totic but can be anticipated through the medical tests and daily life routine of the subject.
Diagnosis of the coronary heart disease needs a specialized medical resource with the plenty
of experience. All over the world and particularly in the developing countries, there is a lack
of such experts which make the diagnosis more difficult. In this paper, we present a clinical
heart disease diagnostic system by proposing feature subset selection methodology with an
object of achieving improved performance. The proposed methodology presents three algo-
rithms for selecting candidate feature subsets: (1) mean Fisher score-based feature selection
algorithm, (2) forward feature selection algorithm and (3) reverse feature selection algorithm.
Feature subset selection algorithm is presented to select the most decisive subset from the
candidate feature subsets. The features are added to the feature subsets on the basis of their
individual Fisher scores, while the selection of a feature subset depends on its Matthews
correlation coefficient score and dimension. The selected feature subset with the reduced
dimension is fed to the RBF kernel-based SVM which results in binary classification: (1)
heart disease patient and (2) normal control subject. The proposed methodology is validated
through accuracy, specificity and sensitivity using four UCI datasets, i.e., Cleveland, Switzer-
land, Hungarian and SPECTF. The statistical results achieved using the proposed technique
are shown in comparison with the existing techniques reflecting its better performance. It has
an accuracy of 81.19, 84.52, 92.68 and 82.7% for Cleveland, Hungarian, Switzerland and
SPECTF, respectively.
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1 Introduction

In every human body, there are blood vessels that span an approximate length of 60,000
miles while ensuring the proper functionalities of all its organs. The heart regularly pumps
fresh blood into these blood vessels, at a rate of 4.7 l per minute. As such, the heart may
be called as the engine of the human body whose failure results in the collapse of the body.
As per reports by the World Health Organization, cardiac diseases are one of the main fac-
tors contributing toward human deaths. Different surveys held since 2012 concluded among
almost 56 million people lost their lives in 2012; 17.5 million were caused by cardiovas-
cular diseases [1]. It was the highest single natural factor responsible for the loss of lives.
Heart diseases can be cured or controlled if they are diagnosed in their early stages. This is
possible through a series of medical tests conducted by specialized medical human experts
and coupled with the medical history of the subject. As per World Bank figures, the ratio of
general physicians to living humans in developed countries is 3:1000, while in the developing
countries this ratio is 0.6:1000 [2]. As there are fewer heart specialists than general physi-
cians, we can say that the availability of the former is far lower than the latter. Particularly
for the subjects living in remote rural areas it nearly becomes impossible in approaching a
specialist.

Automated computer systems have amazingly improved the quality and standard of the
life in every aspect. These systems are also facilitating medical professionals for accom-
plishing their jobs. Along with the development of automatic diagnosis systems for other
diseases, research is in progress to diagnose heart diseases through computerized intelli-
gent systems [3]. During the last two decades, considerable work is presented for achieving
the desired results. In these systems, statistics of medical reports, medical history and the
subject’s life habits are provided as inputs. The automated system, through its learning and
decision functions, then predicts whether the subject is suffering from heart disease or not.
Research on these systems have focused on two areas: (1) the selection of important fea-
tures while discarding redundant ones and (2) the selection of an appropriate classifier. The
selection of the appropriate features subset not only reduces the computational complexity
but improves the classification results [4]. Features should be selected in a way in which
each can be considered as a discriminating feature. The combination of all the individual
discriminating features must then produce a better classification. The role of the classifiers
is the key to the success of prediction systems. In the broader aspects, two types of machine
learning techniques are used, i.e., supervised and unsupervised learning-based techniques.
Supervised learning is quite successful while the historical data along with the class labels
are available. Support vector machines (SVMs) are supervised learning techniques which
are used to solve both linear and nonlinear problems. When radial basis function (RBF)-
based kernels are used in SVM, it makes them capable of solving the linearly non-separable
problems.

This paper presents feature selection techniques which select the features on the basis
of their individual and collective performance of the subset when added to it. It not only
considers the features with individual high discriminating scores but the ones with lower
scores are taken into account as well if their presence improves the classification accuracy
for the whole subset. The Matthews correlation coefficient (MCC) is used as a metric for
selecting the feature subset. The Matthews correlation coefficient (MCC) is used as a metric
for selecting the feature subset. The higher the MCC score, the better the feature subset.
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RBF kernel-based SVM classifier takes the reduced dimensional feature subset as an input
and predicts whether the subject under consideration is a potential heart disease patient or a
normal control subject. The rest of the paper is organized as follows: Sect. 2 briefly discusses
the latest relevant literature; Sect. 3 presents the proposed research; Sect. 4 discusses the
datasets and evaluation criteria used; Sect. 5 presents, discusses and analyzes the research
results; and Sect. 6 concludes the paper.

2 Literature review

This section presents a review of the relevant research contributions published in recent past.
Long et al. [5] proposed a heart disease diagnostic system which used fuzzy-based classifica-
tion. The authors used a feature subset by reducing the original dimension of the feature set
through rough sets and the chaos firefly algorithm. The technique was validated by testing it
over the heart disease and SPECF datasets. Extreme learning-based algorithm was used by
Ismaeel et al. [6] for heart disease diagnostics. Their research had achieved 80% accuracy
by implementing their methodology over the Cleveland dataset. Minimum distance-based
KNN classifier was used by Krishnaiah et al. [7] to diagnose the heart diseases. As an initial
step, they fuzzified medically measured data and then provided it to the KNN through fuzzy
membership. An intelligent prediction system was proposed by Chitra and Seenivasagam [8]
which used the feed forward neural network and the cascaded correlation neural network for
classification. Srinivas et al. [9] generated fuzzy rules through set theory which were then
used to perform fuzzy classification. The technique was validated through results which were
obtained by implementing it over the UCI dataset (i.e., Cleveland, Hungarian, SPECTF and
Switzerland). The authors achieved the highest accuracy (80%) for the Switzerland dataset,
while they achieved the lowest accuracy (42%) for the Hungarian dataset. A hybrid approach
was developed by Yang et al. [10] which combined adaptive network-based fuzzy inference
system (ANFIS) with linear discriminant analysis (LDA) and was used to assess the risk of
coronary heart disease. The technique was validated by experimenting it over a dataset of
the Korean National Health and Nutrition Examinations Survey, achieving an accuracy of
80.2%. A hybrid modeling scheme for the heart disease diagnosis was proposed by Yuehjen
et al. [11]. It was a two-stage methodology in which initially a set of explanatory variables
were reduced through the logistic regression (LR), multivariate adaptive regression splines
(MARS) and rough set (RS) followed by a classification through the artificial neural net-
work (ANN). An expert system for the diagnosis of coronary heart disease was presented
by Muthukaruppan and Er [12] in which they employed particle swarm optimization (PSO)
along with fuzzy classifiers. Fuzzy membership functions were tuned using the PSO. After-
ward, they used the Cleveland and Hungarian heart disease datasets for validating their
technique.

Anooj [13,14] presented a clinical decision support system (CDSS) for heart disease diag-
nosis. The proposed CDSS had two stages: In the first stage, attribute selection and attribute
weightage were achieved using the data mining techniques while Fuzzy rule-based CDSS
was proposed in the second stage. Comparative results were presented along with the ANN-
based technique over UCI datasets. Shilaskar and Ghatol [15] used a reduced feature subset
for the diagnosis of heart disease. They used distance measures as a metric to select features
through forward inclusion, forward selection and backward elimination search techniques. To
improve the classification accuracy, the authors proposed their own hybrid forward selection
algorithm and achieved comparably better results than the forward selection and backward
elimination algorithm. Expert judgment was compared with automated feature selection

123



142 S. M. Saqlain et al.

techniques using different classifiers [16]. The authors showed that a combination of expert
judgment with intelligent feature selection techniques improved the accuracy of the naive
Bayes, IBK and SMO classifiers. ECG heart rate signals were used as input to predict car-
diac health by Giri et al. [17]. Frequency sub-bands of the input signals were obtained using
discrete wavelet transform (DWT). Later on, principal component analysis (PCA), indepen-
dent component analysis (ICA) and linear discriminant analysis (LDA) were employed over
DWT coefficients. Different tests using the Gaussian mixture model (GMM), support vector
machine (SVM), probabilistic neural network (PNN) and artificial neural network (ANN)
classifiers were employed. Zhao et al. [18] presented a feature selection framework which
was used to preserve similarity measures through a conventional combinatorial optimization
formulation. In order to improve the efficiency and effectiveness of their methodology, they
extended it with a sparse multiple-output regression formulation. The authors concluded that
it allowed them to achieve the better results.

The feature selection problem was investigated by Hancer et al. [19] through propos-
ing ant–bee colony (ABC)-based algorithm. They extended the standard ABC algorithm
by integrating it with evolutionary-based similarity mechanism. A feature selection criteria
was proposed by Zhang et al. [20] where they incorporated the l2,1 norm regularization into
the original Fisher criterion. It was assured that the l2,1 norm regularization term would
achieve the sparsity of the feature selection matrix resulting in the feature selection as a
globally optimized solution. A multiclass problem was solved by Li et al. [21] who proposed
a cost-sensitive LDA classifier. Linear discriminant coefficients were used for estimating the
posterior probabilities of state-of-the-art testing instances. The authors achieved efficiency
in terms of low computational cost and higher accuracy than the existing state-of-the-art
methodologies. Markos et al. [22] proposed a four-staged fuzzy-based classifier. A Gener-
alized Fisher score was proposed by Gu et al. [23] which maximized the lower bound of
the traditional Fisher score for selecting the feature subset. The resulting selected features
were reformulated as a quadratically constrained linear programming (QCLP) and solved it
by a cutting plane algorithm. Information gain and divergence were used by Lee and Lee
[24] for selecting feature subsets. The authors reduced the redundancy among features and
maintained information gain through this methodology.

Support vector machines (SVMs) are the collection of supervised learning methodologies
[25]. Akay [26] presented their technique that was used to predict women breast cancer
disease. The authors utilized the classification ability of SVM using reduced dimensional
feature set. They achieved 99.51% accurate results. Çomak et al. [27] used Doppler signals
of the heart valves for predicting the heart disease. They used least-squares support vector
machine (LS-SVM) as a predictor. Yahiaoui et al. [28] used SVMfor diagnosis of tuberculosis
disease. Comparative results of the proposed technique with the existing techniques were
presented, and the proposed methodology reported better results. Huang et al. [29] used
ensembles of SVM classifiers for predicting breast cancer disease. The authors discussed that
ensembles of SVM produced better results than the single SVM, and while using different
kernels, RBF kernels performed better than all its fellows.

3 Proposed methodology

The proposed technique selects the feature subset by proposing feature selection algorithms.
The selected subset then is used to train and test RBF-based SVM classifier (Fig. 1).

Prior to the feature selection process, feature attribute ranges are standardized and Fisher
score of each feature is calculated. During the feature selection procedure, we present mean
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Fisher score-based feature selection algorithm (MFSFSA), forward feature selection algo-
rithm (FFSA) and reverse feature selection algorithm (RFSA) for subset selection. The feature
subset selection algorithm (FSSA) returns the most effective lower-dimensional feature sub-
set.

Definition 1 Heart feature set is SHP, set of suspected heart patients, having M Tuples.
Each tuple Ti has N features. SHP is represented by SH P = {T1, T2, . . . , TM }. Tuple Ti is
represented by Ti = { f1, f2, . . . , fN } for every 1 ≤ i ≤ M .

We need to classify each Ti ∈ C whereC = {CHDP,CNCS} andCHDP andCNCS represent
class of heart disease patient (HDP) and class of normal control subject (NCS), respectively.

3.1 Feature selection

To avoid the participation of redundant and the lesser class discriminating features, whose
presence not only compromises the classification accuracy but leads toward high computa-
tional complexity as well, a feature subset with higher class discriminating capabilities must
be selected. The required goal is achieved by performing the following steps:

3.1.1 Data standardization

The medical data of a subject consist of multiple attributes, represented by the different data
types. Some of the attributes are of binary nature, while others may represent decimal or
fractional numbers. The ranges of all the attributes can be quite diverse resulting in a bias
toward selection of the certain features.

Definition 2 A Tuple T with features fi , 1 ≤ i ≤ n, each fi may have different data format.
Data standardization is the process of transforming diverse data representations into a unique
format. The transformed single format helps in comparing and classifying the data instances.

As a means of preprocessing, all the features are standardized using following relation:

f ′
i = fi − fi

σ fi
(1)

where fi is the i th feature in its raw form, fi is the mean of the i th feature, while σ fi is the
standard deviation of the i th feature. f ′

i is the i th feature in a standardized form.

3.1.2 Fisher score calculation

The feature selectionmethodology should favor the features with higher discriminating capa-
bilities while the others should be suppressed.

Definition 3 Using a feature set F = {x1, x2, . . . , xN }, Fisher score is used to measure
the class discriminant nature of each xi . Features with the higher Fisher scores are more
discriminant than the features with lower ones.

The proposed technique uses Fisher score to rank each feature which is calculated by
using following mathematical formulation:

SCF(Fi ) =
∑C

j=1 η j (μi, j − μi )
2

∑C
j=1 η jσ

2
i, j

(2)
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Fig. 1 Flow diagram of proposed technique

where η j , μi, j , μi and σ 2
i, j represent the number of tuples lying in the j th class, mean of the

i th feature in the j th class, mean of the i th feature and variance of the i th feature in the j th
class, respectively. C represents total number of classes.

3.1.3 Feature subset selection

In order to select a minimal number of features used for coronary heart disease diagnosis,
we present a set of feature selection algorithms. The final outcome of the proposed set of
algorithms is a P-dimensional feature subset, i.e., M × N → M × P , where M, N and P
represent the number of instances in the dataset, original feature dimension and the reduced
feature dimension, respectively.

3.2 Mean Fisher score-based feature selection algorithm (MFSFSA)

Definition 4 Given a set of ranked Fisher score, RFS = { f s1, f s2, . . . , f sm}∀ f s j−1 ≥
f s j , and feature set corresponding to RFS, FSR = {x1, x2, . . . , xm}∀ f sx j−1 ≥ f sx j , mean
Fisher score-based feature selection algorithm (MFSFSA) selects a feature subset based on
individual Fisher scores in comparison with the mean Fisher score. It returns theMCC score
of the selected feature subset as well.
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Algorithm 1 : Mean Fisher Score-based Feature Selection Algorithm (MFSFSA)
INPUT: Ranked Fisher Score (RFS), Feature Set corresponding to Ranked Fisher Score (FSR)
OUTPUT: Feature subset using FS (FSFS), Mean Fisher score-based Matthew’s Correlation Coefficient
(MFS_MCC)

1: Initialize FSFS = { ϕ }
2: Initialize Matthew’s Correlation Coefficient (MCC), MFS_MCC=0

3: Calculate mean Fisher score (μ f s ) using μ f s = ΣN
i=1 f si
N

4: Add all features,x j from FSR to FSFS ∀ f s j ≥ μ f s
5: Train classifier using FSFS
6: Through Validation obtain MCC using:MFS_MCC = (T P×T N )−(FP×FN )√

(T P+FP)(T P+FN )(T N+FN )(T N+FP)
, where

TP, TN, FP and FN represent true positive, true negative, false positive and false negative, respectively.

In MFSFSA, all the features having Fisher score higher than the mean score are selected
in feature subset as they have more class discriminative powers. The selected feature subset
is used for training support vector machines and calculating the MFS_MCC through a
validation process.

3.2.1 Forward feature selection algorithm (FFSA)

Definition 5 Given a set of rankedFisher score, i.e., RFS = { f s1, f s2, . . . , f sN }∀ f s j−1 ≥
f s j , feature set corresponding toRFS, i.e., FSR = {x1, x2, . . . , xN }∀ f sx j−1 ≥ f sx j , feature
subset using MFSFSA (FSFS), i.e., FSFS = {x1, x2, . . . , xQ}Q ≤ N and MCC score
through MFSFSA (MFS_MCC), forward feature selection algorithm (FFSA) selects and
adds features in FSFS as per their Fisher score (descending order) and makes it a potential
SFSFi , i.e., feature subset. It returns the selected feature subset with the maximum MCC
score.

Algorithm 2 : Forward Feature Selection Algorithm (FFSA)
INPUT:Ranked Fisher Score (RFS), Feature Set corresponding to Ranked Fisher Score (FSR),
Feature subset using MFSFSA (FSFS), MCC score through MFSFSA(MFS_MCC)
OUTPUT: Selected feature subset through Forward Feature Selection Algorithm (SFSF ),
MCC score corresponding to selected feature subset (F_MCC)

1: δ f = MFS_MCC×0.15
2: TS = MFS_MCC
3: Initialize SFSF = FSFS
4: repeat
5: SFSF = SFSF∪ {xi }.
6: Train classifier using updated SFSF
7: validate train data and obtain Matthew’s Correlation Coefficient, i.e., F_MCC
8: if F_MCC > T S+δ f then
9: T S=F_MCC
10: Keep xi in SFSF
11: δ f =δ f /2
12: end if
13: until f si < μ f s ∀xi ∈FSR
14: return SFSF , F_MCC
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During processing of FFSA, each feature having a score lesser than the mean Fisher score
is added to feature subset. The process is accomplished by adding features in descending
order with respect to their corresponding Fisher scores. The classifier is trained and validated
using an updated feature subset. A corresponding MCC is then calculated. If the selection of
a feature increases the Matthews correlation coefficient score by an acceptable amount, the
feature is kept in a list of selections; otherwise, it is discarded. The process continues until
all the features are evaluated.

3.2.2 Reverse feature selection algorithm (RFSA)

Definition 6 Given a set of rankedFisher score, i.e., RFS = { f s1, f s2, . . . , f sN }∀ f s j−1 ≥
f s j , feature set corresponding toRFS, i.e., FSR = {x1, x2, . . . , xN }∀ f sx j−1 ≥ f sx j , feature
subset using MFSFSA (FSFS), i.e., FSFS = {x1, x2, . . . , xQ}Q ≤ N and MCC score
through MFSFSA (MFS_MCC), reverse feature selection algorithm (RFSA) selects and
adds features in FSFS as per their Fisher score (ascending order) and makes it a potential
SFSRi , i.e., feature subset. It returns the selected feature subset with the maximum MCC
score.

Algorithm 3 : Reverse Feature Selection Algorithm (RFSA)
INPUT:Ranked Fisher Score (RFS), Feature Set corresponding to Ranked Fisher Score (FSR),
Feature subset using MFSFSA (FSFS), MCC score through MFSFSA(MFS_MCC)
OUTPUT: Selected feature subset through Reverse Feature Selection Algorithm (SFSR ),
MCC score corresponding to selected feature subset (R_MCC)

1: TS= MFS_MCC
2: δr =TS×0.15
3: Initialize SFSR = FSFS
4: repeat
5: SFSR = SFSR∪{y j }
6: Train classifier using updated SFSR
7: validate train data and obtain Matthew’s Correlation Coefficient,R_MCC.
8: if R_MCC > T S+δr then
9: T S = R_MCC
10: δr = δr /2
11: end if
12: until ∀y j ∈FSR: Starting from smallest Fisher score to highest
13: return SFSR , R_MCC

The FFSA favors the features with higher Fisher scores by giving them chance prior to
the features with lower scores. To avoid the biases, RFSA works in reverse to the FFSA by
chancing the features with lower Fisher score first.

3.2.3 Feature subset selection algorithm (FSSA)

Definition 7 Given the MCC scores from MFSFSA, FFSA and RFSA along with their cor-
responding feature subsets, feature subset selection algorithm (FSSA) computes and returns
the selected feature subset (SFS).
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Algorithm 4 : Feature subset Selection Algorithm (FSSA)
INPUT: FSFS, SFSF ,SFSR
MFS_MCC , F_MCC , R_MCC
OUTPUT: selected feature subset (SFS)

1: Get the maximum of {F_MCC ,R_MCC ,MFS_MCC} representing Highest Matthew’s Correlation
Coefficient.

2: if All are equal OR MFS_MCC is the maximum then
3: SFS= FSFS
4: return SFS
5: end if
6: if F_MCC is the maximum then
7: SFS= SFSF
8: return SFS
9: end if
10: if R_MCC is maximum then
11: SFS= SFSR
12: return SFS
13: end if
14: if R_MCC ≡ F_MCC and R_MCC ,F_MCC > MFS_MCC then
15: check SFSF ,SFSR having lesser number of features in them
16: if SFSR have lesser number of features then
17: SFS= SFSR
18: return SFS
19: end if
20: if SFSF have lesser number of features then
21: SFS= SFSF
22: return SFS
23: end if
24: if SFSF and SFSR have the same length then
25: SFS= SFSF
26: return SFS
27: end if
28: end if

At the end, FSSA looks for the feature subset that results in highest Matthews corre-
lation coefficient score. If FFSA and RFSA do not improve the MCC score, then subset
obtained throughMFSFSA gets selected. Otherwise, feature subset scoring the highest MCC
is selected. If MCC scores for both the subsets (FFSA and RFSA) are equal, then the feature
set obtained through the FFSA is selected as its features are more probable of having the
higher Fisher scores.

Algorithm 5 : Cardiac System Algorithm (CSA)
1: (FSFS,MFS_MCC)=MFSFSA(RFS,FSR)
2: if MFS_MCC ≡ 1 then
3: return FSFS
4: else
5: (SFS_F , F_MCC)=FFSA(RFS,FSR,FSFS,MCC)
6: (SFS_R , R_MCC)=RFSA(RFS,FSR,FSFS,MCC)
7: SFS=FSSA(FSFS, MFS_MCC , SFS_F , F_MCC , SFS_R , R_MCC)
8: end if
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The cardiac system algorithm (CSA) presents the flow of all the four proposed algorithms.

Theorem 1 The FSSA returns the minimum item feature subset having maximum class dis-
criminating ability.

Proof Let F be a set of m features, i.e., F = {x1, x2, x3, . . . , xm}, F ′
is the set having Fisher

scores for each x j : 1 ≤ j ≤ m. Algorithm 1, MFSFSA, returns a feature subset with features
having individual Fisher scores greater thanmeanFisher score, i.e., FSFS = {xi , xi+1, . . . xs},
1 ≤ s ≤ m and MFS_MCC as its class discriminant score.

1. If MFS_MCC is one, FSFS is the most efficient feature subset and no further compu-
tation is required.

2. If MFS_MCC is less than one, then FSFS may not be an optimized subset. Algorithm
2 returns SFSF , a selected feature subset with the higher class discriminant score, i.e.,
F_MCC ≥ MFS_MCC and FSFS ⊂ SFS_F . From Algorithm 3, it may be observed
that SFS_R, a feature subset may be obtained having higher class discrimination, i.e.,
R_MCC ≥ MFS_MCC and FSFS ⊂ SFS_R.

3. By using Algorithm 4, if MFS_MCC , F_MCC and R_MCC are equal then feature
subset corresponding to MFS_MCC is selected as it has the lower dimension while
sharing higher class discriminant score among others. Otherwise, the feature subset with
higher discriminant score will be selected.

4. Through step 3, if F_MCC and R_MCC are equal, resulting in both the corresponding
subsets with the equal class discriminant scores, a subset with the lower dimension would
be selected. It gives a feature subset with the higher class discriminant score and lower
possible feature dimension.

5. If step 3 returns equal F_MCC and R_MCC scores and dimensions of their corre-
sponding feature subsets, i.e., SFSF and SFSR , are equal as well, then SFSF should be
selected as it has a same class discriminant score as SFSR , but its individual features are
more probable of having a higher class discriminant score.

From 1, 3, 4 and 5, it is clear that the FSSA always returns a feature subset with the highest
class discriminating ability and the minimum possible dimension. �

3.3 Classification

In the proposed technique, support vector machine (SVM) is used for binary classification
(i.e., heart disease patient and normal control subject). The input datasetM×P is divided into
two subsets: (1) train data and (2) test data. Train data are of order Tr × P , and test data have
an order T × P . Decision functions for linear SVMs can be represented by (u.s j +c) ≤ −1 if
t j = −1 and (u.s j +c) ≥ 1 if t j = 1. The two relations can be combined to cover both cases,
i.e., t j (u.s j + c) ≥ 1 where t represents the class, s is the input data, u represents weight and
c is the margin. The problem of coronary heart disease anticipation comes under the class
of nonlinear problems. Decision function for the nonlinear classification is represented as
f (s) = u.Φ(s) + c. This is presented as we are dealing with the research problem having
input feature subset instead of a single-dimensional problem. For a higher-dimensional data
convergence, SVM kernel functions are widely used. In a kernel-based SVM, u may be
represented as u = ∑m

j=1 β jΦ(s j ). Decision function for a nonlinear classification problem
having multidimensional feature set can be represented as:

f (s) =
m∑

j=1

β jΦ(s j ).Φ(s) + c (3)
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where Φ(s j ).Φ(s) is defined as the kernel function and denoted as K F(s, s j ). By replacing
Φ(s j ).Φ(s) by K F(s, s j ), the decision function is given as:

f (s) =
m∑

j=1

β j · K F(s, s j ) + c (4)

In order to solve the nonlinear separable problems (with high-dimensional feature set), the
radial basis function-based kernel is identified as the most suitable. This is due to the RBF
kernel being known to be used in solving infinite-dimensional problems. The RBF kernel
can be represented as

K F(s, s j ) = e(−γ ||s−s j ||2) (5)

By substituting Eq. (5) into Eq. (4), the required decision function becomes:

f (s) =
m∑

j=1

β j · e(−γ ||s−s j ||2) + c (6)

Theorem 2 The RBF-based SVM solves the heart disease classification problem.

Proof Given an input data with M × P dimension partitioned into two subsets, training
data (S × P) and test data (T × P). Training and testing a non-linearly separable feature
set (multidimensional) having binary classes are a nonlinear problem. In order to produce
a nonlinear boundary projection, SVM uses f (s) = u.Φ(s) + c as decision function. The
diagnosis of the heart disease through feature subset is a problem of multidimensional spaced
data. As multidimensional feature set classification is achieved using kernel-based decision
function, so using f (s) = ∑m

j=1 β jΦ(s j ).Φ(s) + c, kernel-based decision function solves

the nonlinear classification problem. RBF kernel, K F(s, s j ) = e(−γ ||s−s j ||2), is proved in

solving infinite-dimensional problems. So by using f (s) = ∑m
j=1 β j .e(−γ ||s−s j ||2) + c,

classification of nonlinear separable multidimensional feature set can be achieved. Hence, it
is concluded that the RBF-based SVM solves the heart disease classification problem. �


4 Experimental setup

4.1 Evaluation criteria

In order to evaluate the performance of the proposed technique, three qualitative measure-
ments have been used, i.e., (1) accuracy, (2) specificity and (3) sensitivity.

Sensitivity = True Positive

(True Positive + False Negative)
(7)

Specificity = True Negative

(True Negative + False Positive)
(8)

Accuracy = (True Negative + True Positive)

(True Negative + True Positive + False Negative + False Positive)
(9)

where

True positive: heart disease patient correctly identified as heart disease patient
False positive: normal control subject incorrectly identified as heart disease patient
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True negative: normal control subject correctly identified as normal control subject
False negative: heart disease patient incorrectly identified as normal control subject

4.2 Dataset

Four UCI [30] datasets are used: (1) Cleveland, (2) Hungarian, (3) Switzerland and (4)
SPECTF. Originally, the first three datasets had 76 features out of which 14 attributes includ-
ing class label are selected, while SPECTF have 45 attributes which are used in total. Details
of the used attributes(UA) for evaluating the proposed technique are shown in Table 1.

Three distinct statistics have been shown for each of the dataset (i.e., the total number
of records, training and test data statistics). The Cleveland dataset with 303 instances is
partitioned into training and test dataset with 202 and 111 instances, respectively. The said
process is achieved with an intuition of keeping symmetry in class membership statistics.
Out of the 202 training records, 111 have membership in the HDP class while 91 instances
belong to NCS. From the test data subset, 53 records are part of HDP class and 48 records
belong to NCS. The rest of the datasets are analyzed in the same way as well.

5 Results and discussion

The detail of the dataset [30] used for experimentation is explained in Tables 1 and 2. In
order to avoid the bias in a comparative analysis with the existing techniques, the dataset
partitioning is performed in the same way as opted by the competitive techniques.

Table 3 shows the mean Fisher score, dimension of the intermediate selected subsets
using MFSFSA, FFSA, RFSA and finally selected subset using FSSA. Originally three of
the datasets have 13-dimensional feature set (i.e., Cleveland, Hungarian and Switzerland)
while SPECTF has 44 features. The mean Fisher score varies from 0.0758 (Switzerland)
to 0.1457 (Cleveland). For the Cleveland dataset, six features are selected using MFSFSA
and one extra feature is selected using the FFSA and RFSA. The FSSA selects subset pro-
duced by the FFSA. While experiments are performed over the Hungarian dataset, MFSFSA
selects four features while two and three extra features are selected through the FFSA and
RFSA, respectively. In the same manner, four features are selected by the MFSFSA for the
Switzerland dataset. Afterward, the FFSA selects four, while the RFSA selects two extra
features. The FSSA selects the feature subset produced by the FFSA. Experimental results of
the proposed technique over the SPECTF showed the selection of a 19-dimensional feature
subset. All the 19 features are selected using the MFSFSA.

Table 4 clearly shows a reduction in the original feature dimension using the proposed
technique. Dimensions of the selected feature subsets for Cleveland, Hungarian, Switzerland
and SPECTF are 47, 47, 39 and 57%, respectively, which are less than their original feature
sets.

Figure 2 shows a graphical representation of the performance achieved by the proposed
technique. It shows the performance of the proposed technique in terms of accuracy, sensi-
tivity and specificity.

5.1 Results for the Cleveland dataset

Figure 3a, b, c graphically shows the feature selection statistics using FFSA, RFSA and FSSA
for the Cleveland dataset. It shows that out of the 13 features of Cleveland dataset, MFSFSA
selects six features with the Fisher score greater than the mean Fisher score of all the features.

123



Fisher score and Matthews correlation coefficient-based… 151

Ta
bl
e
1

Pa
rt
iti
on

de
ta
ils

of
th
e
da
ta
se
ts
in

tr
ai
n
an
d
te
st
se
ts

D
at
as
et

N
o.

of
re
co
rd
s

T
ra
in
in
g
da
ta

Te
st
da
ta

To
ta
lt
ra
in
in
g
re
co
rd
s

H
ea
rt
pa
tie

nt
re
co
rd
s

N
on

-h
ea
rt
pa
tie

nt
re
co
rd
s

To
ta
lt
ra
in
in
g
re
co
rd
s

H
ea
rt
pa
tie

nt
re
co
rd
s

N
on

-h
ea
rt
pa
tie

nt
re
co
rd
s

C
le
ve
la
nd

30
3

20
2

11
1

91
10

1
53

48

H
un
ga
ri
an

28
3

14
2

89
53

14
1

95
46

Sw
itz

er
la
nd

12
3

82
6

76
41

2
39

SP
E
C
T
F

26
7

80
40

40
18

7
15

17
2

123



152 S. M. Saqlain et al.

Ta
bl
e
2

D
at
as
et
sp
ec
ifi
ca
tio

ns

U
A
sp
ec
ifi
ca
tio

ns
fo
r
C
le
ve
la
nd
,H

un
ga
ri
an

an
d
Sw

itz
er
la
nd

A
tt.

N
o.

A
ttr
ib
ut
e

D
es
cr
ip
tio

n
D
at
a
re
pr
es
en
ta
tio

n
A
ttr
ib
ut
e
sp
ec
ifi
ca
tio

n

1
A
ge

A
ge

in
ye
ar
s

N
um

er
ic
al

2
Se
x

Se
x

B
in
ar
y

1
=
m
al
e

0
=
fe
m
al
e

3
C
P

C
he
st
pa
in

N
um

er
ic
(1
–4

)
1
=
ty
pi
ca
la
ng

in
a

2
=
at
yp

ic
al
an
gi
na

3
=
no

n-
an
gi
na
lp

ai
n

4
=
as
ym

pt
om

at
ic

4
T
re
st
bp
s

R
es
tin

g
bl
oo
d
pr
es
su
re

in
m
m

H
g

N
um

er
ic

5
C
ho

l
Se

ru
m

ch
ol
es
to
ra
li
n
m
g/
dl

N
um

er
ic

6
Fb

s
Fa
st
in
g
bl
oo
d
su
ga
r
>

12
0
m
g/
dl

B
in
ar
y

1
=
tr
ue

0
=
fa
ls
e

7
R
es
te
cg

R
es
tin

g
el
ec
tr
oc
ar
di
og
ra
ph
ic
re
su
lts

N
um

er
ic
(0
–2
)

0
=
no
rm

al

1
=
ha
vi
ng

ST
-T

w
av
e
ab
no

rm
al
ity

2
=
le
ft
ve
nt
ri
cu
la
r
hy
pe
rt
ro
ph
y

8
T
ha
la
ch

M
ax
im

um
he
ar
tr
at
e
ac
hi
ev
ed

N
um

er
ic

9
E
xa
ng

E
xe
rc
is
e
in
du

ce
d
an
gi
na

B
in
ar
y

1
=
ye
s

0
=
N
o

123



Fisher score and Matthews correlation coefficient-based… 153

Ta
bl
e
2

co
nt
in
ue
d

U
A
sp
ec
ifi
ca
tio

ns
fo
r
C
le
ve
la
nd
,H

un
ga
ri
an

an
d
Sw

itz
er
la
nd

A
tt.

N
o.

A
ttr
ib
ut
e

D
es
cr
ip
tio

n
D
at
a
re
pr
es
en
ta
tio

n
A
ttr
ib
ut
e
sp
ec
ifi
ca
tio

n

10
O
ld
pe
ak

ST
de
pr
es
si
on

in
du
ce
d
by

ex
er
ci
se

re
la
tiv

e
to

re
st

Fl
oa
tin

g
N
um

er
ic

11
Sl
op

e
T
he

sl
op

e
of

th
e
pe
ak

ex
er
ci
se

ST
se
gm

en
t

N
um

er
ic
(1
–3

)
1=

up
sl
op

in
g

2
=
fla
t

3
=
do
w
ns
lo
pi
ng

12
C
a

N
um

be
r
of

m
aj
or

ve
ss
el
s

N
um

er
ic
(0
–3

)

13
T
ha
l

Ty
pe

of
de
fe
ct

N
um

er
ic

3
=
no

rm
al

14
N
um

D
ia
gn
os
is
of

he
ar
td

is
ea
se

B
in
ar
y

V
al
ue

0:
<

50
%

di
am

et
er

na
rr
ow

in
g(
N
or
m
al
)

V
al
ue

1:
>

50
%

di
am

et
er

na
rr
ow

in
g(
Pa
tie

nt
)

U
A
Sp

ec
ifi
ca
tio

ns
fo
r
SP

E
C
T
F

A
tt.

N
o.

A
ttr
ib
ut
e

D
at
a
re
pr
es
en
ta
tio

n
D
at
a
va
lu
es

1
O
V
E
R
A
L
L
_D

IA
G
N
O
SI
S

B
in
ar
y

0:
N
or
m
al
1:
Pa
tie
nt

2–
45

F1
R
,F
1S

,F
2R

,F
2S

,F
3R

,F
3S

,
F4

R
,F
4S

,F
5R

,F
5S

,F
6R

,F
6S

,F
7R

,
F7

S,
F8

R
,F
8S

,F
9R

,F
9S

,F
10
R
,F
10
S,

F1
1R

,F
11
S,
F1

2R
,F
12
S,
F1

3R
,F
13
S,

F1
4R

,F
14
S,
F1

5R
,F
15
S,
F1

6R
,

F1
6S

,F
17
R
,F
17
S,
F1

8R
,F
18
S,

F1
9R

,F
19
S,
F2

0R
,F
20
S,
F2

1R
,

F2
1S

,F
22

R
,F
22

S

N
um

er
ic

0–
10

0

123



154 S. M. Saqlain et al.

Ta
bl
e
3

R
es
ul
ts
of

pr
op
os
ed

te
ch
ni
qu
e
ov
er

al
ld

at
as
et
s

D
at
as
et

O
ri
gi
na
l

di
m
en
si
on

M
ea
n

Fi
sh
er

sc
or
e

Fe
at
ur
e
su
bs
et
di
m
en
si
on

th
ro
ug
h
M
FS

FS
A

Fe
at
ur
e
su
bs
et

di
m
en
si
on

th
ro
ug

h
FF

SA

Fe
at
ur
e
su
bs
et

di
m
en
si
on

th
ro
ug

h
R
FS

A

Fe
at
ur
e
su
bs
et

th
ro
ug
h
FS

SA
C
la
ss
ifi
ca
tio

n
ac
cu
ra
cy

(%
)

C
le
ve
la
nd

13
0.
14
57

6
7

7
FF

SA
81
.1
9

H
un
ga
ri
an

13
0.
11
93

4
6

7
R
FS

A
84
.5
2

Sw
itz
er
la
nd

13
0.
01
91

4
8

6
FF

SA
92
.6
8

SP
E
C
T
F

44
0.
07
58

19
N
A

N
A

M
FS

FS
A

82
.7
0

123



Fisher score and Matthews correlation coefficient-based… 155

Table 4 Feature dimension details

Dataset Original dimension Dimension of selected
feature subset

Dimension reduced (%)

Cleveland 13 7 47

Hungarian 13 5 47

Switzerland 13 8 39

SPECTF 44 19 57
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Fig. 2 Performance analysis of the proposed technique

The MCC score (i.e., MFS_MCC) for the selected feature subset is 0.79. Figure 3a shows
the MCC score for the feature subset selection using FFSA (i.e., F_MCC). Initially, δ f is
the 15th percent of the MFS_MCC score. The inclusion of the 7th ranked feature increased
the MCC score from 0.79 to 0.90 and fulfills the required criteria, i.e., F_MCC > T S+ δ f .
After adding the 8th ranked feature to the selected subset, the F_MCC score achieved is
0.93, an increase of 0.03. The 8th ranked feature cannot be selected as the F_MCC score
should have been boosted by 0.06. All the other features are added and tested against MCC
boosting criteria, but none of the features is selected in feature subset. Through the FFSA,
only the 7th ranked feature is selected. This becomes a member of existing feature subset
obtained through the MFSFSA criteria.

Figure 3b shows the MCC scores of selected feature subsets through the RFSA. As with
the case of the FFSA, six features are selected through the MFSFSA. Rest of the features
are added to the selected subset in reverse to the FFSA (i.e., features with low Fisher score
are tested first). When the 13th ranked feature (i.e., a feature with the lowest Fisher score) is
added to the feature subset, R_MCC score is boosted from 0.79 to 0.85. This corresponds
to an increase of 0.06 points. The minimum threshold increase in the score should be 0.11
for the inclusion of the first feature fulfilling R_MCC > T S + δr , where δr is initialized
with 0.15× MFS_MCC . This feature cannot be selected. The process continues and when
the 8th ranked feature is added to the feature subset it fulfills the criteria and gets selected.
This is the only selected feature and the final dimension of the feature subset using the RFSA
results to seven.

The feature subsets selected through the MFSFSA, FFSA and RFSA are fed as input
to the FFSA. The subsets selected through FFSA and RFSA have higher dimension than
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Fig. 3 Feature subset selection using FSSA: Cleveland dataset

of MFSFSA, but higher MCC score as well. The feature subset selected through MFSFSA
gets out of the competition. The subsets selected through FFSA and RFSA contain different
combinations, but the sameMCC score and feature dimension. In this case, as the 7th ranked
feature added using the FFSA has a higher Fisher score than the 8th ranked feature added
using the RFSA, the former will be used as the final choice. So, the FSSA returns feature
subset selected through FFSA and shown in Fig. 3c.

Figure 4 presents a graphical comparative analysis of the proposed technique versus the
existing ones when the experiments ate performed over the Cleveland dataset. It may be
observed that the proposed technique performs better in terms of accuracy and specificity.
In comparison, the highest accuracy was achieved by fuzzy-based CDSS among the existing
techniques [15]. In terms of sensitivity, the proposed technique showed moderate results
which are close to the highest achieved result, i.e., 76%. In terms of specificity, it was again
the proposed technique which performed better than the existing techniques. The closest
results in terms of specificity were achieved through the Fuzzy decision tree [22].

5.2 Results for the Hungarian dataset

Figure 5a, b, c shows the results of feature subset selection when the proposed technique
is applied to the Hungarian dataset. In all the three graphs, it is obvious that the number of
features selected through the MFSFSA is four. These are the highest ranked features as per
the Fisher score. The MFS_MCC score achieved through these four selected features is 0.6.
Figure 5a represents the MCC score, (i.e, F_MCC), obtained when a feature is added to the
feature subset using FFSA. When the 5th ranked feature is added to the feature subset, the
F_MCC score for feature subset gets 0.67. This does not fulfill SFSMCC F_MCC ≥TS+δ f .
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Fig. 4 Comparative analysis: Cleveland dataset

The inclusion of the 5th ranked feature in the selected feature subset boosted the F_MCC
score by 0.07, but as per criteria, it should have been at least 0.09. A similar situation arises
with the 6th ranked feature and this does not get selected as well. When the 7th ranked
feature is added to feature subset, it gets selected as it increases the MCC score by 0.1.
Ranked features 8 through 11 do not get selected as they do not boost the MCC score by
a minimum score of 0.045. The 12th ranked feature is selected for the feature subset as it
increases the MCC score by 0.05. In total, six (6) features are selected with 0.75 as its MCC
score.

The same process is performed for the RFSA but with the ranked features inclusion in
reverse order. This is shown in Fig. 5b. A subset of 7 features gets selected by attaining
a 0.81 MCC score (i.e., R_MCC). Figure 5c shows a graph of the selected features with
the R_MCC score achieved by their inclusion. The subsets selected through the MFSFSA,
FFSA and RFSA are provided as an input to the FSSA. Through the MFSFSA, the selected
subset has four features while subset through RFSA has seven and the FFSA selected a subset
with six features. However, dimension of subset selected through RFSA is the highest but
achieved same in MCC score as well. So, the subset selected through the RFSA is returned
as the final choice.

Figure 6 presents the comparative results of the proposed technique with the existing
methodologies in terms of the opted evaluation metrics. In terms of accuracy, it is obvious
that the performance of the proposed technique is better than the existing competitors by a
considerable margin. Its accuracy is 38% more than the fuzzy-based CDSS technique [15]
which had 46% accuracy the highest among its fellows. Likewise, the proposed technique
performed better in terms of other two metrics, i.e., sensitivity and specificity, as well.

5.3 Results for the Switzerland dataset

Figure 7 shows the results of the feature subset selection process by applying the proposed
technique over Switzerland dataset. In Fig. 7a, a feature subset is selected through the MFS-
FSA, FFSA. There are four (04) features which have Fisher scores higher than the mean
score and get selected through MFSFSA. The MCC score (MFS_MCC) obtained through
the selected features is 0.601. Through the FFSA, when the 5th ranking feature is added to
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Fig. 5 Feature subset selection using FSSA: Hungarian dataset
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Fig. 6 Comparative analysis: Hungarian dataset

the feature subset it attains a 0.70 MCC score. It is selected as it boosted the MCC score
(i.e., F_MCC) by 0.1, higher than the minimum required score increase of 0.09. In the next
iteration, 6th ranked feature is included in the feature subset and a F_MCC score of 0.759 is
achieved. It boosts the F_MCC score by 0.059 scorewhich ismore than the required increase
of 0.045. The next ranked feature does not affect the F_MCC score, so it is excluded. When
the 8th ranked feature is included in the feature subset, the subset achieves 0.92 MCC score
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Fig. 7 Feature subset selection using FSSA: Switzerland dataset

and score is boosted by 0.161. This is higher than the required threshold of 0.023, thus
allowing it to become part of feature subset. The 9th and 10th ranked features also made no
impact over the MCC scores, so they are not selected. The 11th ranked feature, when added
to feature subset, the subset achieved an F_MCC score of 1, the maximum possible score.
The MCC boost attained is 0.08 greater than the required 0.011. Other features did not make
an impact as well. As such, the dimensions of the selected feature subset through the FFSA
are eight and F_MCC score of 1 is achieved. Figure 7b represents simulation results of the
feature subset selection using the RFSA. As previously mentioned, the Swiss dataset has four
features included in the subset throughMFSFSA. As features are added in reverse order (i.e.,
lowest to highest rank), it was determined that the inclusion of features ranked 13th through
9th did not make any considerable impact over the MCC score (R_MCC). When the 8th
ranked feature is included, however, it raises the R_MCC score of the feature subset from
0.601 to 0.718. An increase of 0.117, higher than the required raise of 0.09, makes the said
feature selected. Features ranked 7th and 6th are also not good choices for the feature subset
as their inclusion did not meet the required minimum increase in the R_MCC score. The
5th ranked feature is selected as it boosts the R_MCC score to 0.856, an increase of 0.138
that is higher than the threshold of 0.045. In total, there are six (6) features in the subset
whose R_MCC score is 0.856 after the RFSA is done. Finally, FSSA selects feature subset
obtained through the FFSA which attained a 1 MCC score. Figure 7c shows MCC scores of
the features subset when each selected feature is included.

Figure 8 shows that the comparative performance of the proposed technique in terms of
accuracy is better than its fellows. Similarly, the sensitivity score of the proposed technique
is quite promising and better than all the comparable techniques while the specificity score
was reasonable.
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Fig. 8 Comparative analysis: Switzerland dataset

5.4 Results for the SPECTF dataset

The SPECTF dataset is quite different from the other UCI datasets as it has 44-dimensional
features. When the proposed technique is applied over SPECTF, 19 are directly selected
through the MFSFSA-NFGMFS criteria as they have Fisher scores higher than the mean.
The MCC score of the selected feature subset already results in 1, the maximum score, so
cardiac system algorithm (CSA) decides that there is no need to perform the FFSA andRFSA,
thus allowing it to remain as the final selected feature subset. Figure 9 graphically represents
the performance based on comparative results of the proposed and eight (8) other existing
techniques [5]. A different set of existing techniques were used on the SPECTF dataset due
to the number and type of attribute differences that it has over the other datasets (as evident
in Tables 1, 2) It can be seen that our proposed technique performed better than the existing
ones in terms of its accuracy (82.7%) accurate, except for one (i.e., FireFly+CFARS-AR).
In terms of sensitivity and specificity, however, the proposed technique achieved average
performance as compared to the others.

5.5 K-fold validations

This section presents the K-fold validations for the 3 UCI datasets and provides a comparison
with K-fold validations for the NN-based CDSS [15], Markos [22] and fuzzy-based CDSS
[15]. For theSwiss dataset, the eightfold analysiswasused,while the tenfold analysiswasused
for the other two. Each fold contained 30, 28 and 15 records for the Cleveland, Hungarian and
the Swiss datasets, respectively. K-fold analysis over the SPECTF is not performed due to the
unavailability of the comparative results. The K-fold validations confirm the results achieved
by the proposed technique is the most accurate among its fellow techniques. Figures 10, 11,
12 show that the proposed technique has provided better accuracy for almost every single
fold. It is important to state that the configurations of the folds used are identical as they were
used in all the existing research techniques.
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5.6 Computational cost analysis of the proposed technique

The computational complexity of theRBF-SVMis calculated asO(max(M, d)min(M, d)2),
where M represents the number of samples, while d is the feature dimension [31]. As the
number of samples are greater than the feature dimension, i.e., M > d , the complexity
becomes O(Md2). Using RBF-SVM complexity, the computational cost of the MFSFSA
becomes:

4 + O(M − T )Q2) ⇒ O((M − T )Q2) (10)

whereQ is the number of features selected throughMFSFSA. The computational complexity
of the FFSA is calculated as:
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N and T represent original feature dimension and number of instances in test data, respec-
tively. As only training and validations are used in FFSA and RFSA, the test instances
are excluded. The RFSA work the same as the FFSA but only chooses the features
with Fisher score in reverse order, so its complexity is the same as the FFSA, i.e.,
((N − Q)O((M − T )(N (

N+Q+1)
2 ))2)). The maximum number of statements (including

the conditional statements) that come into execution are seven. Once the feature subset of
reduced dimension (P) gets selected, the computational cost for the training and testing over
the reduced dimensional feature subset is calculated as:

O(MP2) (12)

123



Fisher score and Matthews correlation coefficient-based… 163

By summing individual complexities of all the algorithms, the overall computational cost of
the proposed technique becomes:

O((M − T )Q2) + (N − Q)O

(

(M − T )

(

N
(N + Q + 1)

2

)2
)

+ (N − Q)O

(
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(

N
(N + Q + 1)

2

)2
)

+ 7 + O(MP2)

⇒ O((M − T )Q2) + 2(N − Q)O

(

(M − T )

(

N
(N + Q + 1)

2

)2
)

+ (N − Q)O((M − T ) + O(MP2)

(13)

For the best-case scenario, the complexity is:

O((M − T )Q2) + O(MP2) (14)

This is the case when the features selected through the MFSFSA return maximumMCC, i.e.,
one. It means not to select the features using FFSA and RFSA as they would not be able to
increase the validation MCC score. As in this case P and Q are same, we may rewrite it as:

O((M − T )Q2) + O(MQ2) (15)

The best computational complexity is achieved for the experiments performed over the
SPECTF dataset. Out of total 44 features, 19 were selected through MFSFSA and they
produced the MCC score of 1. This is the case where selection process through FFSA and
RFSA is not performed, resulting the use of the same 19 features for training and testing
purpose. For the average cases, the computational complexity remains O((M − T )Q2) +
2(N − Q)O((M − T )(N (N+Q+1)

2 )2))+ (N − Q)O((M − T )+ O(MQ2). For all the other
three experiments (Cleveland, Hungarian and Switzerland), the computational complexity
remained as average case. These are the cases when all the algorithms went through and
Q > 1 and P < N .

The highest computational complexity occurs for the three cases, i.e., (i) The case when
Q is nearly equal to 1. In this scenario, FFSA and RFSA have to go through nearly all the
features although P is less than N by a margin. (ii) It is the case when P is greater than 1 by
a margin but higher MCC is not obtained, FFSA and RFSA have to go through as average
case but P nearly equals N. (iii) The third case is worst of all when Q nearly equals 1 and
P nearly equals N. In this case, FFSA and RFSA need to go through all the features and
training/testing is performed over the original (approximately) feature dimension.

6 Conclusion

Acardiac disease diagnosis system is presented by proposing the feature selection algorithms,
i.e., MFSFSA, FFSA, RFSA and FSSA. The proposed algorithms use individual Fisher
scores of the features, along with MCC scores of the subsets, for their selection in the feature
subsets. The proposed feature selection algorithms select one feature subset each and among
all of them the feature subset with the higher MCC score and lower dimension is a good
choice of selection. A binary class RBF kernel-based SVM is used for predicting the heart
disease. Four UCI datasets are used for the verification of the proposed technique. The
proposed technique is analyzed over three performance metrics, i.e., accuracy, sensitivity
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and specificity. The proposed technique achieved considerably better results than the other
comparative techniques. A detail of computational analysis for the proposed technique is
presented as well.
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