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Abstract There has been an increasing interest in recent years in the mining of massive
data sets whose sizes are measured in terabytes. However, there are some problems where
collecting even a single data point is very expensive, resulting in data sets with only tens or
hundreds of samples. One such problem is that of building code surrogates, where a computer
simulation is run using many different values of the input parameters and a regression model
is built to relate the outputs of the simulation to the inputs. A good surrogate can be very
useful in sensitivity analysis, uncertainty analysis, and in designing experiments, but the cost
of running expensive simulations at many sample points can be high. In this paper, we use
a problem from the domain of additive manufacturing to show that even with small data
sets we can build good quality surrogates by appropriately selecting the input samples and
the regression algorithm. Our work is broadly applicable to simulations in other domains
and the ideas proposed can be used in time-constrained machine learning tasks, such as
hyper-parameter optimization.

Keywords Regression · Sampling · Code surrogates · Small data sets

1 Introduction

The recent focus in data mining has been on the analysis of massive data sets in application
domains where data are easy to collect, such as mining the web or online collections of text
documents and images. At the other extreme are domains where generating each data point
is very time consuming or expensive, resulting in much smaller data sets consisting of a few
tens or hundreds of samples. An example is the building of code surrogates as a faster alterna-
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tive to computer simulations, which are increasingly being used to complement experiments
and observations in domains such as additive manufacturing [21] and climate [1,29]. These
simulations, or “codes,” are computational models that, given the inputs of a physical phe-
nomenon, called the “parameters” of the code, generate the corresponding outputs [35].
Scientists use simulations to select parameters for use in an experiment, to identify the
important input parameters, and to understand how uncertainties in input parameters of an
experiment affect the uncertainties in the outputs.

Computer simulations can range from the very simple, providing a fast but approximate
solution to a problem, to the very complex, that give more accurate results, but take hours or
days to run onmassively parallel, high-performance systems. Since the number of simulations
required to do a full sweep through the range of possible input parameters is exponential in
the number of parameters, it is prohibitively expensive to run even a moderately complex
simulation to gain an in-depth understanding of a physical phenomenon. Tomake the problem
tractable, scientists often generate the simulation results at a few carefully selected sample
points in the input parameter space and then build a data-drivenmodel, called a code surrogate
that relates the outputs to the inputs[15,24]. The surrogate is then used to predict the outputs
corresponding to the inputs for a new sample point, in effect serving as an interpolation
algorithm. Traditionally, simple surrogates or response surfaces in the form of low-order
models, such as first or second degree polynomials, were used. However, as the surfaces
relating the outputs to the inputs become more complex, methods from machine learning are
preferred.

Code surrogates have many uses as inexpensive alternatives to a simulation. Surrogates
for simple, but approximate, simulations can be used to identify a viable region in the input
parameter space, where an experiment is more likely to work. The points in this viable region
could then be used in more complex and longer-running simulations [21], thus making better
use of computer resources. If the simulation is more complex and provides results closer to
experiments, the surrogates could be used directly in designing experiments. For data sets
that are generated incrementally, a code surrogate could indicate the next sample points that
should be run to provide the most benefit, in a manner similar to active learning [9]. Finally,
surrogates play an important role in uncertainty analyses and sensitivity studies [13].

Code surrogates can be relatively inexpensive to build and use. But, to be effective, their
predictions must be accurate enough for the task at hand. This is challenging when we can
run the simulation at only a few sample points and the complexity of the function relating
the simulation outputs to the inputs is unknown.

In this paper, we show how we can generate accurate surrogates using small data sets
by appropriately selecting the sample points and the regression algorithm. We illustrate our
work using the task of determining melt-pool characteristics in the domain of additive manu-
facturing. Our ideas are applicable to simulations in other domains, as well as the problem of
hyper-parameter optimization for machine learning algorithms [6]. This problem is typically
solved by sampling the potentially high-dimensional, input space of hyper-parameters and
selecting the sample that results in the smallest value of an error metric, such as the leave-
one-out error. If the calculation of this metric is expensive, which is the case for large data
sets, or the number of hyper-parameters is large, the ideas presented in this paper could be
applied to solve the problem within a fixed computational budget. Our contributions in this
paper are as follows:

• We propose the use of a sampling technique from computer graphics that allows us to
randomly place a given number of sample points that are well spread out so they cover the
high-dimensional space adequately. We use this technique to generate sample points in

123



Regression with small data sets: a case study using code... 477

the input parameter space of simulations aswell as to sample the hyper-parameter space of
one of our regression algorithms to find the optimal hyper-parameters. This sampling can
also be used to identify a subset of random-but-equispaced instances from a larger data
set for use in time-constrained tasks such as evaluating the metric for hyper-parameter
optimization [30].

• We use a practical problem in additive manufacturing to investigate how the accuracy
of various regression algorithms changes as we reduce the size of the data sets. We
demonstrate that even with a data set containing just tens of samples, there are some
regression algorithms that perform quite well. Identifying a good algorithm for such
small data sets is difficult as cross validation is an unreliable metric for evaluation; our
results provide practitioners some guidance on a choice of algorithms.

• We propose an approach that combines simple, approximate simulations to first identify
viable regions, followed by more accurate, but computationally expensive simulations
that are run at select sample points, to obtain results at reduced cost. This is possible
in many scientific domains, where inexpensive simulations, which do not include all of
the science, are often available. This idea is especially applicable in hyper-parameter
optimization, where we can use a simple metric to identify regions of viable hyper-
parameters, followed by the evaluation of a more accurate metric on a select subset of
viable points.We could even build a “surrogate” for the errormetric to obtain the optimum
hyper-parameters.

This paper is organized as follows: First, in Sect. 2, we briefly describe the application
domain of additive manufacturing, the two simulations used in our work, and the sampling
used to generate the data sets. In Sect. 3, we describe the algorithms used to build the code
surrogates, followed by Sect. 4, where we present and discuss the performance of these
algorithms using a variety of metrics. Related work is described in Sect. 5, and we conclude
with a summary in Sect. 6.

2 Simulation data from additive manufacturing

We conduct our work using data from simulations in the domain of additive manufacturing,
though the ideas presented are applicable to simulations in any domain. Additive manu-
facturing (AM), or 3-D printing, is a process for fabricating parts, layer-by-layer. In laser
powder-bed fusion, each layer in a part is created by spreading a thin layer of powder and
using a laser beam to selectively melt the powder in specific locations so that it blends into
the layers below. A particular challenge in AM is to understand how the many parameters
that control the process affect the properties and quality of a part. These parameters include
not only the properties of the material such as thermal conductivity, but also the particle sizes
and layer thickness of the powder, as well as the power and speed of the laser. Exploring this
high-dimensional input parameter space using experiments is infeasible, and while simula-
tions are a viable alternative, they too can be expensive if they incorporate all the physics
involved in AM.

In our earlier application-focused work [21,23], we investigated how the choice of input
parameters affected the characteristics (length, depth, and width) of the melt-pool that is
formed when the laser melts a layer of powder. Our goal was to select input parameters that
created melt pools deep enough to melt through the powder into the substrate below, but not
so deep that we waste energy. We considered two models for the simulations:
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Fig. 1 Sampling in a two-dimensional space: 100 samples distributed using a random sampling, b stratified
random sampling with ten levels along each axis, and c best-candidate sampling

• Eagar–Tsai model This very simple model [14] considers a Gaussian laser beammoving
on a three-dimensional flat plate. The resulting temperature distribution is used to com-
pute the melt-pool characteristics as a function of four input parameters: laser power,
laser speed, beam size, and laser absorptivity of the powder, which indicates how much
of the laser energy is absorbed by the powder. The model is computationally inexpensive,
taking ≈1 minute to run on a laptop, enabling a dense sampling of the input parameter
space.

• Verhaeghe modelThis is amore expensive physical model that considers various physical
phenomena involved in the laser melting of powder on a substrate [37]. This model takes
about 1–3 h of computational time (depending on the laser speed) on a small eight-
processor cluster. The model has a larger number of parameters, such as the powder
layer thickness, the void fraction in the powder, and various material properties, not all
of which are known precisely.

We found that the Eager-Tsai model, while fast, was not accurate enough for use in
prediction, while the Verhaeghe model was more accurate, but its computational cost and
larger number of parameters made its use prohibitively expensive. This naturally prompted
us to consider code surrogates for these simulations.

2.1 Sampling the input space of simulations

To build a code surrogate, we first need to generate the training data. Our two simulation
models each have a number of input parameters that we can vary to create sample points at
which to run the simulations. As the number of sample points required to adequately sample
a parameter space is exponential in the number of parameters [10], we need to select these
sample points carefully.

When little is known about a simulation, the initial set of sample points are generated
randomly and additional points are added as required. However, as seen in Fig. 1a for a
two-dimensional space, a random sampling can result in regions that are over- or under-
sampled. Improved sampling techniques have been extensively studied in two related fields—
the traditional “design of (physical) experiments” [26] and the contemporary “design and
analysis of computer experiments” [15], resulting in awealth of sampling techniques currently
in use [27,28]. Since one of our physical models is computationally inexpensive and the
other is moderately expensive, we consider two sampling schemes that were selected for
their simplicity:
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• Stratified random sampling In this scheme, we first divide each input parameter range
into a number of levels and select a sample point randomly in each resulting cell (Fig. 1b).
While the spatial distribution of sample points is improved in comparison with a purely
random sampling, the number of samples, which is determined by the number of param-
eters and number of levels in each parameter, can be too large for use with expensive
simulations.

• Best-candidate sampling The Mitchell’s best-candidate sampling [25], originally pro-
posed in computer graphics, places samples randomly as far apart from each other as
possible. The method starts by placing the first point randomly. Then, for each new point,
it randomly generates a pre-specified number of candidate points and selects as the next
sample the candidate that has the largest nearest-neighbor distance to the current set of
samples. The process continues until the desired number of samples have been gener-
ated. This method allows us to specify an arbitrary number of samples, incrementally add
new samples to an existing set, and sub-sample from an existing set. As a result, we can
start with a coarse sampling of the simulation input space or the hyper-parameters of an
algorithm and then incrementally add more points in selected regions for a progressively
denser sampling. We can also use the method to create a random subset of a larger data
set, where the instances in the selected subset are far apart from each other, making the
subset less biased.

2.2 Data used in the experiments

We generate three data sets generated from the two physical models and the two sampling
schemes:

• Eagar–Tsai-462 This data set was generated using the Eagar–Tsai model and the strat-
ified random sampling. We selected the ranges and number of levels of the four input
parameters to match our additive manufacturing machine and the material being used,
resulting in 462 simulations [23]. Each data point in this data set consists of the four
inputs — laser power, laser speed, laser beam size, and absorptivity of the material —
and the corresponding values of melt-pool depth, width, and length obtained from the
Eager-Tsai model.

• Eagar–Tsai-100 This data set was also generated using the Eagar–Tsai model, but used
just 100 sample points generated using the best-candidate sampling scheme. It allows us
to compare surrogates using the same, simple, Eagar–Tsai model when the size of the
data set is reduced. Each sample point has the four inputs used in the simulation and
only the corresponding value of melt-pool depth as it is the most important of the three
outputs.

• Verhaeghe-41 This data set was generated by considering the 41 points in the Eagar–
Tsai-100 that had a melt-pool depth larger than 55 microns, a value that indicated a
viable parameter set. The Verhaeghe model was then run at these sample points to obtain
the melt-pool depth. Each of the 41 data points consists of the four inputs used in the
simulation and the corresponding values of melt-pool depth. The remaining inputs were
set to standard values for the material. We focused only on the depth as the Verhaeghe
model does not include the physics required to reproduce the melt-pool width. This data
set allows us to compare experimental results with the predictions from surrogates for
the case where a complex simulation was run at a small number of sample points. It
also illustrates the approach of combining simple and expensive simulations to reduce
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the computational cost as we do not have to run the more expensive simulations at the
non-viable points.

In addition to the data we generated from simulations, we also have experimental data
from single-track experiments [38], where a single layer of powder is spread on a plate, and
the laser is used to create single tracks at specific power and speed values. The plate is then
processed to reveal the track cross section from which the depth and width are obtained. As
the preprocessing and post-processing of the plate after the creation of the tracks is quite
expensive, we have results for just 14 tracks [21,23] which we use in Sect. 4.3 to evaluate
the quality of the surrogate built using the Verhaeghe-41 data set.

3 Description of the code surrogates

We next briefly describe the algorithms used to build the code surrogates in our study. They
were chosen based on their accuracy, their simplicity and the resulting interpretability, as
well as their successful use in various application domains.

3.1 Nearest-neighbor methods

The simplest among regression methods, this class of methods predicts the value at a point
in input space as a function of the values of its nearest neighbors in the input space. In our
work, we use locally weighted kernel regression (LWKR) [2], where we build a locally linear
model, whose coefficients are obtained using a least squares fit. We first scale each input to
lie between 0.0 and 1.0. To avoid having to select the number of near neighbors, we define
distances between samples using a Gaussian kernel of bandwidth 0.1; this kernel distance
reduces the contribution of samples that are farther away. In addition, we use a weighted
Euclidean distance as an initial exploratory analysis of the training data using Analysis of
Variance (ANOVA) (Sect. 4.1) indicated that this would improve the accuracy of the method.

3.2 Regression trees

For our regression tree algorithm [8], we split the data at a node of the tree using the mean-
squared error, MSE, which for a split A on a certain input is defined as

MSE(A) = pL · s(tL) + pR · s(tR)

where tL and tR are the subset of samples that go to the left and right, respectively, by the
split based on A, pL, and pR are the proportion of samples that go to the left and right, and
s(t) is the standard deviation of the N (t) output values, ci , of samples in the subset t :

s(t) =
√
√
√
√

1

N (t)

N (t)
∑

i=1

(ci − c(t))2

where c(t) is the mean of the values in subset t . The split at each node of the tree is the one
that minimizes MSE across all features for the samples at that node. To avoid over-fitting,
we stop growing the tree if the number of samples at a node is less than 5 or the standard
deviation of the values of the output variable at a node has dropped below 5% of the standard
deviation of the output variable of the original data set. Further, to improve the accuracy, we
use an ensemble of 10 trees [20,31,32], where randomization is introduced at a node of the
tree by using a random subset of the samples [22] to make the split at the node.

123



Regression with small data sets: a case study using code... 481

3.3 Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) [16] is a regression model for high-
dimensional data that combines separate linearmodels for segmentswithin the input variables
in a way that automatically models linear and nonlinear interactions among these variables.
In the training phase, the data are partitioned into separate, piece-wise, linear segments of
differing slopes, called linear splines, which are then connected smoothly together to build
piece-wise curves, called basis functions. The MARS model is a linear combination of these
basis functions and their interactions. Given two user-defined parameters—the maximum
number of basis functions and the maximum interaction level—MARS first builds a com-
plicated model that over-fits the data, followed by a phase where the model is simplified
by removing basis functions that made the least contribution. The best model is determined
using the generalized cross validation (GCV) criterion that trades off goodness-of-fit against
model complexity:

GCV =
1
N

∑N
i=1[yi − f (xi )]2

1 − 1
N [M + δ × M−1

2 ] ,

where f (xi ) and yi are the predicted and actual values at point xi ; M is the number of basis
functions; M−1

2 is the number of knots; N is the number of training samples; and δ is a
penalty that is about 2 or 3. The numerator is the average of the residual sum of squares. The
denominator contains both the number of basis functions and the number of knots, which
results in less complex models being selected.

3.4 Support vector regression

The ε-SVR method [36] uses the training data to find a decision function that has at most ε
deviation from all of the actual target output values in the training data. In our work, we use
the ν-support vector regression (ν-SVR) method [11,34] that obtains the decision function
by formulating an optimization problem in which the risk is reduced by minimizing both the
model complexity and training error. A soft margin loss function [5] is used to cope with
otherwise infeasible constraints. The decision function obtained by solving the optimization
problem is then used to predict the output at a new sample point.

3.5 Gaussian processes

Gaussian process (GP) is a surrogate model that provides not just a prediction, but also an
uncertainty on the prediction. A GP is a collection of random variables, any finite number
of which have a joint Gaussian distribution [30]. GPs can be considered to be an extension
of multivariate Gaussian distributions to infinite dimensions. Since our training data with N
samples can be thought of as a single point sampled from an N-variate Gaussian distribution,
they can be partnered with a Gaussian process. The mean of this GP is often taken to be zero.
The model that is fit to the data using a GP is controlled by the covariance function. We use
a squared exponential that has two parameters—one for the maximum allowable covariance
and the other a length parameter that determines the extent of influence of each point and
therefore controls the smoothness of the interpolation. These parameters are calculated from
the training data using a maximum likelihood approach. It is also possible to include a
Gaussian noise component in the output variable, but in our current analysis, we have assumed
the noise to be zero.
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4 Experimental results

We conduct several experiments with the three data sets described in Sect. 2 to evaluate the
different surrogates and understand their performance on a small training set. Specifically,
we:

• perform an exploratory analysis of the data using ANOVA (Sect. 4.1),
• evaluate the accuracy of the different surrogate models on Eagar–Tsai-462 and Eagar–

Tsai-100 data sets using cross validation and leave-one-out error metrics (Sect. 4.2),
and

• describe how surrogate models built using a small training set perform in prediction
(Sect. 4.3).

Recall that we use three data sets—Eagar–Tsai-462, Eagar–Tsai-100, and Verhaeghe-
41—with 462, 100, and 41 sample points, respectively. There are four inputs in each data
set: the laser power, the laser speed, the beam size, and the absorptivity of the material as a
fraction. In the larger Eagar–Tsai data set, we consider three outputs: the melt-pool width,
depth, and length, while in the remaining two data sets, we focus only on the depth as it is
the most important of the three outputs. The depth is a relatively well-behaved function over
most of the domain, though it increases rapidly in a small region where the laser power is
high and the laser speed is low. Since this nonlinear region is quite small, it is possible that
a small number of samples might not capture the variation in this region adequately. This
explains why the Eagar–Tsai-462 data set has melt-pool depth values in the range 12–289
microns, while the smaller Eagar–Tsai-100 data set has depth values in the range 23–101
microns. This is an inherent problem whenever a small number of samples are used to model
a rapidly varying function.

4.1 Exploratory analysis using ANOVA

Before presenting the results for the different surrogates described in Sect. 3, we discuss the
results of Analysis of Variance (ANOVA) [26] applied to data derived from the Eagar–Tsai-
462 data set. ANOVA is a very simple model based on mean values, and the deviation from
mean values, used to explain data sets. It is related to linear regression, though it is not a
surrogate in the strictest sense. We include ANOVA in this paper as it provides useful insight
in improving the performance of nearest neighbor surrogates.

In the ANOVA approach [26], a physical or computational experiment, with a set of input
variables (called factors), is run at a select set of values (called levels) of these inputs, and
the resulting outputs are analyzed. To generate such a data set from the Eagar–Tsai-462 data,
we first identified the minimum and the maximum values of each of the four inputs, then
divided this range into four equal segments, and took the midpoint of each segment as the
value at that level. These values are listed in Table 1. Next, we generated the output data
(the melt-pool length, width, and depth) at these 256 points by using the MARS method
applied to the Eagar–Tsai-462 data. We repeated this three times, each time using a random
90% subset of the data to build the MARS model, giving us a total of 768 predictions (three
values at each of the 256 points) for each of the three output variables. We then performed
a 4-way ANOVA on this data set, focusing on the main effects and first-order interactions
of the four input factors. The F-statistic for these are summarized in Table 2, with the larger
values indicated in bold. These results suggest that not all inputs contribute equally to the
three outputs. Specifically:
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Table 1 Input values used for each factor for the ANOVA experiment

Level Speed Power Beam size Absorptivity

1 0.335325 93.8875 26.125 0.325

2 0.882375 181.0625 28.375 0.375

3 1.429425 268.2375 30.625 0.425

4 1.976475 355.4125 32.875 0.475

The laser speed in m/s, the laser power in Watts, the beam size is the diameter of the Gaussian laser beam in
micron, and the absorptivity of the material is a fraction indicating how much of the laser energy is absorbed

Table 2 F-statistic values for main effects (top) and 2-way interaction terms (bottom) from 4-factor ANOVA

Input Output variables

Parameters Depth Length Width

Speed 4.11 × 102 4.50 ×10−2 3.88 × 102

Power 1.12 × 102 2.06 × 103 1.15 × 102

Beam size 6.96 × 10−4 1.26 × 10−5 3.52 × 10−3

Absorptivity 7.35 2.59 × 101 6.70

Speed and power 9.73 × 101 2.13 × 10−2 1.49 × 102

Speed and beam size 2.20 × 10−2 2.20 × 10−3 5.08 × 10−3

Speed and absorptivity 9.73 × 10−1 2.49 × 10−3 5.83 × 10−1

Power and beam size 1.15 × 10−2 9.96 × 10−5 5.47 × 10−3

Power and absorptivity 1.37 × 10−1 5.90 × 103 3.38 × 10−2

Beam size and absorptivity 3.26 × 10−3 1.27 × 10−5 9.67 × 10−4

• The laser speed affects the melt-pool depth and width; the absorptivity affects the melt-
pool length; and the laser power affects all three outputs.

• The laser power and laser speed have a strong interaction that affects the melt-pool depth
and width, while the laser power and absorptivity interaction strongly affect the length.

We drew the same conclusions in our previous work using feature selection algorithms
on the Eagar–Tsai-462 data set [21]. This suggested that to build good surrogate models,
methods based on distances in the input space, such as the nearest-neighbor methods, would
benefit by using a weighted distance. We, therefore, modified our implementation of the
LWKR method to weight the features. The near-optimal feature weights were obtained by
using the best-candidate method (Sect. 2.1) to generate random samples in the weight space
in the range [0.0, 5.0] and selecting the sample that resulted in the minimum sum of absolute
leave-one-out errors on the training set. Table 3 lists the near-optimal weights used in our
LWKR model. Note that these weights, especially for the larger data sets, concur with the
ANOVA analysis.

4.2 Evaluating the accuracy of surrogate models

We consider two different metrics to evaluate the accuracy of the predictive models. The first
is k runs of m-fold cross validation, where the data are divided randomly into m parts, the
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Table 3 Near-optimal feature weights for the LWKR surrogate model

Input Eagar–Tsai-462 Eagar–Tsai-100 Verhaeghe-41

Parameters Length Depth Width Depth Depth

Speed 0.93 4.17 4.90 1.23 1.47

Power 1.40 1.52 1.03 0.79 0.20

Beam size 0.03 0.05 0.05 0.10 0.24

Absorptivity 1.05 0.09 0.21 0.08 0.37

Table 4 Error rate of the different surrogate models using relative MSE (equivalent to 1-R2) for five runs of
fivefold cross validation for the Eagar–Tsai-462 and the Eagar–Tsai-100 data sets

Surrogate Relative MSE for 5 runs of fivefold cross validation

Eagar–Tsai-462 Eagar–Tsai-100

Length (%) Depth (%) Width (%) Depth (%)

LWKR (no weighting) 0.04 9.02 9.76 6.40

LWKR (optimal weights) 0.02 0.34 0.19 0.25

Regression tree 1.92 8.95 8.91 27.32

Ensemble of 10 trees 0.85 3.89 4.19 12.43

MARS 0.02 0.72 0.62 0.42

SVR 0.01 10.24 11.08 1.52

GP 0.01 0.02 0.07 0.08

model is trained on (m−1) parts and evaluated on the part that is held out. This is repeated for
each of the m parts. The process is repeated k times, each with a different random partition
of the data. The final metric is the average of the accuracy for each of the k × m parts. We
use the relative mean-squared error metric, defined as

n
∑

i=1

(pi − ai )
2

/ n
∑

i=1

(ā − ai )
2

where pi and ai are the predicted and actual values, respectively, of the i-th sample point in
the test data consisting of n points, and ā is the average of the actual values in the test data.
This is essentially the ratio of the variance of the residual to the variance of the target (that is,
actual) values and is equal to (1.0 − R2), where R2 is the coefficient of determination. The
second metric is the leave-one-out (LOO) prediction, where a model, which is built using all
but one of the sample points, is used to predict the value at the point that is held out. The plot
of predicted versus actual values provides an estimate of the quality of the results.

We first present the results for the prediction of melt-pool length, depth, and width for the
Eagar–Tsai-462 data set and the melt-pool depth for the Eagar–Tsai-100 data set. Table 4
summarizes the results of five runs of fivefold cross validation for the different surrogates,
while Figs. 2 and 3 show the predicted vs. actual values using the leave-one-out method. We
observe the following:

• The errors in the melt-pool depth and width tend to be similar and larger than the error
in the length, which is the least important characteristic.

• A single regression tree is less accurate than an ensemble of 10 trees, which is expected.
However, the cross validation error for an ensemble is still relatively high and the plots
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Fig. 2 Predicted versus actual values for the length, depth, and width for the Eagar–Tsai-462 data set and the
depth using the Eagar–Tsai-100 data set for the different surrogate models using a leave-one-out approach.
From top to bottom: locally weighted kernel regression with no feature weighting, locally weighted kernel
regression with optimal feature weights, single regression tree, ensemble of 10 regression trees

of predicted vs. actual values show a good deal of scatter. As each node in the tree
is required to have a minimum number of instances, the trees are very shallow and
inaccurate, especially in the smaller Eagar–Tsai-100 data set.

• SVR has a much higher cross validation error than either LWKR with optimal weights,
MARS, or GP. The predicted vs. actual value plots indicate that the error is mainly at the
higher values, where the method under predicts both the depth and width. We suspect
that the smaller number of samples at higher values results in a less-than-optimal choice
of support vectors. The prediction is better for the Eagar–Tsai-100 data set that has fewer
samples with large depth.

• As suggested by theANOVAanalysis, the cross validation results and the LOOprediction
plots for the melt-pool depth and width are substantially improved if we use LWKRwith
optimal weights instead of weighting all inputs equally in calculating distances.
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Fig. 3 Predicted versus actual values for the length, depth, and width for the Eagar–Tsai-462 data set and the
depth using the Eagar–Tsai-100 data set for the different surrogate models using a leave-one-out approach.
From top to bottom: MARS multivariate adaptive regression splines, SVR support vector regression, and GP
Gaussian processes

• The accuracy of MARS and LWKR with optimal weights is comparable, while GP
outperforms both. This is true for both data sets and all melt-pool characteristics.

• In surrogate models that perform well, there is a slightly more scatter at higher depth and
width values in the Eagar–Tsai-462 data set. As mentioned earlier, there is a small region
in design space where high laser power and low laser speed result in a rapid increase
in the melt-pool depth and width. While the Eagar–Tsai-462 data set has some samples
in this region, they are not enough to capture the variation, resulting in less accurate
prediction. In contrast, this behavior is not seen in the Eagar–Tsai-100 data set as the
smaller number of samples does not even capture this region.

For the remainder of the paper, we focus on the melt-pool depth as it is the most important
of the three characteristics. Also, given their improved performance, we present results for
LWKR only with optimal weights and for regression trees only with an ensemble of 10 trees.

4.3 Comparing surrogate models in practical applications

Wehave shown in Sect. 4.2 that several surrogatemodels give satisfactory prediction accuracy
using the cross validation and the leave-one-out error metrics.We next compare how effective
each surrogate is in its prediction of the melt-pool depth at new sample points especially as
we reduce the size of the training data. These examples also illustrate the ways in which the
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Fig. 4 Comparing the viability regions identified by different surrogates for the Eagar–Tsai simulation as the
number of samples points is reduced. Columns 1 and 3 are the prediction of the melt-pool depth using Eagar–
Tsai-462 and Eagar–Tsai-100, respectively, while columns 1 and 4 are the corresponding viability regions.
The rows are from top to bottom—LWKR with optimal weights, an ensemble of ten regression trees, MARS,
and SVR

surrogates can be used in a practical application and give us a way of evaluating surrogates
on small data sets when metrics such as cross validation become unreliable [19].

4.3.1 Determination of viable region

In the first example, we use the surrogates to determine the viable region where the power
and speed values result in sufficiently deep, but not too deep, melt pools. In our previous
work [21], we found that for a powder layer thickness of 30 microns, a depth value from the
simple Eagar–Tsai model could be considered viable if it was greater than or equal to 60
microns, but less than or equal to 120 microns.

Ideally, a good surrogate would predict similar viable regions with the smaller Eagar–
Tsai-100 data set as with the larger Eagar–Tsai-462 data set. So, we generated viability plots
by training the different surrogates on the two data sets and predicting the depth on a 40×40
grid of sample points in the power-speed space, keeping the values of the other two variables
fixed at 52 microns for the beam size and 0.4 for the absorptivity. Figures 4 and 5 show the
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Fig. 5 Comparing the viability regions identified by and Gaussian process for the Eagar–Tsai simulation as
the number of samples points is reduced. The columns are from left to right: the prediction of the melt-pool
depth, the standard deviation in the prediction, and the viability region. Results for the top row are generated
using the Eagar–Tsai-462 data set and for the bottom row, using the Eagar–Tsai-100 data set

predictions of melt-pool depth over this grid of 1600 sample points, along with the viability
regions, for the two training data sets. For the GP surrogate, we also include the one standard
deviation uncertainty in the prediction. We observe the following:

• The viable region for the ensemble of regression trees has the block structure typical of
tree methods resulting from the axis-parallel cuts that divide the input space. The viable
region is also very different when a smaller training set is used.

• Since SVR under predicts the depth at larger values, the viable region with the smaller
training set completely fills the gap near the top left corner, where the melt-pools are
very deep.

• For both LWKR with optimal weights and MARS, the viable region for the smaller
training set is very similar to, but slightly larger than, the viable region for the larger
training set.

• For the GP surrogate, the viable region for the smaller data set is closest to the viable
region for the larger data set. Note that in the larger data set, there are a small number
of viable points in the upper right corner at speed values of 2500mm/s. These points
are also associated with greater uncertainty in prediction as they lie outside the range
of the training data, which has a maximum speed of 2250mm/s. This availability of the
associated uncertainty in the prediction is an added benefit of the GP surrogate.

4.3.2 Identifying parameters for constant depth

In additive manufacturing, to create a higher quality part, we would ideally like to keep the
dimensions of the melt pool roughly constant as the laser traces out the part on each layer.
Beuth and colleagues [7] have proposed the use of “process maps,” which are curves in
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Fig. 6 Process maps indicating points at a constant depth in the power-speed space. The columns from left
to right are LWKR with optimal weights, MARS, SVR, and GP. Results for the top row are generated using
the Eagar–Tsai-462 data set and for the bottom row, the Eagar–Tsai-100 data set

power-speed space where melt-pool characteristics, such as depth, are constant. So, if the
laser has to slow down to turn, it could change the power appropriately to keep the depth
constant.

Code surrogates can be used to build these process maps. Figure 6 shows the curves
with melt-pool depths of 60, 75, and 90 microns, predicted by the four surrogates using
the Eagar–Tsai-462 and Eagar–Tsai-100 data sets. The points in these plots are within ± 1
micron of the depth for each curve. A good surrogate should give very similar curves with
the smaller training data as with the larger training data. This is the case for LWKR with
optimal weights and GP; though the latter has spurious points in the top right corner, it gives
a better localization of the curves. In contrast, the location and completeness of the curves
using MARS and SVR are very different when the training set is reduced in size.

4.3.3 Predictions for designing experiments

In earlier work [21], we showed that a Gaussian process model trained using the Verhaeghe-
41 data set was able to predict, with reasonable accuracy, the actual depth obtained from an
experiment where 14 single tracks were created on a plate. Unlike the Eagar–Tsai model,
which is a simple approximation, the Verhaeghe model gives results that are much closer
to the experiment. However, it is computationally very expensive, limiting the number of
simulations we can run to fully understand the input design space. Code surrogates are an
obvious alternative, but it is important to understand how well a surrogate would perform
with such a small training set.

In Table 5, we present the predictions of themelt-pool depth for the 14 experimental tracks
using the four surrogates. These results were obtained using the Verhaeghe-41 data set for
training. We have also included the experimental value of the depth, mainly for comparison
and to illustrate that more complex simulations can give results close to the experiment. The
table lists the error in prediction of each of the surrogates relative to the depth from running
theVerhaeghe simulation at the parameters for the 14 tracks. As a simplemetric, we evaluated
the sum of the absolute values of these errors for the four surrogates, which is 43.4, 47.9,
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Table 5 Depth, in microns, from the single-track experiments, the Verhaeghe model, and the predictions
using four code surrogates built with the Verhaeghe-41 data set

Track Power Speed Expt Verhaeghe Surrogates

LWKR MARS SVR GP

1 400 1800 105.0 105.0 (0.0) 105.6 (− 0.6) 101.5 (3.5) 105.0 (0.0) 105.0 (0.0)

2 400 1500 119.0 127.5 (− 8.5) 127.7 (0.2) 124.4 (3.1) 130.6 (− 3.1) 126.6 (0.9)

3 400 1200 182.0 163.5 (18.5) 157.8 (5.7) 158.0 (5.5) 160.5 (3.0) 155.5 (8.0)

4 300 1800 65.0 75.0 (− 10.0) 78.6 (− 3.6) 76.8 (− 1.8) 63.1 (11.9) 68.1 (6.9)

5 300 1500 94.0 90.0 (4.0) 90.6 (− 0.6) 91.1 (− 1.1) 87.5 (2.5) 89.4 (0.6)

6 300 1200 114.0 115.0 (− 1.0) 113.6 (1.4) 113.4 (1.6) 116.7 (− 1.7) 116.7 (− 1.7)

7 300 800 175.0 172.5 (2.5) 179.1 (− 6.6) 167.2 (5.3) 161.2 (11.3) 169.3 (3.2)

8 200 1500 57.0 55.0 (2.0) 52.3 ( 2.7) 57.8 (− 2.8) 41.7 (13.3) 57.9 (− 2.9)

9 200 1200 68.0 70.0 (− 2.0) 68.2 (1.8) 68.8 (1.2) 68.8 (1.2) 78.3 (− 8.3)

10 200 800 116.0 105.0 (11.0) 114.4 (− 9.4) 99.4 (5.6) 111.3 (− 6.3) 104.5 (0.5)

11 200 500 195.0 165.0 (30.0) 165.9 (− 0.9) 163.2 (1.8) 146.3 (18.7) 169.0 (− 4.0)

12 150 1200 30.0 47.5 (− 17.5) 45.0 (2.5) 46.4 (1.1) 45.3 (2.2) 59.5 (− 12.0)

13 150 800 67.0 72.5 (− 5.5) 81.6 (− 9.1) 65.5 (7.0) 86.1 (− 13.6) 69.5 (3.0)

14 150 500 120.0 112.5 (7.5) 115.3 (− 2.8 110.5 (2.0) 120.1 (− 7.6) 113.1 (0.6)

Power values are in Watts and speed is in mm/s. For the Verhaeghe model, the value in parenthesis is the
difference from the experiment, and for the four surrogates, it is the difference from the Verhaeghe model.
The sum of the absolute error for LWKR, MARS, SVR, and GP is 47.9, 43.4, 96.4, and 52.6, respectively

52.6, and 96.4 microns for MARS, LWKRwith optimal weights, GP, and SVR, respectively.
This indicates that the MARS, LWKR, and GP surrogates tend to perform better than SVR.

4.4 Discussion of results

Our experiments provide some interesting insights into the use of regression algorithms with
small data sets. Though we illustrate our work using the problem of surrogate models in the
domain of additive manufacturing, our results extend to any domains and problems where
generating the data is very expensive, leading to small data sets. By comparing algorithms
in terms of how they would be used in a practical application, such as AM, we make our
observations more applicable in the context of a real problem. The use of simulations to
generate the data makes it easy to create data sets of different sizes for comparison. The
variables to be predicted are reasonably well-behaved, without any discontinuities or large
regions with rapidly varying values; this makes the results somewhat independent of the
samples used in the simulations.

Of the five algorithms compared, the regression tree performs the worst. As the size
of the data set decreases, the requirement that a leaf node has a minimal number of sam-
ples leads to a large variation in values at a leaf node and inaccurate predictions. SVR is
not competitive on smaller data sets as it performs poorly in regions with large variation
but few sample points to capture the variation. We suspect the support vectors do not ade-
quately reflect the target values in such regions. The remaining three methods—LWKR with
optimal weights, MARS, and GP—all perform well. Of these, GP provides the best per-
formance, both in terms of prediction accuracy and use in practice. It also provides the
uncertainty in prediction, which could be used to determine locations to add new sample
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points when a data set is generated incrementally. Both LWKR and MARS are comparable
in accuracy and practical use. The near-optimal weights obtained for the distance calculation
in LWKR provides an indication of the relative importance of the different input dimen-
sions.

Finally, we did not consider the computational time for each algorithm. As the data sets
are small, the time required to build and apply the model is also small, and therefore less
relevant in the comparison.

5 Related work

The work in prediction using small data sets has been driven mainly by two, somewhat
related, factors: the high cost of collecting data in some problem domains and the need to
draw conclusions from the data that has already been collected, while accounting for the fact
that a small sample data set might not reflect the population as a whole. The early work in
this topic focused on the sample sizes required to build good models with small data sets.
In behavioral sciences, where simple linear regression models on predictor variables were
used, the desire to avoid over-fitting led to several rules of thumb to determine appropriate
sample sizes. Typical rules suggested a minimum of 10 to 15 observations per predictor
variable or a minimum base sample size of 50 observations plus 8 additional observations
per predictor [4]. With increasing availability of compute power, Monte Carlo simulations
have been used to determineminimum sample sizes for estimating regression coefficients and
for R2 statistics in prediction [3]. The topic of selecting models for small sample sizes has
been studied both theoretically for parametric regression [12] and for classification problems
in high-dimensional simulated data sets in bioinformatics [18]. We found little work that
compared how different methods performed on small data sets, both in terms of prediction
accuracy, as well as practical use.

6 Conclusions

In this paper, we investigated the use of regression algorithms to build code surrogates for
computer simulations. As the simulations are expensive, the training data set is small, in some
cases consisting of just tens of samples. Despite this, we showed that we can build accurate
surrogates by appropriately choosing both the regression algorithm and the samples in the
input parameter space of the simulations. Our test problem, from additivemanufacturing, was
to predict characteristics of the melt pool formed when a laser beam, moving at a specific
speed, melts a layer of powder into the substrate below. Our experiments indicated that
ensembles of regression trees and support vector regression did not perform well, but locally
weighted kernel regression andmultivariate adaptive regression splines gave accurate results.
Gaussian process models performed the best; they were not only accurate, but also provided
a measure of confidence in the prediction results. Our work is broadly applicable to the task
of building code surrogates for simulations in other domains such as climate and materials
sciences, in building regressionmodels with small data sets, and in time-constrainedmachine
learning tasks such as hyper-parameter optimization. Finally,we observe that code surrogates,
like any other interpolation techniques, work best with functions that are continuous and
smoothly varying; discontinuities and sharp gradients in the function are unlikely to be
accurately identified in the sampling.
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