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Abstract Symbiotic organisms search algorithm is a new meta-heuristic algorithm based
on the symbiotic relationship between the biological which was proposed in recent years. In
this paper, a novel complex-valued encoding symbiotic organisms search (CSOS) algorithm
is proposed. The algorithm introduces the idea of complex coding diploid. Each individual is
composed of real and imaginary parts and extends the search space from one dimension to two
dimensions. This increases the diversity of the population, further enhances the ability of the
algorithm to find the global optimal value, and improves the precision of the algorithm. CSOS
has been tested with 23 standard benchmark functions and 2 engineering design problems.
The results show that CSOS has better ability of finding global optimal value and higher
precision.

Keywords Symbiotic organisms search - Complex-valued encoding - Benchmark test
functions - Engineering problems

1 Introduction

Swarm intelligence optimization algorithm comes from simulating the behavior of various
groups in nature, human society and animals. The purpose of finding the global optimal value
is to use the individual information interaction and cooperation in the group. Compared with
other types of optimization algorithms, swarm intelligence optimization algorithm is simple,
easy to implement, higher efficiency and accuracy. At present, the most popular swarm intel-
ligence optimization algorithms are ant colony optimization (ACO) [1], differential evolution
(DE) [2], particle swarm optimization (PSO) [3]. In recent years, some new swarm intelligent
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algorithms have been proposed, such as flower pollination algorithm (FPA) [4], cuckoo search
(CS) [5], firefly algorithm (FA) [6], charged system search (CSS) [7], bat algorithm (BA) [8],
grey wolf optimization (GWO) [9]. At present, swarm intelligent optimization algorithm, as
a meta-heuristic algorithm based on swarm intelligence, has been widely used in many fields
such as engineering, network communication, finance, automatic control and so on.

Symbiotic Organisms Search (SOS) was a new meta-heuristic algorithm proposed by
Cheng and Prayogo [10]. Compared to most meta-heuristic algorithms, the SOS algorithm
has an obvious advantage that the algorithm does not require special algorithm parameter
settings. SOS algorithm structure is simple, easy to understand, so by more and more scholars
of the study. At present, the symbiotic organism search algorithm has been applied to such as
task scheduling in cloud computing environment [ 11], large-scale economic dispatch problem
with valve-point effects [12], optimal power flow of power system with FACTS devices [13],
DG placement in radial distribution network [14] and many other aspects.

In expressing neural network weights [15] and representing individual genes for evolu-
tionary algorithms [16], the complex encoding [17] method has been applied. So this paper
presents a complex-valued encoding symbiotic organisms search (CSOS). The original SOS
algorithm is implemented in real-coded way to encode the algorithm. In this way, the appli-
cation scope of the algorithm is limited to the real range, which limits the diversity of the
population and is not conducive to the optimization of the algorithm. Compared with the
real number coding, complex code has many advantages [15—17]. The contribution of this
paper is to introduce the idea of complex coding into the SOS algorithm and propose a sym-
biotic organisms search algorithm based on complex coding. In the CSOS algorithm, the
structure of the real and imaginary parts of the complex code is introduced into the SOS
algorithm, and the two-dimensional coding space of the complex code is used to map the
real-coded one-dimensional coding space. We use real and imaginary parts to collectively
represent a biological individual in the population, and the real and imaginary parts are
updated separately to find the optimal value of the algorithm. This haploid structure expands
the information contained in the individual genes of the organism in the symbiotic organisms
search algorithm, increases the biodiversity of the individual in the population, improves the
possibility of obtaining the optimal solution, and enhances the optimization of the algorithm
ability.

The remainder of this paper is structured as follows: Sect. 2 briefly introduces the basic
symbiotic organism search (SOS) algorithm; Sect. 3 presents a complex-valued encoding
symbiotic organisms search (CSOS) algorithm; simulation experiments and results analysis
are presented in Sect. 4; Sect. 5 presents the conclusions of this paper.

2 Symbiotic organisms search (SOS)

Symbiotic Organism Search (SOS) was proposed by Cheng and Prayogo [10]. The SOS
algorithm is inspired by the interaction between various organisms in an ecosystem. In nature,
biological individuals usually use the symbiotic relationship with other organisms to improve
their survival ability. In an ecosystem, mutualism, commensalism, and parasitism are the most
fundamental relationships found in the living organisms. These three symbiotic relationships
are shown in Fig. 1 [18]. The details about these processes are narrated below [10,14].
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MUTUALISM COMMENSALISM PARASITISM

Fig. 1 Process of ‘Symbiosis’ among natural organisms in an ecosystem

2.1 Mutualism phase

This phase the interaction between two different organisms provide benefits to both of them.
As shown in Fig. 1, the relationship between flower and pollinator is a classic example to
explain the philosophy of mutualism.

In SOS, X; is an organism (matched to the ith member of the ecosystem) that interacts
with another randomly selected organism X ; from the ecosystem. Both the organisms are
engaged in mutualism relationship with the goal of increasing their mutual survival advantage
in the ecosystem. The new solution, after the mutualism phase for X;je,, and Xjyey, which is
modeled in Eqgs. (1) and (2),

Xinew = Xi + rand(0, 1) * (Xpest — Mutual_Vector x BF1) (1)
Xjnew = Xj + rand(0, 1) * (Xpest — Mutual_Vector x BF,) 2)
Xi+X;

Mutual_Vector = (3)
In ecosystems, the benefits of mutualism relationship may be unequal from each other. The
benefit factors (BF; and BF;) are randomly chosen 1 or 2. Mutual_Vector represents the
relationship between the two biological X; and X ;.

2.2 Commensalism phase

The Commensalism phase is the relationship between the two random organisms which one to
gain benefit, while the other one has no effect. The most common examples of commensalism
relationships in nature are sharks and remora fish. The remora fish is usually absorbed on the
shark and depends on the remaining food residue to survive. In this relationship, the remora
fish unilaterally gets the benefit, while the shark does not affect.

In SOS, X; from the ecosystem were randomly selected with a X ; composed of a mutu-
alism relationship. Only X; single side benefit from X ;. According to the above rules, X;
update formula as (4).

Xinew = Xi + rand(—1, 1) * (Xpest — Xj) 4)
2.3 Parasitism phase

In the parasitism phase, one organism randomly chooses another organism to establish a
parasitism relationship. In this parasitism relationship, one organism benefits from another,
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and the other are the victims. The most common examples of parasitism relationships in

nature are anopheles mosquito and human host.

In SOS, X; by creating an artificial parasite called as Parasite_Vector to play the role of
anopheles mosquito. Parasite_Vector was created by duplicating organism X;, then modifying
the randomly selected dimensions using a random number. The organism X ; is randomly
selected from the ecosystem and is used as a host. By comparing the fitness value of X ; and
Parasite_Vector in the ecosystem, the better one will survive, while the other with low value

that will be eliminated.

Algorithm 1. Symbiotic Organism Search Algorithm

Initialize a population of n organisms(Number of organisms in the eco system) with random solutions

Identify the best organism( X ,,,, ) in the initial population

Define a stopping criterion (either a fixed number of generations/iterations or accuracy)
While(? < MaxGeneration)

for i=1

:n (Number of organisms in the eco system)

Mutualism Phase

Choose organism j randomly other than organism i

Determine Beneficial Factor and mutual Vector via Eqs.(3)
Modify organism X,and X ; based on their mutual relationship via Eqs.(1) and (2)
Calculate new solution after Mutualism Phase

Evaluate the fitness of the new solution

Accept the new solution if the fitness is better

End of Mutualism Phase

Commensalism Phase

Choose organism j randomly other than organism i
Modify organism X; with the assist of organism X ; via Eq. (4)
Calculate new solution after Commensalism Phase

Evaluate the fitness of the new solution

Accept the new solution if the fitness is better

End of Commensalism Phase

Parasitism Phase

Choose organism j randomly other than organism i
Create a Parasite ( Parasite _Vector ) from Organism X;

Calculate Fitness Value of the new organism

Kill organism j and replace it with the parasite if the fitness is lower than the parasite

End of Parasitism Phase

Update the best organism

end for
t=t+1

end while

Output the global optimization solution.
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Table 1 Symbiotic organisms

Gene Gene Gene; Gene
chromosome model ! 2 ! M

(Rp1, 1p1) (Rp2, Ip2) Rpm, Ipm)

3 Complex-valued encoding symbiotic organisms search (CSOS)

In nature, the chromosome of complex biological tissue is generally provided by the parent
body, each of which is provided with a pair of chromosomes. Because of the two-dimensional
nature of complex coding, it is natural to use this to represent a pair of chromosomes in the
allele. The real and imaginary parts of complex numbers are called real genes and virtual
genes. For a problem with M independent variables, the complex representation is shown in
Eq. (5).

xp=Ry+il, p=1,2,3,..,M. )

The gene of the organism can be expressed as a diploid structure and recorded as (R, ).
Where R, and I, represent the real and imaginary parts of the complex number, respectively.
Thus, the chromosomal model of the organism can be represented as shown in the following
Table 1.

3.1 Initializing the complex-valued encoding population

According to the definition interval [Ag, Bil, k = 1,2, ...M, of the problem, M modules
and M amplitudes [16] are randomly generated:

B — Ay
S
o [ .
Or =[—2n,27], k=1,2,..M (7

] k=1.2...M ©)

According to formula (8) we get M complex numbers:
Xpr + iXp = pr(cosO +isinb), k=1,2,...M (8)

Through the above process, we can get M real part and M imaginary part at the same time
and then update them, respectively, in the following way.

3.2 The updating method of CSOS
3.2.1 Mutualism phase

(1) Update the Real Parts:

Xp(@+1) = Xg@Q)+ rand(0, 1) *x (Xgpess — Mutual_Vectorg * BF}) )
Xr(j+1) = Xgr(j) + rand(0, 1) * (XRgpess — Mutual_Vectorgr * BF;) (10)
Xr(@)+ Xr(j)

Mutual_Vectorg = T E— (11)
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(2) Update the Imaginary Parts

XiG+1) = X;G) + rand(0, 1) *x (Xpess — Mutual_Vectory * BF1)  (12)
Xi(j+ 1) = X1(j) 4+ rand(0, 1) * (Xpess — Mutual_Vector}k BF,) (13)

Xi(@ Xr(j
Mutual_Vector; = M (14)

where Xgpess and Xppess represent the optimal solution of real and imaginary parts of all
living organisms in the whole symbiotic population. Mutual_Vectorr and Mutual_Vector;
represent the real and imaginary parts of the two biological relationships, respectively.

3.2.2 Commensalism phase

(1) Update the Real Parts:

Xr(+1) = Xg@) + rand(=1, 1) * (Xppest — Xr(J)) (15)
(2) Update the Imaginary Parts
X+ 1) = X;@) +rand(—1, 1) % (Xpess — X1(j)) (16)

3.2.3 Parasitism phase

(1) Update the Real Parts:

In SOS, X g (i) by creating an artificial parasite called as Parasite_Vectorg to play the role
of anopheles mosquito. Parasite_Vectorg was created by duplicating organism X (i), then
modifying the randomly selected dimensions using a random number.

(2) Update the Imaginary Parts

Similarly, X; (i) by creating an artificial parasite called as Parasite_Vector; to play the
role of anopheles mosquito. Parasite_Vector; was created by duplicating organism, then
modifying the randomly selected dimensions using a random number.

3.3 The calculation method of fitness value

Because the complex number is composed of two parts: the real part and the imaginary part,
we need to transform the coding space in the computation of fitness [16]. Therefore, before
calculating the fitness value, we need to convert the complex number to real number and then
calculate the fitness function value. The concrete practices are as follows:

o= X3 +X2, n=12.. M (7

X B+ A
RV, = ppsgn (sin (—’))Jr% n=1,2,..., M. (18)
Pn

where RV, is the real variable argument after conversion. According to the real variable, the
corresponding fitness function value is calculated and evaluated. If it is better than the current
optimal value, it is replaced. Otherwise, the next iteration is carried out.

3.4 CSOS algorithm pseudo code

The CSOS is to incorporate the two-dimensional idea of complex number into it. In CSOS,
the real part and the imaginary part are updated, respectively, which enriches the diversity of
the population and enhances the global searching ability of the individual in the algorithm,
and improves the performance of the algorithm.
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Algorithm 2. Complex-Valued Encoding Organism Search Algorithm
By — 4

Initialize a population of » organisms: p; =[0,

] and 6, =[-27,27]
Get the real and imaginary part of the complex [Eq. (8)]
Convert to real variables [Eq. (17) and Eq. (18)]
Identify the best organism in the initial population
Define a stopping criterion (either a fixed number of generations/iterations or accuracy)
While (7 < MaxGenerat ion')
for i=1:n (Number of organisms in the eco system)
Mutualism Phase
Choose organism j randomly other than organism i

Update the real part [Eq. (9), Eq. (10) and Eq. (11)]

Update the imaginary part [Eq. (12), Eq. (13) and Eq. (14)]

Convert to real variables [Eq. (17) and Eq. (18)]

Calculate new solution after Mutualism Phase

Evaluate the fitness of the new solution

Accept the new solution if the fitness is better

End of Mutualism Phase

Commensalism Phase

Choose organism j randomly other than organism i
Update the real part [Eq. (15)]

Update the imaginary part [Eq. (16)]
Convert to real variables [Eq. (17) and Eq. (18)]
Calculate new solution after Commensalism Phase
Evaluate the fitness of the new solution
Accept the new solution if the fitness is better
End of Commensalism Phase
Parasitism Phase
Choose organism j randomly other than organism i
Create a Parasite ( Parasite _Vectory ) from Organism X (i)
Create a Parasite ( Parasite _Vector; ) from Organism X (i)
Convert to real variables [Eq. (17) and Eq. (18)]
Calculate Fitness Value of the new organism
Kill organism j and replace it with the parasite if the fitness is lower than the parasite
End of Parasitism Phase
Update the best organism
end for
t=t+1
end while

Output the best solution.
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4 Simulation experiments and result analysis

To verity the effectiveness and superiority of Complex-Valued Encoding Organism Search
Algorithm (CSOS), the test of 23 standard test functions [19,20] were tested. These 23
standard test functions are widely used in the literature. Section 4.1 gives the environment
configuration of the simulation experiment. Section 4.2 Comparison results of performance
of each algorithm are given. Section 4.3 The Wilcoxon rank-sum test results for CSOS and
several other algorithms are given.Section 4.4 CSOS is applied to the cantilever beam and
welding beam two engineering optimization problems.

4.1 Experimental setup

The development environment for this test is MATLAB R2012a. The test runs on AMD
Athlont (tm) 11¥4640 processor and 4 GB memory.

4.2 Comparison of each algorithm performance

The CSOS algorithm proposed in this paper is compared with the mainstream group intel-
ligent optimization algorithm ABC [1], CS [5], FPA [4], GWO [9], CGWO [22], SOS [10]
from four aspects: the best value, the worst value, the average value and the standard. The
control parameters involved in the above algorithm are shown below.

ABC setting: limit = 5D has been used as recommended in [21], the population size is
20. The maximum iteration number is 100.

CS setting: B = 1.5, po = 1.5 have been used as recommended in [5], the population size
is 20. The maximum iteration number is 100.

FPA setting: switch probability p = 0.8 in accordance with the suggestions given in [10],
the population size is 20. The maximum iteration number is 100.

GWO setting: @ Linearly decreased from 2 to 0 have been used as recommended in [9],
the population size is 20. The maximum iteration number is 100.

CGWO setting: & Linearly decreased from 2 to 0 have been used as recommended in [22],
the population size is 20. The maximum iteration number is 100.

SOS setting: the population size is 20. The maximum iteration number is 100.

In this paper, the fifteen independent tests of the three standard benchmark functions (uni-
modal benchmark functions, multimodal benchmark functions, fixed-dimension multimodal
benchmark functions) in Tables 2, 3 and 4 were carried out. The results of unimodal, multi-
modal and fixed-dimension multimodal are shown in Tables 5, 6 and 7, respectively. In the
table, the best fitness value, the worst fitness value, the average fitness value and the standard
deviation in the experiment are, respectively, expressed by Best, Worst, Mean and Std. All
algorithms are ranked according to the value of std.

According to the test results obtained in Table 5, only the CSOS algorithm finds the theoret-
ical optimal value zero of the unimodal benchmark functions f1, f2, f3, fa. This shows that
compared with other algorithms, CSOS has a stronger ability to find the minimum. Accord-
ing to the mean value and the variance, we can see that it has high robustness in unimodal
benchmark functions fi, f>, f3, fa. f5and fg are only slightly worse than the SOS algorithm
in finding global minimum values, but CSOS values are smaller and more stable in terms
of variance. CSOS in f7 to find the minimum is less than other algorithms. In addition, the
standard deviation of CSOS is the least, which indicates that it has more stability than other
algorithms. Figures 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14 and 15 shows CSOS and other
algorithm convergence and the anova tests of the global minimum plots. It can be seen from
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Fig.2 D = 30, evolution curves
of fitness value for fj1

Fig.3 D = 30, ANOVA test of
global minimum for f;

Fig.4 D = 30, evolution curves
of fitness value for fpo
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Fig.5 D = 30, ANOVA test of x10° F2
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Fig. 8 D = 30, evolution curves
of fitness value for fog

Fig. 9 D = 30, ANOVA test of
global minimum for fp4

Fig. 10 D = 30, evolution
curves of fitness value for fys
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Fig. 11 D = 30, ANOVA test of
global minimum for fj5

Fig. 12 D = 30, evolution
curves of fitness value for fyg

Fig. 13 D = 30, ANOVA test of
global minimum for fe
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Fig. 14 D = 30, evolution
curves of fitness value for fo7
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Fig. 15 D = 30, ANOVA test of F7
global minimum for fjy7 M ' ' ' ' ' '
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the figure fi — f7 in the CSOS std. map flat, indicating that CSOS relative to other algorithms
have a stronger robustness. From the convergence diagram can also be seen, CSOS in the
convergence speed and accuracy is relatively fast, only in the f5, f¢ convergence accuracy
slightly worse than the SOS.

Similarly, according to the test results obtained in Table 6, the CSOS algorithm finds the
theoretical optimal value zero of the multimodal benchmark functions f3, f10. This shows that
compared with other algorithms, CSOS has a stronger ability to find the minimum. According
to the mean value and the variance, we can see that it has high robustness in high-dimensional
unimodal functions fg, fio. For function fo, it can be seen from the optimal value and the
average value in the test result that the minimum value found by CSOS is better than other
algorithms. In addition, the standard deviation of CSOS is the least, which indicates that it
has more stability than other algorithms. For the fi;, CSOS in the search accuracy on the
poor, but the variance is smaller, higher stability. Figures 16, 17, 18, 19, 20, 21, 22 and 23
shows CSOS and other algorithm convergence and the anova tests of the global minimum
plots. It can be seen that in addition to f7;, CSOS has higher convergence accuracy and
stronger robustness in fg — fio.

According to the test results in Table 7, it can be seen that CSOS has found the theo-
retical minimum in f12, f14, f1s, f16, f19, f20, f21, f22, f23. Meanwhile, in the functions
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Fig. 16 D = 30, evolution
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Fig. 19 D = 30, ANOVA test of
global minimum for fpg

Fig. 20 D = 30, evolution
curves of fitness value for fig

Fig.21 D = 30, ANOVA test of
global minimum for f1q
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Fig. 22 D = 30, evolution 8 F11
curves of fitness value for fi1 ' ' ' ' '
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Fig. 23 D = 30, ANOVA test of X 10° F11
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f12, fia, fis5. f16, f22. f23, CSOS has a smaller standard deviation than other algorithms,
which indicates that the CSOS has a stronger stability. For the function fi3, fi7, fig, we
can find that the optimal fitness value and standard deviation of CSOS are worse than other
algorithms. For the function f>;, although the CSOS variance is the worst, but can be seen
from the Table 7 CSOS find the global minimum, which shows that the f>; for the CSOS
convergence accuracy but poor stability. Figures 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35,36, 37, 38,39,40,41, 42,43, 44, 45, 46 and 47 shows CSOS and other algorithm conver-
gence and the anova tests of the global minimum plots. From the above data, it is easy to find
that CSOS is also very competitive in terms of precision and robustness for fixed-dimension
multimodal benchmark functions.

4.3 p-Values of the Wilcoxon rank-sum test

In this paper, the Wilcoxon rank-sum test [23,24] is used to verify the relationship between
the CSOS algorithm and several other algorithms. The test to p = 0.05 as the standard, the
test results are shown in Table 8.

In Table 8, data with p-values greater than 0.05 are indicated by bold and underlined.
CSOS vs. ABC, CSOS vs. GWO and CSOS vs. CS have two values greater than 0.05 in
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Fig. 24 D = 2, evolution curves

of fitness value for fio

Fig. 25 D =2, ANOVA test of
global minimum for fi,

Fig. 26 D = 4, evolution curves
of fitness value for f13
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Fig. 27 D =4, ANOVA test of
global minimum for fi3

Fig. 28 D = 2, evolution curves
of fitness value for fi4

Fig. 29 D =2, ANOVA test of
global minimum for fi4
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Fig. 30 D = 2, evolution curves F15
of fitness value for fi5 03 ' ' ' ' ' ' ' : :
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Fig. 33 D =2, ANOVA test of
global minimum for fi¢

Fig. 34 D = 3, evolution curves
of fitness value for fi7

Fig. 35 D = 3, ANOVA test of
global minimum for fi7
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Fig. 36 D = 6, evolution curves
of fitness value for f1g

Fig. 37 D = 6, ANOVA test of
global minimum for fig

Fig. 38 D = 4, evolution curves
of fitness value for fi9

@ Springer

a

C

convergence urve vg

a

[}

convergence urve_vg

Fitness value

-3.05

-3.35

F18

F18
T T
T
+ f I
L ‘ | i
_ I !
I I !
L | | | il
| |
|
i
A i
+
=2
g L
ABC Ccs FPA GWO CGWO SOSs CS0s
Algorithms

F19

20 30 40 50 60 70 80 90 100
Iteration



Complex-valued encoding symbiotic organisms search. .. 239

F19
(U 4
21 i
I -
I I
I
g : f
g — + +
[2]
8 b + ]
£
[
-8+ + .
+ L
10k |/ = Q 4
12k i
. . . . . . .
ABC Cs FPA GWO CGWO SOs CsSOos
Algorithms

Fig. 39 D =4, ANOVA test of global minimum for fjg

Fig. 40 D = 4, evolution curves F20
of fitness value for f>( 0 \ \ ‘ ‘ ‘ ‘ ‘ ‘ ‘
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Iteration

each set of contrast data. CSOS vs. FPA, CSOS vs. CGWO have one value greater than
0.05 in each set of contrast data. We compare CSOS and SOS, there are three values greater
than 0.05. All other values were less than 0.05. Therefore, there are significant differences
between CSOS and other algorithms. The experimental data are not obtained by accident.

4.4 CSOS for engineering optimization problem
In order to verify the effectiveness of CSOS for complex problems, this paper chooses two

engineering examples of cantilever beam design optimization problem [25] and welding
beam design optimization problem [26] to validate this project.
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Fig. 41 D =4, ANOVA test of global minimum for fq
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Fig. 42 D = 4, evolution curves of fitness value for f1

4.4.1 Cantilever beam design problem

Cantilever structure shown in Fig. 48 [25], which is composed of five square hollow structure,
each component with a variable. It can be seen from the figure that there are a downward
force on the point 6 and a fixed support at the point 1. The objective is to minimize the weight
of the beam. The problem formulation is as follows:

Minimize f(x) = 0.0624(x1 + x2 + x3 + x4 + X5);

. 61 37 19 7 1
Subjecttog(x) = =+ 5+ 5+ 5+ =1L
T
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Fig. 43 D =4, ANOVA test of F21
global minimum for f5; T
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Fig. 44 D = 2, evolution curves of fitness value for frp

In this paper, the CSOS algorithm was tested with Method of Moving Asymptotes (MMA)
[26], Generalized Convex Approximation (GCA_I) [26], GCA_II [26], CS [27], and Symbi-
otic Organisms Search (SOS) [27] in 20 independent experiments. The test results are shown
in Table 9.

It can be seen from the data in Table 9 that CSOS can find a better optimal value than
other algorithms. This shows the superiority of the CSOS algorithm in solving the cantilever
problem.

4.4.2 Welded beam design problem
The purpose of the welded beam design problem is to obtain the minimum fabricating cost.

The structural design of the welded beam is shown in Fig. 49 [26]. The constraints are as
follows: shear stress (7), bending stress in the beam (6), end deflection of the beam (§),
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Fig.45 D =2, ANOVA test of F22
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Table 8 p Values of the Wilcoxon rank-sum test results

Functions CSOS vs ABC CSOS vs CS CSOS vs FPA CSOS vs GWO CSOSvs CGWO CSOS versus SOS

Jfor 6.87E—07  6.87E—07 6.87E—07  6.87E—07 6.87E—07 6.87E—07
foz 6.87E—07  6.87E—07 6.87E—07  6.87E—07 6.87E—07 6.87E—07
fo3 6.87E—07  6.87E—07 6.87E—07  6.87E—07 6.87E—07 6.87E—07
foa 6.87E—07  6.87E—07 6.87E—07  6.87E—07 6.87E—07 6.87E—07
fos 338E—06  3.38E—06 3.38E—06  3.38E—06 0.022471 3.38B—06
fos 338E—06  3.38E—06 3.68E—06  0.000779 3.39E—06 3.38E—06
for 339E—06  3.39E—-06 3.39E—06  3.39E—06 3.39E—06 3.39B—06
fos 6.87E—07  6.87E—07 6.87E—07  6.87E—07 6.87E—07 N/A

foo 6.87E—07  6.87E—07 6.87E—07  6.87E—07 6.87E—07 6.82E—07
fio 6.87E—07  6.87E—07 6.87E—07  6.87E—07 6.87E—07 N/A

fin 339E—06  3.39E—06 0022531  0.012822 1.94E—05 3.39B—06
fi2 1.88E—06  1.88E—06 1.88E—06  1.88E—06 1.85E—06 0.000171
3 4.14E-06  574E—05 0.000576  0.000906 0.000223 0.018067
f14 126E-06  126E—06 1.26E—06  1.26E—06 1.85E—06 0.001104
fis 6.87E—07  6.87E—07 6.87E—07  0.003625 6.87E—07 0.350648
fi6 6.87E—07  6.87E—07 6.87E—07  6.87E—07 9.58E—07 6.54E—07
fi7 1.85E—-06  1.85E—06 1.85E-06  1.85B-06 2.36E—06 0.14952
fis 0.276036 0294928  2.7B—06  0.180038 0.037298 0.048264
fio 0.008073 0.008073  0.004844  0.008073 3.66E—06 0.028743
0 0.004377 0.004377  0.004377  0.001904 0.000214 0.005285
i 1 0771229 0771229 1 0.197055 0.382459
n 6.87E—07  6.87E—07 827E—08  6.87E—07 6.87E—07 N/A

3 6.87E—07  6.87E—07 6.87E—07  6.87E—07 6.87E—07 6.87E—07

o ([,

|| |

X |

Fig. 48 Cantilever beam design problem

buckling load on the bar (P.), and side constraints. The four design variables associated with
this problem are as follows:

e Thickness of the weld (h)

e Length of the welded joint (/)
e Width of the bar (r)

e Thickness of the bar (b)

The formula involved in the design of welded beam is as follows:

Minimize f(x) = 1.10471x12x2 + 0.04811x3x4(14 + x2);
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Table 9 Comparison results for cantilever design problem

Algorithm Optimal values for variables Optimal value
X1 X2 X3 X4 X5
CSOS 6.01579434  5.3093581 4.4943115 3.501481 2.1527151 1.3399564
MMA [26] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
GCA_I [26] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
GCAL_II [26] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
CS [27] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
SOS [27] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996
h—
i O
1 !
— 1
NN
L

Fig. 49 Design parameters of the welded beam design problem

Subject to g1(x) = 7(x) — Tmax < 0,

82(x) = 0(x) — Omax <0,

g3(x) =x3—x4 <0,

g4(x) =0.125 — x; <0,
g5 =68(x) —0.25 <0,
g =P — Pe(x) <0,
g7 = 0.10471)612 4+ 0.04811x3x4(14 + x2) — 5 < 0;

Variable range 0.1 <x1 <2;0.1 <x <10;0.1 <x3 <10;0.1 < x4 <2;

Where t(x) = \/112 + 21110 (x—z) + 7.’22;

2R
J— P .
T o
J— MR.
2=
X2 .
M=r(L+ 5)’
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Table 10 Comparison results for cantilever design problem

Algorithm Optimal values for variables Optimal value
h l t b
CSOS 0.2057296 3.253120  9.03662391 0.2057296398 1.695247
GWO [9] 0.205676 3.478377 9.03681 0.205778 1.72624
GSA [9] 0.182129 3.856979 10.0000 0.202376 1.87995
CPSO [9] 0.202369 3.544214  9.048210 0.205723 1.72802
GA (Coello) [28] N/A N/A N/A N/A 1.8245
GA (Deb) [29] N/A N/A N/A N/A 2.3800
GA (Deb) [30] 0.2489 6.1730 8.1789 0.2533 2.4331
HS (Lee and Geem) [31] 0.2442 6.2231 8.2915 0.2443 2.3807
Random [32] 0.4575 4.7313 5.0853 0.6600 4.1185
Simplex [32] 0.2792 5.6256 7.7512 0.2796 2.5307
David [32] 0.2434 6.2552 8.2915 0.2444 2.3841
Approx [32] 0.2444 6.2189 8.2915 0.2444 2.3815

2.6
 4013Ey 5 (1 X3 E)

The test was carried out independently 20 times; the test results shown in Table 10. The
CSOS and GWO [9], GSA [9], CPSO [9], GA (Coello) [28], GA (Deb) [29], GA (Deb) [30],
HS (Lee and Geem) [31], Random [32], Simplex [32], David [32] and APPROX [32] of the
20 independent experiments to verify the validity of CSOS for welding beam problem, the
results shown in Table 10.

Compared with other algorithms, CSOS found a higher solution in the design of the welded
beam, and the relevant parameters are & = 0.2057296, [ = 3.253120, t = 9.03662391, b =
0.2057296398. This experiment shows the effectiveness of CSOS in the welding beam prob-
lem.

4.5 Result analysis
Simulation experiments have been done in Sects. 4.2 and 4.3. In Sect. 4.2, 23 standard

benchmark functions were used to verify all aspects of CSOS performance. The experimental
data are shown in Tables 5, 6 and 7. Figures 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16,
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17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42,43, 44, 45, 46 and 47 shows the evaluation curves of fitness values, anova test of global
minimum. According to the test data and figure can be seen, CSOS has a stronger ability to
find the global minimum and better stability. In the Sect. 4.3, the test of CSOS Wilcoxon
with other algorithms; the result is not accidental. In Sect. 4.4, two engineering examples are
selected to verify the validity of the CSOS. The experimental results are shown in Tables 9
and 10. The results show that CSOS in engineering problems also have high accuracy and
stability.

5 Conclusions

In this paper, the idea of complex-valued coding is incorporated into the symbiotic organisms
search (SOS) algorithm, and a novel complex-valued encoding symbiotic organisms search
(CSOS) algorithm is proposed. CSOS takes advantage of the feature of complex-valued
encoding, that is, the two-dimensional coding space maps one-dimensional coding space,
real and imaginary parts are updated separately, and each biological individual has inherent
parallelism, which increases the population diversity and enhances the ability of the algorithm
to find the global minimum. CSOS extends the application range of the symbiotic organisms
search algorithm from a real number range to a complex number range. From the results
of the 23 standard benchmark functions tests in this paper, CSOS has better optimization
precision and stability than other algorithms. In future studies, it is recommended that CSOS
be applied to more real-world engineering problems and solve some NP- hard problems in
literature.
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