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Abstract This paper presents a novel wrapper feature selection algorithm for classification
problems, namely hybrid genetic algorithm (GA)- and extreme learning machine (ELM)-
based feature selection algorithm (HGEFS). It utilizes GA to wrap ELM to search for the
optimum subsets in the huge feature space, and then, a set of subsets are selected to make
ensemble to improve the final prediction accuracy. To prevent GA from being trapped in the
local optimum, we propose a novel and efficient mechanism specifically designed for feature
selection problems to maintain GA’s diversity. To measure each subset’s quality fairly and
efficiently, we adopt amodified ELMcalled error-minimized extreme learningmachine (EM-
ELM) which automatically determines an appropriate network architecture for each feature
subsets. Moreover, EM-ELM has good generalization ability and extreme learning speed
which allows us to perform wrapper feature selection processes in an affordable time. In
other words, we simultaneously optimize feature subset and classifiers’ parameters. After
finishing the search process of GA, to further promote the prediction accuracy and get a
stable result, we select a set of EM-ELMs from the obtained population to make the final
ensemble according to a specific ranking and selecting strategy. To verify the performance
of HGEFS, empirical comparisons are carried out on different feature selection methods
and HGEFS with benchmark datasets. The results reveal that HGEFS is a useful method for
feature selection problems and always outperforms other algorithms in comparison.
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1 Introduction

Feature selection is an important issue in many fields such as machine learning, data min-
ing and pattern recognition [8,24,26]. In real-world problems, the target concept is always
represented by a set of features which are often unknown a priori in related problems. To
better represent the domain, many candidate features are introduced. Unfortunately, many
of these candidate features are always irrelevant or redundant. These unnecessary features
make it more difficult to capture the latent patterns in data by increasing the search space
size or bringing more bad perturbations. Meanwhile, with the rapid advance of computer
technologies, the proliferation of large and high-dimensional data sets within many domains
poses unprecedented challenges to the traditional methods [4,36]. In this case, more andmore
researchers and practitioners are realizing that using feature selection methods to remove the
redundant and irrelevant features is an important or even indispensable component to their
systems.

Till now, researchers have proposed a plenitude of different feature selection methods,
which in general can be divided into three categories: filter [13], wrapper [26] and embedded
methods [32,33]. In filter methods, feature selection is performed as a pre-processing step in
which features are scored and ranked based on some predefined measures. In particular, such
predefinedmeasures are independent of the actual generalization performance of the learning
algorithms. So there is no guarantee that the selected features can improve the performance
of the learning algorithms. On the contrary, the wrapper methods employ a search strategy to
explore the combinatorial space of feature subsets and wrap a learning algorithm to evaluate
the subsets. Since each subset needs a learning algorithm to measure their qualities, wrapper
methods are generally more computationally intensive than filter methods but more effective.
Different from filter and wrapper methods, embedded methods incorporate feature selection
as part of the process in building a specific model. Some examples of the embedded methods
are decision tree learner, such as ID3 [32] and C4.5 [33].

In this paper, we focus on the wrapper methods for feature selection problems. For a
wrapper method, its main components are search strategies and learning algorithms. The
search strategies in wrapper model can be classified into three groups: complete, heuristic
and random search. The complete search exhausts all possible subsets and finds the opti-
mal one, which is impractical for problems due to the large amount of computational effort
[31]. Unlike the time-consuming complete search, heuristic search strategies trade off the
optimality for the search efficiency. Sequential backward selection (SBS) and sequential
forward selection (SFS) are two most commonly used wrapper methods [24]. However,
these two approaches have a monotonic assumption that an added feature can no longer be
removed and a removed feature can no longer be added, which makes it prone to get stuck
in local minima. Different from these two search strategies, the random search always uses
evolutionary methods as their well-known global search ability. Till now several evolution-
ary algorithms, such as genetic algorithms (GAs) [9,20], ant colony optimization (ACO)
[42], particle swarm optimization (PSO) [29] and simulated annealing (SA), have been
applied as wrappers. In these methods, through iterations, numerous heuristically selected
subsets are evaluated by the performance of classifiers. Compared with the deterministic
algorithms, evolutionary search methods like GA can be more capable of avoiding getting
stuck in local optima and can find small feature subsets as they can effectively capture
feature redundancy and interaction without the monotonic assumption. However, on the
downside, the wrapper methods based on random search are a very computationally demand-
ing task.
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On the other hand, a well-chosen classifier also plays a significant role in designing a
wrapper method as the process of feature selection is tied to the performance of the specific
classifier. Due to the characteristic of wrapper methods, several issues should be taken into
consideration for choosing an appropriate classification method. Firstly, as the classifier
is used to predict the selected subset, it should have good prediction accuracy and good
generalization ability. Secondly, for each subset, we need to train a classifier to measure its
quality. Therefore, the training speed is another important issue that we should consider.
Thirdly, the different subsets’ input features may have a very big difference. In this case,
even carefully chosen-fixed parameters of classifiers are not able to be appropriate for all
the feature subsets to get best prediction accuracy. To counter this problem, it is better to
automatically determine the parameters of the classifier for each different feature subset to
avoid to bring biases when judging the quality of these subsets. In the previous works, many
classification methods have been applied in wrapper methods, such as SVM [14], KNN
[27], logistic regression [35], decision tree [33], Naive Bayes [3], etc. However, they cannot
simultaneously consider all the issues mentioned above.

Taking full consideration of the issues mentioned above, we propose a novel hybrid
wrapper method (HGEFS) using a genetic algorithm to wrap extreme learning machine
for ensemble. Note that our primary focus is on obtaining a better overall classification per-
formance in an affordable time. As a wrapper method, HGEFS is also very time-consuming
so that it is just suitable for dealing with the datasets with a small or medium number of
features. In HGEFS, the objective of the GA is to combine the search for optimum chro-
mosome choices with that of finding an optimum classifier for each choice. And a novel
strategy called extinction and immigration strategy (EI strategy) is proposed. It is specially
designed for feature selection problems to improve the diversity of GA to better address the
premature convergence problem and help GA avoid being trapped in local optimum points.
For the classifier, HGEFS adopts a modified extreme learning machine called EM-ELM,
which has high prediction accuracies and a very fast training speed that would significantly
reduce the wrapper method’s computational time and allow us to perform wrapper feature
selection process in an affordable time. Moreover, EM-ELM can automatically determine
the parameters to provide fairer judgments for different subsets. In addition, we utilize the
ensemble mechanisms to further promote the stability and performance of HGEFS. In our
method, after finishing the evolution process of GA, we render the EM-ELMs in the final
population for the final ensemble tailored to the generalization properties of ELM with a
specific special ranking strategy. At last, we aggregate the outputs of several EM-ELMs to
produce the final results.

The main contributions of this article are summarized as follows:

– Proposing a novel wrapper methods using GA and EM-ELM;
– Proposing a novel strategy specially designed for feature selection problems to better

address the premature convergence problem and help GA to avoid being trapped in local
optimum points in which we make full use of the information gained in the iterations;

– Using a ranking method based on the generalization theory of ELM to select a set of
EM-ELM for ensemble to further improve the final accuracy and stability;

– Conducting experiments on various datasets to demonstrate the effectiveness of HGEFS.

The rest of this paper is organized as follows. Section 2 presents the background infor-
mation, namely the related works and a brief overview of genetic algorithm and EM-ELM.
The detail of our proposed approach is shown in Sect. 3. In Sect. 4, the experimental results
are given, and finally, the paper is concluded in Sect. 5.
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2 Background

This section reviews typical related work on wrapper feature selection methods and provides
background about genetic algorithm and extreme learning machine.

2.1 Related work

In this subsection, we briefly review the related works. Over the years, many evolutionary
method-based feature selection approaches have been proposed. Nevertheless, most of them
just focused on improving the searching efficiency while ignoring the role of classifiers
played in the methods. For example, in [39], Yang et al. divided the chromosome into several
segments according to the number of feature groups to obtain strong searching ability at
the beginning of the evolution. And [28] focused on the strategies of generating the initial
population of a genetic algorithm. These works just simply tried to improve the performance
of GA. On the other hand, some works tried to use the information gained from filter methods
to improve the quality of each individual in GA. For example, in [23,43], they all combined
GA with local search. In the local search, they used different filter methods to add or delete
features in each subset. Note that the information they used has no correlations with the
final classifiers. While in our method, the prior knowledge used in EI strategy is generated
based on the search process of GA and the performance of EM-ELM, which is germane to
EM-ELM.

There are also some works trying to optimize the classifiers’ parameters in the feature
selection process. Huang and Wang [20] encoded two parameters of SVM and the subsets
into a chromosome of GA. And [19] used PSO to simultaneously optimize the input feature
subset selection and the SVM’s parameters too. Compared with ELM, there are always two
parameters in SVM that need to be optimized for each subset. It is not as efficient as HGEFS
since ELM just has one parameter needed to be optimized, and meanwhile, we do not need to
encode such parameter into the chromosome of GA. It is worth noting that in many previous
works as mentioned above, SVM is always selected to be the classifier as many pilot studies
comparing the use of popular Naive Bayes algorithm, logistic regression and C4.5 decision
trees confirmed SVM’s good prediction accuracy and good generalization ability. However,
for wrapper feature selection problem, one obstacle of SVM is its relatively slow learning
speed, and such defectwould be obviouswhen the datasets are pretty large.Although there are
also some linear-version SVMs such LS-SVM [21], their speed is much less than the original
SVM. But when compared with ELM, their training speeds are still higher than ELM and
they have more parameters that need to be optimized. Besides, SVM is a binary classifier
and more SVMs need to be built for multi-class problems. On the contrary, ELMs provide an
elegant and unified model for binary classification, multi-class classification and regression.
Till now, there are also some works using ELM as the classifier for wrapper feature selection
problems. For example, in [1], Alexandre et al. used ELM as the classifier and constrained
the size of each chromosome. However, compared with HGEFS, they do not automatically
determine the number of hidden nodes and just randomly delete or add features to fix the
size of subset without prior knowledge. And they do not take full consideration of ELM’s
characteristic for feature selection problems.

In summary, different from themethodsmentioned above, we optimizeHGEFS as awhole
aroundELM through improving the efficiency of search strategy, providing a fairer evaluation
for each subset and using ensemble mechanism to improve the method’s performance and
stability. And all the optimization methods used in HGEFS are germane to the ELM to yield
a better prediction accuracy.
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2.2 Genetic algorithm

Genetic algorithm [18]mimics the process of natural evolution that is widely used to generate
useful solutions to optimization and searchproblems. It belongs to a large class of evolutionary
algorithms and uses mutation, crossover and selection operators. To solve feature problems
in this paper, each feature subset is mapped to a chromosome, namely individual. And GA
firstly initials a population of individuals where each individual is generated by randomly
selecting a different subset of features. Then, new candidate individuals are produced by using
crossover and mutation on the chromosome, where crossover varies the programming of the
chromosomes while mutation only alters particular genes to maintain genetic diversity of
chromosomes. After reproducing a certain number of new individuals, a subset of individuals
is selected to survive for the next generation. This process of producing new individuals and
selecting a subset continues a number of time, known as the number of generations. After
a predefined number of generations, the evolution process stops and the fittest individuals
make up the final population.

For feature selection problems, it is natural and efficient to use the binary coding to encode
the feature subset. InGA, the original crossover andmutation operators are designed based on
binary coding. When compared with other evolutionary algorithms such as PSO, GA shows
powerful search capacity with binary coding. However, PSO always uses the real number for
coding. Of course, there are some binary PSO.However, binary PSOhas potential limitations,
such as the position of a particle in binary PSO is updated solely based on the velocity, while
the position in standard PSO is updated based on both the velocity and current position. On
the other hand, the main advantage of GA is that more strategies can be adopted together to
improve its performance. In our method, the EI strategy is designed to be combined with GA
to improve the performance of HGEFS and the experiments proved its efficiency.

2.3 Error-minimized extreme learning machine

Extreme learning machine is a novel efficient single-hidden-layer feedforward (SLFN) neu-
ral network proposed by Huang et al. [22]. Compared with the traditional neural network,
ELM is a tuning-free algorithm with an extreme learning speed by randomly generating
the input weights and the hidden biases instead of iteratively adjusting learning parameters.
By adopting the squared loss of prediction error, training output weights turns into a least
squares problem which can be solved effectively. Compared to gradient based algorithms,
ELMs are much efficient and usually lead to better performance, and recent papers show that
the predicting accuracy achieved by ELMs is comparable with or even higher than that of
SVMs.

In this subsection, we briefly introduce the original ELM. For given N arbitrary samples
{(xi , ti )}Ni=1, where xi = [xi1, xi2, . . . , xin]T ∈ Rn and ti = [ti1, ti2, . . . , tim]T ∈ Rm . The
ELM using an active function g(x) with K hidden nodes can be modeled as:

K∑

j=1

β j g(ω j , b j , xi ) = ti , i = 1, 2, . . . , N (1)

where ω j = [ω j1, ω j2, . . . , ω jn]T is the input weight connecting the j th hidden node;
b j = [b j1, b j2, . . . , b jK ]T is the bias of the j th hidden node; β j = [β j1, β j2, . . . , β jm]T is
the output weight connecting the j th hidden node to the output nodes; and the g(ω j , b j , x)

denotes the output of the j th hidden node with respect to the input x. In this case, the ELM
can approximate the N samples with zero error if there exit β j , ω j and b j .
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And we can rewrite the N equations in Eq. (1) in a matrix form:

Hβ = T (2)

where

H =
⎡

⎢⎣
g(ω1, b1, x1) . . . g(ωK , bK , x1)

... . . .
...

g(ω1, b1, xN ) . . . g(ωK , bK , xN )

⎤

⎥⎦

N×K

β =
⎡

⎢⎣
bT
1
...

bT
K

⎤

⎥⎦

K×m

and T =
⎡

⎢⎣
tT1
...

tTN

⎤

⎥⎦

N×m

Here, H is called the hidden layer output matrix of the network. The column of H is the
i th hidden node’s output vector with respect to inputs x1, x2, . . . , xN and the j th row of H
is the output vector of the hidden layer with respect to x j .

After generating the ω and b randomly, the β can be calculated as follows:

β = H†T (3)

where H† is the Moore–Penrose generalized inverse of matrix H .
During the whole process to train an ELM, the only parameter that needs to be pre-

set is the number of hidden nodes, which would effect the generalization performance. To
automatically determine the number of hidden nodes, we use a modified ELM called the
error-minimized extreme learning machine (EM-ELM) [10]. The EM-ELM not only inherits
the good prosperities of the original ELM such as good generalization performance and high
learning speed but also can automatically determine the architecture of network to adapt itself
to different inputs.

In EM-ELM, the hidden nodes can be added to the network through iterative computations
from an initial number of hidden nodes until the termination condition is reached. EM-ELM
should preset the initial number of hidden nodes, the maximum number of hidden nodes and
the expected learning accuracy ε. From the initial hidden nodes, if the expected accuracy is
generated and the number of hidden nodes is more than the maximum number, new hidden
nodes are stopped to add into ELM. EM-ELM reduces the computation complexity by only
updating weights incrementally each time. Namely, the new output weights are updated on
the basis of the previous output weights.

The output weights can be fast updated recursive way as:

D j =
((

I − Hj H
†
j

)
δHj

)†
(4)

U j = H†
j

(
I − δHT

j D j

)
(5)

β j+1 = H†
j+1T =

[
U j
D j

]
T (6)

where Hj is the hidden-layer output matrix in the j th iteration; δHj is the output matrix of
new added hidden nodes and H j+1 = [Hj + δHj ] . The detail of EM-ELM can be seen in
[10].
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Fig. 1 The flowchart of our proposed method

3 Our proposed method

In this section, we introduce the proposed method for classification problems, which is
depicted in Fig. 1. The blue part of the figure is the searching process of GA, the yellow
part is the data processing, and the green part is the ensemble process. At first, the GA’s
population is initialized randomly in which each candidate feature subset is encoded as a
chromosome. Subsequently, we trim the dataset based on the chromosome and train differ-
ent EM-ELM neural networks to calculate fitness value for each candidate feature subset.
Then, a new population is generated by using genetic operators. After a few generations,
we utilize the extinction and immigration strategy to insert new individuals to improve the
diversity of the whole population. This process repeats until the stopping conditions are
satisfied. The genetic algorithm here is designed to maximize classification accuracy and
minimize the size of feature subsets. After the searching process, a set of candidate subsets
are selected based on their fitness value first. Then, a smaller set is chosen according to their
corresponding networks’ norm of output weights. Finally, the samples of the test dataset
are predicted by all the selected EM-ELM and the final results are calculated by majority
voting.
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In the rest of this section, the detail of our proposed method is specified, including the
coding for feature subsets, the fitness function for individuals, the crossover and mutation
operators, the extinction and immigration strategy, and the ensemble mechanism.

3.1 Chromosome encoding

For the feature selection problem, it is natural for us to encode the possible feature subset
solutions with a binary string of length equal to the feature set size where ‘1’ indicates the
presence of the feature and ‘0’ otherwise:

θ = [θ(1), θ(2), . . . , θ(n)] (7)

where θ is the chromosome, θ(i) ∈ {1, 0} and n is the number of thewhole features. For exam-
ple, a chromosome 1010110 indicates that the first, third, fifth and sixth features remained
to be the feature subset.

3.2 Fitness evaluation

In this paper, the genetic algorithm is designed to optimize two objectives: maximize
classification accuracy of the feature subset and minimize the number of the selected fea-
tures. In the evolution process of GA, the subsets with higher prediction accuracies are
more likely to survive to the next generation. In other words, GA tries to maximize the
subsets’ corresponding accuracies. In order to minimize the feature subset to satisfy the
given subset size requirement, we add a penalty term to define the fitness function as fol-
lows:

F(θ) = accuracy(θ) − λ|n − m|

=
√∑N

j=1 ‖ ∑K
i=1 βi g(ωi · x j + bi ) − t j‖22

N
− λ|n − m| (8)

where N is the number of validation samples and K is the number of hidden nodes; θ is
each corresponding feature subset, n is the number of the whole features, and m is the given
number of features that we need. λ is a penalty coefficient to achieve a tradeoff between the
accuracy and the size of feature subset obtained. When calculating the term accuracy(θ),
the training dataset is partitioned into internal training dataset to train related EM-ELMs and
validation set to evaluate the prediction accuracies.

3.3 Crossover, mutation and selection

During each successive generation, a proportion of the existing population is selected to
breed a new generation. We require the fittest individuals have greater chances of survival
than weaker ones. Accordingly, we adopt the rank-based roulette wheel selection scheme.
And to guarantee the fast convergence ability, an elitism strategy is also used so that the best
10% of the individuals in the current population can remain directly for the next genera-
tion.

To breed new generations, many pairs of selected parent individuals reproduce child indi-
viduals through crossover and mutation operators. The purpose of crossover is to exchange
information between the selected individuals, and the mutation operator introduces new
genes into the population and retains genetic diversity. In our method, we use the two-point
crossover operator and the simple mutation operator.
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3.4 Extinction and immigration strategy

After evolving several generations, many chromosomes in the population might become
similar. The whole population loses the diversity, which may lead HGEFS to be trapped
in local optima. To prevent this problem, Yao and Sethares [40] proposed an extinction and
immigration strategy. The common and simpleway is just to replace some existing individuals
with some new randomly generated individuals to provide a perturbation to helpGA to escape
from the local optimum. The new generated individuals can improve, to some extent, the
diversity of the whole population. However, it takes no consideration of the characteristic
of feature selection problems and is prone to be inefficient. Firstly, as the fitness function
contains a penalty term to constrain the feature numbers, new generated individuals may lose
competitiveness in the population without considering the requirement of feature numbers.
Secondly, the randomly generated individuals always have lower fitness so that we need to
improve their qualities to help some of them survive to the next generation.

Considering the problems above, we propose a new extinction and immigration strategy
(EI strategy) specifically designed for feature selection problems, which can not only improve
the diversity of the population but also ensure requirement of feature number. Using the GA
as the search mechanism, a large number of subsets are evaluated by the learning algorithm
after some generations. Through a statistical analysis, we find that some features are always
involved in good subsets, while some features barely appear in the subsets with high qualities.
We intuitively think that the features with higher probabilities of appearing in good subsets
have significant correlation with the high prediction accuracy. Besides, another issue should
be taken into consideration. Note that, for example, in a population, the best subset’s quality,
namely the prediction accuracy (without the penalty part), is 90%, while the worst one’s
fitness is just 70%. We cannot simply treat such two different combinations of features in the
same way. Based on these considerations, both the frequency of occurrence of features and
corresponding prediction accuracy are adopted to define a score to measure the qualities of
each feature.

In each generation, we select some top chromosomes with higher prediction accuracy
values and multiply them with their corresponding prediction accuracies. Note that these
selected chromosomes come from ’child’ individuals rather than ’parent’ individuals in each
generation. The goal here is to avoid calculating some outstanding individuals repeatedly as
some outstanding individuals would always remain in the population for the next generation.
To formalize this idea, we define the score for each feature as follows:

S( fi ) =
n1∑

p=1

n2∑

q=1

θ
p
q (i) ∗ accuracy

(
θ
p
q
)
, i ∈ {1, . . . , n} (9)

where fi is the i th feature, n1 is the number of generations when we calculate the scores and
n2 is the number of chromosomes (we select chromosomes whose corresponding accuracies
rank top n2); θ

p
q is the qth chromosome in the pth generation, θ p

q (i) is the i th entry of θ
p
q

and the accuracy(θ p
q ) is prediction accuracy of θ

p
q .

The rest of work is just how to use these scores as a kind of prior knowledge to improve
the subsets’ qualities. We should consider not only the scores of each feature but also the size
of subsets. Compared with inserting randomly generated individuals, we tailor the randomly
generated chromosomes to a fixed size, which is ascertained according the average feature
number of each subset in the whole population. By doing so, the inserted chromosomes
would not lose competitiveness due to the penalty of feature numbers. To get the inserted
individuals, firstly, we randomly generate a chromosome θ , we define X and Y as the sets of
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selected features and excluded features encoded in θ , respectively. Here, |X | + |Y | = n. Our
objective function is simply defined as:

J (X) = maxX
∑

x∈X
S(x), s.t. |X | = Nave (10)

where Navg is determined by the average subsets’ feature number in the corresponding
generation and |X | is the number of features in θ . We also define two EI strategy, namely
“ADD” operator and “DEL” operator. If the |X | is greater than Navg , we would utilize
the “DEL” operator while |X | is less than Navg , “ADD” operator is adopted. The “ADD”
operator searches for the feature y in Y and add y to the X until |X | is equal to Navg , i.e.,
y = arg max y∈Y J (X

⋃ {y}). In the same way, “DEL” operator searches for the feature x
in X and move x to the Y until |X | is equal to Navg , i.e., x = arg maxx∈X J (X − {x}). In
this case, all the inserted individuals have the same number of features. As the individuals
are randomly generated, the tailored individuals would still be able to introduce new feature
combinations to improve the whole diversity of the population.

3.5 Ensemble strategy

In this paper, we focus on improving the prediction accuracy and getting a robust result. In
this case, instead of spending a more computational time to search for the optimal subset, we
combine the outputs of several near-optimal feature subsets to reduce the risk of choosing
an unstable subset and give a better approximation to the optimal subset, namely feature
selection ensemble.

As we know, a good ensemble is one where the base classifiers in the ensemble are
accurate and have diversities in their predictions. It is obvious that combining several identical
predictors produces no gain. In our method, by varying the feature subsets which generate
the base classifiers to view a problem from different perspectives, it is possible to promote
diversity and produce base classifiers that tend to err in different parts of the instance space.
Next, we need to guarantee that the base classifiers have accurate predictions. However, small
fitness value just indicates a small training error and cannot guarantee the generalization
performance. According to the generalization theory of ELM [2], the ELM network tends to
show better generalization with not only small training error but also small norm of output
weights. In HGEFS, after performing the GA’s search, the individuals with high fitness
value are remained to comprise the final population. Selecting the base classifiers from the
final population can satisfy the requirement of small training error. To further satisfy ELM’s
generalization theory, we need select the ones with smaller norm of output weights further.
Based on such consideration, we first sort the individuals according to their fitness value and
select 2M (where M is the number of classifiers for ensemble) fittest individuals. Then, M
subsets with a smaller norm of output weights are chosen from these 2M subsets to make up
the final ensemble model.

Finally, we use a simple and effective technique called majority voting for the ensemble
model. In the ensemble phrase, for each testing sample xtest , we can get M prediction results
obtained by the remaining independent EM-ELMs.Then, a corresponding vector Lxtest ∈ RC

(C is the number of class labels) with dimension equal to the number of class labels is utilized
to store all these M results of xtest . If the mth (m ∈ {1, ..., M}) ELM’s prediction is the i th
class label, the value of corresponding entry i in the vector Lxtest would be increased by one,
that is

Lxtest (i) = Lxtest (i) + 1 (11)
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After all the M results are assigned to Lxtest , the final decision of the EM-ELM ensemble
fens(xtest ) for the given test sample xtest due to the majority voting is determined by

fens
(
xtest

) = arg maxi∈{1,...C}Lxtest (i) (12)

In [16], Hansen et al. shows that the ensemble of neural network by majority voting has
better performance than a single classifier. And the experimental results in [6] also support
such conclusion. As analysis in [6], for a C-label classification problem, we assume that the
true label for the test sample xtest is c. Given a trained EM-ELM, the probability of correctly
predicting the test sample xtest is p(c|xtest ). If the following inequality holds

p
(
c|xtest) > max

{
p

(
i |xtest)}i∈{1,...C} and i �=c (13)

where p(i |xtest ) is the probability that EM-ELM classifies xtest to category i that is different
from the class c, and then, with a sufficiently large independent training number M , the
ensemble of EM-ELM is able to correctly classify xtest with probability one. Since EM-
ELM has a good generalization performance, Eq. (13) would always hold. However, it is
not practical to train sufficiently large number of EM-ELM to make up for ensemble. As
suggested in [6], for most practical applications, it suffices to ensemble 5 to 35 ELMs. In
light of this, in our experiment, we set the M as 10.

Algorithm 1 illustrates the process conformed in our feature selection method.

4 Performance verification

In this section, a series of experiments have been carried out to study the proposed method
and verify its effectiveness. After a brief introduction of datasets and experiment environment
in Sect. 4.1, we investigate some important characteristics of HGEFS including the search
ability of genetic algorithm, the efficiency of the novel EI strategy and the effect of automatic
determination of neural networks in Sect. 4.2. At last, in Sect. 4.3, we provide a detailed
comparison of HGEFS with other famous feature selection methods on different real-world
datasets to verify HGEFS’s applicability and effectiveness for feature selection problems.

4.1 The benchmark datasets and experimental setup

In our simulation experiments, 10 benchmark datasets were adopted to validate the proposed
method’s effectiveness. Eight of them are available from the UCI Machine Repository, and
twomicroarray datasets, i.e., colon andDLBCL. For convenience, we cut the top two features
of Musk dataset. In Sect. 4.2, we select two representative datasets from these 10 datasets,
i.e., Sonar and Musk to study HGEFS’s characteristics. Table 1 summarizes some general
information of these datasets. For missing values, we replaced them with the most frequently
used values andmeans for nominal and numeric features, respectively.Note that these datasets
differ greatly in the instance size (range from 62 to 3196) and the number of features (range
from 18 to 7129). All these datasets are widely used for evaluating learning algorithm and
hence can provide a comprehensive testing for feature selection problems.

Moreover, our implementations were carried out on theMatlab R2014a development envi-
ronment and Weka platform with open-source and default parameters (Waikato environment
for knowledge analysis). All experiments were running on Intel 3.0 GHz CPU and 8G RAM.
In EM-ELM, the activation function we use is the sigmoid function g(x) = 1

1+eωx+b . There
are some parameters else in HGEFS which need to be specified. In our method, we employed
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Algorithm 1 HGEFS.
Input:

a training data, a validation data, a testing data, the expected learning accuracy ε, the maximum number
of hidden nodes lmax , the minimum number of hidden nodes l0, number of iterations I , number of
networks for ensemble M , number of selected individuals for calculating scores n2

Training phase:

(1) Randomly generate individuals for population
(2) Evaluate fitness for each individual by EM-ELM, all the parameters of EM-ELM for each individual

are preserved.
(3) For i = 1, 2, ..., I

(i) Breed new individuals through crossover and mutation operators as new population.
(ii) Calculate each new individual’s fitness value
(iii) Select the top n2 new individuals to calculate scores
(iv) if i � I

2 and i%10 == 0

(iva) Utilize the Extinction and Immigration Strategy
else
(ivb) goto step (v)

(v) Select individuals for the next generation from the exiting populations
(vi) k = k + 1

(4) End for
(5) Sort the individuals in the population based on fitness value and select the first 2M individuals. Then,

sort the 2M individuals in the descent ordering of the normof outputweights ‖β‖. The topM individuals
remain for making up ensemble.

Ensemble phase:

(1) For j = 1, 2, ..., M

(i) Given a testing sample (x, t). Use each individual’s corresponding EM-ELM to predict the result
for this sample.

(2) End for
(3) fens (x) = are maxi∈[1,...C]Lx(i)

a population size of 40 and a stopping criterion of 200 generations for UCI datasets. On the
colon dataset, the population size is increased to 100 and the stopping criterion is increased
to 500. And the crossover and mutation probabilities are 0.9 and 0.1, respectively. For EI
strategy, we select the top 15 individuals from new generated generations to calculate scores.
And the number of neural networks for ensemble is 10 for HGEFS. It is worth noting that
the configurations of the parameter used here have been investigated empirically for the data
sets considered.

4.2 Performance of the proposed method

4.2.1 Study on the search ability of genetic algorithm

In this subsection, we utilize two datasets to examine the effectiveness of GA’s search capa-
bility. To graphically illustrate the progress of genetic algorithm as it searches for optimal
solutions,we take generations as the horizontal coordinate and the fitness values as the vertical
coordinate. The processes of GA searching for optimal solutions for Sonar and Musk dataset
are given in Fig. 2a, b. The blue line in Fig. 2 is the best fitness value in each generation,
while the red line is the average of the whole fitness values.
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Table 1 The descriptions of 10
datasets in our experiment

Datasets # Feature # Instance # Class

Vehicle 18 846 4

WDBC 30 569 2

Ionosphere 34 351 2

Chess 36 3196 2

Sonar 60 258 2

Splice 61 3190 3

Musk 166 476 2

Arrhythmia 279 452 16

Colon 2000 62 2

DLBCL 7129 77 2
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Fig. 2 The search process of GA. a Sonar dataset, b Musk dataset

The results in Fig. 2 illustrate the process of improvement of the global best individual
and the average of fitness values as the number of generations increase. As you can see
from the figure, GA has a powerful exploration ability, which is a gradual searching process
that approaches the optimal solutions. In the early iteration, the convergence speed is pretty
fast, and in about 60th generation the result is just a little worse than the final result in both
experiments.

In the fitness function, we consider not only classification accuracies but also the number
of features for each subset. As ELM has a very powerful generalization ability, it is, to some
extent, not sensitive to a slight difference of the number of features. In this consideration, we
add a penalty term to limit the number of subsets’ features. To better understand the dynamic
evolution of HGEFS, Fig. 3a, b shows the change of the average feature number of the whole
subsets in each generation. It is worth noticing that we setm (the number of features we need)
as 10 for Sonar dataset and 30 for Musk dataset. From the figures, we can see that HGEFS
can effectively reduce the number of subsets’ features.

4.2.2 Study on the extinction and immigration (EI) Strategy

For the EI strategy, the main purpose is to improve the populations’ diversity by inserting
new randomly generated individuals into the population. Compared with the common way,
the new randomly generated individuals are tailored based on the scores for each feature
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Fig. 3 The changes of average feature number in each generation. a Sonar dataset, b Musk dataset
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Fig. 4 The variance of subsets’ fitness value. a Sonar dataset, b Musk dataset

to a fixed size according to the average feature number of subsets in the corresponding
generation. We reduce the number of features for each subset, and meanwhile, we want to
maintain these subsets’ qualities or even improve them. To better understand the EI strategy,
we systematically examine the changes of population’s diversity, the qualities of new inserted
individuals and the effectiveness of the ’prior’ knowledge.

Firstly, we examine whether EI strategy can improve the diversity of the population. As
we know, for GA the variance of the individual fitness can reflect the diversity of population
in some degree. As shown in Fig. 4, the variance of subsets’ accuracies decreases as the
generations increase, meaning that the population tends to be homogeneous and lose the
diversity. Nevertheless, we can see that in generation 100 and 150 the variance increases as
we adopt the EI strategy. In particular, the improvement on Sonar dataset is pretty obvious.
The improvement of variance is due to the insertion of new individuals, bringing some new
genes to improve the diversity of the population.

Then, we utilize two datasets to compare the inserted individuals’ qualities and the
randomly generated individuals’ qualities. The modification is twofold: the corresponding
accuracies and number of features. Note that to be fair we compare their accuracies rather
than their corresponding fitness values. Figure 5 shows the prediction accuracies of inserted
subsets and randomly generated subsets. We can find that most of inserted individuals out-
perform randomly generated individuals in terms of prediction accuracies, meaning that our
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Fig. 5 The comparison of accuracies between inserted subsets and randomly generated subsets. a Sonar
dataset, b Musk dataset
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Fig. 6 The comparison of feature numbers between inserted subsets and randomly generated subsets. a Sonar
dataset, b Musk dataset

EI strategy outperforms than the original EI strategy. In addition, the number of features in
inserted individuals is significantly reduced through EI strategy’s tailor as shown in Fig. 6,
which would improve the inserted individuals’ competitiveness. It is worth noticing that in
HGEFS the fitness value of the randomly generated individuals would be much smaller than
that of inserted individuals as the effect of the penalty term. In other words, the inserted indi-
viduals in our EI strategy have greater chance to survive in the next generation with better
accuracies and smaller number of features. The results discussed above indicate that the EI
strategy would help GA to get an appropriate balance between the genetic search and the
population’s diversity.

At last, the effectiveness of the ’prior’ knowledge is also examined. In the process of
evolution, the GA is guided toward a better accuracy and features that appear more frequently
in the subsets which have higher accuracies may represent more significant ones for the class
prediction. And it is natural for us to consider whether these scores can be regarded as a
criterion to measure the qualities of features. To validate the scores’ effectiveness, we select
the best m features—the top m features in the descent ordering of scores—as a subset and
compare such subset with other subsets selected by some famous filter methods. Here we
choose five filter methods implemented on the Weka platform for comparison: ChiSquare
[30], GainRatio [34], InfoGain [11], ReliefF [25] and SymmetricalUncert [41]. To be fair,
we select the same amount of features for different methods: 10 features for Sonar dataset
and 20 features for Musk dataset. All the results are conducted on the subsets by tenfold
cross-validation, and the classifiers used here are Libsvm [7] for Sonar, Naive Bayes for
Musk and EM-ELM for both datasets. All the experiments have the same preset parameters.
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Fig. 7 The scores for each feature. a Sonar dataset, b Musk dataset

Figure 7 shows the scores for different features, and Table 2 presents the top 10 and 20
features selected by different methods and the corresponding accuracies. Since these criteria
are very diverse andmotivated by different theoretic arguments, they would produce different
outcomes even conducted on the same dataset. Such phenomena are supported by the results
in Table 2. Even so, there are still some features selected by almost all the methods in the
Sonar dataset, namely #9, #10, #11, #12. But in the Musk dataset, the top 20 features of each
method have a big difference. For the accuracy, the performance of EI score outperforms
other methods in majority cases with three different classifiers. And we can also find that the
performance of EI score with EM-ELM would always get a better result as the EI scores are
germane to the EM-ELM. As is seen in experimental results, the EI score, in some degree,
is an effective criterion to measure the qualities of features effectively as other four filter
methods.

4.2.3 The effect of automatical determination of neural networks’ architecture

In our proposed method, we take feature selection and classifier design into account simulta-
neously, using EM-ELM to automatically select an appropriate number of hidden nodes for
each neural network during the feature selection process. It is, however, not clear the effects
of architecture determination in the whole system of HGEFS. To observe such effect, here,
we conduct a set of experiments. To simulate the feature selection process, we randomly
select a set of subsets from the datasets and use ELM and EM-ELM to make predictions.
For ELM, we test 25 and 35 hidden nodes on two datasets for all subsets while EM-ELM
automatically selects the hidden node number. Table 3 presents the average results over 10
runs of tenfold cross-validation. As seen in Table 3, we can find that the results of ELM are
almost inferior in all cases to that of EM-ELM. And for different subsets, their corresponding
appropriate number of hidden nodes varies. In addition, by choosing an appropriate number
of hidden nodes, EM-ELM can reduce the effect of inappropriate hidden node number so
that we can measure feature subsets more fairly. For example, in Sonar dataset the subset
with 30 features would have a much better quality when we use EM-ELM. And in Musk
dataset, when comparing the qualities of subsets with 80 and 110 features, the subset with
110 features using ELM to measure would be chosen while through adjusting the hidden
nodes number we can find that the subset with 80 features tends to be better. In light of this,
EM-ELM can not only improve the prediction accuracy but also measure the feature subset
more fairly. Therefore, EM-ELM is much more applicable than ELM for feature selection
problems.
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Table 3 The performance
comparisons with ELM,
EM-ELM for feature selection
problems

Datasets # Feature # Hidden nodes Accuracy (%)

ELM EM-ELM ELM EM-ELM

Sonar 10 25 32.5 67.5 70.5

20 25 35.5 70.5 72

30 25 49 71.5 75

40 25 53 72 73.5

50 25 46.5 74.5 75.5

All 25 42 75 77.5

Musk 20 35 53 67.19 70.45

50 35 65.5 70.17 72.02

80 35 67 71.49 76.81

110 35 76.5 75.96 76.38

140 35 86 74.47 77.45

All 35 79 74.13 77.74

4.3 Performance comparison on benchmark datasets

In this subsection, we compare the performance of HGEFS with different kinds of feature
selection methods, namely four filter methods: correlation-based feature subset selection
(CFS) [15], ReliefF [25], Gain Ratio [34], ChiSquare [30], two hybrid wrapper methods:
PSO-SVM[12] andGA-ELM[1], two embeddedmethods:C4.5 [33] andSVM-RFE[14], and
three ensemble feature selection methods: Attribute Bagging (AB) [5], Multi-ViewAdaboost
(MVA) [37] and Random Subspacing Ensemble (RSE) [17]. Here, two embedded methods
and PSO-SVM are all implemented in the Weka platform, while others were implemented in
Matlab. And specifically, the four filter methods were firstly conducted in the Weka platform
and then used EM-ELM to predict in Matlab. In the CFS, we use the sequential forward
search (SFS). PSO-SVM has the same population size and generations as HGEFS. To be
fair, AB, MVA and RSE all train 10 EM-ELMs and the mechanism of sample ensemble for
determining the output value is the same as HGEFS. For the bagging method in AB and
Adaboost method in MVA, 40% of the training data is used to resample to train EM-ELM
and the number of iterations for AB is 10. Both AB and RSE use randomly chosen subspaces
of the original input space and for the colon dataset and DLBCL dataset, to improve the
performance of AB and RSE, we first use Gain Ratio to select the top 300 features and then
randomly select from these 300 features to make RSE ensemble. In the MVA, we use the
different subsets selected by twofiltermethods (GainRatio andChiSquare) tomake ensemble
and the number of iterations for each subset is 5. The results are mainly compared in terms of
prediction accuracies. For the high-dimensional datasets (colon andDLBCL), their searching
spaces are very huge. Directly using HGEFS to search for the subsets with good qualities and
a small number of features becomes very computationally demanding and its run time can
be prohibitive. Just as many other wrapper methods, to deal with high-dimensional datasets,
we can adopt a two-phase hybrid combination of filtering and wrapping to reduce the time
required for training as many wrapper methods utilize. In our experiments, we firstly use
Gain Ratio to rank the features and select the top 500 features for HGEFS.

In our experiments, datasets were firstly fed into different feature selectors, which may
produce different feature subsets. For filter feature selection methods, the top t features with
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Table 4 Performance comparisons with ReliefF, Gain Ratio, ChiSquare, CFS-SFS and C4.5

Datasets Unselected ReliefF Gain Ratio ChiSquare CFS-SFS C4.5 HGEFS

Vehicle 78.81 80.87 79.48 79.76 69.17 73.64 82.02

WDBC 94.46 95.54 94.46 95.11 95.80 93.14 97.10

Ionosphere 87.79 87.57 87.63 87.86 89.06 91.16 91.33

Chess 91.20 96.43 94.35 93.98 94.03 99.43 98.74

Sonar 77.50 78.70 79.45 77.65 78.75 71.15 83.00

Splice 85.50 86.73 88.92 86.37 87.64 94.07 93.24

Musk 77.74 77.81 78.72 78.63 79.55 84.87 88.13

Arrhythmia 60.44 62.78 62.22 63.78 63.00 63.27 68.22

Colon 83.33 86.67 88.83 85.17 90.00 82.25 93.67

DLBCL 87.14 90.86 90.97 91.71 92.44 72.73 97.41

Average 82.39 84.39 84.38 84.50 83.94 82.58 89.28

the highest rank are chosen to induce EM-ELM classifier.We increase t from 1 tom (m is just
half of the features number and less than 60), and the optimal t is determined when we obtain
the best classification accuracy. And the prediction accuracy of EM-ELMwithout performing
feature selection serves as a baseline. All the results are the average results over 10 runs of
tenfold cross-validation to lessen the impact of random factors. The cross-validation process
of HGEFS is like a double cross-validation loop: in the outer loop the dataset is split in the
training dataset and the test dataset, in the inner loop the training dataset is subsequently
again split in a training subset to train EM-ELM and validation set to evaluate the quality
of the feature subsets. In the outer loop, the dataset is first partitioned into 10 equal sized
sets, and then, each set is in turn used as the test dataset while the other nine datasets are
used as the training dataset. In the inner loop, one-third of the training dataset is randomly
selected as a validation set for each EM-ELM to evaluate the quality of each subset and the
other training dataset is used to train EM-ELM. Different from the outer loop, it uses the
hold-out method in the inner loop as we need to maintain the trained EM-ELM classifier to
make ensemble.

The experimental results about classification performance on 10 datasets using different
algorithms are presented in Tables 4 and 5, where UnSelect depicts the accuracies of EM-
ELM on datasets with original features. For each data set, the bold value emphasizes the best
accuracy found among all methods.

Table 4 shows the comparative results between our method and ReliefF, Gain Ratio,
ChiSquare, CFS-SFS and C4.5. It can be observed that HGEFS outperforms all four filter
methods and C4.5 in most cases. As mentioned above, the major disadvantage of the filter
approach is that it totally ignores the effects of the selected feature subset on the performance
of the induction algorithm. The selected subsets by filter methods are totally independent of
EM-ELM so that there is no guarantee that the selected features can improve the performance
of EM-ELM. However, in HGEFS the selected subsets are germane to the performance of
EM-ELM as their qualities are evaluated by EM-ELM. With the global search ability of
GA, the subsets with good prediction accuracies are preserved to make ensemble. In this
case, HGEFS can always yield better prediction accuracies. When compared with C4.5, an
interesting fact observed in all the datasets considered is that C4.5 performs better on some
datasets than HGEFS, namely chess, splice. It is worth noting that these datasets are discrete.
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Table 5 Performance comparisons with SVM-RFE, PSO-SVM, GA-ELM, AB and RSE

Datasets SVM-RFE PSO-SVM GA-ELM AB MVA RSE HGEFS

Vehicle 78.49 80.76 81.68 80.95 81.20 77.32 82.02

WDBC 92.62 94.68 96.53 95.14 95.73 94.84 97.10

Ionosphere 89.84 90.12 90.36 89.54 90.14 89.01 91.33

Chess 97.78 96.82 97.63 95.12 95.37 94.86 98.74

Sonar 80.73 81.28 82.16 80.23 80.17 79.50 83.00

Splice 89.86 90.89 91.94 87.54 89.76 86.96 93.24

Musk 85.42 84.96 86.26 85.27 85.63 84.73 88.13

Arrhythmia 64.82 65.73 66.73 63.75 64.58 63.11 68.22

Colon 77.42 85.47 91.74 85.36 90.14 84.17 93.67

DLBCL 91.32 94.10 95.76 94.29 95.71 92.86 97.41

Average 84.83 86.51 88.01 85.72 86.84 84.73 89.28

For example, in the chess dataset, all the features are just composed of 7 discrete labels. As
a modified decision tree method, C4.5 can yield very good prediction accuracies in some
discrete datasets. However, it is not stable as HGEFS and in some cases, Colon and DLBCL,
the prediction accuracies of HGEFS are over 20% higher. Compared with the five feature
selection methods shown in Table 4, HGEFS can always yield not only good prediction
accuracies but also much more stable results.

In Table 5,we compareHGEFSwith SVM-RFE, PSO-SVM,GA-ELM,AttributeBagging
(AB), Multi-View Adaboost (MVA) and Randomly Subspace Ensemble (RSE). And the
comparison results also indicate that HGEFS is superior to the other methods in Table 5
in terms of prediction accuracy. For SVM-RFE, it returns a ranking of the features of a
classification problem by training an SVM with a linear kernel and removing the feature
with a smallest ranking criterion. Compared with SVM-RFE, HGEFS can always get a better
prediction accuracy for several reasons. Firstly, we adopt a classifier with good generalization
performance and high predicting accuracy which is comparable with or even higher than that
of linear-SVMs. Secondly, as SVM maximizes the minimum margin between two groups,
SVM-RFE is not robust against noisy data even with soft-margin SVM. However, in HGEFS
we use ensemble mechanism to reduce the influence of noisy data. Thirdly, the parameter
settings in SVM-RFE can not be adjusted according to different feature subsets. But in our
method,we simultaneously optimize the feature subset and classifiers’ parameters to optimize
the prediction accuracies. For PSO-SVM, it uses PSO as the search strategy to wrap SVM.
Compared with HGEFS, PSO-SVMdoes not adjust the parameters of SVM for each different
subset to get a better result and meanwhile does not adopt the ensemble mechanism to further
improve the final prediction accuracies. For GA-ELM, it is similar to HGEFS to use GA to
wrap ELM to solve feature selection problems. In the GA-ELM, its individuals have the same
size of features through randomly adding or deleting features to fix the feature size without
using any prior knowledge. However, HGEFS generates a score based on the search process
and the performance of EM-ELM for each feature to adjust the individual rather than just
randomly adds or deletes features. Moreover, we adopt EM-ELM to automatically determine
the architecture of ELM. However, in GA-ELM, they just preset the architecture for each
different feature subset.

To illustrate the efficiency of ensemble mechanism used in HGEFS, we compare our
method with three famous ensemble-based feature selection methods, namely AB, MVA and
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RSE. Table 5 shows that HGEFS displays better performance than the other three feature
selection ensemble methods. As mentioned above, for a good ensemble algorithm, we should
consider two issues: having diversities in their predictions and the high accuracy of the base
classifiers. For diversity, all four ensemble methods all ensemble different feature subsets.
In addition, AB and MVA adopt Bagging and Adaboost mechanism to resample the training
data to train classifiers, respectively. As we know, when the base learner is a weak learning
method, the enhancement of prediction accuracy of Bagging and Adaboost is apparent. With
EM-ELM,Bagging andAdaboost do not performaswell as they do inweak learningmethods.
And as is shown in [38], the performance using Bagging andAdaboost with ELM just slightly
improves when compared with the simple ensemble. In this case, in terms of improving the
diversity, all the four methods are similar. So the factor that influences the final performance
mainly focuses on the prediction accuracy of the base classifiers. In AB and RSE, the subsets
are randomly generated while MVA uses different filter methods to select different subsets.
These subsets are all selected independently of the performance of EM-ELM, which can not
guarantee the prediction accuracy. On the contrary, the subsets in HGEFS are germane to the
performance of EM-ELM. In HGEFS, through the evolution of GA, the EM-ELMs remained
in the final population are expected to have small training error. Based the theory proven
in [2], the EM-ELMs with smaller training error and smaller norm of weights tend to have
a better generalization performance. To further improve their generalization performance,
we select the EM-ELMs with smaller norm of output weights based on the generalization
performance theory of ELM. Compared with the other three ensemble methods, the base
EM-ELMs in HGEFS tend to get higher prediction accuracies. In other words, the average of
testing error of EM-ELMs of HGEFS tends to be smaller than that of the other three methods.
As we know, the testing error of ensemble is smaller than the average testing error of each
EM-ELMs, which means that HGEFS can yield the best prediction accuracy among the four
ensemble methods with the same voting mechanism for ensemble. And the experimental
results also support it.

At last, we give some analysis of different methods’ computational complexities. In our
paper, we compare ourmethodwith different filter, wrapper and embeddingmethods. Among
these three kinds of methods, filter methods do not need to train any classifier so that their
training time is much smaller than the other two kinds of methods. For embedded methods,
they just train a classifier, while the wrappermethods always trainmany classifiers to evaluate
different subsets. In this case, embeddedmethods always have less training time thanwrapper
methods. In our experiments, we utilize EM-ELM for the final classification for filermethods.
Compared with the time for training EM-ELM, the training time of different filter methods
using Weka platform can be ignored. As EM-ELM can be seen as a linear system, the
computational complexity of EM-ELM is O(mn), where m is the number of samples and n
is the number of features. In this case, the computational complexities of ReliedF, Gain Ratio,
ChiSquare, CFS-SFS are O(mn). For the embedded methods, the computational complexity
of C4.5 is O(n logm), while the computational complexity of SVM-RFE is O(mn2). For
wrapper methods, the main processing time is training many classifiers. In our method, we
train pg+ p/20 different EM-ELMs, where p is the size of population and g is the number of
search generations (p/20 is due to the EI strategy). In this case, the computational complexity
of HGEFS is about (pg+ p/20)O(mn). For GA-ELM, its computational complexity is about
pgO(mn). For PSO-SVM, the computational complexity of kernel SVMwe used is O(mn2)
so that its computational complexity is about pgO(mn2). For ensemble methods, as we train
N EM-ELMs for ensemble, their computational complexities are about NO(mn). To better
understand the processing time of eachmethod, we take theArrhythmia dataset as an example
in which we use 90% of the dataset to train the related models and then make predictions. For
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the filter methods, we firstly use theWeka platform to get the subset and then use EM-ELM to
make predictions. The processing time of Weka platform is too small so we ignore it. In this
case, the four filtermethods have similar processing time, namely 0.56 s. The processing times
of C4.5 and SVM-RFE in Weka platform are 0.6 and 226.4 s, respectively. The processing
times of AB, MVA and RSE are 5.3, 6.4 and 4.7 s, respectively. For the wrapper methods,
the processing times of PSO-SVM, GA-ELM and HGEFS are 50493.1, 4373.8 and 4936.7 s,
respectively. Our method is time-consuming when compared with the filter, embedded and
ensemble methods. However, when compared with the SVM-based wrapper methods, the
processing time of HGEFS is much smaller. When compared with GA-ELM, our process
time is a little longer. However, HGEFS can yield better prediction accuracy.

5 Conclusions

In this correspondence, we propose a novel wrapper feature selection based on genetic algo-
rithm and extreme learning machine. As compared to the other conventional wrapper feature
selection algorithms, we adopt EM-ELM for its extremely fast learning speed and high pre-
diction accuracy to allow us to perform feature selection process in an affordable time. And
to improve the population’s diversity of GA, we introduced an efficient EI mechanism. To
further settle the feature selection problem, both the ELMs’ architecture optimization and
feature subsets optimization were simultaneously executed by HGEFS, and then, an efficient
ranking method designed according to the ELM’s generalization theory is utilized to select
several ELMs. Finally, the selected ELMs perform the classification tasks using the appropri-
ate networks’ architecture and subsets of features to make up the final ensemble to improve
the prediction and stability. Both the performance and the applicability of the method have
been well studied by experiments on various types of datasets. And the results are found
strongly to demonstrate the effectiveness of the proposed HGEFS approach.

References

1. Alexandre E, Cuadra L, Salcedo-Sanz S, Pastor-Sánchez A, Casanova-Mateo C (2015) Hybridizing
extreme learning machines and genetic algorithms to select acoustic features in vehicle classification
applications. Neurocomputing 152:58–68

2. Bartlett PL (1998) The sample complexity of pattern classification with neural networks: the size of the
weights is more important than the size of the network. IEEE Trans Inf Theory 44(2):525–536

3. Bermejo P, Gámez JA, Puerta JM (2014) Speeding up incremental wrapper feature subset selection with
Naive Bayes classifier. Knowl Based Syst 55:140–147

4. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2013) A review of feature selection methods
on synthetic data. Knowl Inf Syst 34(3):483–519

5. Bryll R, Gutierrez-Osuna R, Quek F (2003) Attribute bagging: improving accuracy of classifier ensembles
by using random feature subsets. Pattern Recognit 36(6):1291–1302

6. Cao J, Lin Z, Huang GB, Liu N (2012) Voting based extreme learning machine. Inf Sci 185(1):66–77
7. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol

TIST 2(3):27
8. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1(1):131–156
9. El Akadi A, Amine A, El Ouardighi A, Aboutajdine D (2011) A two-stage gene selection scheme utilizing

MRMR filter and GA wrapper. Knowl Inf Syst 26(3):487–500
10. Feng G, Huang GB, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of

hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357
11. Fuchs CA, Peres A (1996) Quantum-state disturbance versus information gain: uncertainty relations for

quantum information. Phys Rev A 53(4):2038

123



A novel ensemble-based wrapper method for feature selection… 411

12. García-Nieto J,AlbaE, JourdanL,Talbi E (2009) Sensitivity and specificity basedmultiobjective approach
for feature selection: application to cancer diagnosis. Inf Process Lett 109(16):887–896

13. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–
1182

14. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support
vector machines. Mach Learn 46(1–3):389–422

15. Hall MA (1999) Correlation-based feature selection for machine learning. Ph.D. thesis, The University
of Waikato

16. Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 10:993–
1001

17. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal
Mach Intell 20(8):832–844

18. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications
to biology, control, and artificial intelligence. MIT press, Cambridge

19. Huang CL, Dun JF (2008) A distributed pso-svm hybrid system with feature selection and parameter
optimization. Appl Soft Comput 8(4):1381–1391

20. Huang CL,Wang CJ (2006) AGA-based feature selection and parameters optimization for support vector
machines. Exp Syst Appl 31(2):231–240

21. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass
classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529

22. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward
neural networks. In: 2004 IEEE International Joint Conference on Neural Networks. Proceedings, vol 2.
IEEE, pp 985–990

23. Huang J, Cai Y, Xu X (2007) A hybrid genetic algorithm for feature selection wrapper based on mutual
information. Pattern Recognit Lett 28(13):1825–1844

24. Jain A, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE
Trans Pattern Anal Mach Intell 19(2):153–158

25. Kira K, Rendell LA (1992) A practical approach to feature selection. In: Proceedings of the ninth inter-
national workshop on machine learning, pp 249–256

26. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1):273–324
27. Li S, Harner EJ, Adjeroh DA (2011) Random KNN feature selection—a fast and stable alternative to

random forests. BMC Bioinform 12(1):450
28. Li X, Xiao N, Claramunt C, Lin H (2011) Initialization strategies to enhancing the performance of genetic

algorithms for the p-median problem. Comput Ind Eng 61(4):1024–1034
29. Lin SW, Chen SC, Wu WJ, Chen CH (2009) Parameter determination and feature selection for back-

propagation network by particle swarm optimization. Knowl Inf Syst 21(2):249–266
30. Liu H, Setiono R (1995) Chi2: feature selection and discretization of numeric attributes. In: TAI. IEEE,

p 388
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