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Abstract Mining subgraph patterns is an active area of research due to its wide-ranging
applications. Examples include frequent subgraph mining, discriminative subgraph mining,
statistically significant subgraphs. Existing research has primarily focused on mining all sub-
graph patterns in the database. However, due to the exponential subgraph search space, the
number of patterns mined, typically, is too large for any human-mediated analysis. Conse-
quently, deriving insights from the mined patterns is hard for domain scientists. In addition,
subgraph pattern mining is posed in multiple forms: the function that models if a subgraph
is a pattern varies based on the application and the database could be over multiple graphs or
a single, large graph. In this paper, we ask the following question: Given a subgraph impor-
tance function and a budget k, which are the k subgraph patterns that best represent all other
patterns of interest?We show that the problem is NP-hard, and propose a generic framework
called Resling that adapts to arbitrary subgraph importance functions and generalizable to
both transactional graph databases as well as single, large graphs. Resling derives its power
by structuring the search space in the form of an edit map, where each subgraph is a node,
and two subgraphs are connected if they have an edit distance of one. We rank nodes in
the edit map through two random walk based algorithms: vertex-reinforced random walks
(Resling-VR) and negative-reinforced random walks(Resling-NR). Experiments show that
Resling-VR is up to 20 timesmore representative of the pattern space and two orders ofmag-
nitude faster than the state-of-the-art techniques. Resling-NR further improves the running
time while maintaining comparable or better performance in representative power.
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1 Introduction

Recent technological advances have generated large volumes of data that are represented
as graphs. Examples include chemical compounds [1], protein–protein interaction networks
[2], social networks [3], and road networks [4,5]. Mining subgraphs of interest has received
considerable interest in the graph mining community due to its wide-ranging applications.
Given a function that classifies a subgraph as either important or unimportant, the goal in
subgraph mining is to identify subgraphs that are important. The importance of a subgraph
could represent a variety of domain specific properties such as the frequent subgraphs [6–9],
discriminative subgraphs [2,10], statistically significant subgraphs [11–14].

The applications of mining subgraphs span multiple areas. Frequent subgraph mining has
been widely used for drug discovery [6,15,16]. Specifically, given a dataset of molecules
that are active against a particular disease, chemists are often interested in identifying the
molecular substructures that are frequent in this set. This same line of reasoning evolved into
discriminative [10] and statistically significant subgraph mining [11,12,17,18], where the
goal is to mine subgraphs that are “overrepresented” in the active dataset. Both discriminative
subgraphmining and significant subgraphmining have showngood performance inmolecular
activity prediction [10,18]. Beyond drug discovery, subgraph mining has also been used for
bug localization [19] and predicting disease susceptibility from gene expression data in
protein–protein interaction networks [2,20].

Themain challenge in subgraphmining is to explore the exponential subgraph search space
in an efficient manner. A graph with n nodes could contain 2n subgraphs and evaluating each
possible subgraph is not scalable. Hence, majority of the existing techniques have focused
on developing strategies that are effective in pruning the search space. Despite this progress
in subgraph mining, two important issues remain unsolved.

1. Answer set size Due to the exponential subgraph search space, the number of subgraphs
that are mined as important is also extremely large. Now, when the answer sets are given
to domain scientists, a human-mediated analysis is not feasible due to their sheer sizes.
For example, chemists want to familiarize themselves with the structures and chemical
properties of the mined patterns for targeted drug discovery. However, individually going
through all patterns is not possible. Similarly, biologists are interested in identifying
protein modules (important subgraphs) that can predict susceptibility to a disease [2,
20]. Monitoring thousands of modules is not a financially viable solution. Furthermore,
subgraph patterns often serve as the platform for higher-order tasks like classification,
structural alignment of proteins, where mining all patterns is not necessary; a small
and diverse set of patterns is enough [21]. Thus, there is a critical need to summarize
subgraph patterns using a small number of representatives without compromising on the
information content.
To establish the issue of answer set size empirically,weperform frequent subgraphmining
on the active molecules in the DTPAIDS antiviral screening dataset, which contains only
422 graphs. Given a threshold θ ∈ [0, 100], a subgraph is frequent if it is present in at least
θ% of the database graphs. Further details on the dataset is provided in Sect. 7. Figure 1
shows that the number of frequent subgraphs grows exponentially with decrease in θ .
At 5% frequency threshold, 252,331 subgraphs are mined, which is clearly beyond the
scope of any human-mediated analysis. The scenario does not change in other form of
subgraph mining [2].

2. Information Redundancy The answer sets also suffer from redundancy. Subgraphs that
are structurally similar have similar importance values [17,22]. Consequently, the answer
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Fig. 1 The growth of the answer
set size with frequency threshold
in frequent subgraph mining. The
y-axis is in log scale
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set is overloaded with similar subgraphs. Providing such redundant subgraphs reduces
the productivity of domain scientists since they manually need to compress the answer
set into a more concise and informationally dense subset of patterns.

In this paper, we resolve the above two weaknesses. We ask the following question:Given
a budget k in addition to the importance function, which are the k important subgraphs that
best represent all important subgraphs?A subgraph g represents another subgraph g′, if they
are structurally similar. There are three key challenges in this task.

1. Adapt to any importance functionAs discussed earlier, a number of importance functions
have been studied for subgraph mining. In our work, the goal is to develop a framework
that is generalizable to all importance functions.

2. Graph datasets There are two kinds of graph datasets that are routinely encountered.
In the first kind, we have a database of objects, where each object is a graph. This
setup is common while mining molecular repositories [6,12] and is popularly known
as the transactional graph database. The second type of scenario is where we have a
single large graph. Such graphs are routinely used to model protein–protein interaction
networks, social networks, and road networks [2,8,20]. Each dataset type brings in their
own unique challenges and our goal is to develop a framework that can handle both types
of graph datasets.

3. Scalability The problem of mining top-k representative subgraphs is NP-hard and even
greedy heuristics do not scale. A straightforward heuristic is therefore to first mine all
subgraphs that satisfy the threshold criteria and then cluster them into k groups. The
cluster centroids would form the answer set. Unfortunately, such a strategy does not
scale. Computing the edit distance between two graphs is NP-hard [23]. Since clustering
requires us to compute at least O(n2) edit distances in a set of n subgraphs, the overall
approach is not scalable.

To resolve all of the above challenges, we develop a technique called Resling

(REpresentative Subgraph sampLING). While two techniques exist to mine representative
frequent subgraphs [21,24], they do not generalize to other importance functions and dataset
types. A key focus of our work is to develop a framework that works across different impor-
tance functions and graph dataset types. Such flexibility offers more freedom to end-users,
enhances productivity in developments of higher-order systems that rely on representative
patterns and, in general, is more future-proof.

Figure 2 outlines the flow of Resling. Given a graph database, which can either be the
transactional setting or the single large network setup, we convert its exponential subgraph
search space into an edit map (EMP). Edit map imposes a structure on the search space
where structurally similar subgraphs are naturally in close proximity. This organization of
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Fig. 2 Pipeline of Resling

the search space negates the need to perform expensive graph clustering and lies at the core of
scaling up representative subgraph mining. Since the EMP is exponential in size, we perform
a diversified ranking on the EMP in a streaming manner to identify k representative patterns.
This diversified ranking is powered by two ranking techniques vertex-reinforced random
walk (Resling-VR) and negative-reinforced random walk (Resling-NR). While Resling-
VR is developed by us in our earlier work [25], Resling-NR further improves the ranking
algorithm by being more efficient while maintaining comparable or better performance in
representative power. Both ranking algorithms are supported by the Space-saving algorithm
[26] to scale to exponential search spaces, which are treated as a data stream. A noteworthy
aspect of Resling is that it avoids a two-step approach where first the subgraph patterns
are mined, and then the representative ones are identified. Instead, both operations happen
in a single, integrated fashion, which allows us to scale to large graph datasets. The core
contributions are as follows:

– We are the first to develop a generic framework called Resling to mine top-k represen-
tative subgraph patterns for any given subgraph importance function. Ours is the first
formulation that is flexible enough to accommodate any importance function and graph
dataset.

– Resling is scalable to large graph databases. It derives its power by structuring the search
space in the form of an edit map, where structurally similar subgraphs are naturally in
close proximity. Thus, expensive operations like subgraph clustering are avoided.

– Extensive experiments on real datasets demonstrate Resling to be up to 2 orders of
magnitude faster and 20 times more effective in representing the pattern space than
state-of-the-art techniques.

– Resling-NR, based on negative-reinforced random walks, further improves Resling-
VR [25] in both running time and quality.

2 Problem formulation

In this section, we define the concepts central to our paper.
A graph G = {V, E} is composed of a set of vertices V = {v1, . . . , vn} and a set of edges

E = {(vi , v j ) | vi , v j ∈ V } modeling the relationships between vertices. The size of a graph
is defined as |E|. Generally, there are two kinds of graph datasets and our goal is to develop
a technique that can handle both.
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Definition 1 (Graph database) A graph database consists of a collection of graphs D =
{G1, . . . ,Gm}. Each graph has its own set of vertices and edges.

When |D| > 1, we call it the transactional setting; otherwise, it corresponds to the
single large network setting. Transactional graph datasets are commonly used to characterize
chemical compounds and function-call graphs. Single large networks are more popular in
modeling protein–protein interaction networks, social networks, etc. As evident from its
name, single large networks typically are much larger in sizes than graphs encountered in
the transactional setting.

Definition 2 (Subgraph of a database) A graph g = {Vg, Eg} is a subgraph of a graph
database D, denoted by g ⊆ D, if there exists a graph G ∈ D, such that Vg ⊆ VG , Eg ⊆ EG .

g = {Vg, Eg} is connected if there exists a path from u to v, ∀u, v ∈ Vg . As in majority
of the subgraph mining techniques ref [2,6,7], we consider only connected subgraphs.

We assume there is an existing algorithm A to mine subgraph patterns. For our purposes,
A is a black box and supports two operations.

1. Given a graph database, A can mine all important subgraph patterns T.
2. For any given subgraph pattern g ⊆ D, A can quantify the importance of g. We denote

g′s importance using the notation φ(g). The importance function can model any graph
property such as subgraph frequency [6], discriminative potential [2,10,20], or statistical
significance of g [11,12].

As illustrated earlier, subgraph mining is performed with various importance functions. We
therefore introduce the generic definition of a important subgraph.

Given a budget k indicating the desired size of the answer set, our goal is therefore to
“represent” the spectrum of important subgraphs in T using k representatives. Toward that
goal, we define the δ-neighborhood of a subgraph.

Definition 3 (δ-neighborhood) The δ-neighborhood of a subgraph g, denoted as N (g), con-
tains all important subgraphs within a distance threshold δ from g.

N (g) = {g′ ∈ T | d(g, g′) ≤ δ} (1)

where d(g, g′) is the classical graph edit distance [23]. In other words, g is a structural
representative of all subgraphs in its δ-neighborhood. In edit distance, the distance between
two graphs g, g′ is the minimum number of “edits” required to convert g to g′. An edit is
either deletion or addition of an edge, or deletion or addition of a node. Due to the simplicity
of this definition, δ is intuitive to set. Now, extending the same formulation, we define the
representative power π(S) of a set of graphs S.

Definition 4 (Representative power) The representative power π(S) of a set of graphs S

with respect to the set of important graphs T and a distance threshold δ, is the proportion of
T that is represented by S. More specifically,

π(S) = |N (S)|
|T| , (2)

where N (S) = ⋃
g∈S N (g).

Hereon, we denote the representative power π({g}) of a graph g as π(g).

Problem 1 Top- k representative subgraphs: Given a budget k, compute the represen-
tative set R such that

R = argmax
S

{π(S) | S ⊆ T, |S| = k} (3)
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In essence, the proposed model captures as much of the various groups of important
subgraphs as possible within the budget k. Similar models to capture representative power
have been studied before in similarity queries [27,28], but not in graph mining.

3 Challenges of mining top-k representative subgraphs

In this section, we analyze the problem formulation and lay out the challenges.

Theorem 1 The problem of mining top-k representative subgraph patterns is NP-hard.

Proof The problem reduces to the set-cover problem. The proof follows in the same manner
as in [27].

Fortunately, π(S) is a submodular function. A submodular function f is a set function
that satisfies the following condition. The marginal gain from adding an element to a set S is
at least as high as the marginal gain obtained by adding the same element to a superset of S.
Mathematically,

f (S ∪ {e}) − f (S) ≥ f (T ∪ {e}) − f (T ) (4)

for any element e, any set S and any of its superset T .

Theorem 2 Representative power (Eq. 2) is monotone and submodular.

Proof by contradiction: Assume,

π(T ∪ {g}) − π(T ) > π(S ∪ {g}) − π(S) (5)

where S is a subset of T and both S and T are sets of graphs and g ∈ T is the graph being
added.

|N ({g}) \ N (T )| > |N ({g}) \ N (S)|
or, g � T (6)

which is a contradiction to the assumption that S ⊆ T . 	

If the function is submodular and monotone, the greedy hill-climbing algorithm of itera-

tively choosing the element with maximal marginal gain approximates the optimal solution
within a factor of (1 − 1

e ) [29].

3.1 The greedy approach

Based on Theorem 2, the following two-step approach can be adopted. Algorithm. 1 presents
the pseudocode. First, we utilize existing algorithms to mine the important subgraphs T

(line 1). Then, we iteratively choose the subgraph providing the highest marginal gain in

Algorithm 1 Baseline-Greedy(φ(.), k)
1: Compute T based on importance function φ(.)

2: R ← ∅
3: while |R| < k do
4: g* ← argmax

g
{π(R ∪ {g}) − π(R) | g ∈ T}

5: R ← R ∪ g*
6: for g ∈ T \ R do
7: N (g) ← N (g) \ N (g*)
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Fig. 3 a The growth of the running time with the size of T. b Example of a graph database containing two
graphs. The node color denotes their labels

the representative power to populate R till it attains the size of k (lines 2–7). The following
bound can be provided on the quality of R with respect to the optimal answer set R

∗.

Corollary 1 π(R) ≥ (1 − 1
e )π(R*)

Unfortunately, the greedy approach does not scale. The primary bottleneck lies in the
neighborhood update step (lines 6, 7), which is performed at each iteration. The neighborhood
update set requires O(n2) edit distance computations. Moreover, computing edit distance
between two graphs is NP-hard [23]. Hence, the algorithm is not scalable when T is large,
which is the case for most subgraph mining problems.

To empirically establish the non-scalability of the baseline-greedy approach, we plot the
growth of the running timewith the size ofT. Figure 3a presents the results. As shown, it takes
more than 7 h to complete even when cardinality ofT is 5000. As was shown earlier in Fig. 1,
even in a small graph database of 400 graphs, the number of important subgraphs can reach
200,000. Note that T can only be computed at runtime and thus cannot be indexed. Hence
any post-processing-based heuristic, such as k-means clustering of T, is also not scalable.
Clearly, we need to devise a more efficient technique than the greedy algorithm.

An obvious approach to scale the baseline-greedy algorithm is to index the subgraphs
in T so that the neighborhood update step can be performed faster [27,28,30]. However,
indexing T is not feasible. T is computed at runtime when the importance function and
threshold is provided, and thus violates the assumption of a static database in existing graph
index structures. Alternatively, one can build the index structure at runtime after T is com-
puted. However, building the index structure is an even more expensive procedure and the
computation time can run into days [27].

The key challenge is therefore the following:A two-step, post-processing-based procedure
is not scalable. We need to directly mine the representative patterns by integrating both the
importance computation and the representative power computation in a single framework.

4 RESLING

To address the weaknesses of the baseline-greedy algorithm, we develop a sampling-based
framework called Resling to directly mine the top-k representative patterns.

Themost expensive step in the greedy approach is grouping graphs based on their structural
similarity. Can we organize subgraphs in a manner such that structurally similar subgraphs
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Fig. 4 The edit map of the example database in Fig. 3b. Each subgraph is a node in the EMP

are naturally in the same group without the explicit need to compute edit distances between
them? We solve this question by organizing the search space in the form of an Edit Map
(EMP).

4.1 Structuring the subgraph search space

Our search space consists of all possible subgraphs of the database. The EMP organizes this
search space into an edge-weighted undirected graph where each node is a subgraph of the
database and the edges correspond to edits that can be performed on a subgraph to construct
other subgraphs of the database. An edit is either a deletion of an edge or an addition of an
edge. The impact of the edit, which is the change in the importance score due to the edit, is
captured as the edge weight. Suppose, g and g′ are two subgraphs of the database. Hence,
both these graphs are part of the search space and therefore nodes in the EMP. Furthermore,
let g′ ⊇ g, and g′ contains exactly one more edge than g. Thus, in the EMP g will be
connected to g′ since by adding an edge to g, we can construct g′. The weight of this edge
from g to g′ is

w(g, g′) = φ(g′) − φ(g) (7)

where φ(g) denotes the importance of subgraph g.1 In summary, any subgraph g ⊆ D is a
node in the EMP. g is connected to those subgraphs g′ ⊆ D, where either g′ ⊆ g or g′ ⊇ g,
and g′ contains either one additional edge or one less edge than g. An edit is performed on
g by either deleting an edge or adding an edge to construct g′. The formal definition is as
follows.

Definition 5 (Edit Map) Edit map of a graph database D is an edge-weighted graph M =
(VM , EM ), where VM = {g | g ⊆ D}, EM = {(g = (V, E), g′ = (V ′, E ′)) | either g′ ⊇
g, E ′ = E ∪ {e}, or g′ ⊆ g, E ′ = E\{e}, e ∈ E}.

Example 1 Figure 4 shows the edit map corresponding to the database in Fig. 3b. For sim-
plicity, the edge weights are not shown. The smallest subgraph of the database is the null
graph. The null graph is connected to 0-edge subgraphs of the database, which are essentially
all possible nodes. In our case, there are two types of nodes: the gray and the white. These
0-edge subgraphs are connected to the null graph and the 1-edge subgraphs. The 1-edge

1 We slightly abuse the term “undirected graph” here. Although the edges are undirected, the sign of the edge
weight depends on the direction.
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subgraphs are all possible edge-types in the database. The EMP is extended in this manner
till it reaches the largest subgraph of the database, which is of size 4 and is present only in the
first graph of the database. Any subgraph of the database is a node in the EMP and connected
to its immediate subgraphs and supergraphs.

Properties of the edit map:

• Connectivity The EMP is connected. From any node in the EMP, one can reach the null
graph by repeatedly deleting edges. From the null graph, a path exists to all other nodes.

• Proximity If the edit distance between two subgraphs is small, then they are in close prox-
imity in the EMP as well due to our construction strategy. Thus, with a high likelihood,
there would be zones in the EMP that contain a cluster of important subgraphs due to the
correlation between structural similarity and importance [17,22]. As we will see next,
our strategy is to reach these zones and identify the best representatives.

• Size Since each subgraph of the database corresponds to a node in the EMP, the size of
the EMP is exponential. As a result, it is neither possible to compute it entirely, nor store
it in memory. However, given any particular node in the EMP, we can easily compute its
one-hop neighborhood by performing all possible edits.

Connection ofEMP topastwork EMP-like structures have been studied in pastwork [2,6,11].
For example, the lattice of the depth-first traversal of the search space in frequent subgraph
mining, first proposed by gSpan [6], is similar to EMP with the exceptions of being a tree
and not having edge weights. The novel contribution of our work is therefore not much in
proposing the EMP. Rather, we innovate in identifying and exploiting the above properties
of the EMP, which lie at the core of our ability to scale to exponential search spaces and is
the key contribution of our paper. Specifically, we design a ranking algorithm that exploits
the “Proximity” property of EMP. Furthermore, Resling takes local decisions to converge
toward a global solution, and hence, the exponential size of the EMP is not a bottleneck.

4.2 Ranking subgraphs in edit map

Since the EMP is a connected network, and a high edge weight indicates transition to a
more important subgraph, if we perform PageRank [31] on the EMP, with a high likelihood,
the random walk will be concentrated among the important subgraphs. Thus, important
subgraphs are likely to have a high PageRank and non-important subgraphs are likely to
have low PageRanks. Furthermore, structurally similar subgraphs are likely to have similar
importance values [2,6,17]. Thus, communities of important subgraphswould strongly attract
the random walker within it receiving high PageRank scores. However, PageRank does not
reward representativeness.

Example 2 Consider the example network shown in Fig. 5a. Let the task be to summarize
information of the whole network by the top three nodes. For simplicity, assume that all edge
weights are equal. Figure 5b shows the three shaded nodes that would receive the highest
PageRank. This results from the fact that the shaded nodes are closely connected to each other
and are present in the largest community. The result that we would rather like to achieve is
shown in Fig. 5c. Figure 5c is preferable since the shaded nodes capture all three communities
in the network.

To address thisweakness of PageRank,we employ two ranking algorithms on the editmap.
In the first algorithm, we perform vertex-reinforced random walks (VRRW) [32] on the EMP.
Our second sampling algorithm is based on negative-reinforced random walks (NRRW) [33].
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Fig. 5 Illustration of why PageRank is not good enough for our problem

In both these ranking algorithms the goal is not only to reward high centrality (or subgraph
importance), but also representative power. It is to be noted that the second ranking algorithm
based on negative-reinforced random walks is the new contribution from our earlier work on
vertex-reinforced random walks [25].

5 RESLING-VR

Resling-VR ranks nodes in the EMP through vertex-reinforced random walks.

5.1 Vertex-reinforced random walk (VRRW)

VRRWis similar toPageRank, but it is a time-variant randomwalk process.A randomwalkon
a network defines aMarkov chain, where each node represents a state and awalk transits from
node u to node v proportional to the transition probability, denoted as p(u, v). Transitions
happen only through edges in the network and the transition probabilities are proportional to
the edge weights. While in PageRank p(u, v) is static, in VRRW the transition probability
to a node u from other nodes is reinforced by the number of previous visits to u.

Before explaining themathematical foundation behindVRRW,we first explain the general
intuition. In a real-world scenario, it is reasonable to consider that in random walk, the
transition probabilities change over time. Indeed, a visitor is more likely to visit a restaurant
that has already been visited by many other people; people tend to read books that has
already been read by many; an actor accumulates prestige when acting in various roles and
the accumulated prestige in turn helps him to get even more opportunities. One particular
family of time-variant random walk processes is known as the vertex-reinforced random
walks (VRRW). The basic assumption is that the transition probability to one state from its
neighbors is reinforced by the number of previous visits to that state which is true intuitively.

To formalize VRRW, let p0(u, v) be the transition probability from u to v at timestamp
0, which is the start of the random walk. Furthermore, let NT(v) be the number of times the
walk has visited v up to time T . Then, VRRW is defined sequentially as follows. Let there
be n states. Initially, N0(i) = 1 for i = 1, . . . , n. Suppose the random walker is at node u
at the current time T . Then, at time T + 1, the random walk moves to some node v with
probability pT(u, v) ∝ p0(u, v)NT(v). In other words, pT(u, v) is reinforced by NT(v). For
our problem, VRRW is generalized as follows.

pT(u, v) = (1 − λ)
1

|VM | + λ
p0(u, v)NT(v)

DT(u)
(8)
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where DT(u) = ∑
v p0(u, v)NT(v) is the normalizing term. Here, 1− λ is the teleportation

probability, which is also present in PageRank. λ represents the probability of choosing
one of the neighboring nodes based on the reinforced transition probability. However, with
probability (1 − λ) the walk jumps to a random node in the EMP.

InVRRW,we also add a self-edge to all nodes. If the network is ergodic, VRRWconverges
to some stationary distribution τ [32] after a large T , i.e.,

τ(v) =
∑

u∈V
pT(u, v)τ (u) (9)

Furthermore,
∑

∀v∈V τ(v) = 1., where V is the set of all nodes. Also note that “Rich gets
richer” phenomena holds only when there exists a self-edge. Self-edge to a node ensures that
even if all its neighbors shrink, its score will still be large as long as its number of visits is
large.

WhydoesVRRW favor representativeness? As in PageRank, nodeswith higher centralities
get higher weights due to the flow arriving at these nodes. This, in turn results in larger visit
counts (NT(v)).When the randomwalk proceeds, the nodes that already have high visit counts
tend to get an even higher weight. In other words, a high-weighted node starts dominating
all other nodes in its neighborhood and the “Rich gets Richer.” Note that the self-edge to a
node ensures that even if all of its neighbors shrink, its score will still be large as long as its
number of visits is large. For further details on the mathematical basis and the theoretical
correctness of this phenomenon, we point readers to [34].

5.2 VRRW on edit map

To perform VRRW on the EMP, we just need to formalize the transition matrix. The rest of
the components have already been formalized. Intuitively, better the impact of the edit on
the subgraph importance, the higher is the edge weight. An edit is either addition of an edge
or a deletion. However, for a broad range of subgraph mining tasks, the importance score
behaves monotonically with the subgraph size. For example, in frequent subgraph mining,
the frequency decreases with addition of an edge [6]. Thus, if we simply use change in
frequency as the edge weight, the random walker would always be biased toward deleting
edges and never explore larger frequent subgraphs. On the other hand, in discriminative
subgraph mining [2], the discriminative potential increases with addition of an edge since
more information becomes available to discriminate. In this scenario, the random walker
would be biased toward larger subgraphs. This behavior is problematic since all important
subgraphs are not explored adequately. Thus, with 0.5 probability we perform a delete, and
with 0.5 probability we add an edge to the current subgraph.

Addition of an edge Let the current state in VRRW be XT = g = (Vg, Eg) and φ(g) be
the importance of g. For each edge e that can be added to g to transition to a supergraph h,
the transition probability is defined as follows.

pT(g, h) = 0.5
w(g, h)NT(h)

∑
g′∈gsup w(g, g′)NT(g′)

(10)

wherew(g, h) (Eq. 7) is the edge weight and gsup is the set of all supergraphs of g containing
one more edge.

Deletion of an edge and self-edges Edge deletions can be modeled just like edge addi-
tions. However, when both deletions and additions are biased toward “good edits”, then a
neighborhood of important subgraphs would be like a black hole that the random walker
would never be able to escape. It is necessary to explore “bad edits” that may lead toward
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other neighborhoods of important subgraphs. To incorporate this property, edge deletions
or staying at the same node through self-edges are weighted uniformly. Mathematically, let
XT = g = (Vg, Eg) be the current state. The probability of an edge delete or self-edge is

pT(g, h) = 0.5
NT(h)

∑
g′∈gsub∪{g} NT(g′)

(11)

where gsub is the set of all subgraphs of g containing one less edge and h ⊆ g is the resulting
subgraph following the edit. In other words, we either stay in the current node g, or transition
to a subgraph of g proportional to their visit counts.

Key property The key advantage in the proposed framework is that we do not need to
compute any edit distances. In theEMP, subgraphs that are structurally similarwouldnaturally
be in close proximity. Furthermore, VRRW ensures diversity. Thus, two subgraphs from the
same cluster would not receive high scores. Overall, the process of identifying important
subgraphs, computing their neighborhoods, and identifying representatives are all integrated
in a single, coherent ranking process.

5.3 Managing the exponential search space

Section 5.2 formalizesVRRWon the EMP.At this juncture, recall that the EMP is exponential
in size and therefore, it can never be computed in its entirety. However, a closer analysis of
the VRRW reveals that we never need to load the entire EMP. Given the subgraph of the
database that is the current state, we only need to construct its neighbors and perform a state
transition according to the VRRW principles. Specifically,

1. Construct the neighborhood of g in the EMP by enumerating all possible edge additions
and edge deletions.

2. Choose a neighbor based on the transition probability.

In other words, we take local decisions to converge toward a global solution. However,
a scalability issue remains. Specifically, to compute the transition probability pT(g, h) to
any neighboring supergraph h, we not only need to compute the importance of g and h,
but also all other supergraph neighbors of g. This is necessary due to the w(g, g′) term
in the denominator of Eq. 10, which is essentially the normalization factor. Computing
the importance of a subgraph is often time consuming. For example, in frequent subgraph
mining, we need to perform subgraph isomorphism tests on all graphs in the database [6]. The
number of neighbors is typically large (> 700) and thus this step is prohibitively expensive.
Furthermore, this operation needs to be repeated at each timestamp till the VRRW converges.
Since the number of iterations in VRRW can be extremely large, we need a mechanism to
avoid computing the neighborhood of a subgraph g at every step.We overcome this bottleneck
using the Space-Saving Algorithm (SSA) [26].

5.3.1 Space-saving algorithm

Before we discuss SSA, we first outline the intuition behind our idea. Recall, that in VRRW,
the rich gets richer. In other words, although initially all nodes (subgraphs in EMP) start with
similar ranks, slowly fewdiverse, aswell as central, nodes emerge that receivemore visits than
the rest. Owing to higher visits, their likelihoods of being visited again get further reinforced,
and eventually, the VRRW is concentrated on a minority of diverse nodes. We exploit this
property. More specifically, if we store the neighborhoods of the frequently visited, then
VRRW can be performed much more efficiently.
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Algorithm 2 SSA.add(g)
Require: g is the current node (subgraph) to be updated
Require: V is the count vector that is being maintained in descending order
1: if V contains less than M nodes then
2: Add g to V with count 2.
3: else
4: if g ∈ V then
5: Count (g) ← Count (g) + 1
6: else
7: gM ← least frequent subgraph in V
8: Replace L with g
9: Count (g) ← Count (gM ) + 1
10: Compute and store neighborhood of g

Toward that goal, we employ the following strategy. At any timestamp T , we store the
neighborhoods of the top-M most frequent nodes visited till now. M is selected based on the
main memory budget of the system. We assume that M � k. When we transition to a new
node, its neighborhood is computed only if it is not among the top-M most frequent nodes;
otherwise, it is a simple look-up. Note that the top-M list continuously changes since the
frequency of nodes change with every transition in the VRRW.

If N is the total number of nodes in the EMP, and I is the total number of iterations till
VRRW converges, then the storage complexity of computing the top-M frequent nodes is
O(min{N , I }). Since, both N and I are extremely large, storing the frequency of every node
visited is not feasible. We thus model our problem as that of computing the top-M most
frequent items from a data stream. Specifically, the stream of items are the nodes that we
visit in the EMP during the VRRW, and we have a budget to track and store only M nodes.

Selecting M M is selected based on the main memory capacity of the processing system.
Weneed to store three pieces of information for each of theM cells: the node beingmonitored,
the visit count of the node, and its neighboring nodes. Each node in the EMP corresponds to
a subgraph of a database. A graph can be uniquely represented through its canonical label
[6], which is a “string.” A reasonable assumption is to allocate 128 bytes for each canonical
label. The visit counts can be stored as a “long” data type requiring 8 bytes. Assuming that
the number of neighbors of a node, on average, is 1000, if we have 8 GB of main memory

available, M = 8×109
128×10001+8 = 6.92 × 104.

As known in the stream processing literature [26], it is not possible to compute the top-
M frequent items in a stream optimally. However, the space-saving algorithm (SSA) [26]
provides good approximations along with some guarantees on the reported counts. Here we
explain how the SSA is adopted for Resling. Algorithm 2 presents the pseudocode. At the
start of VRRW, we initialize a count vector of size M . This count vector stores the visit
counts and the neighborhood of each of the M nodes being monitored. Now, as nodes are
processed from the EMP, till M unique nodes arrive, all are stored in the count vector (lines
1, 2). Additionally, the count vector maintains all nodes in descending order of their counts.
When theM+1th unique node, g, arrives, we replace the least frequent node, gM in the count
vector with the current node. In addition, the count, Count (g) is stored as Count (gM ) + 1,
the neighborhood of g is computed and stored (lines 7–10). On the other hand, if a node
arrives that is already being monitored, its visit count is updated and the neighborhood is
extracted. This procedure continues till the end of VRRW.

Example 3 Consider the example shown in Fig. 6. M is set to 2. For simplicity, we only show
the counts stored. In the stream, first nodes X and Y are seen, and their counts are updated
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Fig. 6 Example of updates to count vector at M = 2

to 2. Recall, that in VRRW, N0(v) = 1 for all nodes. Thus, the first visit to a node sets the
count to 2. Now, when the next node observed is Y again, Y ’s count is updated to 3 and it
moves to the first position in the count vector. Next, Z is observed. Since all the counters are
already occupied and Z is an unmonitored node, the node X with the least count is replaced
by Z and its count is set to 3.

Theorem 3 Let NT(v) be the actual count and N̂T(v) be the stored count in the count vector.
N̂T(v) ≥ NT(v).

Proof When an unmonitored node arrives, there are two possibilities. 	

Case 1 This is the first time the node has been visited in the VRRW. Although the actual

count is 2, it is stored as one more than the count of the least frequent node in the count
vector.

Case 2 The unmonitored node was earlier being monitored, but became the least frequent
at some stage and then got replaced. In this case, the highest possible count for this node is
the count of the least frequent node in the count vector.

Thus, overall, it is guaranteed that the stored count of any monitored node is at least as
large as its actual count. �

Accuracy analysis Inaccuracies creep in when replacements occur in the count vector. If a
node is monitored throughout, then its actual count will be reported. Thus, lower the number
of replacements, better is the accuracy. The chances of replacements are low if the frequency
distribution is skewed. Specifically, if there are few nodes that are highly frequent, they will
always remain in the count vector. The replacements would affect only the infrequent nodes
that reside on the tail of the count vector. This intuition is correct, and it has been shown that
SSA performs best if the frequency distribution follows a power law [26]. This is indeed the
case with node visits in VRRW. We show empirical evidence in Sect. 7. Consequently, the
approximation is both accurate and scalable.

5.4 The RESLING-VR algorithm

With the formalization of the SSA, theResling algorithmbased on vertex-reinforced random
walks, which we refer to by the name Resling-VR, is complete. The VRRW starts from a
randomly selected subgraph in the database (Algorithm 3, line 3). Next, a transition is chosen
according to the VRRW principles (lines 9–18). After the transition takes place, the current
subgraph is added to the count vector (lines 11 and 14). Following the transition, the new
subgraph becomes the current state and the process is repeated till convergence of the count
vector (line 17). Finally, the top-k most frequently visited important subgraphs in the count
vector are returned as the representative set (lines 18 and 19).

Space complexity During runtime, Resling stores the SSA count vector V of size M and
the database of graphs D. Thus, the total space complexity is O(M + |D|).

Time complexityTheworst-case scenario occurswhen theVRRWtransitions to a subgraph
that is not in the count vector. In such a case, we take three steps.
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Algorithm 3 Resling-VR(φ(·), k)
Ensure: R is the representative set
1: Initialize SSA count vector
2: T := 0
3: XT ← A randomly selected subgraph of D

4: Compute φ(XT)

5: repeat
6: if uni f orm(0, 1) > λ then
7: h ← randomly selected subgraph of D

8: else
9: if uni f orm(0, 1) ≤ 0.5 then
10: h ← selected subgraph through an edge delete or self-edge (Eq. 11)
11: SSA.add(XT )
12: else
13: h ← randomly selected proposed edge addition
14: SSA.add(XT )
15: T ← T + 1
16: XT ← h
17: until convergence of count vector
18: R ← k most visited important subgraphs in V
19: return R

1. First, we compute the importance of the subgraph. The cost of computing the subgraph
importance depends on the importance function. For example, in frequent subgraph min-
ing [6], the cost is linear to the graph database size. Let us denote this cost of computing
subgraph importance as S.

2. The second step is to compute its neighbors in the EMP. This cost is linear to the number
of neighbors NR.

3. The visit count of the subgraph is updated in the SSA count vector. There are two sub-
steps in this update procedure. First, one is added to the count of the current subgraph and
then the count vector is re-arranged to keep it sorted in descending order. To maintain the
sorted order, once the count of a subgraph is updated, we need to compare its count with
all counts that were higher in the previous iteration. In the worst case, O(M) comparisons
are made.

Since the above steps are repeated in each iteration till convergence, the total time com-
plexity is O(I (S + NR + M)), where I is the total number of iterations.

6 RESLING-NR

In this section, we develop the second diversified node ranking mechanism based on negative
reinforcement.

6.1 Negative-reinforced random walk (NRRW)

Resling-NR is based on negative reinforcement [33] and is similar to VRRW. In VRRW,
transition probabilities are reinforced based on number of visits which results in “rich gets
richer” phenomenon. In NRRW, transition probabilities to the nodes that have been already
selected as representatives during the course of the random walk are negatively reinforced.

To illustrate the mathematical formulation, let the initial answer set be R = φ. To find the
first ranked node, we run standard personalized PageRank algorithm and pick the top scoring
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node, i.e., the node that has been visited maximum number of times and add to answer set R.
It is crucial that the next item we select is far from the first ranked item. Hence, the transition
probabilities are altered such that the nodes in answer set R are not reachable during the
random walk, which in turn reduces the scores of their neighbors as well. However, nodes
that are far from the ranked items remain unaffected.

Let the current node in the random walk be u. Probability of choosing a node v from u is
given below.

p(u, v) =
{

(1 − λ) 1
|VM\R| + λ

p0(u,v)
DT(u)

, ∀v /∈ R

0, ∀v ∈ R
(12)

where VM is the set of nodes in the network, DT(u) = ∑
v∈VM\R p0(u, v) is the normalizing

term and p0(u, v) is the initial transition probability from u to v.
Following the selection of the nodewith the highest PageRank, the answer setR is updated,

and the process is repeated till R reaches the size of k.

6.2 NRRW on edit map

For the same reasons as mentioned in VRRW on Edit Map, with 0.5 probability we perform
a delete or stay in the current subgraph and with 0.5 probability we add an edge to the current
subgraph.

Addition of an edge Edge additions are similar to that of VRRW, the main difference
being that the nodes (or subgraphs) that are already chosen as representative elements have
0 probability of being visited again. Let the current state in NRRW be XT = g = (Vg, Eg)

and φ(g) be the importance of g. For each edge e that can be added to g to transition to a
supergraph h, the transition probability is defined as follows.

p(g, h) =
{
0.5 w(g,h)∑

g′∈gsup\R w(g,g′) , ∀h /∈ R

0, ∀h ∈ R

(13)

wherew(g, h) (Eq. 7) is the edge weight and gsup is the set of all supergraphs of g containing
one more edge and R is the representative set. Note that if the supergraph h of g has already
been selected as a ranked item, the transition probability to all those supergraphs is set to 0
and those probabilities are distributed among the nodes that have not been selected.

Deletion of an edge and self-edgesEdge deletions are also similar to that ofVRRW(Eq. 11)
with minor modifications. To incorporate exploration, edge deletions or staying at the same
node through self-edges are weighted uniformly as in the case of VRRW. Mathematically,
let XT = g = (Vg, Eg) be the current state. The probability of an edge delete or self-edge is

p(g, h) =
{
0.5 1∑

g′∈[gsub∪{g}]\R 1 , ∀h /∈ R

0, ∀h ∈ R

(14)

where gsub is the set of all subgraphs of g containing one less edge, h ⊆ g is the resulting
subgraph following the edit and R is the representative set of subgraphs.

6.3 The RESLING-NR algorithm

Like Resling-VR, Resling-NR also uses SSA as it involves selecting the most visited node
during PageRank. First we initialize the count vector. Resling-NR starts with empty set R

from a randomly selected subgraph in the database (Algorithm 4, line 5). Next transition is
chosenbasedonNRRWprinciples (lines 8–14).After the transition takes place the subgraph is
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Algorithm 4 RESLING-NR(φ(·), k)
Ensure: R is the representative set
1: R ← ∅
2: repeat
3: Initialize SSA count vector
4: T := 0
5: XT ← A randomly selected subgraph of D \ R

6: Compute φ(XT )

7: repeat
8: if uni f orm(0, 1) > λ then
9: h ← randomly selected subgraph of D \ R

10: else
11: if uni f orm(0, 1) ≤ 0.5 then
12: h ← selected subgraph through an edge delete or self-edge (Eqs. 14)
13: else
14: h ← randomly selected proposed edge addition (Eqs. 13)
15: SSA.add(XT )
16: T ← T + 1
17: XT ← h
18: until T = P
19: R ← R ∪ { SSA.getMaxVisited() }
20: until |R| = k
21: return R

added to the count vector. Following the transition, the newsubgraphbecomes the current state
and the process is repeated until the convergence of count vector (PageRank convergence).
Next, the node with the highest count is chosen and added to the answer set R. This process
(lines 3–19) is repeated until there are k chosen items in the answer set.

Space complexity This is similar to that of Resling-VR. During runtime, Resling-NR
stores the SSA count vector V of size M and the database of graphs D. Thus, the total space
complexity is O(M + |D|). Since we are limiting the number of iterations for PageRank to
P , count vector size could be much lesser than that of Resling-VR.

Time complexityTheworst-case scenario occurswhen theNRRWtransitions to a subgraph
that is not in the count vector. In such a case, we take three steps similar to that of VRRW.

1. First, we compute the importance of the subgraph. The cost of computing the subgraph
importance depends on the importance function. For example, in frequent subgraph min-
ing [6], the cost is linear to the graph database size. Let us denote this cost of computing
subgraph importance as S.

2. The second step is to compute its neighbors in the EMP. This cost is linear to the number
of neighbors NR.

3. The visit count of the subgraph is updated in the SSA count vector. There are two sub-
steps in this update procedure. First, one is added to the count of the current subgraph and
then the count vector is re-arranged to keep it sorted in descending order. To maintain the
sorted order, once the count of a subgraph is updated, we need to compare its count with
all counts that were higher in the previous iteration. In the worst case, O(M) comparisons
are made.

Since the above steps are repeated in each iteration when doing standard randomwalk, and
the whole process is repeated till we get top-k nodes the total time complexity is O(kP(S +
N R + M)), where P is the number of iterations run for pageRank.
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7 Experiments

In this section, we demonstrate that

– Adaptability Resling is generic enough to tackle multiple forms of graph datasets and
importance functions.

– Quality Resling produces results that are up to 20 times more representative of the
pattern space than selecting the top-k most important subgraphs.

– Scalability Resling is up to two orders of magnitude faster than baseline techniques.
– Resling-VR versus Resling-NR We show the Resling-NR is faster than Resling-

VR while providing comparable or better performance than Resling-VR in terms of
representative power.

7.1 Datasets

As discussed in Sect. 2, there are two kinds of graph datasets: the transactional setting and
the single-network setting. Note that in the transactional setting, although the sizes of the
graphs are small, the complexity arises from the number of graphs that reside in the database.
In contrast, in the single network setting, the size of the graph is the source of complexity.
For either scenario, one cannot be called to be harder than the other since each brings in their
unique challenges. For a thorough evaluation of Resling, we use both.

For the transactional graph database, we use the following two datasets.

1. ZINC chemical compound dataset The ZINC dataset contains 179,197 graphs. This
is the largest publicly available transaction graph database. The ZINC dataset can be
downloaded from http://zinc.docking.org/.

2. DTP-AIDS Antiviral Screen chemical compound dataset The dataset consists of 43,905
classified chemical molecules, and a total of 1.09 million atoms. On average, each
molecule contains 25.4 atoms (vertices) and 27.3 bonds (edges). Each molecule in the
AIDS dataset is labeled. There are 422 molecules that are active against the HIV virus,
1084moderately activemolecules, and 41,176 inactivemolecules. This dataset has been
extremely popular in previous subgraph mining works [6,11,12]. The dataset can be
downloaded from http://dtp.nci.nih.gov/.

We use this dataset to evaluate the performance of Resling in frequent subgraph mining
(FSM). Given a frequency threshold θ , a subgraph g is frequent, if more than θ% of graphs
in the database contain g.

Single-Network dataset We choose one of the largest publicly available protein–protein
interaction networks (PPI) [2,20]. We choose PPI since motif or subgraph mining in PPI
has been an active area of research. The PPI contains 11,203 vertices and 57,235 edges.
Each vertex represents a protein and two vertices are connected by an edge if the corre-
sponding proteins co-regulate a biological process. The PPI contains data on breast cancer.
Three hundred and seventy-one human beings were studied. Each human either has breast
cancer or does not. Furthermore, for each human being, each protein in the PPI is tagged
with a binary class label: normal activity or abnormal activity. Thus, in this dataset, we have
371 different snapshots of the network corresponding to each human being. All snapshots
have the same structure. However, each snapshot has a global class label denoting the pres-
ence of breast cancer, and local vertex labels denoting the functioning of the corresponding
proteins.
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7.2 Experimental setup

All our experiments are performed on a 3.4 GHz quad-core i7 machine running Ubuntu 14.04
with 16GB of main memory. Unless specifically mentioned, the default value of k is 1000.
The default value of δ is 5 (Eq. 1), which means that if a graph g can be converted to g′
by performing 5 edits, then g represents g′. However, for both k and δ, we show that we do
better across all values. The restart probability λ in VRRW (Eq. 8) is set to 0.95.

To demonstrate the adaptability of Resling-VR and Resling-NR, we evaluate against
two importance functions: frequent subgraph mining (FSM) and discriminative subgraph
mining (DSM).

FSM A subgraph is frequent if it occurs in more than θ% graphs in the database, where
θ is provided by the user. Our default value of θ is 5%. We use the AIDS and ZINC datasets
for FSM. As discussed in Sect. 1, no technique exists to mine representative subgraphs
pattern in a generic manner across any given importance function and dataset type. In the
specific domain of frequent subgraph mining (FSM), Origami [21] and Ring [24] mine
representative frequent subgraph patterns from transactional graph databases. Since Ring

is the more recent technique and offer better performance than Origami, we compare the
performance of Resling with Ring in FSM. For Ring [24], all parameters are set to the
values as recommended by the authors.

DSM A subgraph is discriminative if a classifier can be learned to predict the class label
with an accuracy above a user provided threshold. We perform DSM on the PPI dataset,
where the goal is to predict the likelihood of breast cancer. No technique exists to mine
representative discriminative subgraphs. Hence our baseline for this evaluation is to select
the top-k most discriminative subgraphs.

It is beyond the scope of this paper to present the mathematical formulations of these
importance functions.We direct readers to gSpan [6] andMINDS [2] for the exact definitions
of FSM and DSM, respectively.

7.3 Scalability

Not only is the problem of mining representative subgraphs NP-hard, even the greedy algo-
rithm discussed in Sect. 3.1 does not scale. Given this context, we first analyze the scalability
of Resling in FSM in the transactional graph setting.

We benchmark the scalability of Resling against dataset size on the ZINC database. No
other subgraph mining technique has been evaluated on a transactional dataset as large as
ZINC.As visible in Fig. 7a, bothResling-VRandResling-NRaremore than ten times faster
than Ring. The high running time of Ring results from a clustering step, where it groups
a huge number of patterns based on structural similarity. In contrast, due to our design
of the EMP, both ranking algorithms in the Resling framework do not need to perform
any clustering, which results in the stark difference between the running times of the two
techniques.

The gSpan + greedy approach denotes the running time of Algorithm 1 after mining the
frequent subgraphs using gSpan. The greedy approach fails to complete even after 10 h, and
hence we denote it as a straight line indicating the time we stopped its execution. The growth
rate of Resling is linear. This is consistent with our theoretical analysis of the running time
in Sect. 5.4.

AlthoughResling-NR ismarginally faster thanResling-VR, this difference in efficiency
is not visible in the plot. In discriminative subgraphmining (DSM), however, this gap is more
prominently visible, which we discuss next.
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Fig. 7 a Growth rate of running time in frequent subgraph mining against database size. Growth rate of
running time in discriminative subgraph mining against the d network size and e the number of samples.
Growth of representative powers against k in d DSM and e, f FSM. g–l Representative power across various
values of δ

Figure 7b shows the growth of the running time against the size of the network in terms
of number of nodes. To construct a network of a desired size, we start a depth-first traversal
from a random node in the original, full dataset, and keep adding the traversed nodes to
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the new dataset till the desired size is reached. Next, all edges between any of the selected
nodes are added. The growth rate is slightly larger than linear. Essentially, the running time
depends on how quickly the ranking converges in Resling-VR and Resling-NR, which in
turn depends on the number of clusters of discriminative subgraphs. Overall, both techniques
in the Resling framework requires less than 20 min with Resling-NR being significantly
faster in smaller networks.

Resling-NR is faster since it consumes less number of iterations to converge. The faster
convergence of Resling-NR is a direct consequence of negative reinforcement being more
effective than vertex reinforcement in ensuring diversity in the random walk. More specifi-
cally, in VRRW, diversity propagates in the random walk once a node gets “rich” enough to
draw the ranking of all its neighborhood as its own. On the other hand in NRRW, as soon
as a node is selected using Pagerank, its ranking is turned negative and this negative ranking
flows to its neighborhood. When the network is not too large, the flow of negative ranking
to neighborhood is faster than a node consuming the ranking of its neighborhood in VRRW.
Consequently, Resling-NR is faster. As in FSM, the greedy post-processing approach fails
to complete in 10 h.

Another factor that affects the running time of Resling is the cost of computing the impor-
tance of a subgraph. In DSM, the importance of a subgraph corresponds to its discriminative
potential. The cost of the computing the discriminative potential of a subgraph depends on
the number of samples (human being tested for breast cancer) that we need to classify. Hence,
we investigate the growth of running time with the number of samples. Figure 7d presents
the results. As can be seen, the growth rate is almost linear. This is consistent with the theory
since to compute the discriminative potential of a subgraph, a scan is made across all samples
in the dataset. Overall, even on the entire dataset, both Resling-VR and Resling-NR finish
within 20min. As in the previous experiment,Resling-NR is faster since it takes less number
of iterations to converge.We attempted running the baseline-greedy algorithm (Algorithm 1).
However, it did not finish even after 10 h due to the large number of discriminative patterns
mined.

7.4 Quality

Scalability is of no use if the quality is poor. Hence, we next focus on evaluating the quality
of the answer sets returned. In our problem, the higher the representative power of the answer
set, the better is its quality.

Figure 7d presents the representative power (Eq. 2) at various values of k in DSM. We
compare the performance of Resling-VR and Resling-NR with the top-k most discrimi-
native subgraphs returned by MINDS [2]. As visible in the plot, both ranking algorithms in
the Resling framework produce similar representative power, which is up to 20 times better
than MINDS. The number of discriminative subgraphs exceeds 100,000. Yet, with just 1000
representatives, Resling is able to represent 35% of the pattern space. This result concretely
brings out the presence of information redundancy in discriminative subgraph mining.

We proceed with same line of experiments in FSM. In this study, we compare the per-
formance of the Resling framework with Ring [24] and the top-k most frequent subgraphs
mined by gSpan. Ring mines representative subgraphs just like Resling. However, it is
not generalizable to other importance functions. All experiments for FSM in this section
is performed on the AIDS dataset since Ring fails to scale in ZINC. Figure 7e, f presents
the results at 5 and 10% frequency thresholds, respectively. Two observations stand out in
this plot. First, Resling-NR is significantly better than Resling-VR in FSM, particularly at
low values of k. Drilling down further into the results, we observe that in Resling-NR, the
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initial selection of subgraphs (or nodes in EMP), which are purely based on Pagerank, is of
much higher representative power than the nodes selected throughResling-VR. However, as
more and more subgraphs are selected, the need for diversity among the selected subgraphs
become more necessary and the gap in the performance of the two ranking algorithms starts
to diminish.

The second prominent observation from Fig. 7e, f is that not only does Resling perform
better thanRing, the rate at which the representative power of Resling grows is significantly
higher than that of Ring. The difference between Ring and Resling is more drastic at 5%
threshold since the number of frequent subgraphs is larger and hence representing them
within a short budget is more difficult. While it is hard to pinpoint why Ring’s growth rate
is slower than Resling, we suspect this stems from the fact that Ring performs the analysis
in the feature space. More specifically, Ring converts graphs into feature vectors and then
performs a clustering based selection. This feature space conversion is necessary since, like
in Resling, computing a large number of edit distance computations between graphs is
not scalable. While converting graphs to feature space, loss of information is inevitable. In
contrast, Resling negates the need to compute edit distances by organizing graphs in the
form of an edit map, where similar graphs are naturally in close proximity. Thus, the entire
mining process remains within the graph space. As expected, simply selecting the top-k most
frequent subgraphs does not produce good results since they generally belong to a single
cluster of highly frequent subgraphs.

How does the quality vary for other values of δ? Figure 7g–l answers this question.
Figure 7g, h presents the results in DSM at k = 500 and k = 1000, respectively. As clearly
visible in the plot, if we simply select the top-k discriminative subgraphs as representatives,
then the answer set has extremely low representative power unless δ ≥ 15. Note that as
δ approaches a high value, any subgraph represents the entire pattern space. The task of
representing is more difficult at smaller values of δ and easier at larger values. Overall,
Resling is up to 20 times better than selecting the top-k most discriminative subgraphs.
Figure 7i–l analyzes the representative powers in FSM at frequency thresholds of 5 and 10%.
As can be seen, the ranking algorithms within the Resling framework represent up to three
times more frequent subgraphs than Ring. The performance gap with Ring decreases at 10%
frequency threshold since less number of subgraphs are classified as frequent. Consistent
with previous experiments, Resling-NR displays better quality than Resling-VR in FSM.

An interesting observation from the above experiments is that Resling-NR shows sig-
nificant improvement over Resling-VR in representative power only in FSM. While it is
hard to pinpoint the exact reason, the behavior is likely to stem from the size of the search
spaces in the two problem domains. IN DSM, the subgraph space is much larger. Hence, the
need to ensure diversity among subgraphs of high representative powers is of less importance
as two randomly picked representative subgraphs are naturally far apart from each other. In
contrast, owing to smaller search spaces in FSM, there are less number of clusters. Since
each representative subgraph is essentially like cluster centers, the need to ensure that we do
not select multiple representatives of the same clusters is of high importance. In this aspect,
NRRW performs better than VRRW to ensure diversity.

Applications In the next experiment, we highlight a prominent application of mining repre-
sentative subgraphs. Discriminative subgraphs are often mined from PPI to identify protein
modules that are critical for the functioning of a biological process [2,20]. In case of abnor-
malities in these modules, disease set in. For example, improper functioning of a module
may result in the onset of breast cancer. Therefore, doctors and biological scientists monitor
the protein expression levels in these modules to predict diseases. To identify the modules
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Fig. 8 a The number of subgraphs required to reach a particular accuracy level in breast cancer prediction.
b, c The distribution of node visit counts in VRRW on the EMP

to monitor, discriminative subgraphs are fed as features to a classifier. If they achieve an
acceptable level of accuracy, then real life studies on actual biological samples are carried
out. Naturally, one would like to minimize the number of discriminative subgraphs (protein
modules) since the higher the number, the more is the cost of monitoring them in biolog-
ical samples. In existing works [2,20], the focus has solely been on classification quality.
Here, we analyze whether our focus on representativeness allows us to reduce the number of
subgraphs required to predict breast cancer. Figure 8a presents the results.

In MINDS, the classification accuracy saturates at 0.69 after feeding 3000 discriminative
subgraphs to a random forest classifier. The accuracy ismeasured in terms of the area under the
receiver operating characteristic curve (AUC). We repeat the same classification procedure
using representative discriminative subgraphs. As can be seen, using only 40 subgraphs,
we reach the same accuracy level of 0.69. Furthermore, Fig. 8a also shows the growth rate
of number of subgraphs required against various accuracy points. At all accuracy levels,
Resling-VR and Resling-NR require far less number of subgraphs. This clearly shows
the need to reduce information redundancy in subgraph pattern mining. More importantly,
Resling allows us to do more with less. We however note that even in Resling, we could
not go beyond an accuracy of 0.69. This probably results from the fact that representative
set do not have any additional information over entire set of patterns. Nevertheless, due to
rewarding representativeness, there is less information redundancy in the mined subgraphs,
which results in the shown plot.
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7.5 Other aspects of RESLING

Recall that in Resling we are approximating the node visit counts, which are required
in VRRW, using the space-saving algorithm (SSA). In the analysis of SSA, we reasoned
that the approximation of the counts would be accurate if the count distribution follows
a power law, where few nodes are visited frequently, but the vast majority of nodes are
visited rarely. In the next set of experiments, we study if this property is indeed true in
Resling. Figure 8b, c presents the distribution of node visit counts in DSM and FSM.While
the distributions are not exactly power law, they follow a similar trend. More specifically,
only a small minority of subgraphs are visited very frequently, while the majority do not
receive much repeated visits. This behavior is expected since from existing subgraph mining
literature, it is well known that structurally similar subgraphs have similar importance values
[17,22]. The randomwalker in VRRW thus gets concentrated on these regions, which in turn
generates the skewed distributions of visit counts visible in the plots. Consequently, SSA also
produces good approximations. On the whole, these plots reveal an important reason behind
the good performance of the Resling framework.

7.6 Summary

Overall, the experimental results clearly establish that Resling is scalable, effective in rep-
resenting the pattern space using a small number of exemplars and can be applied for other
higher-order tasks such as network classification with good results. Among the two random-
based ranking algorithms proposed in this paper, it would be safe to say that Resling-NR
produces a stronger performance. In addition to being more efficient than Resling-VR in
running time, Resling-NR produces representative powers that are often better.

8 Related work

Subgraph mining has been an active area of research for more than 15 years. One of the
most popular subareas in this domain is frequent subgraph mining [6–8]. Frequent subgraph
mining generated significant interest in the research community due to their applications in
a large number of areas. The main computational challenge in frequent subgraph mining is
to analyze the exponential subgraph search space. To scale frequent subgraph mining, the
mining community exploited techniques from frequent itemset mining since they both share
the apriori property. As in itemset mining, there are two different approaches to frequent
subgraph mining: the depth-first approach adopted by gSpan [6] and Gaston [16], and the
breadth-first approach adopted by FSG [15].

As the area matured, the community realized that frequent subgraph mining produces too
many subgraph patterns. In fact, the number of patterns is often larger than the size of the graph
database itself. This motivated the line of work in mining closed frequent subgraphs [22]
and maximally frequent subgraphs [35,36]. While they are somewhat effective in reducing
the number of patterns mined, the number continue to be large. This limitation motivated
the development of Origami [21] and Ring [24]. Origami and Ring use a two-step, post-
processing approach like the greedy algorithm (Algorithm 1). As already analyzed, this
two-step approach does not scale. In addition, Origami and Ring cannot be applied for
subgraph mining with other popular importance functions such as statistically significant
patterns [11,12], and discriminative patterns [2,10].
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Subsequently, the interest shifted toward mining patterns that better classify labeled
graphs. Toward that goal, the idea of discriminative subgraphs [2,10,20] and significant
subgraphs [11,12] were proposed. For both these lines of work, no technique exists to
mine representative subgraph patterns. While the initial works on frequent subgraph mining
focused on transactional graph databases, and recently, this problem has been studied [7,8]
on single large networks, with GRAMI [8] being the state of the art in this space.

In terms of the techniques proposed in this work, sampling-based approaches have been
employed to mine subgraph patterns [2,11]. However, none of these techniques mine repre-
sentative patterns. VRRW has been used on networks before [34,37], but they do not mine
subgraph patterns and hence cannot be applied directly to our problem.

9 Conclusion

In this paper, we formulated the problem of mining representative subgraph patterns from
graph databases. The key challenges in this problem were dealing with the exponential
subgraph search space and being generic enough to accommodate any importance function
and graph dataset type. To overcome them,we developed a generic framework calledResling
(REpresentative Subgraph sampLING), which carefully organizes the exponential subgraph
search space in the form of an edit map, where structurally similar subgraphs are naturally in
close proximity. Resling evaluates subgraphs from the edit map in a streaming manner and
performs diversified ranking through two random walk based algorithms: vertex-reinforced
random walks and negative-reinforced random walks. Finally, the top-k most representative
subgraph patterns are returned, where k is the budget provided by the user.

Scalability is achieved through a combination of two strategies. First, the overhead of
clustering subgraphs is avoided due to the organization of subgraphs in the edit map. Second,
the space-saving algorithm is employed to tackle the heavymemory requirements imposed by
randomwalk procedures. Extensive experiments on real graph datasets showed that Resling
is indeed able to mine subgraphs that are representative of the pattern space. Compared to the
state-of-the-art techniques, Resling is up to 20 times better in its representative power, and
two orders of magnitude faster. Among the two random walk algorithms studied, negative-
reinforced randomwalks outperform vertex-reinforced randomwalks on running time, while
maintaining comparable or better performance in representative power. Overall, Resling
allows us to do more with less.

As a futurework, it would be an interesting study to further improve scalability of Resling
through parallelization.
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