Knowl Inf Syst (2018) 55:771-796 @ CrossMark
https://doi.org/10.1007/s10115-017-1111-8

REGULAR PAPER

Mobile Apps identification based on network flows

Georgi Ajaeiya!® - Imad H. Elhajj! - Ali Chehab! .
Ayman Kayssi! - Marc Kneppers?

Received: 26 August 2016 / Revised: 26 August 2016 / Accepted: 21 September 2017 /
Published online: 30 September 2017
© Springer-Verlag London Ltd. 2017

Abstract Network operators and mobile carriers are facing serious security challenges
caused by an increasing number of services provided by smartphone Apps. For example,
Android OS has more than 1 million Apps in stores. Hence, network administrators tend
to adopt strict policies to secure their infrastructure. The aim of this study is to propose an
efficient framework that has a classification component based on traffic analysis of Android
Apps. The framework differs from other proposed studies by focusing on identifying Apps
traffic from a network perspective without introducing any overhead on subscribers smart-
phones. Additionally, it involves a technique for pre-processing network flows generated by
Apps to acquire a set of features that are used to build an identification model using machine
learning algorithms. The classification model is built using classification ensembles. A group
of chosen users contribute in training the classification model, which learns the normal behav-
ior of selected Apps. Eventually, the model should be able to detect abnormal behavior of
similar Apps across the network. A 93.78% classification accuracy is achieved with a low
false positive rate under 0.5%. In addition, the framework is able to detect abnormal flows
of unknown classes by implementing an outlier detection mechanism and reported a 94%
accuracy.

Keywords Android security - Traffic analysis - App profiling - Flow-based classification

1 Introduction

According to IDC [1], smartphones market share grew 13% over the second quarter of
2015. Android dominated the market with an 82.8% share. Android market share grew

B Georgi Ajaeiya
gaa39@mail.aub.edu

Department of Electrical and Computer Engineering, American University of Beirut,
Beirut 1107 2020, Lebanon

2 TELUS Corp, Vancouver, Canada

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-017-1111-8&domain=pdf
http://orcid.org/0000-0002-9263-1875

772 G. Ajaeiya et al.

from Q2 of 2012 till Q2 of 2015 by 13.5% indicating an increase in the number of users
and Apps [1]. On the other hand, this growth presented new challenges to network operators.
Furthermore, Bring Your Own Device (BYOD) concept raised serious challenges for network
administrators [18] who are concerned about their networks ability to face new emerging
attacks on their infrastructure by exploiting smartphones’ vulnerabilities, such is the case
with Distributed Denial of Service (DDoS) botnets’ attacks [25].

Accordingly, many solutions have been proposed in order to protect Android platform
against emerging attacks. For example, anti-virus and anti-malware Apps apply signature-
based identification of known malware by examining files, memory, and system settings.
These solutions turned out to be ineffective for mobile platforms because anti-malware Apps
have the same access privileges as other Apps running on the phone. Since these solutions
are signature based, they require continuous update of malware definitions, which consumes
storage and processing resources. However, in a recent work, the authors of [22] suggested
a framework which can be used to detect new malware types and update malware signatures
using Active Learning (AL) and Support Vector Machines (SVM). The authors suggested
deploying the framework in strategic network nodes such as Apps’ market servers. Some
proposed solutions focused on static and offline analysis of Apps’ source code to detect pla-
giarism and changes in code such as what was proposed by [23] Other types of solutions such
as access control solutions have been adopted in BYOD and implemented through Mobile
Device Management (MDM). These solutions act at the App level by placing restrictions on
Apps usage, or at the file level by using containers to limit the scope of data leakage. BYOD is
implemented via tools installed on the device that limit users access to the phones resources in
order to minimize the damage of exploited Apps. Data leakage prevention solutions depend
on expecting the content of exchanged data traffic. One example is payload inspection by
applying Deep Packet Inspection (DPI) [11]. Automated App analysis solutions have been
proposed in the literature. For example, automated analysis of APK files extracts static infor-
mation such as requested permissions then categorizes Apps based on the extracted info [14].
Comparing monitored security specifications of Android Apps against their manifest file is
another example [31]. Other forms of automated App analysis use intrusion detection to sta-
tistically analyze Apps data and traffic flows, and compare it against the expected behavior
[33].

In this paper, a classification component is introduced to identify Android Apps using
traffic flow analysis. This component can be used in Cyber Threat Management (CTM)
frameworks. The component can deliver valuable insights about Apps running across the
network. Machine learning algorithms and classification ensembles are used to classify sam-
ples of extracted Apps’ flows. This component can be more effective in defending against
new emerging attacks since it can detect behavioral changes and operate in real time. The
proposed framework has the following contributions:

— Employ new aggregated network features

— Pre-processing, analyzing, and classifying extracted feature vectors on the network side
to save phone resources

— Using statistical analysis in classification and decision making, which allows for the
handling of numeric network features and adapting to normal changes

— Does not require DPI nor rooting of the device

The rest of the paper is organized as follows. Section 2 includes a review of the related
work in the literature. In Sect. 3, classification in machine learning is briefly viewed. Section 4
describes how the proposed framework works. Sections 5 and 6 show the experimental setup
and results analysis. Finally, we conclude and discuss the future work in Sect. 7.

@ Springer

Mobile Apps identification based on network flows 773

2 Related work

There are many proposed solutions in the literature related to Android security, but only few
target App identification using network behavior profiling and traffic analysis. The authors
of [37] presented a multilayer system for profiling Android Apps. The system includes four
layers: Static, User interaction, OS, and Network layers. The main idea is taking advantage of
cross-layer analysis to detect invisible abnormalities from a single-layer perspective. How-
ever, root privileges are required to analyze Apps events and network behavior. The authors
of [11] proposed App identification based on DPI. It helps network operators to expect traffic
loads, quality of service, and discover network abnormalities. However, their approach sup-
poses that 70% of Apps do not use HTTPS which is not accurate for current Apps in stores.
Additionally, applying DPI on the device consumes CPU and battery resources.

Behavioral analysis of Apps is another field of interest in App automated analysis. By
concentrating on the analyzed behavior, we can split the proposed solutions to general behav-
ior analysis and network behavior analysis. Andromaly [32] and Crowdroid [6] are solutions
based on general behavior analysis. Andromaly is a behavioral malware detection framework
that consists of real-time monitoring, collection, pre-processing, and analysis of Android sys-
tem metrics (Features). These features are extracted from both kernel and App levels using a
client running on the device. They capture aspects such as network activities, resource con-
sumption (e.g., memory and CPU), and event occurrence (e.g., touch screen and keyboard).
Crowdroid uses a crowdsourcing dynamic analysis method to detect Android-platform mal-
ware. The system collects samples of execution traces for the running Apps. These traces
help in differentiating between benign and malicious Apps. However, both solutions require
rooted devices to collect some of the features.

Network behavior analysis solutions concentrate more on features related to network
activity. The authors of [33] presented a hybrid behavioral-based anomaly detection system,
which has a client—server architecture. The system is designed to protect mobile users and
network infrastructure by detecting deviations in Apps network behavior. Models are gener-
ated to represent the normal network behavior of each installed App. The models are based
on network related features, which are collected using a client running on the smartphone.
The authors of [26] proposed a system for network behavior detection of android malware,
which consists of three parts: monitoring, anomaly analysis, and cloud storage model. The
system monitors Apps network behavior in real time and does not need to parse the content
of exchanged packets, which protects users privacy. It depends on network behavior features
only such as received bytes, sent bytes, and connection length of the running processes.
However, the reported results have shown low accuracy rates.

App traffic analysis solutions were adopted, but at a smaller scale compared to other
solutions. The authors of [13] presented a detailed analysis of Android smartphones traffic
to show the effect on power consumption and throughput. They analyzed transfer sizes of
(Transmission Control Protocol) TCP Flows and Round Trip Times, in addition to retransmis-
sion rates. The authors of [35] concentrated on modeling network traffic produced by users
behavior. They introduced a session concept that represents the needed flows to complete a
single task. Session types were characterized by session variables such as session lengths in
seconds or bytes. Each type of traffic, such as media streaming or browsing, has defined a set
of values for these variables. However, the values were based on assumptions and collected
statistics, which may not represent all traffic types accurately.

The authors of [2] investigated background traffic generated by Android Apps. They
confirmed traffic characteristics diversity by performing a detailed experiment to analyze the

@ Springer

774 G. Ajaeiya et al.

traffic. The authors also studied persistent TCP-based Apps, which require periodic message
exchange to keep connections alive. However, the study was restricted to background traffic
only. They suggested using DPI to identify running Apps, which is impractical due to traffic
encryption. The authors of [38] compared URLs in HTTP requests made by an Android App
against a URL table to detect malicious Apps. The table contains a list of malicious servers.
This approach is very limited because it depends only on logging HTTP requests, while most
of current requests use HTTPS. Additionally, comparing against a static or dynamic table of
URLS is useless since attackers can fake URLs.

To identify Apps, the authors of [8] suggested an adaptive algorithm that automatically
recognizes traffic by relying on machine learning classifiers. They introduced a traffic clas-
sifier as a collection of rules that defines each type of traffic. The system architecture is
composed of three sections: data collection, a flow capturing mechanism, and a classifier
generation algorithm. The generated information from flow capturing and payload of non-
encrypted flows are used to generate the classifiers. However, the method had drawbacks
because it depends on destination IPs and known ports of servers which are not specified
in Peer to Peer (P2P) communication. In addition, the method used non-encrypted flows to
build the classifiers, which is not an effective method in case of encrypted traffic.

The authors of [17] proposed traffic anomaly recognition using SVM classification algo-
rithms [10]. A detection model is built using collected features from the phone. Afterward,
they evaluated the detection model using real malware. The system used network features,
and applied statistical classification to detect malicious Apps. However, the features were
not aggregated which could have helped in improving the detection accuracy.

The authors of [9] focused on analyzing encrypted traffic to build usage profiles and under-
stand users actions. The proposed framework analyzes TCP packets and extracts information
about network flows. The authors used Dynamic Time Wrapping (DTW) algorithm [4] to
find alignments between incoming and outgoing packets, which turned out to be unique for
each App. Their approach handled encrypted traffic and identified users actions with high
accuracy; it did not involve a client installation on the device, and it did not require any
rooting privileges. However, it was affected by noisy packets such as TCP retransmission
packets and required reading TCP flags to set the start and end of the flow. In another work
[34], the same authors introduced an App scanner framework that inspects encrypted traffic.
This study introduced multiple methods close to the proposed work in this paper. However,
their experimental setup did not involve real traffic generated from real users.

The authors of [19] combined statistical-based and behavioral-based detection. Network
traffic attributes are represented by graphlets and packet sizes as distributions. The authors
studied Apps background and foreground traffic separately. The proposed work achieved high
accuracy in detecting Apps traffic patterns using a feature vector of 59 features. However,
the experiment was limited because the traffic was generated from a single testing device.

In this paper, we introduce a framework that handles encrypted traffic flows efficiently.
The framework classifies each flow according to the originating App. It differs from previous
work in data pre-processing and flow feature extraction. In addition, the experiments involve
real users interacting with multiple Apps.

3 Background

Before the framework is presented, we briefly introduce the various techniques used in this
work.

@ Springer

Mobile Apps identification based on network flows 775

3.1 Classification in machine learning

Classification is a form of supervised machine learning implemented using data mining
techniques [15]. In supervised learning there are two datasets, one for training and the other
for testing or evaluation. Every instance in both datasets is represented by a set of features
that may be continuous, categorical, or binary [15] and have known labels or classes. Before
a classification model is built and the learning process starts, there are three important phases
that have to be implemented. These phases guarantee high detection accuracy. Data pre-
processing is the first phase, where training datasets may contain missing values that need to
be filled, or noisy points that need to be cleaned [15]. The second phase is feature selection,
which is the process of removing redundant and useless features that may affect learning
either by increasing the learning period, or decreasing the accuracy of classification. In
most cases, classifiers use aggregated features from a set of basic features. The final phase
is choosing a suitable learning algorithm to meet the objectives of the study. The feature
selection phase sometimes precedes training the classification model if the features ranking
algorithm uses specific metric linked to the type of the classification model. Supervised
classification has a large number of data mining models, e.g., Decision Trees [27], and some
statistical approaches, e.g., Bayesian classifiers [29].

3.2 Bagging decision trees

Introduced by Quinlan [27], a Decision Tree (DT) is a tree structure classification model
produced by a supervised machine learning algorithm. It maps input features to a label that
represents the predicted type of the data or the class described by these features. DT classifies
instances based on their feature values. The tree structure is built starting from a root node
down to the end nodes (leafs) as a binary tree. Each split node in the tree depends on the
gain value of a specific feature calculated using Information Gain algorithm [20]. Finally, the
leaf nodes at the bottom of the tree represent the classes (Labels). Information gain is based
on the change of the entropy value for a feature after splitting the dataset using one of the
features. There are two kinds of entropies, the first is calculated using the frequency table of
a class attribute ¢, where the frequency p; is the count of the distinct values of that attribute,
as shown in Eq. 1.

E(S) =) —pilog,(p;) e
i=1

The second entropy value is calculated using the frequency table of a feature against the
class attribute c, as shown in Eq. 2.

E(T,X) = Z P(c)E(c) (2)
ceX

Finally, the gain of each feature is calculated using both entropies, and the feature with
the largest gain is chosen to split the dataset based on its values, as shown in Eq. 3.

Gain(T, X) = E(T) — E(T, X) 3)

The Bagging Algorithm was introduced by Breiman [5]. The idea is to create a single
classifier from multiple weaker classifiers. These classifiers generate their votes from multi-
ple Bootstrap samples [3]. Generating a Bootstrap sample is done by uniformly sampling n
instances from a single training dataset and replacing them [12]. Afterward, the 7 Bootstrap

@ Springer

776 G. Ajaeiya et al.

samples are used in building T classifiers in parallel. Each classifier, C;, is learned by Boot-
strap sample, B;. The output of the final classifier C is the class that is most voted for by
Ci1, Ca, ..., Cr as shown in Algorithm 1. Each instance in the training set has a probability
of 1 — (1 —1/n)" to be selected in one of the n times instances picked from the single training
set [3]. This technique decreases the error probability since it is including most instances in
different combinations to build the classifier. In addition, it prevents creating an over fitted
model of the system.

Where S is the set of all training samples, Inducer [is the training algorithm, and 7 is
the number of bootstrap samples. The algorithm generates T bootstrapped groups of training
samples S, and for each group it creates a classifier C; using inducer /.

Quinlan tried bagging the DT Algorithm [28] and evaluated the model using diverse
collections of datasets. The results confirmed higher accuracy for multiclass datasets gener-
ated from multiple sources. Additionally, he stated that using a group of dissimilar leaners to
build a strong classifier will contribute to increasing the accuracy while keeping a generalized
model of the system. Based on that, and since it requires a non-stable learning environment,
we decided to use the Bagging Algorithm. The small changes in the non-stable environment
will create different sub-classifiers [28].

Algorithm 1: The Bagging Algorithm

Input :set S, Inducer /, integer T
Output: classifier C*
1fori=17toT do

2 s = bootstrap sample from S (i.i.d. sample with replacement);
3| =18y
4 end

wn

C*(x) = argmin ,cy Zi:C,-)=y 1 (the most often predicted variable y);

4 Flow-based application identification

Figure 1 shows the overall process of building the framework’s classification model. It will
be used to classify flow samples from multiple Apps. Classification decisions are based on
the contribution of the chosen set of users to train the classifier. This can provide intelli-

Apps Network
Connections

Bagged
Classifier

Match packet and
connection info

Bootstrap & train
DT sub-classifiers

Labeled Packets

Packet dump

Fig. 1 Building framework’s classifier

@ Springer

Mobile Apps identification based on network flows 777

] |
‘ Data Collection ‘

iy

‘ Flows Extraction ‘

iL Network Core

‘ Features’ Extraction ‘

1L <<<())>>

‘ Features’ Selection

iy

‘ Training & Evaluation ‘

i L Access Point

Classification Model

O

Fig. 2 App identification process

gence about Apps behavior. Setting a base profile for the network for multiple states can
help administrators to optimize QoS. Additionally, it provides situational awareness, e.g.,
congestion durations and periods. The classifier is built using the Bagging Algorithm and
includes multiple sub-classifiers which are DTs.

Figure 2 illustrates the overall process used in building the detection framework. Upon
deployment, the App identification framework uses the classification model which is pro-
duced at the final stage. The process starts by extracting network features of flows generated
by various Apps. A flow is the traffic exchanged between two IPs with the same ports and
protocol during a time period. The flow ends when packet exchange turns idle for a certain
amount of time and never fires back. Each flow consists of the exchanged packets during
its lifetime. Feature extraction and aggregation is implemented over a specific time inter-
val. During the time interval, the set of predefined features is measured and logged to be
aggregated in a feature vector. Afterward, the set of aggregated feature vectors is filtered in
a feature selection phase. Then, these feature vectors are used to build a classifier, which is
the core of the system. The framework uses the classifier to identify Apps network behavior.

What distinguishes the proposed framework is the feature vector that can be extracted
without acquiring special permissions or rooting. The framework has two main advantages.
First, network users are not required to make any updates or install special software on their
phones. Thus, customers will not lose phones warranty. Second, it will be easier for the
network operator to distribute a light tool during the building phase on selected smartphones
while having all the heavy processing and computations residing in the core.

Since feature extraction and aggregation is repeated at each time interval during the lifetime
of the flow, the framework should be able to identify an App using just few exchanged packets.
A flow can have multiple samples when applying a rapid sampling rate. The samples can be
processed according to their arrival. Thus, the flow can be identified by analyzing headmost
samples. Another advantage of this method is real-time identification, whereas the flow
sample is classified at each time interval. Therefore, if any abnormal change occurs in the
behavior, the system should be able to detect such changes. Identifying abnormalities in Apps

@ Springer

778 G. Ajaeiya et al.

Table 1 Packet attributes
Packet number

Timestamp

Packet length

Packet inter-arrival time
Direction (in/out)

App label

behavior is based on outlier detection. The system depends on a confidence score, associated
with each instance, to predict the outliers. It is expressed by the posterior probability of an
instance belonging to a certain class. When the confidence score falls in a certain range,
the system investigates the deviation for that instance. This method makes the system adapt
smoothly to normal changes in Apps behavior while keeping the ability to detect abnormal
changes.

The framework can be responsive to gradual changes by comparing the flow class at each
time interval to older time intervals and track the changes in features values. Since the frame-
work is running in the network core, real-time detection and adaptation to normal changes
will not affect smartphones resources. It will not add any overhead that may affect users
experience. The framework will even be transparent to the users because the classification is
done on the network side without involving a detection client on the smartphone.

In the following subsections, we explain each phase in the framework and elaborate on
the methods highlighting the contribution.

4.1 Flow extraction

This phase starts at the end of the data collection phase which will be shown in 5. Flows
occurring during a certain time period are extracted from the packet dumps. A flow is repre-
sented by the exchanged packets between two IPs using same ports and protocol. The flow is
terminated when traffic exchange is idle for a specified amount of time without firing back.
Each flow packet is defined by a set of attributes as shown in Table 1. The inter-arrival time
is the elapsed time between the current packet and last exchanged packet in the same flow.
The idle time is a configurable parameter which is set as described in Sect. 6.1. Unlike other
solutions, the flow extraction phase does not depend on reading TCP flags nor User Datagram
Protocol (UDP) payload to identify the last exchanged packet. A flow in represents generated
traffic when executing actions of an App. No payload information is used to calculate the
features, which ensures users privacy.

4.2 Feature extraction and aggregation

The feature extraction and aggregation phase is implemented to get useful information that
describe Apps traffic. Only statistically significant flows are taken into consideration. Such
flows have a minimal length and amount of exchanged packets required to represent an App
action. Several feature extraction methods were proposed in the literature, and they were
reflected in this framework. The features are extracted for each flow at every time interval.
Each flow may have more than one sample generated in this phase.

An advantage of this technique is having multiple measurements for the same flow at
formal intervals. These measurements can be used in real-time detection of abnormalities
in flow behavior. Additionally, setting a relatively short interval allows the process to adapt

@ Springer

Mobile Apps identification based on network flows 779

smoothly to normal changes. Changes may occur during the lifetime of the same flow or other
flows from the same App. Flow minimal length, and the time interval are all parameters of
the framework. There are no standards that suggest values for these parameters. Therefore,
they are set empirically in such a way to get best achievable results as we describe later on.

4.3 Building framework’s classifier

The Bagged Trees classifier is a classification model that uses a voting approach to assign
classes for evaluation and testing samples. It depends on creating an ensemble of classifiers
using various mechanisms. One of the mechanisms is using multiple datasets for training with
a single learning algorithm such as what was done in [16]. The Bagging Algorithm is used to
create an ensemble of DTs. The classifier relies on the extracted feature vectors of the flow
by examining features’ values. Each time a new sample is classified; it represents a certain
period of that flow since a sampling approach is used by taking multiple measurements for
the flow.

4.4 Feature selection

Since Bagged Trees are adopted to build the framework’s classifier, Information Gain algo-
rithm is used to calculate the entropy of each feature. The entropy is used to measure the
strength of the feature as shown in Sect. 3.2. The strategy is to choose features with the
highest gain or entropy measured over all the feature vectors in the training set. Therefore,
we can set a threshold for the gain and choose all the features that have a gain greater than
the threshold. Afterward, the classifier can be re-evaluated using the selected features. Using
a minimal set of features increases the training performance, it decreases the training time
and the computational complexity while preserving a high classification rate.

4.5 Outlier detection

In multiclass classification models, the classifier tries to distinguish a sample by categorizing
it into one of the known classes. However, if the sample is not classified normally into any
of the classes, it is considered an outlier [36]. Generally, classifiers give a prediction score to
each sample, and based on that score the sample will be classified. The score represents the
confidence which a classifier has for that instance to be classified correctly. It is represented
by the posterior probability of a sample belonging to a class. In Bagged Trees, the posterior
probability of a class given a sample is a weighted average of the class posterior probabilities
computed over selected trees in the ensemble (see Eq. 4).

Zszl Olzﬁz(dx)
ZzT=1 ol
where ﬁ, (c|x) is the posterior probability of a class ¢ given sample x using DT ¢ and «; is the

weighted average factor for each tree. Py (c|x) is the posterior probability of a class ¢ given
sample x in tree ¢ as shown in Eq. 5.

Ppag(clx) =)

A Py(x[c) P
Br(cl) = %)

where P, (x|c) is the number of samples that have ended at the same leaf node / and classified
in class ¢ divided by the total number of samples in class ¢, P(c) is the prior of class ¢ which

@ Springer

780 G. Ajaeiya et al.

is the total number of samples from class ¢ divided by the total number of samples, and P (x)
is defined as shown in Eq. 6, where K is the total number of classes.

K
P(x) =) P(©)Pi(xlc) ©)

c=1
Accordingly, if the confidence score is low for all the classes, the instance is considered
an outlier. Another technique adopted in Bagged Trees to detect outliers is the outlier score.
The authors of [39] used the proximity measure in Random Forests (RF) to calculate the
outlier of an instance. In general, RF is an ensemble of Trees. However, feature selection is
done randomly at each level to build each tree. The proximity of an instance to a class is the
average fraction of trees in the bagged ensemble for which the instance lands on the same

leaf versus other instances in the same class as shown in Eq. 7.

max

P ()= Y (prox*(n,k)/N @)

keclassj

The outlier measure is identified as the inverse of the average proximity as shown in Eq. 8.

0 (n) =

P~ (n) ®)
In the proposed framework, confidence and outlier scores are used to detect outliers. The
outliers could be flow patterns generated from the same App or by other Apps. Therefore, the
framework should be able to differentiate between both cases. Making the right decision about
an outlier will drive the framework to either adapt to the normal changes in an App behavior,
or detect the abnormal behavior and act accordingly. Both scores are configurable parameters
in the framework and are set by experimental decisions. Calculating the proximity for all
classified samples is computationally expensive. Therefore, the proximity is calculated only
for samples with low confidence scores. Samples with high proximities and low confidence
scores are considered outliers from a known class. On the other hand, instances with low
proximities and low confidence scores are considered outliers from unknown classes that
might be malicious. Using this technique the framework would be able to detect abnormalities
in traffic flows. However, classifying these abnormalities as malicious or non-malicious is
part of future work.

S Experimental setup

Using the experimental setup shown in Fig. 3, we study the behavior of 6 mostly downloaded
Apps as listed in Table 2. Android smartphones running Lollipop 5.1 are used in the experi-
ment. Nine participants took part in the experiment and they interacted with each App for an
hour using their personal accounts when needed. To collect traffic, a virtual access point is
created on a PC connected to the Internet through a cable. The PC is configured to forward
the traffic to the Internet through the wired network. Simultaneously, Wireshark is configured
to run and collect the traffic into packet dumps. To label the packets, the connections that are
generated by each App are logged using Network connections which is a tool that runs on
Android and logs connections established or received by running Apps. The logs are used to
filter packet dumps and extract Apps traffic.

First, the setup performs packet dumping to create a training dataset, which will be used
to train the classifier. Traffic dumps are pre-processed to include flows that represent each

@ Springer

Mobile Apps identification based on network flows 781

A
e

Connections [N——m—m— Traffic
Connections * Packet
Info dum

COMIL

@;

Access point

Fig. 3 Experimental setup

Table 2 Experimental apps # App name Version Category
1 Facebook 64.0.0 Interactive browsing
2 8 Ball Pool 3.5.0 Games
3 Skype 6.22.0 Video calling
4 Viber 5.8.0 VOIP
5 WhatsApp 2.12.45 Text & Multimedia messaging
6 YouTube 11.04.56 Video streaming

App. Established and received network connections of each App are logged using Network
Connections, and the logs are sent to the network core to label the collected packets. This
technique is used in the training phase only while the detection phase does not involve any
tool installation. Privacy concerns may be raised during this phase. However, most of the
traffic generated by the Apps is encrypted, and no payload information is used to extract the
features.

Note that traffic dumps are collected under similar network conditions. However, changes
in network QoS may affect some features values, e.g., having a router problem anywhere
in the network core. Therefore, in a real network setup we can perform data collection on
multiple periods to include different measurements for the same features. This will help in
obtaining the normal ranges of these features. Furthermore, we can choose a selected group
of known benign users to contribute in creating the initial dataset, which will be considered
as a reference profile for the running Apps on the network.

The experiment resulted in a total of 18,051 flows. Each flow had different measurements
according to its length using an idle time of 5s. Each flow measurement is represented by a
set of extracted features. Figure 4a shows flow count for every App based on a 2 s sampling
rate. The 5sidle time and 2 s sampling rate are explained later.

For some Apps, there is a noticeable difference between the number of flows and the
number of measurements. This is due to the varying flow length among the Apps. Apps with
long flows had more measurements than Apps with short flows. Figure 5 shows the difference
in flow length among the Apps as a box plot.

@ Springer

782 G. Ajaeiya et al.

(a) Flows Count (b) Samples Count

T T T T T

Youtube 1 Youtube

WhatsApp 1 WhatsApp
Viber 1 Viber
Skype 1 Skype
8 Ball Pool 1 8 Ball Pool

Facebook 1 Facebook

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 1000012000 14000

Fig. 4 Flow and samples count

3000 + 4

2500

2000

WL LS LW L R
.

Seconds

1500

1000 -

e PP

{.H..H. e
uuuuw‘w..wﬁ J

500 -
0k == — i

1 1 1 1 1 1
Facebook 8 Ball Pool Skype Viber WhatsApp Youtube

Fig. 5 Flow length in seconds

6 Results and analysis

6.1 Feature extraction

A 55 idle time with a 2s sampling rate are used to separate between the flows and take
measurements. Since there is no criteria to set such values, we tried different options. For
each value for the idle time and the sampling rate ranging from 1 to 10 by increments of
1, the 28 features listed in Table 3 are extracted for each sample of the flow. Using these
samples, a DT classifier is trained. Then, the accuracy of the DT classifier is evaluated
using fivefold cross-validation. At each evaluation iteration, the data which resulted from the
feature extraction phase at specific values for the idle time and the sampling rate are used.
Figure 6 shows the overall accuracy of the DT classifier for the chosen intervals. We can
notice that a sampling interval of 2's achieved high detection accuracy with a low false alarm

@ Springer

Mobile Apps identification based on network flows 783

Table 3 Extracted and

aggregated features # Feature
1 Packets Out Count
2 Packets In Count
3 Packets Out/Packets In ratio
4 Bytes Out Count
5 Bytes In Count
6 Bytes Out/Bytes In ratio
7 Average difference of Inter-arrival time of incoming packets
8 Average difference of Lengths of incoming packets
9 Average difference of Inter-arrival time of outgoing packets
10 Average difference of Lengths of outgoing packets
11 Median of Inter-arrival time of incoming packets
12 Median of Lengths of incoming packets
13 Median of Inter-arrival time of outgoing packets
14 Median of Lengths of outgoing packets
15 Variance of difference of Inter-arrival time of incoming packets
16 Variance of difference of Lengths of incoming packets
17 Variance of difference of Inter-arrival time of outgoing packets
18 Variance of difference of Lengths of outgoing packets
19 Average of Inter-arrival time of incoming packets
20 Average of Length of incoming packets
21 Average of Inter-arrival time of outgoing packets
22 Average of Length of outgoing packets
23 Variance of Inter-arrival time of incoming packets
24 Variance of Lengths of incoming packets
25 Variance of Inter-arrival time of outgoing packets
26 Variance of Lengths of outgoing packets
27 Inter-arrival Time between outgoing packets bursts
28 Inter-arrival Time between incoming packets bursts

rate compared to a 10s sampling interval. Thus, it is chosen to extract flows’ samples to train
and evaluate the classification model.

The classification accuracy is evaluated using the True Positive Rate (TPR) versus the
False Positive Rate (FPR) and the Receiver Operating Characteristics (ROC) space, where
the aim is to increase the TPR and decrease the FPR. The accuracy at this stage refers to the
accuracy of the DT classifier. Additionally, we computed the F1 score of the classification
model, which is expressed in Eq. 9.

B 2T P
" QTP+ FP+FN)

where TP is the True Positive count, FP and FN are the False Positive and False Negative
counts, respectively. The F1 score is computed for each class; then, we take the average to
express the overall score.

We can notice that this phase resulted a total of 56081 samples which forms an imbal-
anced dataset as shown in Fig. 4b. This is normal since some Apps generate more traffic

F1)

@ Springer

784 G. Ajaeiya et al.

0.885 -
0.88 #

0.875 | # *

=
0.87+ +
& 0.865+
0.86 #

0.855 -

0.85 ¥

0845 1 1 1 1 1 |
0.018 0.02 0.022 0.024 0.026 0.028 0.03

FPR

Fig. 6 Sampling interval accuracy

than others. For example, the messaging App, WhatsApp, had less traffic exchanged than the
video streaming App YouTube. There are two general approaches to deal with such cases.
The first approach is sensitive learning, and the second one is to use sampling techniques with
classification ensembles [7]. SVM, for example, handles such datasets with class-weighted
classification, which is a form of sensitive learning. It changes the misclassification penalty
per class. Minority classes classification penalty would be chosen to be larger than major-
ity classes [24]. Other studies on neural networks showed that the performance over an
imbalanced dataset depends on how well the classes are separated [21]. Since the proposed
approach depends on taking samples for each flow at a fixed interval, we follow the classifi-
cation ensembles method. As such, we have to define a template model to be used in building
the classification ensemble.

6.2 Training the classification model
6.2.1 A comparison among supervised classification models

To verify Bagged Trees selection as a classification model for the proposed framework a
comparison is performed. The aim of the comparison is to show that Bagged Trees outper-
forms two of the most widely used machine learning algorithms which are SVM and artificial
neural networks (ANN).

Table 4 shows the hyperparameters that were chosen for each classifier. The values of
each model’s hyperparameters are set to prevent overfitting the training data based on some
experimental knowledge. The models are evaluated using fivefold cross-validation. Two
approaches are followed to evaluate the classifiers. The first approach is using an imbalanced
dataset. The second approach is extracting a balanced dataset by taking an equal number of
samples for each class (App).

Table 5 shows the evaluation results for both imbalanced and balanced datasets. The
Average Accuracy and F1 score for the 6 classes are reported. In the first dataset, samples’
ratios are different among the classes. We can notice that the Bagged Trees model had the
highest accuracy over the imbalanced dataset. Moving to the second approach, we can also

@ Springer

Mobile Apps identification based on network flows 785

Table 4 Models’

Model Parameters
hyperparameters

SVM Kernel = Polynomial
Polynomial order = 2
Kernel scale = auto
Box constraint = 1

ANN Hidden layers = 3
Neurons count = 30
Penalty function = cross entropy
Learn function = gradient descent
a=0.1

Bagged trees T =50
Max. number of splits = 20

Table 5 Classification models Model

! Imbalanced dataset Balanced dataset
evaluation results
F1 (%) Accuracy F1 (%) Accuracy (%)
SVM 86.02 87.85 86.65 87.28
ANN 79.59 80.52% 80.36 82.06
Bagged trees 93.78 94.02% 94.06 94.80

notice that SVM and ANN reported a better evaluation accuracy. However, Bagged Trees
reported a higher accuracy outperforming both SVM and ANN.

As stated in Sect. 3.2, the Bagging Algorithm builds Trees from Bootstrap samples formed
by uniformly distributing instances from the training set and replacing them. Thus, the grown
Trees are based on small balanced datasets. Following this approach allowed to evade the
complexity of sensitive learning. Additionally, the majority voting technique increases the
prediction accuracy and prevents the model from over fitting the training data. This explains
why Bagged Trees outperformed SVM and ANN in both evaluation approaches.

6.2.2 Evaluating bagged trees classification model

Bagged Trees model is evaluated using two approaches. The first approach is K -folds cross-
validation, where K is chosen to be 5. All samples in the dataset are used to train and
cross-validated a Bagged Trees classifier by fivefold using MATLAB Statistics and Machine
Learning Toolbox. The hyperparameters are defined as shown in Table 4. Figure 7 shows the
ROC curve for a fivefold cross-validation for all the classes (Apps). The reported average
overall accuracy for the cross-validation is around 94%.

Table 6 shows the confusion matrix of the 6 Apps classes. We can notice a minimal ratio
of misclassified samples for all classes. Some errors are due to a action between Apps types,
e.g., browsing for video on Youtube, and browsing content on Facebook. Apps with common
actions would generate similar flows which are classified in a single class randomly. Other
errors are simply outliers generated by the background actions of Apps. These outliers are
mostly filtered when picking flows that have statistically significant number of packets, but
some of the outliers remain in the dataset. However, we can notice that Bagged Trees keeps
a high detection accuracy of 93.78% measured by the F'1 score.

@ Springer

786 G. Ajaeiya et al.

Y e
Hk—%

——Facebook
—=-8 Ball Pool
—0— Skype
—%-Viber
—#- WhatsApp
-©-Youtube
£ osf
= TR
K
04F
0.3F
0.2F
0.1
G 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
FPR
Fig. 7 ROC curve for fivefold cross-validation
Table 6 Confusion matrix (samples ratio %)
Class Facebook 8-Ball Skype Viber WhatsApp Youtube
Facebook 87.10 1.42 0.04 0 7.69 3.75
8-Ball 2.79 94.85 0.02 0 0.90 1.44
Skype 0.35 0 98.25 0.46 0.92 0.02
Viber 0.06 0 0.27 99.65 0.02 0
WhatsApp 8.86 0.74 0.06 0.09 89.31 0.94
Youtube 4.88 0.96 0.02 0 0.71 93.43

The second evaluation approach is used to prove that the classification model is robust
against introducing new flows which do not have samples in the training set. The classification
model’s accuracy is evaluated by folding over the experiment’s users. The evaluation is
implemented by iterating for 100 times, and at each iteration the users are split randomly
into two groups. Using the first group we form the training set, and the second group forms
the testing set. Then, using the training and testing sets, a Bagged Trees classifier is trained
and evaluated using the hold out approach. In this approach, the training samples are picked
from the training set only, and the testing samples are picked from the testing set to form a
new dataset that has 70% of training samples and 30% of testing samples. Figure 8 shows the
density function of the F1 score for all 100 iterations. We can notice that the F1 score averages
around 91% which shows that the classification model is able to classify unknown flows. This
evaluation approach shows that the classification model’s accuracy is not associated with users
count or type. At each iteration the users were split randomly into two groups with preserving
the 70:30 ratio for training and testing samples.

@ Springer

Mobile Apps identification based on network flows 787

30

O 1 1 1
0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
Fl1

Fig. 8 FI density for 100 evaluation iterations

To lower the computational complexity and classification time, the Bagged classifier is
pruned and the number of trees is decreased. Using all samples in the dataset, we trained mul-
tiple Bagged classifiers while decreasing the number of trees. Figure 9a shows the decrease
in the accuracy of the fivefolds while decreasing the number of used trees. We can notice that
the overall accuracy slightly decreased even when we reached 20 Trees. This slight decrease
in the accuracy is accompanied with a remarkable increase in the time performance. The
classification model which is decreased 60% in size is able to achieve 99% of the accuracy
using 61% less time as shown in Fig. 9b.

6.3 Feature selection

Each sample in the dataset is expressed using the feature vector shown in Table 3. However,
the general trend in machine learning is to decrease the size of the feature vector for better
performance and to eliminate possible noisy features. Therefore, in this phase, we target a
reduced set of features, which increases time performance and at the same time preserves
the accuracy. The Information Gain algorithm which discussed in 3.2 is used to rank the
original set of features. To rank the features, we use a balanced dataset that includes an equal
number of samples from each class. Then, we split the balanced dataset into a training and
tuning set that forms 70% of the dataset, and a testing set that forms the rest. The tuning set is
used to rank the features using Information Gain algorithm. Figure 10 shows the normalized
rankings of all features in the original feature vector. We can notice that some features do not
introduce any gain at training phase, e.g., Feature #17. Other features have a low impact on
the classification decision, e.g., Features #25 and #27. Thus, to eliminate weak features, we
sorted all features according to their rankings in a descending order. Then, starting from the
weakest feature, we eliminate the last feature in the list and evaluate a Bagged Trees classifier
with fivefold cross-validation using the tuning set.

Figure 11b shows the decrease in the classification accuracy measured by the F'1 score. We
can notice that when the feature vector size is decreased to 9 features, the Bagged Classifier
preserves 98% of the reported classification accuracy before reduction at 91.56%. Figure 11a

@ Springer

788 G. Ajaeiya et al.

(a) Classification Accuracy
0.94 T T T T T T T il

0.935
= 093
0.925
0.92 1 1 1 1 1 1 1 1
50 45 40 35 30 25 20 15 10 5
Trees Count
(b) Training Time
15 T T T T T T T T

Seconds

0 1 1 1 1
50 45 40 35 30 25 20 15 10 5
Trees Count

Fig. 9 Pruning the bagged classifier

09r b

0.6 - b

0.5F b

Normalized Rank

03r b

02F 4

1234567 8 91011121314151617 18192021 22232425262728
Feature #

Fig. 10 Normalized features ranking

@ Springer

Mobile Apps identification based on network flows 789

(a) Training Time

Seconds

T Y Y Y
27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 &8 7

Features used

c\k
o b
s
w b
v
-

(b) Classification Accuracy
T T T T T T T T T T T T T T T T T T T T

0.95

09 b

085 4

F1

0.8 b

0.75 -

1 1 1 1 1 Il 1 1 1 1 1 1 1 1 1 1 1 1

T B
27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 9 8 7 6

u,k
s
w b
w
-

Features used
Fig. 11 Reducing feature vector size
Table 7 Classification accuracy of bagged classifier using the reduced feature vector
Measure/class Facebook 8-Ball Skype Viber WhatsApp Youtube
FPR 0.042 0.014 0.0009 0.002 0.019 0.019
TPR 0.833 0.9135 0.970 0.996 0.851 0.917
Fl1 0.819 0.922 0.983 0.993 0.858 0.917

shows that using nearly one third of the feature vector size will improve time performance
by 44%. To validate the new feature vector, we trained and evaluated the Bagged classifier
once again using the training and testing sets with the Hold Out technique. Table 7 shows
TPR, FPR, and F1 score for all the classes.

The aim in the feature reduction phase is to preserve at least 80% detection accuracy and
above for all classes while achieving a significant increase in the performance. Thus, feature
elimination stopped when the detection accuracy of Facebook dropped below 80% measured
by the F'1 score. Based on that, we decided to use the reduced feature vector expressed by the
top 9 features in the outlier detection phase. Eliminating noisy features will help in increasing
the detection accuracy of outlier-samples coming from unknown classes.

We can notice from features ranking (Fig. 10) that the packet length is an important feature.
Top five features in the ranked set of features are derived from the packet length. Figure 12

@ Springer

790 G. Ajaeiya et al.

()
T T T T T
1500 - - 1 L]
| ‘ —
|
! 1 1 |
» 1000+ ! ! B
e |
>~ |
m |
500 | 4
(s | | 1 t | T |
Facebook 8 Ball Pool Skype Viber WhatsApp Youtube
(b)
1500 + T T i +]
| i
5 1000 i i : T
2 i |
m |
500 | B
- 1 4
ob == o i = = |
Facebook 8 Ball Pool Skype Viber WhatsApp Youtube

Fig. 12 Packet length stats. a Packets-in average length and b packets-out average length

shows the boxplot of outgoing and incoming packet lengths. We can see that each App differs
in the incoming and outgoing packet lengths from other Apps.

6.4 Outlier detection

The proximity score of Bagged Trees is used to detect possible outliers. However, due to the
complexity of such process, the confidence score is used to identify these possible outliers first
and decide whether the proximity score should be computed or not. To evaluate the proposed
outlier detection mechanism, we installed another famous social media App, Snapchat, on
a single testing device. The App was used for 15min to extract some labeled traffic. Then,
the labeled packets are processed to get a total of 359 samples. To calculate the proximity, a
Bagged Trees classifier is trained using a balanced dataset of samples extracted from known
classes (Apps). Then, the proximity of Snapchat samples is calculated against each known
App samples. Additionally, we calculate the proximity of some testing samples which are
extracted from known Apps and form 30% of the training set. Next, the proximity and outlier
score are compared between samples of known Apps and the newly extracted samples of
Snapchat. The proximity and outlier score are calculated for all samples in the testing set
regardless of the classification result.

Figure 13 shows the confidence score density plot of the known classes and Snapchat
samples. We can notice that Snapchat samples scores average around 0.4. The majority of
samples had their highest confidence score between 0.2 and 0.7. On the other hand, classified
instances from known classes had a higher confidence score that averages around 0.95. Thus,
using the confidence score can limit proximity calculations to instances having their score
distributed outside the range defined by known classes’ confidence score. This threshold
is a tunable parameter which is controlled by the administrator. The threshold represents
a tradeoff between complexity and detection accuracy. If the administrator selects a high

@ Springer

Mobile Apps identification based on network flows 791

— Known Apps
- - Snapchat

N
[
T

Samples Density
TS

0.5

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Confidence

Fig. 13 Confidence score density distribution

value for the threshold, more samples will be candidates for the outlier score calculation
since they fall outside the known classes’ range. The framework will have a high detection
accuracy since it calculates the outlier score for a wider range of samples. On the other hand,
if the confidence score threshold is set to a low value, a narrower range of samples will be a
candidate for outlier score calculation and the F'N rate will increase. In this implementation,
we did not set a value for this threshold since we needed to calculate the outlier score for
all the samples and report the outlier detection accuracy. However, setting the threshold is
presented as part of the analysis.

Figure 14 shows the difference in the normalized outlier score distribution for the classi-
fied samples. The outlier score is calculated for each class testing samples versus Snapchat
samples. From the boxplot, we can notice that the outlier score of known samples averages
around a lower value compared to Snapchat samples. To differentiate between known and
unknown samples, we have to set a decision-making threshold based on the outlier score
distribution. To detect the best threshold, we plot the FPR vs. TPR of each threshold value
from 1 to zero with decrements of 0.05. Figure 15 shows the ROC curve resulting from all
iterations on the threshold value. By examining the TPR and FPR of each decision threshold,
the value is set to achieve best detection accuracy and lowest false alarm rate. The decision
threshold is set differently for each App. The best reported detection accuracy is 94% with
a false alarm rate of 5% at a normalized decision threshold of 0.017. This value is picked at
the point where the detection rate started to converge slowly while having increased jumps
in the false alarm rate. Eventually, the decision threshold value is a tunable parameter and
can be optimized for new types of unknown flows.

The proposed classifier is able to detect Snapchat flows and differentiate them from
samples of known classes. This would provide the proposed framework with the ability
to make a decision, dynamically, whether to consider new outliers from known classes or
to discard them. The framework can be adaptive to normal changes that may occur in Apps
behavior, or the it can consider the detected flows as abnormalities caused by anonymous
flows on the network. Since the detection mechanism succeeded in detecting new flows
and distinguish them from flows of known classes, the framework should be able to detect

@ Springer

792

G. Ajaeiya et al.

o 0.07 : 0.07 T
S 0.06 : i 0.06 0.08 |
1%}
5005 z 0.05 -
= i 0.06 T
& 0.04 0.04 i I
B 0.03 i 0.03 : 0.04 I
= |
£0.02 : 0.02 i t
g] | 0.01 | 0.02 +
0.01 . | |
Zoo gy | : Il
0 + 0 —+ 0
Facebook Snapchat 8 Ball Pool Snapchat Skype Snapchat
0.06 =
o 0.05 0.05 i
g g |00 ﬁ
»n
0.04 * L
5 0.04 + t 0.04
§ ¥
3 0.03 1 0.03 % : 0.03 ;
=]
53 +
N 0.02 0.02
= + 0.02 T
¥
E 0.01 4 I 0.01 T 0.01 ¥
0 j— ¥ 0 i H 0
Viber Snapchat WhatsApp Snapchat Youtube Snapchat
Fig. 14 Normalized outlier score stats
1 —e
——Snapchat vs.Facebook
0.9 —o—Snapchat vs.8 Ball Pool
—+—Snapchat vs.Skype
—=—Snapchat vs.Viber
0.8 —&—Snapchat vs.WhatsApp
—6—Snapchat vs.Youtube
0.7
0.6
Eo
& .5
0.4
0.3
02
0.1t
0 1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FPR

Fig. 15 Outlier detection ROC curve

@ Springer

Mobile Apps identification based on network flows 793

changes in flows within the same class. The verification of this feature is left for future
work.

7 Conclusion

In this work, we successfully designed and implemented a classification component that
can be used in App identification. The proposed framework accuracy measured by the F1
is 93.78% with a false alarm rate less than 0.5%. The Bagged Classifier size is reduced by
pruning the number of trees while preserving 99% of the classification accuracy. Additionally,
we were able to reduce the feature vector by more than 50% of the original size while keeping
nearly the same detection accuracy. The framework can be trained by a group of chosen
benign participants to detect abnormal behavior of similar Apps across the network. The
abnormal behavior is detected using an outlier detection mechanism with 94% accuracy. The
outlier detection proved the ability to differentiate between anonymous patterns and known
classes. The complexity of such a process is controlled by taking the confidence score into
consideration. The proposed framework has many parameters to be set such as the idle time
of flows, the sampling interval, the flow length, the decision making threshold, and other
parameters such as the various network conditions to perform data collection, and the initial
group of benign users who will create the base profile. As for future work, we are planning
to devise an algorithm that defines all these parameters, which is considered as a security
extension. The algorithm should also define an adaptive framework that can handle outlier
detection more efficiently. An adaptive framework would consider normal changes in Apps
behavior while preserving the ability of detecting anonymous flows that could be malicious.
This approach needs crowd interaction to query suspicious Apps, which is implemented in
[30]. Game theory is applied on crowd interactions on certain Apps and identified malicious
activities by comparing users feedback. This way, the information provided by the crowd can
be used to detect real malicious Apps on the network, or identify benign Apps that have been
infected.

Acknowledgements This research is funded by TELUS Corp., Canada.

References

1. Smartphone os market share 2015, 2014, 2013, and 2012. http://www.idc.com/prodserv/smartphone-os-
market-share.jsp. Accessed 2016

2. Baghel SK, Keshav K, Manepalli VR (2012). An investigation into traffic analysis for diverse data
applications on smartphones. In: IEEE 2012 national conference on communications (NCC), pp 1-5

3. BauerE, KohaviR (1999) An empirical comparison of voting classification algorithms: bagging, boosting,
and variants. Mach Learn 36(1-2):105-139

4. Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. KDD workshop,
vol 10. Seattle, WA, pp 359-370

5. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123-140

6. Burguera I, Zurutuza U, Nadjm-Tehrani S (2011). Crowdroid: behavior-based malware detection system
for android. In Proceedings of the 1st ACM workshop on security and privacy in smartphones and mobile
devices, pp 15-26. ACM. Chicago, IL, USA

7. ChenC,Liaw A, Breiman L (2004) Using random forest to learn imbalanced data. University of California,
Berkeley, pp 1-12

8. Choi Y, Chung JY, Park B, Hong JW-K (2012) Automated classifier generation for application-level
mobile traffic identification. In: 2012 IEEE network operations and management symposium. IEEE.
MAUIL HAWAII, USA, pp 1075-1081

@ Springer

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

794

G. Ajaeiya et al.

10.
11.

12.
13.

18.
19.

20.

21.

22.

23.

24.

25.
26.
27.
28.
29.

30.

31.

32.

33.

34.

Conti M, Mancini LV, Spolaor R, Verde NV (2016) Analyzing android encrypted network traffic to identify
user actions. IEEE Trans Inf Forensics Secur 11(1):114-125

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273-297

Dai S, Tongaonkar A, Wang X, Nucci A, Song D (2013) Networkprofiler: towards automatic fingerprinting
of android apps. In: INFOCOM, 2013 Proceedings IEEE. IEEE. Turin, Italy, pp 809-817

Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, Boca Raton

Falaki H, Lymberopoulos D, Mahajan R, Kandula S, Estrin D (2010). A first look at traffic on smartphones.
In: Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, pp 281-287. ACM.
Melbourne, Australia

Johnson R, Wang Z, Gagnon C, Stavrou A (2012) Analysis of android applications’ permissions. In:
2012 IEEE sixth international conference on software security and reliability companion (SERE-C).
IEEE. Gaithersburg, MD, USA, pp 45-46

. Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques In: Proceedings

of the 2007 conference on emerging artificial intelligence applications in computer engineering: real word
Al systems with applications in eHealth, HCI, information retrieval and pervasive technologie. IOS Press,
Netherlands, pp 3-24. http://dl.acm.org/citation.cfm?id=1566770.1566773

Kuncheva LI (2004). Classifier ensembles for changing environments. In: International workshop on
multiple classifier systems, Springer, pp 1-15

LiJ, Zhai L, Zhang X, Quan D (2014) Research of android malware detection based on network traffic
monitoring. In: 2014 9th IEEE conference on industrial electronics and applications. IEEE. Hangzhou,
China, pp 1739-1744

Miller KW, Voas JM, Hurlburt GF (2012) Byod: security and privacy considerations. It Prof 14(5):53-55
Mongkolluksamee S, Visoottiviseth V, Fukuda K (2016) Combining communication patterns and traffic
patterns to enhance mobile traffic identification performance. J Inf Process 24(2):247-254

Moore AW (2001) Information gain. School of Computer Science, Carnegie Mellon University. http://
www.cs.cmu.edu/~awm/tutorials

Murphey YL, Guo H, Feldkamp LA (2004) Neural learning from unbalanced data. Appl Intell 21(2):117—
128

Nissim N, Moskovitch R, BarAd O, Rokach L, Elovici Y (2016) Aldroid: efficient update of android
anti-virus software using designated active learning methods. Knowl Inf Syst 49(3):795-833

Oprisa C, Gavrilut D, Cabdu G (2016) A scalable approach for detecting plagiarized mobile applications.
Knowl Inf Syst 49(1):143-169

Osuna E, Freund R, Girosi F (1997) Support vector machines: training and applications. Massachusetts
Institute of Technology, USA. http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=
0ai%3 Ancstrlh%3 Amitai%3 AMIT- AILab%2F%2FAIM- 1602

Pieterse H, Olivier MS (2012) Android botnets on the rise: trends and characteristics. In: IEEE 2012
Information security for South Africa, pp 1-5

Qi Y, Cao M, Zhang C, Wu R (2014) A design of network behavior-based malware detection system for
android. IN: International conference on algorithms and architectures for parallel processing. Springer.
Dalian, China, pp 590-600

Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81-106

Quinlan JR (1996) Bagging, boosting, and c4. 5. AAAI/IAAI 1:725-730

Rish I (2001) An empirical study of the naive bayes classifier. In: IJCAI 2001 workshop on empirical
methods in artificial intelligence, vol 3. IBM New York. Seattle, Washington, USA, pp 41-46

Saab F, Elhajj I, Kayssi A, Chehab A (2016). A crowdsourcing game-theoretic intrusion detection and
rating system. In Proceedings of the 31st annual ACM symposium on applied computing, pp 622-625.
ACM

Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Nieves J, Bringas PG, Alvarez Marafién G (2013) Mama:
manifest analysis for malware detection in android. Cybern Syst 44(6-7):469—488

Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y (2012) andromaly: a behavioral malware detection
framework for android devices. J Intell Inf Syst 38(1):161-190

Shabtai A, Tenenboim-Chekina L, Mimran D, Rokach L, Shapira B, Elovici Y (2014) Mobile malware
detection through analysis of deviations in application network behavior. Comput Secur 43:1-18

Taylor VF, Spolaor R, Conti M, Martinovic I (2016) Appscanner: automatic fingerprinting of smart-
phone apps from encrypted network traffic. In: 2016 IEEE European symposium on security and privacy
(EuroS&P). IEEE. Saarbrcken, GERMANY, pp 439-454

Tsompanidis I, Zahran AH, Sreenan CJ (2014) Mobile network traffic: a user behaviour model. In: 2014
7th IFIP wireless and mobile networking conference (WMNC). IEEE. Vilamoura, Algarve, Portugal, pp
1-8

@ Springer

http://dl.acm.org/citation.cfm?id=1566770.1566773
http://www.cs.cmu.edu/~awm/tutorials
http://www.cs.cmu.edu/~awm/tutorials
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Amitai%3AMIT-AILab%2F%2FAIM-1602
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Amitai%3AMIT-AILab%2F%2FAIM-1602

Mobile Apps identification based on network flows 795

36.

37.

38.

39.

Upadhyaya S, Singh K (2012) Classification based outlier detection techniques. Int J Comput Trends
Technol 3(2):294-298

Wei X, Gomez L, Neamtiu I, Faloutsos M (2012). Profiledroid: multi-layer profiling of android applica-
tions. In: Proceedings of the 18th annual international conference on Mobile computing and networking,
pp 137-148. ACM. Istanbul, Turkey

Zaman M, Siddiqui T, Amin MR, Hossain MS (2015) Malware detection in android by network traffic
analysis. In: 2015 International conference on networking systems and security (NSysS). IEEE. Dhaka,
Bangladesh, pp 1-5

Zhang J, Zulkernine M, Haque A (2008) Random-forests-based network intrusion detection systems.
IEEE Trans Syst Man Cybern C Appl Rev 38(5):649-659

Georgi Ajaeiya received his Bachelor of Engineering in Information
Technology from Aleppo University, Aleppo, Syria, in 2014 and an
M.E. degree in Electrical and Computer Engineering from the Amer-
ican University of Beirut (AUB), Beirut, Lebanon, in 2017. From 2015
to 2017, he did research work in the Networking and Security research
group at AUB which is advised by Professors Ali Chehab, Ayman
Kayssi, and Imad Elhajj. He is currently a part-time researcher working
with the same group. His research interests include Network and Infor-
mation Security, Data mining and Pattern Recognition, and Android
development. He is a member of IEEE.

Imad H. Elhajj received his Bachelor of Engineering in Computer
and Communications Engineering, with distinction, from the American
University of Beirut in 1997 and the M.S. and Ph.D. degrees in Elec-
trical Engineering from Michigan State University in 1999 and 2002,
respectively. He is currently an Associate Professor with the Depart-
ment of Electrical and Computer Engineering at the American Univer-
sity of Beirut. In 2014, he co-founded, with two other professors in
ECE, SAUGO 360 the first startup to be incubated at AUB. Dr. Elhajj
is the past chair of IEEE Lebanon Section, senior member of IEEE and
senior member of ACM. He is a member of the World Economic Forum
Global Agenda Council on Artificial Intelligence and Robotics. He is
an ABET program evaluator. His research interests include instrumen-
tation and robotics, cyber security, sensor and computer networks, and
multimedia networking. Imad received the Best Research Paper Award
at the Third International Conference on Cognitive and Behavioral Psy-
chology (CBP), the Best Paper award at the IEEE Electro Information
Technology Conference in June 2003, and the Best Paper Award at the

International Conference on Information Society in the twenty-first Century in November 2000. Dr. Elhajj
is recipient of the Teaching Excellence Award at the American University of Beirut, June 2011, the Kamal
Salibi Academic Freedom Award, 2014, and the most Outstanding Graduate Student Award from the Depart-
ment of Electrical and Computer Engineering at Michigan State University in April 2001.

@ Springer

796

G. Ajaeiya et al.

@ Springer

Ali Chehab received his Bachelor degree in EE from AUB in 1987, the
Masters degree in EE from Syracuse University in 1989, and the Ph.D.
degree in ECE from the University of North Carolina at Charlotte, in
2002. From 1989 to 1998, he was a lecturer in the ECE Department at
AUB. He rejoined the ECE Department at AUB as an Assistant Pro-
fessor in 2002 and became Full Professor in 2014. He received the
AUB Teaching Excellence Award in 2007. He teaches courses in Pro-
gramming, Electronics, Digital Systems Design, Computer Organiza-
tion, Cryptography, and Digital Systems Testing. His research interests
include: Wireless Communications Security, Cloud Computing Secu-
rity, Trust in Distributed Computing, Low Energy VLSI Design, and
VLSI Testing. He has more than 200 publications. He is a senior mem-
ber of IEEE and a senior member of ACM.

Ayman Kayssi studied electrical engineering and received the BE
degree, with distinction, in 1987 from the American University of
Beirut (AUB), and the MSE and Ph.D. degrees from the University
of Michigan, Ann Arbor, in 1989 and 1993, respectively. In 1993, he
joined the Department of Electrical and Computer Engineering (ECE)
at AUB, where he is currently a full professor. From 2004 to 2007,
he served as chairman of the ECE Department at AUB and is cur-
rently associate dean of the Maroun Semaan Faculty of Engineering
and Architecture. He teaches courses in electronics and in network-
ing and has received AUB’s Teaching Excellence Award in 2003. His
research interests are in information security and networking, and in
integrated circuit design and test. He has published more than 200 arti-
cles in the areas of security, networking, and VLSI. He is a senior
member of IEEE, and a member of ACM, ISOC, and the Beirut OEA

Marc Kneppers MSc. Astronomy, University of Western Ontario
(Western University) Chief Security Architect and TELUS Fellow
TELUS Communications, 1997-present Member: ACM, NGMN SCT,
ATIS, CTCP, CSTAC

	Mobile Apps identification based on network flows
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Classification in machine learning
	3.2 Bagging decision trees

	4 Flow-based application identification
	4.1 Flow extraction
	4.2 Feature extraction and aggregation
	4.3 Building framework's classifier
	4.4 Feature selection
	4.5 Outlier detection

	5 Experimental setup
	6 Results and analysis
	6.1 Feature extraction
	6.2 Training the classification model
	6.2.1 A comparison among supervised classification models
	6.2.2 Evaluating bagged trees classification model

	6.3 Feature selection
	6.4 Outlier detection

	7 Conclusion
	Acknowledgements
	References

