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Abstract This paper develops a Pythagorean fuzzy (PF)mathematical programmingmethod
to solve multi-attribute group decision-making problems under PF environments. The main
work is summarized as four aspects: (1) Considering the fuzziness and hesitancy in pairwise
comparisons of alternatives, we firstly introduce PF sets to depict the fuzzy truth degrees
of alternative comparisons. (2) According to the information entropy, individual subjective
attribute weight vectors of decision makers (DMs) are calculated and integrated into a collec-
tive one by a cross-entropy optimization model. Then DMs’ weights are objectively derived
from the collective subjective attribute weight vector. (3) PF group consistency and inconsis-
tency indices are defined based on PF-positive ideal solution (PFPIS) and PF-negative ideal
solution (PFNIS), respectively. To determine comprehensive attribute weights, a biobjective
PF mathematical programming model is constructed through minimizing two inconsistency
indices based on PFPIS and PFNIS simultaneously. A linear programming method is tech-
nically developed to solve this model. (4) Using the cross-entropy again, collective relative
closeness degrees of alternatives are explicitly derived to rank the alternatives. Finally, an
example of green supplier selection is analyzed to verify the effectiveness of the proposed
method.
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1 Introduction

Due to the rapid development of economy and the rising public awareness for environment
protection, green supply chain management (GSCM) has been a new management mode
taking the environment performance into account [4]. As a key of GSCM, green supplier
selection (GSS) is important to improve the manufacturer’s benefit and environment pro-
tection performance [27]. Since real-life GSS problems usually involve multiple attributes
and need several decision makers (DMs) to take part in decision making, the GSS can be
regarded as a kind of multi-attribute group decision-making (MAGDM) problems. Owing to
the complexity of objective things and fuzziness of human thinking, there exists a great deal
of uncertainty and fuzziness inherent in the GSS problems.

Fuzzy set (FS), initiated by Zadeh [51], is a powerful tool to handle the uncertain or fuzzy
information in decisionmaking. Atanassov [1] extended FS to propose intuitionistic fuzzy set
(IFS). The element of an IFS is expressed by amembership function u and a non-membership
function v satisfying the conditions: u ∈ [0, 1], v ∈ [0, 1] and u + v ≤ 1. Thus, IFS can
overcome the shortcoming of single membership degree of FS. Atanassov and Gargov [2]
further extended IFS to propose interval-valued intuitionistic fuzzy set (IVIFS). In the past
few decades, IFS and IVIFS have received increasing attention [8,17,34,36,37,40,43,48].
They have been widely applied to the fields of multi-attribute decision making (MADM)
[11,15,30,46,47] and MAGDM [31,33,45] as well as preference relation research [35,38,
39,42].

However, the constraint of u+v ≤ 1 of IFSmay bring inconvenience for DM in real-world
applications. In some specified circumstances, DMmay provide evaluation information with
the sum of membership degree u and non-membership degree v being greater than 1. In
such case, rather than requiring the DM to change the information to suit the constraints of
IFS, Yager [49] introduced the concept of Pythagorean fuzzy (PF) set (PFS) in which the
square sum of membership degree u and non-membership degree v is less than or equal to 1.
Subsequently, Gou, Xu and Ren [16] developed several PF functions and investigated their
fundamental properties such as continuity, derivability, and differentiability, which further
enrich the theory of PFS.After reviewing the definitions and basic properties of different types
ofFSs that have appeared in existing literature,Bustince et al. [3] concluded that IFS is a subset
of PFS. Therefore, PFS has stronger ability to characterize uncertainty and fuzziness than IFS.
Currently, PFS has gained great popularity in the decision making. Existing achievements
on PF MADM and MAGDM can be roughly divided into two classes.

The first class is the theory about aggregation operators, which integrate decision infor-
mation effectively to deal with MADM and MAGDM in the PF environment. For example,
Yager [49], Yager and Abbasov [50] proposed a series of aggregation operators: PF-weighted
average operator, PF-weighted geometric operator, PF-weighted power average operator, PF-
weighted power geometric operator, and PF-ordered weighted geometric operator to solve
the MADM problems. Peng and Yang [24] developed some PF Choquet integral operators
and proposed two approaches to tackle MAGDM problems in PF environments. Peng and
Yang [25] defined subtraction and division operations and proved some properties of the PF
aggregation operators in [49,50]. Garg [9,12] proposed several PF averaging and geometric
operators using Einstein t-norm and t-conorm, investigated their properties, and then applied
them to MADM. Garg [14] developed some PF aggregation operators by incorporating the
confidence level factor and applied them to deal with group decision making.Ma and Xu [22]
proposed some new operational laws of PFSs and defined symmetric PF-weighted geometric
and averaging operators to address MADM problems.
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The second class is extensions of some classical decision-making methods which are used
to rank alternatives. Zhang and Xu [55] defined novel operational laws of PFSs, proposed
a score function based comparison method and extended Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) to MADM with PFSs. Ren, Xu and Gou [28]
extended an acronym in Portuguese for InteractiveMulti-criteria DecisionMaking (TODIM)
to MAGDM with PF information by the prospect theory. Zhang [53] developed a similar-
ity measure based method to address MAGDM problems under PF environments. Peng and
Yang [25] defined an accuracy function and developed a PF superiority and inferiority ranking
method to solve MAGDM problems. Garg [10] defined a correlation coefficient between two
PFSs to settle decision-making problems. Zhang [54] extended qualitative flexible multiple
criteria method (QUALIFLEX) for MADM with interval-valued PFSs (IVPFSs). Subse-
quently, Garg [7,13,16] proposed improved score and accuracy functions for the elements
of IVPFSs and applied them to deal with decision-making problems.

The aforementioned methods seem to be effective for solving MADM and MAGDM
problems under PF environments. However, there are some defects as follows:

1. Methods [9,22,52,55] investigated MADM under PF environments. However, they are
only suitable to deal with single-person decision making and are invalid in solving PF
MAGDM problems. With the increasing complexity of problems, it is more and more
difficult for single DM to evaluate alternatives all round, and thus PFMAGDM is of great
importance for scientific research and real applications.

2. To rank alternatives, methods [12,14,22,24,25,49,50] proposed some aggregation oper-
ators and applied them to obtain the collective values of alternatives. To some extent,
using these aggregation operators directly to aggregate PF information may result in loss
of information.

3. The determination of DMs’ weights is essential and significant in MAGDM. However,
DMs’ weights and attribute weights were allocated in advance in methods [24,25,28].
It is not easy to avoid subjective randomness to give the weights of DMs and attributes
ahead, whichmay lead to unreasonable decision results. Thoughmethod [53] determined
the weights of DMs by maximizing the collective similarity degree between the opinions
of all individual DMs and the ideal opinion of the decision group, the attribute weights
in method [53] were still given a priori.

To overcome the aforesaid defects, this paper proposes a new PF programming method to
settle MAGDM problems with PF truth degrees and incomplete attribute weight information
and apply to GSS. The main motivations of this paper come from three aspects:

1. In a GSS problem, a DM may indicate that his/her support for environmental impact
degree of a green supplier is 1

2 and the support against environmental impact degree is√
3
2 . It can be found easily that 12+

√
3
2 > 1, the ordered pair ( 12 ,

√
3
2 ) is not allowable for an

IFS. Hence, it is more suitable and convenient to utilize PFSs to represent the assessment
information of green supplier. Moreover, it is very difficult for DM to accurately give
the attribute weights because of various subjective and objective reasons. Thus, GSS
is a typical PF MAGDM problem with incomplete attribute weight information. This
motivates us to develop a new method for PF MAGDMwith incomplete attribute weight
information.

2. Thanks to the background of education, knowledge and experience, different DMs act as
diverse roles during the process of decision making. How to obtain the weights of DMs
objectively is an important issue for PF MAGDM. For this purpose, this paper utilizes
the cross-entropy theory to determine the weights of DMs based on individual decision
matrix information.
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3. As one of classicalMADMmethods, linear programming technique formultidimensional
analysis of preference (LINMAP) [29] has attracted considerable attention and been
extended to several fuzzy environments [5,6,19–21,31–34,52]. Nevertheless, to our best
knowledge, there is no research on the extension of LINMAP under the PF environment.
The attribute weight is a very crucial factor to decision-making result forMAGDM.Most
of existing LINMAP extensions derived the attribute weights only considering positive
ideal solution (PIS). However, negative ideal solution (NIS) is also important equally
and should not be ignored. Incorporating the NIS into the determination of the attribute
weights is more comprehensive and essential to the decision-making results. Hence,
this paper constructs a biobjective PF mathematical programming model to derive the
comprehensive attribute weights.

In this paper, according to the information entropy, the individual subjective attribute
weight vectors of DMs are calculated and integrated into a collective one by a cross-entropy
optimization model. Then DMs’ weights are objectively derived from the collective subjec-
tive attribute weight vector. Under the framework of LINMAP, PF group consistency and
inconsistency indices are defined based onPF-positive ideal solution (PFPIS) andPF-negative
ideal solution (PFNIS), respectively. To derive comprehensive attribute weights, a biobjective
PFmathematical programming model is constructed by minimizing two group inconsistency
indices simultaneously. A linear programming method is technically developed to solve this
model. Subsequently, collective relative closeness degrees of alternatives are generated to
rank alternatives through integrating individual relative closeness degrees by cross-entropy.
Finally, an example of GSS is provided to illustrate the proposed method.

Compared with existing research, the major contributions and features of this paper are
summarized below:

1. Considering the alternative comparisons with fuzzy truth degrees, it is the first time to
adopt PFSs to describe the fuzzy alternative comparisons. Since PFS is the extension of
IFS, it is more suitable and flexible to express the fuzzy truth degrees with PFSs.

2. Using the cross-entropy theory, the weights of DMs are obtained objectively based on
individual PF decision matrices. The determination of DMs’ weights not only makes full
use of the original judgment information provided by DMs, but also effectively avoids
the subjective randomness of giving DMs’ weights a priori.

3. A biobjective PF programming model is constructed to determine the comprehensive
attribute weights. A prominent feature of this model is that it takes the inconsistency
indices based on PFPIS and PFNIS into consideration simultaneously. Moreover, a linear
programming method is technically developed to solve the constructed biobjective PF
programming model.

4. Collective relative closeness degrees of alternatives are explicitly derived by minimizing
the cross-entropyof the collective relative closeness degrees to individual ones.Therefore,
the ranking order of alternatives is generated according to the decreasing order of the
collective relative closeness degrees.

The remainder of this paper is structured as follows. Section 2 reviews the definitions
about IFS and PFS and some operation laws of PFNs. In Sect. 3, PFMAGDM problems with
PF truth degrees are described. Section 4 develops a new PF mathematical programming
method to solve such MAGDM problems. A GSS example is examined and the comparison
analysis is carried out in Sect. 5, followed by conclusions and future works in Sect. 6.
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Fig. 1 Comparison of spaces of
PFNs and IFNs

2 Preliminaries

In this section, the concepts of IFS, PFS, and operation laws of PFSs are reviewed to facilitate
the discussions. Then, Minkowski distances of PFSs are defined.

2.1 Pythagorean fuzzy sets

Definition 2.1 [1] Let X be a universe of discourse. An IFS I in X is an object having the
form

I = {< x, uI (x), vI (x) > |x ∈ X}, (1)

where the function uI : X → [0, 1] and vI : X → [0, 1] represent, respectively, the
degree of membership and that of non-membership of the element x ∈ X to I satisfying that
0 ≤ uI (x) + vI (x) ≤ 1.

For each x ∈ X , πI (x) = 1 − uI (x) − vI (x) is called the degree of indeterminacy of x
to I . For simplicity, α̃ =< uα̃ , vα̃ > is called an intuitionistic fuzzy number (IFN) [47].

Definition 2.2 [50] Let X be a universe of discourse. A PFS P in X is an object having the
form

P = {<x, u P (x), vP (x)> |x ∈ X}, (2)

where u P : X → [0, 1] denotes the degree of membership and vP : X → [0, 1] denotes the
degree of non-membership of the element x ∈ X to P , respectively, with the condition that

0 ≤ u2
P (x) + v2P (x) ≤ 1. The degree of indeterminacy is πP (x) =

√
1 − u2

P (x) − v2P (x).
For convenience, (u p̃(x), v p̃(x)) is called a Pythagorean fuzzy number (PFN) [55] and

denoted as p̃ = (u p̃, v p̃). The difference between PFNs and IFNs can be easily shown in
Fig. 1.

Definition 2.3 [55] Let ã = (u1, v1), b̃ = (u2, v2) and c̃ = (u, v) be three PFNs, λ > 0,
then

1. ã ⊕ b̃ = (

√
u2
1 + u2

2 − u2
1u2

2, v1v2);

2. ã ⊗ b̃ = (u1u2,

√
v21 + v22 − v21v

2
2);

3. λc̃ = (
√
1 − (1 − u2)λ, vλ);

4. c̃λ = (uλ,
√
1 − (1 − v2)λ).

Definition 2.4 [49] Let ã = (u1, v1), b̃ = (u2, v2) be two PFNs, a nature quasi-ordering on
the PFNs is defined as follows:
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ã � b̃ if and only if u1 ≥ u2 and v1 ≤ v2,

where � means bigger than or indifferent to.

Definition 2.5 [55] For any PFN c̃ = (u, v), the score function of c̃ is defined as follows:

s(c̃) = u2 − v2. (3)

Proposition 2.1 [55] For any PFN c̃ = (u, v), s(c̃) ∈ [−1, 1].
2.2 Distances of Pythagorean fuzzy sets

Based on the distance of IFSs [46], aMinkowski distance and aweightedMinkowski distance
of PFSs are defined below.

Definition 2.6 Let A and B be two PFSs on the domain of discourse X = {x1, x2, . . . , xn}
and q ≥ 1. A Minkowski distance between A and B is defined as:

dq(A, B) =
⎡
⎣

n∑
j=1

1

2n
(|(u A(x j ))

2 − (u B(x j ))
2|q + |(vA(x j ))

2 − (vB(x j ))
2|q

+ |(πA(x j ))
2 − (πB(x j ))

2|q)

⎤
⎦

1
q

. (4)

It can be examined that dq(A, B) satisfies the axioms of distance:

1. Nonnegativity: dq(A, B) ≥ 0;
2. Symmetry: dq(A, B) = dq(B, A);
3. Triangle inequality: If A ⊆ B ⊆ C , then dq(A, B) ≤ dq(A, C) and dq(B, C) ≤

dq(A, C).

When q = 1, Eq. (4) is called Hamming distance as follows:

d1(A, B) =
n∑

j=1

1

2n
(|(u A(x j ))

2 − (u B(x j ))
2| + |(vA(x j ))

2 − (vB(x j ))
2|

+ |(πA(x j ))
2 − (πB(x j ))

2|). (5)

In particular, if two PFSs A and B reduce to PFNs, Eq. (5) is degenerated to Hamming
distance defined in [55].

When q = 2, Eq. (4) is called Euclidean distance as follows:

d2(A, B) =
⎡
⎣

n∑
j=1

1

2n
(|(u A(x j ))

2 − (u B(x j ))
2|2 + |(vA(x j ))

2 − (vB(x j ))
2|2

+ |(πA(x j ))
2 − (πB(x j ))

2|2)
⎤
⎦

1
2

. (6)

In particular, if two PFSs A and B reduce to PFNs, Eq. (6) is degenerated to Euclidean
distance defined in [28].
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When q → +∞, it follows from Eq. (4) that

d+∞(A, B) = max
1≤ j≤n

{
1

2n
|(u A(x j ))

2 − (u B(x j ))
2|

+ |(vA(x j ))
2 − (vB(x j ))

2| + |(πA(x j ))
2 − (πB(x j ))

2|
}

,

which is called Chebyshev distance.

Definition 2.7 Let A and B be two PFSs on the domain of discourse X = {x1, x2, . . . , xn}.
A weighted Minkowski distance between A and B is defined as

d̄q(A, B) =
⎡
⎣

n∑
j=1

ω j

2
(|(u A(x j ))

2 − (u B(x j ))
2|q + |(vA(x j ))

2 − (vB(x j ))
2|q

+ |(πA(x j ))
2 − (πB(x j ))

2|q)

⎤
⎦

1
q

, (7)

where ω j is the weight of x j satisfies the conditions:
∑n

j=1 ω j = 1 and ω j ≥ 0 ( j =
1, 2, . . . , n).

When q = 1, q = 2 and q → +∞, the corresponding d̄1(a, b), d̄2(a, b) and d̄+∞(a, b)

are called a weighted Hamming distance, a weighted Euclidean distance and a weighted
Chebyshev distance, respectively.

3 Pythagorean fuzzy MAGDM problems with PF truth degrees

In this section, PFMAGDM problems with PF truth degrees and incomplete attribute weight
information are described andDMs’weight vector is derived objectively by the cross-entropy
theory.

3.1 Description of problems and normalization method

For simplicity, denote L = {1, 2, . . . , l}, M = {1, 2, . . . , m} and N = {1, 2, . . . , n}. Suppose
that there are l DMs who have to rank m alternatives based on n attributes. Denote an
alternative set by A = {A1, A2, . . . , Am} and an attribute set by F = { f1, f2, . . . , fn}.
Denote DMs’ weight vector by w = (w1, w2, . . . , wl)

T, where
l∑

k=1
wk = 1 and wk ≥

0 (k ∈ L). The rating of alternative Ai on attribute f j given by DM ek is denoted by a PFN
ỹk

i j = (uk
i j , v

k
i j ) (i ∈ M, j ∈ N , k ∈ L). Hence, a MAGDM problem can be concisely

expressed in PF decision matrices Yk = (ỹk
i j )m×n(k ∈ L).

To eliminate the effect of different dimensions on decision-making results, the values
ỹk

i j (i ∈ M, j ∈ N , k ∈ L) of attributes should be normalized into r̃ k
i j as follows:

r̃ k
i j =

{
(uk

i j , v
k
i j ), if f j ∈ Fb

(vk
i j , uk

i j ), if f j ∈ Fc
(i ∈ M, j ∈ N , k ∈ L) (8)

where Fb and Fc are the sets of benefit attributes and cost attributes, respectively.
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Thus, the PF decision matrices Yk = (ỹk
i j )m×n (k ∈ L) are transformed into the normal-

ized PF decision matrices Y ′k = (r̃ k
i j )m×n (k ∈ L).

3.2 Incomplete weight information structure

In decision-making process, the attribute weights should be taken into account. Actually,
DM may specify some preference information on attribute weights according to his/her
knowledge, experience, and judgment. Such information of attribute weights is incom-
plete. Denote the comprehensive attribute weight vector by ω = (ω1, ω2, . . . , ωn)T,
where ω j is the attribute weight of f j satisfying

∑n
j=1 ω j = 1 and ω j ≥ 0 ( j ∈

N ). In this paper, ω is incompletely known and need to be determined. Let Λ0 ={
ω|∑n

j=1 ω j = 1, ω j ≥ ε for j ∈ N
}
, where ε > 0 is a sufficiently small positive num-

ber. The constraints ω j ≥ ε ( j ∈ N ) can ensure that each weight of Λ0 is not equal to
zero. The incomplete weight information structures can be expressed in the five basic rela-
tions among attribute weights, which are denoted by subsets Λs (s = 1, 2, 3, 4, 5) of weight
vectors in Λ0, respectively [18,32,44,45]. In reality, usually the preference information
structure Λ of attribute importance may consist of several subsets of the above basic subsets
Λs (s = 1, 2, 3, 4, 5).

3.3 Subjective preference relations between alternatives with PF truth degrees

Assume that DM ek gives the preference relations between alternatives by a PFS of ordered
pairs �̃k = {< (g, h), ãk(g, h) > |Agk Ah with a PF truth degree ãk(g, h) (g, h ∈ M)},
where (g, h) expresses an ordered pair of alternatives Ag and Ah that DM ek prefers Ag to Ah

(denoted by Agk Ah)withPF truth degree ãk(g, h) and ãk(g, h) = (uk
(g,h), v

k
(g,h)) is a PFN.

Define the (α, β)-cut set of �̃k as �̃
(α,β)
k = {(g, h)|uk

(g,h) ≥ α, vk
(g,h) ≤ β (g, h ∈ M)},

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and α2 + β2 ≤ 1. Then the support of �̃k is �̃
(0,1)
k =

{(g, h)|uk
(g,h) ≥ 0, vk

(g,h) ≤ 1(g, h ∈ M)} and the symbol |�̃(0,1)
k | indicates the cardinality

of �̃
(0,1)
k , i.e., the number of elements in �̃

(0,1)
k .

The subjective preference relations �̃(0,1)
k are given throughpairwise comparisons between

alternatives as a whole rather than every attribute. Generally, not every DM would specify
all pairwise comparisons between alternatives, so the number of alternative comparisons is
at most equal to C2

m = m(m − 1)/2.

3.4 Determining DMs’ weight vector based on cross-entropy

To derive DMs’ weights, the normalized PF decision matrices Y ′k (k ∈ L) are transformed
into the corresponding score matrices sk = (sk

i j )m×n firstly, where sk
i j is the score function

of r̃ k
i j (i ∈ M, j ∈ N , k ∈ L) calculated by Eq. (3). It can be found that sk

i j ∈ [−1, 1] by
Proposition 2.1. To guarantee the nonnegativity of the elements, all the score functions in
sk add number 1. Thus the score matrices sk (k ∈ L) can be converted into the nonnegative
score matrices ŝk = (ŝk

i j )m×n , where

ŝk
i j = sk

i j + 1 for all i ∈ M, j ∈ N , k ∈ L . (9)

Definition 3.1 [26] Let x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T be two vectors
satisfying x j ≥ 0, y j ≥ 0( j ∈ N ) and

∑n
j=1 x j ≤∑n

j=1 y j ≤ 1. Then
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D(x, y) =
n∑

j=1

[x j log(x j/y j )] (10)

is called a cross-entropy of x to y. When x j = 0 or y j = 0 for any j ∈ N , the cross-entropy
of x to y cannot be calculated by Eq. (10). Thus, in such case, set D(x, y) = 0.

The cross-entropy has the following properties:

1. D(x, y) ≥ 0; (2) D(x, y) = 0 if and only if x j = y j for all j .

The cross-entropy D(x, y) can be viewed as the consistent measurement between x and y.
If x = y, i.e., x is completely consistent with y, then the cross-entropy is the minimum, i.e.,
D(x, y) = 0.

Let ωs(k) = (ω
s(k)
1 , ω

s(k)
2 , . . . , ω

s(k)
n )T be the individual subjective attribute weight vector

forDM ek , whereω
s(k)
j means the subjectiveweight of attribute f j forDM ek . Then, according

to the information entropy theory [41], the individual subjective attribute weights ω
s(k)
j can

be obtained as

ω
s(k)
j = (1 − Ek

j )/

n∑
j=1

(1 − Ek
j ) for all j ∈ N , k ∈ L , (11)

where Ek
j = − 1

logm

∑m
i=1

[(
ŝk

i j/
∑m

i=1 ŝk
i j

)
log
(

ŝk
i j/
∑m

i=1 ŝk
i j

)]
.

Denote the vector of collective subjective attribute weights by ωs = (ωs
1, ω

s
2, . . . , ω

s
n)T,

where ωs
j represents the collective subjective weight of attribute f j for the decision group.

As is all known, the more consistentωs andωs(k), the more the cross-entropy ofωs toωs(k) is
approaching to 0. By minimizing the total cross-entropy of the collective subjective attribute
weight vector to each individual one, a cross-entropy optimization model is constructed to
derive the vector ωs as follows:

min D =
l∑

k=1
D(ωs,ωs(k))

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

n∑
j=1

ωs
j = 1

ωs
j ≥ 0 ( j ∈ N )

(12)

where D(ωs,ωs(k)) (k ∈ L) is the cross-entropy of ωs to ωs(k) calculated by Eq. (10).
Construct the Lagrange function


(ωs
j , λ) =

l∑
k=1

D(ωs,ωs(k)) + λ

⎛
⎝

n∑
j=1

ωs
j − 1

⎞
⎠ ,

where λ is a Lagrange multiplier. Set the partial derivatives of 
 with respect to ωs
j ( j ∈ N )

and λ to be zeros, the following system of equalities is yielded:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂ωs

j
=

l∑
k=1

log
ωs

j

ω
s(k)
j

+ l + λ = 0 ( j ∈ N )

∂

∂λ

=
n∑

j=1
ωs

j − 1 = 0
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Fig. 2 Flowchart of deriving the weights of attributes and DMs

It can be obtained that ωs
j = exp( 1l

∑l
k=1 (logω

s(k)
j − λ − l)) ( j ∈ N ) and λ = l ·

log
(∑n

j=1 exp
(
1
l

∑l
k=1 logω

s(k)
j − 1

))
. Further, it yields that the collective subjective

attribute weight ωs
j of attribute f j is

ωs
j =

exp
(
1
l

∑l
k=1 logω

s(k)
j

)

∑n
j=1 exp

(
1
l

∑l
k=1 logω

s(k)
j

) ( j ∈ N ). (13)

Thus, the collective subjectiveweight vectorωs can be obtained. It is apparent thatωs(k) (k ∈
L) and ωs are derived according to the individual decision matrices Yk = (ỹk

i j )m×n (k ∈ L)

provided by DMs. Thus, ωs(k) and ωs are called the individual subjective attribute weight
vector for DM ek and the collective subjective weight vector, respectively. In MAGDM, the
more consistent the individual subjective weight vector ωs(k) and the collective one ωs , the
bigger the weight of DM ek . Beard this in mind, the weight wk of DM ek is defined as

wk = 1 − D(ωs,ωs(k))∑l
k=1 [1 − D(ωs,ωs(k))] (k ∈ L). (14)

It can be easily shown that Eq. (14) satisfies the conditions wk ≥ 0 (k ∈ L) and∑l
k=1 wk = 1.
If the attribute weights are known completely in advance, then the distances between

alternatives and PFPIS as well as PFNIS can be calculated. The collective relative closeness
degrees of alternatives can be used to rank alternatives. Note that in the considered MAGDM
problems the attribute weights are incompletely known and need to be determined. To incor-
porate the incomplete attribute weight information, a biobjective PF programming model is
constructed to acquire comprehensive attribute weights in Sect. 4. The process of deriving
the weights of attributes and DMs is graphically depicted in Fig. 2.

4 A PF mathematical programming method to solve the PF MAGDM
problems

Under the framework of LINMAP, PFPIS-based group inconsistency, PFPIS-based group
consistency, PFNIS-based group inconsistency, and PFNIS-based group consistency are
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defined. To obtain comprehensive attribute weights, a biobjective PF mathematical program-
ming model is built. Then a collective relative closeness degree vector is calculated to rank
alternatives.

4.1 PF consistency and inconsistency based on PFPIS and PFNIS

Suppose that PFPIS is r+ = (r+
1 , r+

2 , . . . , r+
n )T and PFNIS is r− = (r−

1 , r−
2 , . . . , r−

n )T,
where r+

j and r−
j are the best rating and the worst rating on attribute f j ( j ∈ N ). Namely,

one has

r+
j = (u+

j , v+
j ), r−

j = (u−
j , v−

j ), (15)

where u+
j = maxi∈M,k∈L{uk

i j }, v+
j = mini∈M,k∈L{vk

i j } and u−
j = mini∈M,k∈L{uk

i j }, v−
j =

maxi∈M,k∈L{vk
i j }.

Using Eq. (7), q power of the weighted Minkowski distances between rk
i = (r̃ k

i1, r̃ k
i2, . . . ,

r̃ k
in)T and r+ as well as r− can be calculated as follows:

Sk+
i =

n∑
j=1

ω j

2

[∣∣∣∣
(

uk
i j

)2 −
(

u+
j

)2∣∣∣∣
q

+
∣∣∣∣
(
vk

i j

)2 −
(
v+

j

)2∣∣∣∣
q

+
∣∣∣∣
(
πk

i j

)2 −
(
π+

j

)2∣∣∣∣
q]

(16)

Sk−
i =

n∑
j=1

ω j

2

[∣∣∣∣
(

uk
i j

)2 −
(

u−
j

)2∣∣∣∣
q

+
∣∣∣∣
(
vk

i j

)2 −
(
v−

j

)2∣∣∣∣
q

+
∣∣∣∣
(
πk

i j

)2 −
(
π−

j

)2∣∣∣∣
q]

(17)

where (π+
j )2 = 1 − (u+

j )2 − (v+
j )2, (π−

j )2 = 1 − (u−
j )2 − (v−

j )2 ( j ∈ N ) and ω =
(ω1, ω2, . . . , ωn)T is comprehensive attribute weight vector which needs to be determined.

On the one hand, for each (g, h) ∈ �
(0,1)
k , if Sk+

g < Sk+
h , then Ag is better than Ah .

Here the objective ranking order of alternatives Ag and Ah determined by Sk+
g and Sk+

h is

consistent with the subjective preference given byDM ek . Conversely, if Sk+
g ≥ Sk+

h , then the

objective ranking order of alternatives Ag and Ah determined by Sk+
g and Sk+

h is inconsistent
with the subjective preference given by DM ek .

On the other hand, for each (g, h) ∈ �̃
(0,1)
k , if Sk−

g > Sk−
h , then Ag is better than Ah .

Here the objective ranking order of alternatives Ag and Ah determined by Sk−
g and Sk−

h is

consistent with the subjective preference by DM ek . Conversely, if Sk−
g ≤ Sk−

h , then the

objective ranking order of alternatives Ag and Ah determined by Sk−
g and Sk−

h is inconsistent
with the subjective preference by DM ek .

Therefore, there exist some deviations between the objective ranking orders and the
subjective preferences provided by DMs. To measure such deviations, the definitions of
inconsistency and consistency based on PFPIS and PFNIS are introduced, respectively.

Definition 4.1 For each (g, h) ∈ �̃
(0,1)
k , an index (Sk+

h − Sk+
g )− is defined as:

(
Sk+

h − Sk+
g

)− =
⎧
⎨
⎩

ãk(g, h)
(

Sk+
g − Sk+

h

)
if Sk+

g ≥ Sk+
h

0 if Sk+
g < Sk+

h

(18)

Obviously, (Sk+
h − Sk+

g )− measures inconsistency between the objective ranking order and
the subjective preference given by DM ek based on PFPIS. Then, the inconsistency can
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be rewritten as (Sk+
h − Sk+

g )− = ãk(g, h)max{0, Sk+
g − Sk+

h }. Hence, PFPIS-based group
inconsistency is defined as follows:

B̃+ =
l∑

k=1

⎡
⎢⎣wk

∑

(g,h)∈�̃
(0,1)
k

(
Sk+

h − Sk+
g

)−
⎤
⎥⎦

=
l∑

k=1

⎡
⎢⎣wk

∑

(g,h)∈�̃
(0,1)
k

ãk(g, h)max
{
0, Sk+

g − Sk+
h

}
⎤
⎥⎦. (19)

Definition 4.2 For each (g, h) ∈ �̃
(0,1)
k , an index (Sk+

h − Sk+
g )+ is defined as:

(
Sk+

h − Sk+
g

)+ =
⎧
⎨
⎩

ãk(g, h)
(

Sk+
h − Sk+

g

)
, if Sk+

g < Sk+
h

0, if Sk+
g ≥ Sk+

h

(20)

Similarly, (Sk+
h − Sk+

g )+ measures consistency between the objective ranking order and the
subjective preference given by DM ek based on PFPIS. Furthermore, Eq. (20) is rewritten
as (Sk+

h − Sk+
g )+ = ãk(g, h)max{0, Sk+

h − Sk+
g }. Hence, PFPIS-based group consistency is

defined as follows:

G̃+ =
l∑

k=1

⎡
⎢⎣wk

∑

(g,h)∈�̃
(0,1)
k

(
Sk+

h − Sk+
g

)+
⎤
⎥⎦

=
l∑

k=1

⎡
⎢⎣wk

∑

(g,h)∈�̃
(0,1)
k

ãk(g, h)max
{
0, Sk+

h − Sk+
g

}
⎤
⎥⎦. (21)

Definition 4.3 For each (g, h) ∈ �̃
(0,1)
k , an index (Sk−

g − Sk−
h )− is defined as:

(
Sk−

g − Sk−
h

)− =
⎧
⎨
⎩

ãk(g, h)
(

Sk−
h − Sk−

g

)
, if Sk−

g < Sk−
h

0, if Sk−
g ≥ Sk−

h

(22)

Then (Sk−
g − Sk−

h )− measures inconsistency between the objective ranking order and the

subjective preferencegivenbyDM ek basedonPFNISandcanbe rewritten as (Sk−
g −Sk−

h )− =
ãk(g, h)max{0, Sk−

h −Sk−
g }. Hence, PFNIS-based group inconsistency is defined as follows:

B̃− =
l∑

k=1

⎡
⎢⎣wk

∑

(g,h)∈�
(0,1)
k

(
Sk−

g − Sk−
h

)−
⎤
⎥⎦

=
l∑

k=1

⎡
⎢⎣wk

∑

(g,h)∈�
(0,1)
k

ãk(g, h)max
{
0, Sk−

h − Sk−
g

}
⎤
⎥⎦. (23)
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Definition 4.4 For each (g, h) ∈ �̃
(0,1)
k , an index (Sk−

g − Sk−
h )+ is defined as:

(
Sk−

g − Sk−
h

)+ =
⎧
⎨
⎩

ãk(g, h)
(

Sk−
g − Sk−

h

)
, if Sk−

g > Sk−
h

0, if Sk−
g ≤ Sk−

h

(24)

Then (Sk−
g − Sk−

h )+ measures consistency between the objective ranking order and the

subjective preferencegivenbyDM ek basedonPFNISandcanbe rewritten as (Sk−
g −Sk−

h )+ =
ãk(g, h)max{0, Sk−

g − Sk−
h }. Hence, PFNIS-based group consistency is defined as follows:

G̃− =
l∑

k=1

⎡
⎢⎣wk

∑

(g,h)∈�̃
(0,1)
k

(
Sk−

g − Sk−
h

)+
⎤
⎥⎦

=
l∑

k=1

⎡
⎢⎣wk

∑

(g,h)∈�̃
(0,1)
k

ãk(g, h)max
{
0, Sk−

g − Sk−
h

}
⎤
⎥⎦. (25)

Remark 1 There exist fuzziness and hesitation for DMs when making pairwise comparisons
of alternatives. However,methods [5,18,45,52] overlooked the fuzzy truth degrees of alterna-
tive comparisons.Methods [32,33] described the fuzzy truth degrees of pairwise comparisons
of alternatives using IFNs. By contrast, PFN is more flexible and practical to deal with the
fuzziness and hesitation than IFN. Therefore, this paper firstly introduces PF truth degrees
of alternative comparisons to address PF MAGDM problems.

Remark 2 Methods [5,6,18–21,31–34] proposed several mathematical programming mod-
els to deal with MADM and MAGDM problems. However, when defining the consistency
and inconsistency, methods [18,19,32–34] only considered the distance between the alterna-
tives and the PIS and neglected the distance between the alternatives and the NIS. Although
methods [5,6,20,21,31] took the PIS and the NIS into consideration simultaneously, they
only defined two indices, i.e., inconsistency and consistency, in their models. By contrast, this
paper proposes two group inconsistency indices and two group consistency indices. These
four indices measure the consistency and inconsistency comprehensively by taking the PIS
and NIS into account, which can make full use of decision information provided by DMs.

4.2 A PF mathematical programming model based on PFPIS and PFNIS

In group decisionmaking, the smaller the group inconsistency, themore credible the decision-
making result. Thus, the comprehensive attribute weights can be determined by minimizing
the group inconsistency as much as possible. Then a biobjective PF mathematical program-
ming model is constructed to derive the comprehensive attribute weight vector ω as follows:

min{B̃+}
min{B̃−}

s.t.

⎧
⎪⎨
⎪⎩

G̃+ − B̃+ ≥ ξ̃

G̃− − B̃− ≥ η̃

ω ∈ Λ

(26)

where ξ̃ and η̃ are two PF thresholds given by DMs in advance, denoted by ξ̃ = (uξ , vξ ) and
η̃ = (uη, vη).
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From Eqs. (19) and (21), it yields that G̃+ − B̃+ = ∑l
k=1[wk

∑
(g,h)∈�̃

(0,1)
k

[ãk(g, h)

(Sk+
h − Sk+

g )]]. Similarly, from Eqs. (23) and (25), one has G̃− − B̃ = ∑l
k=1

[wk
∑

(g,h)∈�̃
(0,1)
k

[ãk(g, h)(Sk−
g − Sk−

h )]]. For each (g, h) ∈ �̃
(0,1)
k , denote λk+

gh =
max{0, Sk+

g − Sk+
h } and λk−

hg = max{0, Sk−
h − Sk−

g }. It can be found that λk+
gh ≥ 0, λk−

hg ≥ 0,

λk+
gh ≥ Sk+

g − Sk+
h and λk−

hg ≥ Sk−
h − Sk−

g . Let tk+
hg = Sk+

h − Sk+
g and tk−

gh = Sk−
g − Sk−

h .
Hence, Eq. (26) can be transformed into a biobjective PF mathematical program:

min

{
l∑

k=1

[
wk
∑

(g,h)∈�̃
(0,1)
k

[
ãk(g, h)λk+

gh

]]}

min

{
l∑

k=1

[
wk
∑

(g,h)∈�̃
(0,1)
k

[
ãk(g, h)λk−

hg

]]}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑l
k=1

⎡
⎣wk

∑
(g,h)∈�̃

(0,1)
k

[
ãk(g, h)tk+

hg

]
⎤
⎦ ≥ ξ̃

∑l
k=1

⎡
⎣wk

∑
(g,h)∈�̃

(0,1)
k

[
ãk(g, h)tk−

gh

]
⎤
⎦ ≥ η̃

tk+
hg + λk+

gh ≥ 0
(
(g, h) ∈ �̃

(0,1)
k , k ∈ L

)

tk−
gh + λk−

hg ≥ 0
(
(g, h) ∈ �̃

(0,1)
k , k ∈ L

)

λk+
gh ≥ 0, λk−

hg ≥ 0
(
(g, h) ∈ �̃

(0,1)
k , k ∈ L

)

ω ∈ Λ

(27)

4.3 A linear programming method for solving PF mathematical program

According to Definition 2.3 and the nature quasi-ordering on the PFNs in Definition 2.4, Eq.
(27) is converted into a four-objective crisp programming model:

min

⎧
⎪⎨
⎪⎩

√√√√√1 −
l∏

k=1

⎛
⎝ ∏

(g,h)∈�̃
(0,1)
k

(
1 −
(

uk
(g,h)

)2)λk+
gh

⎞
⎠

wk
⎫
⎪⎬
⎪⎭

max

⎧
⎨
⎩

l∏
k=1

⎛
⎝ ∏

(g,h)∈�̃
(0,1)
k

(
vk
(g,h)

)λk+
gh

⎞
⎠

wk
⎫
⎬
⎭

min

⎧
⎪⎨
⎪⎩

√√√√√1 −
l∏

k=1

⎛
⎝ ∏

(g,h)∈�̃
(0,1)
k

(
1 −
(

uk
(g,h)

)2)λk−
hg

⎞
⎠

wk
⎫
⎪⎬
⎪⎭

max

⎧
⎨
⎩

l∏
k=1

⎛
⎝ ∏

(g,h)∈�̃
(0,1)
k

(
vk
(g,h)

)λk−
hg

⎞
⎠

wk
⎫
⎬
⎭
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s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√1 −∏l
k=1

(
∏

(g,h)∈�̃
(0,1)
k

(
1 −
(

uk
(g,h)

)2)tk+
hg
)wk

≥ u ξ̃

∏l
k=1

(
∏

(g,h)∈�̃
(0,1)
k

(
vk
(g,h)

)tk+
hg

)wk

≤ vξ̃

√√√√1 −∏l
k=1

(
∏

(g,h)∈�̃
(0,1)
k

(
1 −
(

uk
(g,h)

)2)tk−
gh
)wk

≥ uη̃

∏l
k=1

(
∏

(g,h)∈�̃
(0,1)
k

(
vk
(g,h)

)tk−
gh

)wk

≤ vη̃

tk+
hg + λk+

gh ≥ 0
(
(g, h) ∈ �̃

(0,1)
k , k ∈ L

)

tk−
gh + λk−

hg ≥ 0
(
(g, h) ∈ �̃

(0,1)
k , k ∈ L

)

λk+
gh ≥ 0, λk−

hg ≥ 0
(
(g, h) ∈ �̃

(0,1)
k , k ∈ L

)

ω ∈ Λ

(28)

Using the logarithmic function, Eq. (28) is equivalently transformed into

max

{
z1 =

l∑
k=1

wk
∑

(g,h)∈�̃
(0,1)
k

λk+
gh log

(
1 −
(

uk
(g,h)

)2)}

max

{
z2 =

l∑
k=1

wk
∑

(g,h)∈�̃
(0,1)
k

λk+
gh log

(
vk
(g,h)

)}

max

{
z3 =

l∑
k=1

wk
∑

(g,h)∈�̃
(0,1)
k

λk−
hg log

(
1 −
(

uk
(g,h)

)2)}

max

{
z4 =

l∑
k=1

wk
∑

(g,h)∈�̃
(0,1)
k

λk−
hg log

(
vk
(g,h)

)}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑l
k=1 wk

∑
(g,h)∈�̃

(0,1)
k

tk+
hg log

(
1 −
(

uk
(g,h)

)2) ≤ log
(
1 − u2

ξ̃

)

∑l
k=1 wk

∑
(g,h)∈�̃

(0,1)
k

tk+
hg log

(
vk
(g,h)

)
≤ log vξ̃

∑l
k=1 wk

∑
(g,h)∈�̃

(0,1)
k

tk−
gh log

(
1 −
(

uk
(g,h)

)2) ≤ log
(
1 − u2

η̃

)

∑l
k=1 wk

∑
(g,h)∈�̃

(0,1)
k

tk−
gh log

(
vk
(g,h)

)
≤ log vη̃

tk+
hg + λk+

gh ≥ 0
(
(g, h) ∈ �̃

(0,1)
k , k ∈ L

)

tk−
gh + λk−

hg ≥ 0
(
(g, h) ∈ �̃

(0,1)
k , k ∈ L

)

λk+
gh ≥ 0, λk−

hg ≥ 0
(
(g, h) ∈ �̃

(0,1)
k , k ∈ L

)

ω ∈ Λ

(29)
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Plugging Eqs. (16) and (17) into Eq. (29), the multi-objective programming model (i.e., Eq.
(29)) can be aggregated into a linear programming model by the equal weighted summation
method as follows:
max{z = z1 + z2 + z3 + z4}

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑l
k=1 wk

∑
(g,h)∈�̃

(0,1)
k

{∑n
j=1

ω j
2

[∣∣∣∣
(

uk
hj

)2 − (u+
j )2
∣∣∣∣
q

+
∣∣∣∣
(
vk

h j

)2 − (v+
j )2
∣∣∣∣
q

+
∣∣∣∣
(
πk

h j

)2 − (π+
j )2
∣∣∣∣
q]

−∑n
j=1

ω j
2

[∣∣∣∣
(

uk
g j

)2 −
(

u+
j

)2∣∣∣∣
q

+
∣∣∣∣
(
vk

g j

)2 −
(
v+

j

)2∣∣∣∣
q

+
∣∣∣∣
(
πk

g j

)2 −
(
π+

j

)2∣∣∣∣
q]}

log

(
1 −
(

uk
(g,h)

)2) ≤ log
(
1 − u2

ξ̃

)

∑l
k=1 wk

∑
(g,h)∈�̃

(0,1)
k

{∑n
j=1

ω j
2

[∣∣∣∣
(

uk
hj

)2 −
(

u+
j

)2∣∣∣∣
q

+
∣∣∣∣
(
vk

h j

)2 −
(
v+

j

)2∣∣∣∣
q

+
∣∣∣∣
(
πk

h j
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(30)
Solving Eq. (30), the comprehensive objective attribute weights ω can be determined. Then
Sk+

i and Sk−
i can be calculated by Eqs. (16) and (17), respectively.
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Remark 3 InEq. (30), there are (2
∑l

k=1 |�̃(0,1)
k |+n)variables need to be determined, includ-

ing n weights ω j ( j ∈ N ), 2
∑l

k=1 |�̃(0,1)
k | variables λk+

gh and λk−
hg ((g, h) ∈ �̃

(0,1)
k , k ∈ L).

There exist 4
∑l

k=1 |�̃(0,1)
k | + 4 inequalities at least. Generally, the larger the value of∑l

k=1 |�̃(0,1)
k | (i.e., the larger the number of pairwise comparisons of alternatives), the more

precise and reliable the weight vector derived by Eq. (30). Moreover, since Eq. (30) is a linear
programming model, it can be easily solved by the simplex method which needs very little
time cost. Hence, the complexity of the developed method is very low.

4.4 Derive collective relative closeness degree by cross-entropy

From the view of DM ek , the smaller the value of Sk+
i , the better alternative Ai . At the same

time, the bigger the value of Sk−
i , the better alternative Ai . Hence, the relative closeness

degree of alternative Ai given by DM ek is defined by

Rk
i = Sk−

i /
(

Sk−
i + Sk+

i

)
. (31)

It is apparent that 0 ≤ Rk
i ≤ 1. Especially, if Sk−

i = 0, then Rk
i = 0; if Sk+

i = 0, then
Rk

i = 1. Moreover, the bigger the value of Rk
i , the better alternative Ai for DM ek .

Denote the individual relative closeness degree vector and the normalized one of DM ek

by Rk = (Rk
1, Rk

2, . . . , Rk
m)T and R’k = (R′k

1, R′k
2, . . . , R′k

m)T, where R′k
i = Rk

i /
∑m

i=1 Rk
i .

Furthermore, different DMs have diversified weights. The ranking order of alternatives
should be generated according to the collective relative closeness degrees. Let R =
(R1, R2, . . . , Rm)T be collective relative closeness degree vector of alternatives, a program-
ming model is built to derive the collective relative closeness degrees:

min Z =∑l
k=1 wk D(R,R′k)

s.t.

{∑m
i=1 Ri = 1

0 ≤ Ri ≤ 1 (i ∈ M)

(32)

where w = (w1, w2, . . . , wl)
T is DMs’ weight vector and D(R,R′k) is the cross-entropy

of R to R′k calculated by Eq. (10). By Lagrange multiplier method, the collective relative
closeness degree Ri of alternative Ai is derived as

Ri =
exp
(∑l

k=1 wk log R′k
i

)

∑m
i=1 exp

(∑l
k=1 wk log R′k

i

) (i ∈ M). (33)

Therefore, the ranking order of alternatives can be determined by the decreasing order of
Ri (i ∈ M).

4.5 A PF mathematical programming method to solve the PF MAGDM problems

An algorithm is summarized to solve the PFMAGDMproblems with PF truth degrees below.

Step 1: Identify attribute set F and incomplete attribute weight information structure Λ.
Step 2: Elicit PF-ordered pairs for the subjective preference relations between alternatives

by �̃k .
Step 3: Elicit PF decisionmatricesYk (k ∈ L), obtain normalized decisionmatricesY ′k (k ∈

L) by Eq. (8) and then get nonnegative score matrices ŝk
(k ∈ L) by Eqs. (3) and

(9).
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Fig. 3 Decision-making process of a PF mathematical programming method

Step 4: Derive collective subjective attribute weight vector ωs based on cross-entropy via
Eqs. (10)–(13).

Step 5: Calculate DMs’ weight vector w by Eq. (14).
Step 6: Determine PFPIS r+ and PFNIS r− according to Eq. (15).
Step 7: Construct a biobjective PF mathematical programming model (i.e., Eq. (26)) and

transform into the corresponding linear programming model (i.e., Eq. (30)).
Step 8: Derive comprehensive attribute weight vector ω through solving Eq. (30).
Step 9: Calculate individual relative closeness degrees Rk

i of alternatives Ai for DM ek (i ∈
M, k ∈ L) using Eq. (31).

Step 10: Obtain collective relative closeness degrees Ri (i ∈ M) by Eq. (33) and rank all
alternatives according to the decreasing order of Ri (i ∈ M).

The decision-making process is schematically depicted in Fig. 3.

5 A GSS example and comparison analysis

In this section, a GSS example is implemented to illustrate the effectiveness of the proposed
method in this paper. Further, the advantages of the proposed method are also confirmed by
comparing with existing methods [28,55].

5.1 A GSS example

Jiangxi copper corporation (Jiangxi copper for short), established in 1979, is one of enter-
prises of the Fortune Top500 in China. For the moment, it has a staff of 24 thousands. With
the progress of industrialization, more and more pollution has caused heavy damage for
environment and ecology. Green competitiveness has become an important part of the core
competitiveness of enterprise, which could affect the sustainable development of enterprise.
Under the background of green development, Jiangxi copper always insists on the principle of
minimizing environmental costs to create themaximumvalue ofmineral resources. To further
expand production, Jiangxi copper plans to purchase a smelting equipment from a green sup-
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Table 1 Individual PF decision matrices

Expert Alternative Attribute

f1 f2 f3 f4 f5

e1 A1 (0.2,0.5) (0.4,0.6) (0.3,0.6) (0.6,0.7) (0.2,0.4)

A2 (0.4,0.4) (0.5,0.2) (0.4,0.5) (0.5,0.8) (0.3,0.5)

A3 (0.8,0.3) (0.6,0.1) (0.6,0.2) (0.2,0.9) (0.2,0.3)

A4 (0.6,0.3) (0.6,0.2) (0.5,0.2) (0.4,0.8) (0.3,0.6)

e2 A1 (0.4,0.4) (0.3,0.2) (0.4,0.6) (0.4,0.6) (0.5,0.4)

A2 (0.5,0.4) (0.4,0.3) (0.5,0.4) (0.3,0.6) (0.4,0.5)

A3 (0.3,0.2) (0.5,0.2) (0.8,0.2) (0.4,0.4) (0.2,0.8)

A4 (0.7,0.3) (0.6,0.3) (0.7,0.3) (0.1,0.8) (0.2,0.7)

e3 A1 (0.6,0.4) (0.5,0.7) (0.4,0.7) (0.6,0.2) (0.6,0.5)

A2 (0.7,0.3) (0.6,0.5) (0.6,0.5) (0.5,0.5) (0.5,0.6)

A3 (0.6,0.3) (0.8,0.3) (0.7,0.1) (0.1,0.8) (0.3,0.7)

A4 (0.8,0.4) (0.7,0.2) (0.7,0.4) (0.2,0.5) (0.4,0.7)

plier. After a preliminary screening, four green suppliers A = {A1, A2, A3, A4} are selected
as the possible alternatives. To further rank these alternatives, a GSS temporary committee
consisting of three experts (or DMs) E = {e1, e2, e3} is constituted. Three DMs are from
materials and equipment department, quality supervision department and engineering depart-
ment, respectively. These alternatives are evaluated on the basis of five attributes, including
resource recovery and utilization f1, green identity f2, environmental impact degree f3,
energy consumption f4 and the use of environmental protection funds f5. Among them, f1,
f2 and f3 are benefit attributes, whereas f4 and f5 are cost attributes. After data acquisition
and statistical treatment, the ratings of alternatives on each attribute provided by DMs are
represented by PFNs. The corresponding individual PF decisionmatrices are given in Table 1.

According to knowledge and experience, three DMs provide the PF-ordered pairs for the
subjective preference relations between alternatives by �̃1 = {<(3, 2), ã1(3, 2)>, <(4, 2),
ã1(4, 2) > }, �̃2 = {<(4, 1), ã2(4, 1)>, <(4, 2), ã2(4, 2)> }, �̃3 = {<(2, 1), ã3(2, 1)>,

<(3, 4), ã3(3, 4)> }, where the corresponding PF truth degrees are ã1(3, 2) = (0.8, 0.2),
ã1(4, 2) = (0.7, 0.1), ã2(4, 1) = (0.8, 0.4), ã2(4, 2) = (0.9, 0.3), ã3(2, 1) = (0.8, 0.5),
ã3(3, 4) = (0.6, 0.2), respectively.

The incomplete attribute weight information is provided by DMs as follows:

Λ = {ω|ω ∈ Λ0, ω2 ≥ 2ω3, 0.1 ≤ ω5 − ω1 ≤ 0.3, ω2 − ω3 ≥ ω5

−ω1, ω3 ≥ ω4, 0.1 ≤ ω3 ≤ 0.15}.
Using Eq. (8), the normalized matrices Y ′k (k = 1, 2, 3) are obtained. Then nonnegative
score matrices ŝk

(k = 1, 2, 3) are derived by Eqs. (3) and (9).
According to Eq. (15), the PFPIS r+ and PFNIS r− are obtained:

r+ = ((0.8, 0.2), (0.8, 0.1), (0.8, 0.1), (0.9, 0.1), (0.8, 0.2))T,

r− = ((0.2, 0.5), (0.3, 0.7), (0.3, 0.7), (0.2, 0.6), (0.3, 0.6))T.

After calculating the individual and collective subjective attribute weight vectors via Eqs.
(10)–(13), the DMs’ weights are derived as w1 = 0.3130, w2 = 0.3367, w3 = 0.3503.
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Table 2 Normalized individual
relative closeness degrees

Expert Alternative

A1 A2 A3 A4

e1 0.0911 0.2277 0.3172 0.3640

e2 0.1368 0.1682 0.3108 0.3842

e3 0.0658 0.2194 0.3574 0.3574

Set ξ̃ = (0.0001, 0.9) and η̃ = (0.0001, 0.9). For simplicity, let q = 2 in Eq. (30) and then
a linear programmingmodel can be constructed (see (M-1) in Appendix). The comprehensive
attribute weight vector ω is derived through solving the constructed model (M-1) as follows:

ω1 = 0.1382, ω2 = 0.3921, ω3 = 0.1002, ω4 = 0.0069, ω5 = 0.3626.

So, the square of the weighted Euclidean distances between rk
i and r+ as well as r− are

calculated as:

S1+
1 = 0.2186, S1+

2 = 0.1479, S1+
3 = 0.1479, S1+

4 = 0.0756,

S2+
1 = 0.2210, S2+

2 = 0.1506, S2+
3 = 0.0997, S2+

4 = 0.0379,

S3+
1 = 0.1580, S3+

2 = 0.0610, S3+
3 = 0.0206, S3+

4 = 0.0206,

S1−
1 = 0.0389, S1−

2 = 0.0896, S1−
3 = 0.1638, S1−

4 = 0.1150,

S2−
1 = 0.0862, S2−

2 = 0.0793, S2−
3 = 0.1752, S2−

4 = 0.1372,

S3−
1 = 0.0311, S3−

2 = 0.0742, S3−
3 = 0.1727, S3−

4 = 0.1727.

Using Eq. (31), the individual relative closeness degrees Rk
i (i = 1, 2, 3, 4; k = 1, 2, 3) are

calculated. Accordingly, the normalized individual relative closeness degrees are obtained in
Table 2.

Utilizing Eq. (33), the collective relative closeness degrees Ri (i = 1, 2, 3, 4) of alter-
natives are calculated as R1 = 0.1163, R2 = 0.1322, R3 = 0.3581, R4 = 0.3934. Based on
the decreasing order of Ri (i = 1, 2, 3, 4), the ranking order of alternatives is generated as
A4  A3  A2  A1.

5.2 Comparative analyses with PF TOPSIS and PF TODIM methods

In this subsection, the comparative analyses with PF TOPSIS method [55] and PF TODIM
method [28] are performed concretely.

5.2.1 Comparison with the PF TOPSIS method

By defining a distance measure for PFNs, Zhang and Xu [55] proposed an extended
TOPSIS to deal with the MADM problems. Since there is a single DM in method [55],
the individual decision matrix and the group decision matrix (Table 3) aggregated by
the individual decision matrices are respectively applied to method [55] to solve the
above example. DMs’ weight vector is derived by the proposed method of this paper.
Moreover, the attribute weight vector is given in advance. Four cases are taken into
account, including ω1 = (0.2, 0.2, 0.2, 0.2, 0.2)T, ω2 = (0.1, 0.2, 0.15, 0.3, 0.25)T,
ω3 = (0.1, 0.2, 0.15, 0.25, 0.3)T and ω = (0.1382, 0.3921, 0.1002, 0.0069, 0.3626)T.
Usingmethod [55], the decision results are derived for different cases and are listed in Table 4.
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Table 3 Group decision matrix

Alternative Attribute

f1 f2 f3 f4 f5

A1 (0.4075,0.4313) (0.4014,0.5003) (0.3687,0.6350) (0.4912,0.5327) (0.4350,0.4411)

A2 (0.5388,0.3650) (0.5014,0.3388) (0.5037,0.4663) (0.6276,0.4327) (0.5350,0.4037)

A3 (0.5616,0.2663) (0.6364,0.2037) (0.7024,0.1650) (0.6966,0.2323) (0.6085,0.2350)

A4 (0.7037,0.3350) (0.6350,0.2337) (0.6374,0.3037) (0.6949,0.2289) (0.6687,0.3014)

Table 4 Ranking orders by PF TOPSIS method for different attribute weight vectors

Attribute
weight
vector

Expert

e1 e2 e3 Group

ω1 A3  A4  A2  A1 A4  A3  A2  A1 A3  A4  A2  A1 A4  A3  A2  A1

ω2 A3  A4  A2  A1 A4  A3  A2  A1 A3  A4  A2  A1 A4  A3  A2  A1

ω3 A4  A3  A2  A1 A4  A3  A2  A1 A3  A4  A2  A1 A4  A3  A2  A1

ω A4  A3  A2  A1 A4  A3  A2  A1 A3  A4  A2  A1 A4  A3  A2  A1

It is easily found that when using the group decision matrix (Table 3), the ranking orders
obtained by method [55] are identical to that obtained by the proposed method, which illus-
trates the proposed method is reliable. However, when applying individual decision matrices
to method [55], the ranking orders obtained by method [55] for different attribute weights
could be not the same as that obtained by the proposed method. The reasons for this result
are concluded as follows:

1. Method [55] only focuses on theMADMproblems with single DM and cannot be used to
solve MAGDM problems. However, the proposed method of this paper can not only deal
with MAGDM problems, but also solve MADM problems. Additionally, in this paper,
by minimizing the total cross-entropy of the collective subjective attribute weight vector
to the individual ones, an optimization program is constructed to determine the collective
subjective attribute weight vector which is further applied to derive DMs’ weight vector.
Such a method to obtain DMs’ weights is objective and convincing.

2. Method [55] provided the attribute weights a priori and ignored the determination of
attribute weights. In this paper, by minimizing the PFPIS-based and PFNIS-based group
inconsistency simultaneously, a biobjective PF mathematical program is constructed
to derive the comprehensive attribute weights. Thus, the determination of the attribute
weights is more objective and plausible.

5.2.2 Comparison with the PF TODIM method

Ren, Xu and Gou [28] extended the TODIM to handle MAGDM problems under PF
environments. In method [28], the weights of attributes and DMs were given in advance.
Thus, set attribute weight vector ω3 = (0.1, 0.2, 0.15, 0.25, 0.3)T, DMs’ weights vector
w′ = ( 13 ,

1
3 ,

1
3 )

T and the attenuation factor of the losses θ = 2.5. Using method [28] to solve
the above example, the ranking order of alternatives is generated as A4  A3  A2  A1,
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which is consistent with that obtained by the proposed method of this paper. This observation
illustrates the validity of the proposed method of this paper.

Moreover, considering that the weights of attributes and DMs are given a priori in method
[28], two special cases are further calculated for different weights of attributes and DMs. (1)
When setting attribute weight vector ω3 = (0.1, 0.2, 0.15, 0.25, 0.3)T and DMs’ weight
vector w′′ = (0.5, 0.2, 0.3)T, the ranking order obtained by method [28] is A3  A4 
A2  A1. (2) When setting attribute weight vector ω1 = (0.2, 0.2, 0.2, 0.2, 0.2)T and
DMs’ weight vector w′′ = (0.5, 0.2, 0.3)T, the ranking order obtained by method [28] is
A4  A3  A2  A1. Clearly, the results obtained by method [28] would vary with different
weights of attributes and DMs. However, it is somewhat subjective to give attributes weight
vector or DMs’ weight vector in advance. On the contrary, this paper determines the DMs’
weights and attribute weights objectively from the individual decision matrices.

Compared with method [28], the proposed method of this paper has several advantages:

1. Method [28] allocated DMs’ weights a priori, whereas this paper derives DMs’ weights
objectively by a cross-entropy optimization model. The consensus between individual
DMs and the decision group is taken into account, which could lead to convincing results
that are supported by all group members despite their different opinions.

2. Similar to method [55], Ren et al. [28] assigned attribute weights in advance, which is not
easy to avoid the subjective randomness. In this paper, four indices are defined to fully
measure the consistency and inconsistency of decision group. A biobjective PF mathe-
matical programming model is constructed and transformed into a linear programming
model to obtain the comprehensive attribute weights. The method of deriving attribute
weights is more comprehensive and accordance with the real-world situations.

5.2.3 Rank-correlation analysis based on Spearman’s rank-correlation coefficient

Based on the above analysis, the ranking orders of alternatives by different methods are not
the same. It is apparent that the relations A2  A1, A3  A2, A3  A1, A4  A2 and
A4  A1 always hold by the proposed method and methods [28,55]. However, the relation
between alternatives A3 and A4 are not the same for different methods.

To further compare these ranking orders, Spearman’s rank-correlation test is utilized to
determine whether there is statistical significance of the ranking difference among methods
[28,55] and the proposed method of this paper. In Spearman’s test, the similarity of the
rankings can be evaluated by two separate test statistics, rs and Z , which are calculated by
the following formulas [23]:

rs = 1 − 6
K∑

κ=1

(dκ )2/K (K 2 − 1), Z = rs
√

K − 1,

where dκ = xκ − yκ (κ = 1, 2, . . . , K ) denote the ranking difference between two sets of
ranking {xκ } and {yκ }. The rank-correlation coefficient rs is a relative measure that varies
from +1, implying a perfect positive relationship between the two sets of rankings, to −1,
implying a perfect negative relationship between the two sets of rankings. The closer rs is
to ±1, the stronger the relationship between {xκ } and {yκ }. In addition, the test statistic Z is
compared with a pre-determined level of significance α value. Using a level of significance
of α (usually α = 0.05), the critical Z value is 1.645 (i.e.,Z0.05 = 1.645). If the statistic Z
exceeds 1.645, it can be concluded that there is evidence of a positive relationship between
{xκ } and {yκ }. Otherwise, the two rankings can be accepted as dissimilar.
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When solving the above GSS example, there are five sets of preference rankings obtained
by the proposed method and methods [28,55], denoted by A, B, C, D, E, respectively. In
details, PF TOPSIS (B) and PF TOPSIS (C) denote two ranking orders A4  A3  A2  A1

and A3  A4  A2  A1 generated by method [55] for different attribute weight vectors in
Table 4. PF TODIM (D) and PF TODIM (E) denote two ranking orders A4  A3  A2  A1

and A3  A4  A2  A1 derived by method [28] for different attribute weight vectors and
different DMs’ weight vectors in Sect. 5.2.2, respectively. To compare these ranking orders,
the rank-correlation coefficients and the test statistics are calculated in Table 5.

From Table 5, the result analysis can be summarized as follows:

1. Comparing the result obtained by the proposed method of this paper with those obtained
by PF TOPSIS [55], the test value Z = 1.7321 > 1.645 indicates there is a positive
relationship between the ranking (A) in this paper and the ranking (B). However, the
ranking (A) in this paper is significantly dissimilar to the ranking (C) because the test
value Z = 1.3856 is smaller than 1.645.

2. When comparing the result obtained by the proposed method of this paper with those
obtained by PF TODIM [28], the ranking correlation coefficients between A and D, A
and E are 1 and 0.8 and the corresponding test values are 1.7321 and 1.3856, respectively.
It can be affirmed that the ranking (A) is a positively correlated with the ranking (D),
while it is dissimilar to ranking (E).

6 Conclusions

Uncertainty and fuzziness are universal in the actual decision making problems. PFS, as an
extension of IFS, can depict such uncertainty and fuzziness effectively and flexibly. This
paper proposes a PF mathematical programming method to deal with PF MAGDM with PF
truth degrees and incomplete weight information. An example of GSS is demonstrated to
verify the proposed method. The main novelties of this paper are outlined below.

1. The vector of DMs’ weights is determined objectively through minimizing the cross-
entropy of the collective subjective attribute weight vector to the individual ones. To rank
orders of alternatives, the collective relative closeness degrees of alternatives are explicitly
derived through minimizing the cross-entropy of the collective relative closeness degrees
to the individual ones. Using the cross-entropy optimization models twice can greatly
improve the objectivity and reasonability of decision making results.

2. The PF group consistency and inconsistency indices are respectively defined on the
basis of PFPIS and PFNIS. To obtain comprehensive attribute weights, a biobjective PF
mathematical programming model is constructed through minimizing two inconsistency
indices based on PFPIS and PFNIS simultaneously. This model takes the inconsistency
indices based on PIS and NIS into consideration, while the LINMAP and its extensions
only consider the consistency index or inconsistency index based on PIS. Thus, this
model not only makes up the drawback that the LINMAP and its extensions overlook
the NIS during the decision-making process, but also greatly generalizes and promotes
the LINMAP method.

3. A linear programming method is dexterously developed to solve the constructed biob-
jective PF mathematical programming model. This method is very easy and simple since
the linear programming model can be effectively solved by the Simplex method. Further-
more, the constructed biobjective PFmathematical programmingmodel not only enriches
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the research contents of fuzzymathematical programming theory, but also provides a new
perspective and means for solving PF decision-making problems.

Nevertheless, the MAGDM problems concerned in this paper only involve single type of
attribute values, i.e., PFSs, while MAGDM problems with multiple types of attribute values
(i.e., heterogeneous MAGDM) are not considered. In the future, we will extend the pro-
posed method to address heterogeneous MAGDM with PF truth degrees. Additionally, due
to the diversification and complication of decision making, several different types of fuzzy
truth degrees of alternative comparisons may be coexist in some real-world decision-making
problems. How to deal with heterogeneous MAGDM considering several different types of
fuzzy truth degrees is a valuable and interesting issue which deserves to be studied for future
research.
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7 Appendix

max
{

z = 0.3130
(
λ1+32 log 0.36 + λ1+42 log 0.51

)
+ 0.3367

(
λ2+41 log 0.36 + λ2+42 log 0.09

)

+ 0.3503
(
λ3+21 log 0.36 + λ3+34 log 0.64

)

+ 0.3130
(
λ1+32 log 0.2 + λ1+42 log 0.1

)
+ 0.3367

(
λ2+41 log 0.4 + λ2+42 log 0.3

)

+ 0.3503
(
λ3+21 log 0.5 + λ3+34 log 0.2

)

+ 0.3130
(
λ1−23 log 0.36 + λ1−24 log 0.51

)
+ 0.3367

(
λ2−14 log 0.36 + λ2−24 log 0.09

)

+ 0.3503
(
λ3−12 log 0.36 + λ3−43 log 0.64

)

+ 0.3130
(
λ1−23 log 0.2 + λ1−24 log 0.1

)
+ 0.3367

(
λ2−14 log 0.4 + λ2−24 log 0.3

)

+ 0.3503
(
λ3−12 log 0.5 + λ3−43 log 0.2

)}
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s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.3130((0.1847ω1 + 0.0629ω2 + 0.1019ω3 + 0.0448ω4 − 0.1674ω5) log 0.36

+ (0.1203ω1 + 0.0704ω2 + 0.0315ω3 + 0.0198ω4

+ 0.0682ω5) log 0.51) + 0.3367((0.1697ω1 + 0.2245ω2 + 0.168ω3

+ 0.1286ω4 + 0.1512ω5) log 0.36 + (0.1022ω1 + 0.136ω2

+ 0.0992ω3 + 0.144ω4 + 0.0972ω5) log 0.09) + 0.3503((0.0417ω1

+ 0.1265ω2 + 0.1616ω3 + 0.2091ω4 + 0.066ω5) log 0.36

+ (−0.0525ω1 + 0.0125ω2 + 0ω3 + 0.2688ω4 + 0.0014ω5) log 0.64)
≤ log(1 − 0.00012),

0.3130((0.1847ω1 + 0.0629ω2 + 0.1019ω3 + 0.0448ω4 − 0.1674ω5)

log 0.2 + (0.1203ω1 + 0.0704ω2 + 0.0315ω3 + 0.0198ω4

+ 0.0682ω5) log 0.1) + 0.3367((0.1697ω1 + 0.2245ω2 + 0.168ω3

+ 0.1286ω4 + 0.1512ω5) log 0.4 + (0.1022ω1 + 0.136ω2

+ 0.0992ω3 + 0.144ω4 + 0.0972ω5) log 0.3)+0.3503((0.0417ω1

+ 0.1265ω2 + 0.1616ω3 + 0.2091ω4 + 0.066ω5) log 0.5

+ (−0.0525ω1 + 0.0125ω2 + 0ω3 + 0.2688ω4 + 0.0014ω5) log 0.2) ≤ log 0.9,

0.3130((0.2779ω1 + 0.0176ω2 + 0.1082ω3 + 0.1428ω4 + 0.0471ω5) log 0.36

+ (0.0651ω1 − 0.0022ω2 + 0.1104ω3 − 0.0261ω4

+ 0.0176ω5) log 0.51) + 0.3367((0.1444ω1 − 0.0776ω2 + 0.1473ω3 + 0.1941ω4

+ 0.1251ω5) log 0.36 + (0.1228ω1 − 0.012ω2

+ 0.0783ω3 + 0.1836ω4 + 0.1008ω5) log 0.09) + 0.3503((0.0744ω1

+ 0.0401ω2 + 0.0608ω3 + 0.0331ω4 + 0.0297ω5) log 0.36

+ (−0.2373ω1 + 0.06ω2 + 0.0615ω3 + 0.1932ω4 + 0.0049ω5) log 0.64)
≤ log(1 − 0.00012),

0.3130((0.2779ω1 + 0.0176ω2 + 0.1082ω3 + 0.1428ω4 + 0.0471ω5) log 0.2
+ (0.0651ω1

− 0.0022ω2 + 0.1104ω3 − 0.0261ω4

+ 0.0176ω5) log 0.1)+0.3367((0.1444ω1 − 0.0776ω2 + 0.1473ω3

+ 0.1941ω4 + 0.1251ω5) log 0.4 + (0.1228ω1 − 0.012ω2

+ 0.0783ω3 + 0.1836ω4 + 0.1008ω5) log 0.3)+0.3503((0.0744ω1

+ 0.0401ω2 + 0.0608ω3 + 0.0331ω4 + 0.0297ω5) log 0.5

+ (−0.2373ω1 + 0.06ω2 + 0.0615ω3 + 0.1932ω4 + 0.0049ω5) log 0.2) ≤ log 0.9,

(M-1)
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s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.1847ω1 + 0.0629ω2 + 0.1019ω3 + 0.0448ω4 − 0.1674ω5 + λ1+32 ≥ 0, 0.1203ω1

+ 0.0704ω2 + 0.0315ω3 + 0.0198ω4 + 0.0682ω5 + λ1+42 ≥ 0

0.1697ω1 + 0.2245ω2 + 0.1680ω3 + 0.1286ω4 + 0.1512ω5 + λ2+41 ≥ 0, 0.1022ω1

+ 0.1360ω2 + 0.0992ω3 + 0.1440ω4 + 0.0972ω5 + λ2+42 ≥ 0

0.0417ω1 + 0.1265ω2 + 0.1616ω3 + 0.2091ω4 + 0.066ω5 + λ3+21 ≥ 0,−0.0525ω1

+ 0.0125ω2 + 0ω3 + 0.2688ω4 + 0.0014ω5 + λ3+34 ≥ 0

0.2779ω1 + 0.0176ω2 + 0.1082ω3 + 0.1428ω4 + 0.0471ω5 + λ1−23 ≥ 0, 0.0651ω1

− 0.0022ω2 + 0.1104ω3 − 0.0261ω4 + 0.0176ω5 + λ1−24 ≥ 0

0.1444ω1 − 0.0776ω2 + 0.1473ω3 + 0.1941ω4 + 0.1251ω5 + λ2−14 ≥ 0, 0.1228ω1

− 0.0120ω2 + 0.0783ω3 + 0.1836ω4 + 0.1008ω5 + λ2−24 ≥ 0

0.0744ω1 + 0.0401ω2 + 0.0608ω3 + 0.0331ω4 + 0.0297ω5 + λ3−12 ≥ 0,−0.2373ω1

+ 0.0600ω2 + 0.0615ω3 + 0.1932ω4 + 0.0049ω5 + λ3−43 ≥ 0

λ1+32 ≥ 0, λ1+42 ≥ 0, λ2+41 ≥ 0, λ2+42 ≥ 0, λ3+21 ≥ 0, λ3+34 ≥ 0, λ1−23
≥ 0, λ1−24 ≥ 0, λ2−14 ≥ 0, λ2−24 ≥ 0, λ3−12 ≥ 0, λ3−43 ≥ 0,

ω2 ≥ 2ω3, 0.1 ≤ ω5 − ω1 ≤ 0.3, ω2 − ω3 ≥ ω5 − ω1, ω3 ≥ ω4,

0.1 ≤ ω3 ≤ 0.15, ω1 + ω2 + ω3 + ω4

+ω5 = 1, ω1, ω2, ω3, ω4, ω5 ≥ 0.005
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