
Knowl Inf Syst (2018) 54:315–343
https://doi.org/10.1007/s10115-017-1064-y

REGULAR PAPER

Community-preserving anonymization of graphs

François Rousseau1 · Jordi Casas-Roma2 ·
Michalis Vazirgiannis1

Received: 25 January 2016 / Revised: 22 April 2017 / Accepted: 4 May 2017 /
Published online: 17 May 2017
© Springer-Verlag London 2017

Abstract In this paper, we propose a novel edgemodification technique that better preserves
the communities of a graph while anonymizing it. By maintaining the core number sequence
of a graph, its coreness, we retain most of the information contained in the network while
allowing changes in the degree sequence, i. e. obfuscating the visible data an attacker has
access to. We reach a better trade-off between data privacy and data utility than with existing
methods by capitalizing on the slack between apparent degree (node degree) and true degree
(node core number). Our extensive experiments on six diverse standard network datasets
support this claim. Our framework compares our method to other that are used as proxies for
privacy protection in the relevant literature. We demonstrate that our method leads to higher
data utility preservation, especially in clustering, for the same levels of randomization and
k-anonymity.

Keywords Privacy · Data mining · Graph algorithms · Anonymization · Social networks ·
Core number sequence · Graph degeneracy

1 Introduction

Data mining relies on a great set of tools and techniques to mine the vast amount of data
that is available today to extract actionable patterns and gain insights on somebody’s records.
However, these data often contain personal and private information about users and indi-
viduals. Privacy, particularly in the social web, is not just a nice to have but a requirement,
particularly in the context of new laws of the European Union [26]. Data anonymization can

B Jordi Casas-Roma
jcasasr@uoc.edu

Michalis Vazirgiannis
mvazirg@lix.polytechnique.fr

1 LIX, École Polytechnique, Palaiseau, France

2 Universitat Oberta de Catalunya (UOC), Barcelona, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-017-1064-y&domain=pdf
http://orcid.org/0000-0002-0617-3303

316 F. Rousseau et al.

be seen as a proxy for privacy protection and this is the assumption we also made in our
work. For relational data, basic anonymization procedures such as removing names or other
key identifiers are not sufficient to prevent an attacker from re-identifying users, leaving the
resulting anonymized information still too sensitive to be released. For example, consider
a company that wishes to share its social network with the research community for further
analysis while preserving the privacy its users are entitled to. Releasing the network in the
form of a graph with anonymized node labels would not be sufficient since it would still be
possible to re-identify some nodes very quickly and from themmost of the network [3,28,41],
i. e. celebrities with a high and unique node degree in the case of Twitter for instance.

In order to overcome this issue,methods that add noise to the original data have been devel-
oped to hinder the re-identification processes. But the noise introduced by the anonymization
steps may also affect the data, reducing its utility for subsequent data mining processes. Usu-
ally, the larger the data modification, the harder the re-identification but also the less the data
utility. Therefore, it is necessary to preserve the integrity of the data (in the sense of retaining
the information that we want to mine) to ensure that the data mining step is not altered by the
anonymization step. Among other things, for the anonymization step to be considered any
useful and thus valid, the analysis performed on the obfuscated data should produce results
as close as possible to the ones the original data would have led to. A trade-off between data
privacy and data utilitymust be reached and it is in this spirit that we developed our proposed
edge modification technique.

In the rest of the paper, we only consider the case of graph anonymization. Graphs are ubiq-
uitous and more and more data are in that form or can be represented as such. Therefore, the
restriction is only partial and it allows us to focus the literature review and the datasets used in
the experiments. Graphmodification approaches anonymize a network bymodifying (adding
and/or deleting) edges or nodes. There exist twomain approaches in the literature [33]: Firstly,
random perturbation of the graph structure by randomly adding/removing/switching edges
(often referred to as edge randomization). Secondly, constrained perturbation of the graph
structure via sequential edge modifications in order to fulfill some desired constraints. For
instance, k-degree anonymity-based approaches modify the graph structure so that every
node is in the end indistinguishable from k − 1 other nodes (in terms of node degree).

1.1 Highlights

In this work,1 we explore the idea of coreness-preserving edge modification. Modifying
edges is the building block of graph anonymization. And here, instead of doing it at random,
we propose to only modify an edge when it does not change the core numbers of both its
endpoints and, by extension, the whole core number sequence of a graph. By doing so, we
preserve better the underlying graph structure, retaining more data utility than in the random
case while still altering the node degrees, hindering the re-identification process and thus
achieving a certain level of privacy. Here are the highlights of our work:

– We propose a novel edge modification technique that better preserves the communities
of a graph while anonymizing it.

– We specify coreness-preserving algorithms for all four standard edge modification oper-
ations: deletion, addition, rotation and switch. We also discuss their time complexity.

– We empirically show that our methods achieve a better trade-off between data utility
and data privacy than existing edge modification operations in terms of generic graph
properties and real clustering applications.

1 A preliminary version of this work appeared in the PhD thesis of one of the authors [10].

123

Community-preserving anonymization of graphs 317

– We empirically show that our edge modification technique is still able to deal with very
large networks with thousands and millions of vertices and edges.

– We conduct a theoretical and empirical analysis of re-identification and risk assessment
on our proposed coreness-preserving methods.

1.2 Outline

The rest of the paper is organized as follows. Section 2 provides a review of the related work.
Section 3 defines the preliminary concepts our work is based upon. Section 4 introduces the
proposed approach that randomly anonymizes a graphwhile preserving its coreness. Section 5
presents the experimental results we obtained on several network datasets considering both
random and constrained graph perturbations. Section 6 discusses re-identification and risk
assessment. Finally, Sect. 7 concludes our paper and mentions future work directions.

2 Related work

In this section, we present the related work published in the areas of graph anonymization
and graph degeneracy. Our coreness-preserving edge modification operations are based on
graph degeneracy principles and can be applied on any edge modification algorithm, based
on random or constrained perturbation.

2.1 Graph anonymization

To preserve the privacy of the data contained in a graph, the most common way to do so is
through anonymization, process that can be fully random or subject to constraints.

Randomization methods are based on introducing random noise in the original data. For
graphs, there are two main approaches: (a) Rand Add/Del that randomly adds and deletes
edges from the original graph (this strategy keeps the number of edges) and (b) Rand Switch
that exchanges edges between pairs of nodes (this strategy keeps the degree of all nodes and
a fortiori the number of edges). Naturally, edge randomization can also be considered as
an additive-noise perturbation. Hay et al. [21] proposed a method to anonymize unlabeled
graphs called Random Perturbation, which is based on removing p edges from the graph and
then adding p false edges, all at random. Ying and Wu [38] proposed variants that preserve
the spectral properties of the original graph. Ying et al. [37] suggested a variant of Rand
Add/Del that divides the graph into blocks according to the degree sequence and performs
modifications at random per block and not over the entire set of nodes. Nevertheless, it
involves higher risk of re-identification.

Another widely adopted strategy for graph modification approaches consists of edge addi-
tion and deletion to meet desired constraints, usually to achieve a certain level of privacy. For
instance, take the k-anonymity concept that was introduced by Sweeney [32] for the privacy
preservation on relational data. It states that an attacker cannot distinguish among k different
records although he managed to find a group of quasi-identifiers. Consequently, the attacker
cannot re-identify an individual with a probability greater than 1/k. The k-anonymity model
can be applied using different concepts when dealing with networks rather than relational
data like in our case. A widely used option is to consider the node degree as a quasi-identifier,
which corresponds to k-degree anonymity. It is based on modifying the network structure
(by adding and removing edges) to ensure that all nodes satisfy this condition. In other
words, the main objective is that for every node in the graph, there are at least k − 1 other
nodes with the same degree. Liu and Terzi [25] developed a method which, given a net-

123

318 F. Rousseau et al.

work G = (V, E) and an integer k, finds a k-degree anonymous network ˜G = (V, ˜E) where
E ∩ ˜E ≈ E , trying to minimize the number of changes on edges. Other authors considered
the 1-neighborhood subgraph of the objective nodes as quasi-identifiers (k-neighborhood
anonymity) [41], all structural information about a target node (k-automorphism) [42] or
generic queries (k-candidate anonymity) [20].

2.2 Graph degeneracy

The idea of a k-degenerate graph comes from the work of Bollobs [7, p. 222] that was
further extended by Seidman [31] into the notion of a k-core, which explains the use of
degeneracy as an alternative denomination for k-core in the literature. Henceforth, we will
be using the two terms interchangeably. Baur et al. [5] proposed the first graph generator with
predefined k-core structure. In a sense, their idea is similar to ours since their generator tries to
maintain the k-core decomposition of an original graphwhile perturbing it. However, the edge
modification operations considered are too restrictive for anonymization and actually flawed
as we will see in Sect. 4.6. In a previous work [14], we capitalized on graph degeneracy for
generalization of social networks, another type of anonymization with different applications.
Alternatively, Assam et al. [2] proposed to use the concept from an attacker’s perspective in
the context of structural anonymization of networks.

3 Preliminary concepts

In this section, we define the preliminary concepts upon which our work is built: the notion
of graph, degeneracy and edge modification.

3.1 Graph

Let G = (V, E) be a graph (also known as a network), V its set of vertices (also known as
nodes) and E its set of edges (also known as arcs or links). By abusing the notation, when
considering nodes from a graph, we will write v ∈ G rather than v ∈ V . We denote by n the
number of vertices (n = |V|) and m the number of edges (m = |E|).

3.1.1 Apparent degree

In our work, we considered undirected and unweighted edges, which represent relationships
between entities that are bidirectional and independent of their strength (e.g., being friend on
Facebook). In this context, we can define the degree of a vertex v in a graph G as the number
of adjacent nodes and denoted by degG(v). Hereinafter, we will refer to it as the apparent
degree because it represents the total number of neighbors a node has in a network but is
usually an overestimation of the number of true relations. In the case of a social network,
not all of someone’s connections are truly his friends but sometimes just acquaintances and
intuitively, we might be more interested in mining information about his friends rather than
all his connections.

3.2 Degeneracy

The concept of degeneracy for a graph was first introduced by Seidman [31] along with a
description of its use as a graph decomposition technique.

123

Community-preserving anonymization of graphs 319

3.2.1 k-core and main core

Let k be an integer. A subgraph Hk = (V ′, E ′), induced by the subset of vertices V ′ ⊆ V
(and a fortiori by the subset of edges E ′ ⊆ E), is called a k-core or a core of order k iff
∀v ∈ V ′, degHk (v) ≥ k andHk is the maximal subgraph with this property, i. e. it cannot be
augmented without losing this property. In other words, the k-core of a graph corresponds to
the maximal subgraph whose vertices are at least of degree k within the subgraph. The core
of maximum order, i. e. the largest k such that the remaining subgraph is non-empty, is called
the main core.

3.2.2 k-shell

From the k-core, we can then define the notion of k-shell [9], denoted by Sk , which corre-
sponds to the subset of vertices that belong to the k-core but not the (k + 1)-core such that
Sk = {v ∈ G | v ∈ Hk ∧ v /∈ Hk+1}.
3.2.3 Core number, shell index and true degree

The core number of a vertex v is the highest order of a core that contains this vertex and
denoted by core(v). It is also referred as the shell index since the k-shell is exactly the part of
the k-core that will not survive in the (k+1)-core. We claim that it represents the true degree
of a node as opposed to its apparent degree. Basically, its value corresponds to how cohesive
one’s neighborhood is and is a measure of user engagement in a network [27]. Indeed, to
belong to a k-core, a node needs at least k neighbors also meeting the same requirements,
thus forming a community of “close” nodes. Again, in the case of a social network, the core
number of a nodewould correspond to the number of close friends the user has, his inner circle
that would collapse if he were to leave (through the cascading effect implied by the k-core
condition—see the impact of the removal of node D in the black 3-shell of Fig. 1 for instance).

3.2.4 k-corona, k-lamina and effective degree

Goltsev et al. [18] defined the k-corona as the subset of vertices from the k-shell with exactly
k neighbors, denoted by Ck hereinafter. For our work, we introduce two novel notions: (1) the
k-lamina2 defined as the subset of vertices from the k-shell with more than k neighbors and
denoted byLk (= Sk\Ck); and (2) the effective degree defined as the degree of a node v in the
last core it belongs to, denoted by e f _degG(v) such that ∀v ∈ Sk, e f _degG(v) = degHk (v).
It follows that Ck = {v ∈ Sk | core(v) = e f _degG(v)} and Lk = {v ∈ Sk | core(v) <

e f _degG(v)}.
3.2.5 Coreness

The coreness is defined3 as the set of vertices and their associated core numbers. By analogy
with the degree sequence, it is also referred as the core number sequence even though in both
cases there are no specific ordering over the vertices. Hence, a coreness-preserving graph
modification approach means a technique that alters the network without changing the core
number of any node of the graph.

2 In cell biology, the nuclear lamina is a dense fibrillar network that surrounds the nucleus, gives it its shape
and stabilizes the nuclear membrane.
3 http://igraph.org/python/doc/igraph.GraphBase-class.html.

123

http://igraph.org/python/doc/igraph.GraphBase-class.html

320 F. Rousseau et al.

0-corona

1-corona
1-lamina
2-corona
2-lamina

3-corona
3-lamina

3-shell

2-shell

1-shell

0-shell

A

B

C

D

E

F

G
n = 36,m = 39

Fig. 1 Illustration of a graphG and its decomposition in k-shells. Node color indicates the set a vertex belongs
to: white for the 0-shell, light gray for the 1-shell, dark gray for the 2-shell and black for the 3-shell. Node
shape indicates whether the vertex belongs to a k-corona (square) or a k-lamina (disk)

3.2.6 Illustration

Figure 1 illustrates the decomposition of a given graph G of 36 vertices and 39 edges
into disjoints shells and nested cores of order 0, 1, 2 and 3. In this example, core(A) =
e f _degG(A) = degG(A) = 0, core(B) = 1, e f _degG(B) = degG(B) = 2, core(D) =
e f _degG(D) = 3, degG(D) = 6 and core(G) = 3.

3.2.7 Basic algorithm and complexity

The brute force approach for computing the coreness of a graph follows immediately from the
procedural definition. Each k-core, from the 0-core to the kmax -core (the main core), can be
obtained by iteratively removing all the nodes of degree less than k. Basically, for a given k,
while there are nodes that can be removed because they have less than k neighbors then we do
so and re-check their neighbors until no remaining node has less than k neighbors. Therefore,
we may need to visit all n nodes for every k, but we only visit each edge once, whenever we
delete one of its endpoints. This leads to an algorithm with complexity O(kmax · n + m) in
time and O(n) space.

3.2.8 Optimal linear algorithm

Thanks to Batagelj and Zaveršnik [4], the coreness of an unweighted graph can be more
efficiently computed in linear time (O(n+m)) and space (O(n)). It immediately follows that
the effective degree sequence can also be computed in linear time since for each node, when
computing the degree, you only need to consider edges with nodes of equal or higher core
number.

123

Community-preserving anonymization of graphs 321

v w v w

v w

x

v w

x y

(a) (b) (c) (d)

Fig. 2 Illustration of the basic edge modification operations. Solid lines represent existing edges to be deleted
and dashed lines new edges to be added. Node color indicates whether a node changes its degree (gray) or
not (white) after the operation has been carried out. a Edge addition, b edge deletion, c edge rotation, d edge
switch

3.3 Edge modification

Several privacy-preserving methods are based on edge modifications (i. e. adding or remov-
ing edges) such as randomization and k-anonymity methods. There exist four basic edge
modification operations illustrated in Fig. 2:

– Edge Addition: It is simply defined as adding a new edge (v,w) /∈ E .
– Edge Deletion: It is simply defined as deleting an existing edge (v,w) ∈ E .
– Edge Rotation: This occurs between three nodes (v,w, x) ∈ V3 such that (x, v) ∈ E and

(x, w) /∈ E . It is defined as deleting edge (x, v) and creating a new edge (x, w) as Fig. 2c
illustrates. Note that edge switch would have been more appropriate but it had already
been defined in the relevant literature in the context of a “double switch”.

– Edge Switch: This occurs between four nodes (v,w, x, y) ∈ V4 where ((v,w), (x, y)) ∈
E2, (v, y) /∈ E , (x, w) /∈ E . It is defined as deleting edges (v,w) and (x, y) and adding
new edges (v, y) and (x, w) as Fig. 2d illustrates.

Because in practice we usually want the number of edges to remain the same throughout
the perturbation (to preserve some data utility), edge addition and edge deletion are usually
performed simultaneously in a meta-operation referred to as Edge Add/Del. Edge rotation
and edge switch can then be seen as special cases of Edge Add/Del. Note that edge switch
preserves not only the number of edges but also the degree of each vertex, which has an
impact in terms of privacy preservation.

These basic operations are applied as many times as necessary (for instance until 25% of
the total number of edges has been modified). At each step, edges are selected at random
from the original edge sets (E for deletion and E� for addition) and the operation is carried
out. It will be the same with our methods, only that the basic operations will be different.

3.3.1 Terminology for anonymization

When all edges to add/delete are selected at random over the entire edge set, the correspond-
ing anonymization method is referred to as Rand Add/Del and has served as building block
for most random-based anonymization methods. Under additional constraints such as spec-
tral properties preservation or blockwise modifications, it is, respectively, referred to as Spctr
Add/Del [38] and Rand Add/Del-B [37], Rand Switch and Spctr Switch [38] when edges are
switched.

Most k-anonymity methods can be also modeled through the Edge Add/Del concept
[20,41,42]. More specifically, the UMGA algorithm [11] relies on edge rotation while the
work of Liu and Terzi [25] relies on edge switch to anonymize the graph according to the
k-degree anonymity concept.

123

322 F. Rousseau et al.

4 Our approach

In this section,wepresent our approach that preserves the coreness of a graphwhile anonymiz-
ing it through various edge modification operations.

4.1 Idea and brute force algorithm

Our idea came from the observation that there is some space left between the two extremal
edge modification techniques that are Rand Add/Del and Rand Switch. The former ensures
privacy by randomly modifying the structure of the graph at the cost of rapidly increasing the
information loss, as demonstrated in Casas-Roma et al. [12]. The latter maintains the appar-
ent degree of every node to preserve some data utility but allowing an attacker to quickly
re-identify nodes, i.e., Rand Switch does not preserve the privacy under knowledge-based
degree attacks.

Preserving the coreness of the graph seems like a good trade-off. Instead of maintaining
the apparent degree, we allow for some slack, increasing the level of randomization (privacy),
but in the meantime preserving the true degree of every node that supposedly holds the infor-
mation to mine (utility). Indeed, graph degeneracy has been used for community detection
[16] and the core number has been shown to be a more robust version of the apparent degree
[5]. Again, in the case of a social network, it seems legit to add/remove random relations
as long as it preserves the community a node belongs to. Removing “satellite connections”
while preserving “close friends” seems like an intuitive way to achieve our goal and empirical
results on various networks support our claim.

The most straightforward way to apply our idea would be to randomly select an edge to
add/delete, perform the operation and re-compute the coreness of the graph to check for any
difference. There exists an optimal linear algorithm for degeneracy. However, it seems too
expensive to do it for each edge modification, especially since the core number sequence
should only change locally around the edge if anything. We present in the next subsections
the algorithms we developed to perform faster edge modifications.

4.2 Coreness-preserving edge modification

Let e = (v,w) be an undirected edge between vertices v andw. The goal is to check whether
we can add/delete e without changing the graph’s coreness (and by extension safely rotate
or switch edges). Actually, because the edge modification directly impacts v and w, it is
sufficient to check whether the core numbers of v and w are preserved since it is not possible
for the coreness to change without core(v) or core(w) changing.

Since the graph is undirected,we can always choose v andw such that core(v) ≤ core(w).
In the next subsections,we consider core(v) = k andwewill refer to the k-shell that v belongs
to as the lower shell (Sk). It is also the k-shellw belongs to iff core(v) = core(w), otherwise
we will refer to the other subgraph as the upper core (Hk+1). In both cases (add/delete), it is
important to note that if core(v) < core(w) then we only need to check whether the edge
modification preserves core(v). Indeed, by the time we reach the upper core (in the basic
algorithm set up from Sect. 3.2.7), the edge will no longer exist since node v will have been
removed and thus it will have no incidence on core(w).

Additionally, for the subsequent Algorithms, we assume two tables core and e f _deg
indexed by vertex that have been pre-computed in linear time.

123

Community-preserving anonymization of graphs 323

4.3 Coreness-preserving edge deletion: Crnss Deletion

Lemma 1 An edge can be removed from a graph without changing its coreness if none of
its two endpoints belong to the k-corona of the lower shell.

Proof For the node(s) in the lower shell, deleting an edge means decreasing its effective
degree by one. Thus, for a node to remain in its k-shell after losing one connection, it needs
at least k + 1 neighbors in the first place—in other words, it cannot belong to the k-corona.

4.3.1 Algorithm

We present the detailed pseudocode in Algorithm 1. First, we place ourselves in the case
where core(v) ≤ core(w), swapping v and w if needed (line 2). Then, in the case where
core(v) < core(w), we only need to check that v /∈ Ck (line 3) while in the case where
core(v) = core(w), we also need to check that w /∈ Ck (line 4). In any case, assuming
the coreness and the effective degree sequence have been pre-computed (in linear time), the
check can be done in constant time. If the edge were to be removed, we would only need
to decrease the effective degree of the node(s) from the lower shell (line 5). Therefore, the
overall operation can be done in constant time.

Algorithm 1: Coreness-preserving edge deletion

1 Function delete_edge_if_possible(v, w)
Input: An edge e = (v, w) ∈ E .
Output: A boolean indicating whether the input edge has been deleted.

2 if core[v] > core[w] then v ↔ w; /* we want core[v] ≤ core[w] */
3 if core[v] = e f _deg[v] then return false; /* v ∈ Ck */
4 if core[v] = e f _deg[w] then return false; /* w ∈ Ck */
5 delete_edge(v, w);
6 return true;
7 end

4.3.2 Illustration

Figure 3a illustrates this procedure. We drew a couple of points from the 3-shell (S3) and
4-core (H4) of a graph. White nodes belong to the 3-corona (C3), gray nodes to the 3-lamina
(L3 = S3\C3) and black nodes toH4. The dashed edges can be safely removed (but not both
of them, the check being only valid for one edge at a time) because none of their endpoints
belong to the k-corona of the lower shell (here the 3-shell). The dotted edges cannot be
deleted because at least one of the two endpoints belong to the 3-corona. The solid edges
indicate links with nodes from lower shells and not displayed for space constraints.

4.4 Coreness-preserving edge addition: Crnss Addition

Checkingwhether an edge can be added to a graphwithout changing its core number sequence
appears to be less trivial than for deleting one. Nevertheless, we came up with an efficient
alternative to the brute force approach mentioned in Sect. 4.1. Instead of recomputing the
core number for every node in the graph, we estimate as early as possible if the core number

123

324 F. Rousseau et al.

Algorithm 2: Coreness-preserving edge addition

1 Q ← ∅; /* queue of nodes to visit */
2 V isi ted ← ∅; /* set of visited nodes */
3 Discarded ← ∅; /* set of discarded nodes, {v ∈ G | v ∈ Lk ∧ v /∈ Hk+1} */

4 Function add_edge_if_possible(Node v, Node w)
Input: An edge e = (v, w) /∈ E .
Output: A boolean indicating whether the input edge has been added.

5 if core[v] > core[w] then v ↔ w; /* we want core[v] ≤ core[w] */
6 add_edge(v, w);
7 if not is_node_in_next_core(v) then return true;
8 delete_edge(v, w); /* we delete the added edge */
9 return false;

10 end

11 Function is_node_in_next_core(Node v)
12 Q ← {v};
13 while Q �= ∅ do
14 visit(poll(Q));
15 if not could_be_in_next_core(v) then return false; /* v /∈ Hk+1 */
16 end
17 return true;
18 end

19 Function visit(Node v)
20 V isi ted ← V isi ted ∪ {v};
21 to_visi t ← ∅;
22 for w ∈ neighbors(v) do
23 if core[w] < core[v] then continue; /* w /∈ Hk */
24 if ef_deg[w] = core[v] then continue; /* w ∈ Ck */
25 if core[w] > core[v] then /* w ∈ Hk+1 */
26 v.neighbors_in_next_core ← v.neighbors_in_next_core + 1;
27 continue;
28 if w ∈ Discarded then continue; /* w ∈ Lk ∧ w /∈ Hk+1 */
29 v.neighbors_in_same_shell ← v.neighbors_in_same_shell ∪ {w};
30 w.neighbors_in_same_shell ← w.neighbors_in_same_shell ∪ {v};
31 to_visi t ← to_visi t ∪ {w};
32 end
33 if not could_be_in_next_core(v) then propagate(v); /* v /∈ Hk+1 */
34 else Q ← Q ∪ to_visi t ; /* BFS, Q ← to_visi t ∪ Q for DFS */
35 end

36 Function could_be_in_next_core(Node v)
37 return v.neighbors_in_next_core + |v.neighbors_in_same_shell| > core[v];
38 end

39 Function propagate(Node v)
40 Discarded ← Discarded ∪ {v};
41 for w ∈ v.neighbors_in_same_shell do
42 w.neighbors_in_same_shell ← w.neighbors_in_same_shell − {v};
43 if w ∈ V isi ted and not could_be_in_next_core(w) then /* w /∈ Hk+1 */
44 propagate(w);
45 end
46 end

47 Structure Node
48 neighbors_in_next_core ← 0;
49 neighbors_in_same_shell ← ∅;
50 end

123

Community-preserving anonymization of graphs 325

3-shell

4-core

3-shell

4-core

v1

v3

v2

(a) (b)

Fig. 3 Illustration of coreness-preserving edge modification. In subfigure a (resp. b), dashed edges can be
safely removed (resp. added), dotted edges cannot without altering the coreness. a Coreness-preserving edge
deletion, b Coreness-preserving edge addition

of v will remain unchanged after adding the new edge—in other words, if v will move from
Sk to Hk+1 or not.

4.4.1 Algorithm

We present the detailed pseudocode in Algorithm 2. First, we add the new edge to the graph
and we update the effective degree(s) (line 6). Then, we traverse the lower shell (Sk) starting
from node v (line 14). For v to be in Hk+1, it needs at least k + 1 neighbors also in Hk+1.
There are four kinds of neighbors: (a) nodes with a lower core number, (b) nodes with an
equal core number and in the k-corona (Ck), (c) nodes with an equal core number and in the
k-lamina (Lk) and (d) nodes with a higher core number. Neighbors of type (a) and (b) cannot
be by definition in Hk+1 (lines 23 and 24). Neighbors of type (c) could be in Hk+1 thanks
to the new added edge (lines 29–31). Neighbors of type (d) are by definition in Hk+1 (line
25). So, for a given node v, its effective degree in Hk+1 is lower-bounded by the number of
neighbors of type (d) and upper-bounded by the number of neighbors of type (c) and (d).
The goal of the algorithm is to estimate as early as possible this effective degree to see if it
is greater than k or not (function |could_be_in_next_core|, line 37).

From the bounds, it follows that if the lower bound is strictly greater than k then the node is
definitely inHk+1 and thus the edge cannot be added (otherwise v would move up to the next
core)—this happens when a node has already k connections with nodes inHk+1. Conversely,
if the upper bound is strictly less than k + 1 then the node is definitely not inHk+1 and thus
the edge can be safely added (line 33). In-between, we need to visit the neighbors of type
(c) (line 31) and apply on them the same procedure (line 14). It all comes down to the nodes
from Lk : even though they have enough neighbors to be in Hk+1, these neighbors were not
connected enough to be inHk+1 but the new added edge couldmake the difference. This leads
to a recursive definition of the problem, i.e., depth-first-search (DFS) traversal of Lk . Then,
whenever we visit a node from the k-lamina that cannot move to the next core, we discard it
(line 40) and we back propagate this information to lower the estimate on the degree we have
for its visited neighbors (line 42). If at any point the degree estimate of the source node v

drops below k + 1 then we know the edge can be safely added (line 15). Otherwise, we keep
visiting new neighbors of type (c) until we run out. At that point, we have basically found a
set of nodes of type (c), including v, ready to move up altogether in Hk+1, thus preventing
the edge addition (line 17). Even in the case of core(v) = core(w), we only need to do the
traversal once, from v, since w will be visited anyway. It is not possible for v to move to the
next core without w and vice-versa since the new added edge has to survive in the next core.
Hence, contrary to edge deletion, we only need to run the check on v.

123

326 F. Rousseau et al.

4.4.2 Illustration

Figure 3b illustrates this procedure using the same set up as Fig. 3a. The dashed edges can
be safely added while the dotted edges cannot. We note that we cannot assert whether an
edge can be added just by checking if its endpoint(s) belong to the k-corona (like v1 or v3)
or not (v2). It appears to depend on the structure of the neighborhood, hence the proposed
algorithm.

4.4.3 Worst case complexity

In the worst case scenario (corresponding to a large k-lamina), we may need to visit all the
nodes in Lk so an overall complexity of O(m) time and O(n) space. But in practice, we
only visit the nodes from Lk that have at least k + 1 neighbors in Lk ∪ Hk+1, reducing very
rapidly the number of candidates as observed experimentally. Moreover, we implemented
a breadth-first-search (BFS) traversal with a FIFO queue Q to take advantage of the back
propagation as soon as possible to prune nodes that cannot move to Hk+1 anyway. Note
that at the cost of some privacy (false negatives for edge addition), it is possible to limit the
depth of the BFS traversal and cap the number of visited vertices. We did not need it in our
experiments but for some particular graph structures with tight giant cores, it might help and
ensure constant time edge addition.

4.4.4 Nodes from the 0-shell

Similar to Rand Switch, our method cannot add edges to nodes from the 0-shell since they
would immediately move to the 1-shell. We see two options to deal with this particularity:
(a) artificially allow them to move to the 1-shell under the assumption that the impact on
the data utility is limited; or (b) consider that an attacker cannot learn anything from a node
without neighbors (except if S0 is a singleton, in which case he can re-identify the node but
this one only). In our experiments, we did not encounter this scenario.

4.4.5 Crnss Add/Del

Similar to RandAdd/Del, in order tomaintain the total number of edges, CrnssAdd andCrnss
Deletion are performed simultaneously in a meta-operation referred to as Crnss Add/Del.
This is called as many times as necessary (for instance until 25% of the total number of edges
has been modified) considering again random edges from the original edge sets at each step.

4.5 Coreness-preserving edge rotation: Crnss Rotation

Considering three nodes (v,w, x) like in Fig. 2b, this operationmodifies the apparent degrees
of v andw as wanted while not changing any core number. We can combine the two previous
approaches to perform the check. We present the detailed pseudocode in Algorithm 3. We
first need to check that the edge e = (x, v) can be safely deleted (lines 2–5) and then that the
edge e′ = (x, w) can be safely added (line 7).

Note that we cannot directly reuse the function |delete_edge_if_possible|
because of a particular case: when w belongs to a higher core than x and x belongs to
the k-corona of the lower shell between v and x , it is safe to delete e because e′ compensates
for the loss of v as a neighbor.

123

Community-preserving anonymization of graphs 327

Algorithm 3: Coreness-preserving edge rotation

1 Function rotate_edge_if_possible(v, w, x)
Input: An edge e = (v, x) ∈ E to rotate, a pivot node x and a new endpoint w.
Output: A boolean indicating whether the input edge has been rotated.

2 if core[v] ≤ core[x] then
3 if core[v] = e f _deg[v] then return false; /* v ∈ Ck */
4 if core[v] ≥ core[x] then
5 if core[x] > core[w] and core[x] = e f _deg[x] then return false; /* x ∈ Ck */
6 delete_edge(v, x);

7 if add_edge_if_possible(x, w) then return true;
8 add_edge(v, x); /* we add back the deleted edge */

9 return false;
10 end

1-shell

2-core

x y

v w v w

x y

1-shell

2-core

(a) (b)

Fig. 4 Illustration of a case where the edge swapping operation proposed by Baur et al. [5] does not preserve
the coreness; bold edges are the ones being swapped. a Original graph, b after swapping

4.6 Coreness-preserving edge switch: Crnss Switch

Baur et al. [5, Lemma 2] proposed an edge modification operation called swapping that
supposedly preserved the coreness but restricted anyway to pairs of edges with all their
nodes belonging to the same k-shell. The lemma basically stated that considering four nodes
of same core number and only two edges between these nodes, it is safe to switch the edges
like in Fig. 2c. However, we discovered a flaw in the lemma when some of the endpoints
belong to the k-lamina and not the k-corona as illustrated in Fig. 4.

In any case, we believe that the edge switch operation should not be restricted to nodes
of same core number. Considering four nodes (v,w, x, y) like in Fig. 2c, this operation
has for effects to modify the connections while not changing any apparent degree nor any
core number. We present the detailed pseudocode in Algorithm 4. Similar to edge rotation,
we cannot directly reuse |delete_edge_if_possible| because the added edges can
sometimes offset the deleted edges in terms of core number. Therefore, we define a new
function |can_delete_edge| that takes that into account: an edge cannot be deleted if
the endpoint(s) belonging to the k-corona of the lower shell will be connected with a node of
lower core number (i. e. not making up for the loss of a neighbor in the last k-core it belongs
to). Otherwise, we can delete the edges (lines 4–5) and then check if the edge additions
preserve the coreness (lines 6–8), adding back the deleted edges if not (lines 9–10).

123

328 F. Rousseau et al.

Algorithm 4: Coreness-preserving edge switch

1 Function switch_edge_if_possible(v, w, x, y)
Input: Two edges (e1 = (v, x), e2 = (w, y)) ∈ E2 to switch and two pivot nodes w and x .
Output: A boolean indicating whether the input edges have been switched.

2 if not can_delete_edge(v, w, x, y) then return false;
3 if not can_delete_edge(y, x, w, v) then return false;

4 delete_edge(v, x);
5 delete_edge(w, y);

6 if add_edge_if_possible(x, y) then
7 if add_edge_if_possible(v, w) then return true;
8 delete_edge(x, y); /* we delete the added edge */

9 add_edge(v, x); /* we add back the deleted edges */
10 add_edge(w, y);

11 return false;
12 end

13 Function can_delete_edge(v, w, x, y)
Input: An edge e = (v, x) ∈ G, a pivot node x and potential neighbors w and y.
Output: A boolean indicating whether the input edge can be deleted.

14 if core[v] ≤ core[x] then
15 if core[v] > core[w] then
16 if core[v] = e f _deg[v] then return false; /* v ∈ Ck */
17 if core[v] ≥ core[x] then
18 if core[x] > core[y] then
19 if core[x] = e f _deg[x] then return false; /* x ∈ Ck */
20 return true;
21 end

5 Experiments

In this section, we present the experimental set up and the empirical results of our work.
Section 5.1 introduces our experimental framework. Section 5.2 presents the experiments for
randomization while Sect. 5.3 the ones related to k-anonymity. Finally, Sect. 5.4 explores the
scalability of our proposed methods.

5.1 Experimental framework

In our experiments, we evaluated the various approaches on several datasets using two types
of information loss: generic graph properties and clustering-specific graph metrics.

5.1.1 Datasets

We used 6 standard real networks to test our approach: (1) Zachary’s karate club [39], a
network widely used in the literature that presents the relationships among 34 members of a
karate club; (2) Jazz [17], a collaboration graph of 198 jazz musicians; (3) URV email [19],
the email communication network of the University Rovira i Virgili in Tarragona, Spain; (4)
Polblogs [1], a network of hyperlinks between weblogs on US politics; (5) Caida [24], a
network of autonomous systems of the Internet connected with each other from the CAIDA
project; and (6)DBLP [35], a co-authorship networkwhere computer scientists are connected

123

Community-preserving anonymization of graphs 329

Table 1 Network
properties—number of vertices
(n), number of edges (m),
average degree (deg), average
distance (dist) and diameter (d)

Dataset n m deg dist d

Karate 34 78 4.588 2.408 5

Jazz 198 2742 27.697 2.235 6

URV email 1133 5451 9.622 3.606 8

Polblogs 1224 16,715 27.312 2.737 8

Caida 26,475 53,381 4.032 3.875 17

DBLP 317,080 1,049,866 6.622 6.791 21

if they co-authored at least one paper together. We have selected these datasets because they
have diverse statistics and properties as shown in Table 1.

5.1.2 Generic graph properties

In order to quantify the noise introduced in the data, we used several structural and spectral
graph properties. Some of them are at the graph level: average distance (dist), diameter (d),
transitivity (t) largest eigenvalue of the adjacencymatrix (λ1) and second smallest eigenvalue
of the Laplacian matrix (μ2) and are thus a scalar value. Other metrics evaluate the graph
at the node level: betweenness centrality (CB) and closeness centrality (CC) and are thus a
vector of length n.

Given such ametric ν, a graphG and˜Gp the p-percent perturbed graph in the randomization
case (p ∈ �0, 25�) and the p-anonymous graph in the k-anonymity case (p ∈ �1, 10�), we
computed the information loss between the two networks as follows:

εν(G, ˜Gp) = ‖ν(G) − ν(˜Gp)‖2. (1)

Variations in the generic graph properties are a good way to assess the information loss
but they have their limitations because they are just a proxy to the changes in data utility we
actually want to measure. What we are truly interested in is, given a data mining task at hand,
quantify the disparity in the results between performing the task on the original network and
on the anonymized one. We chose clustering because it is an active field of research, which
provides interesting and useful information in community detection for instance. Therefore,
the extracted clusters/communities of nodes are the data utility we want to preserve.

5.1.3 Clustering-specific graph metrics

We ran 4 graph clustering algorithms to evaluate the edge modifications techniques using
the implementations from the |igraph| library. All of them are unsupervised algorithms
based on different concepts and developed for different applications and scopes. An extended
revision and comparison of them can be found in Lancichinetti and Fortunato [22] and Zhang
et al. [40]. The selected clustering algorithms are:Fastgreedy (FG) [15] ,Walktrap (WT) [29] ,
Infomap (IM) [30] and (4)Multilevel (ML) [6].Although some algorithms permit overlapping
among different clusters, we did not allow it in our experiments by setting the corresponding
parameter to zero, mainly for ease of evaluation.

We considered the following approach to evaluate the clustering assignment made by a
given clustering method c using a particular graph perturbation method a: (1) apply a to the
original data G and obtain ˜G = a(G); (2) apply c to G and ˜G to obtain the cluster assignments
c(G) and c(˜G); and (3) compare c(G) to c(˜G). In terms of information loss, it is clear that

123

330 F. Rousseau et al.

the more similar c(˜G) is to c(G), the less the information loss is. Thus, clustering-specific
information loss metrics should measure the divergence between both cluster assignments
c(G) and c(˜G). Ideally, if the anonymization step was lossless in terms of data utility, we
should have the same number of clusters with the same elements in each cluster. When the
clusters do not match, we need to quantify the divergence.

For this purpose,we used the precision index [8]. Assumingwe know the true communities
of a graph, the precision index can be directly used to evaluate the similarity between two
cluster assignments. Given a graph of n nodes and q true communities, we assigned to nodes
the same labels ltc(·) as the community they belong to. In our case, the true communities are
the ones assigned on the original dataset (i.e., c(G)) since we want to obtain communities as
close as the ones we would get on non-anonymized data. Assuming the perturbed graph has
been divided into clusters (i.e., c(˜G)), then for every cluster, we examine all the nodes within
it and assign to them as predicted label l pc(·) the most frequent true label in that cluster
(basically the mode). Then, the precision index can be defined as follows:

precision_index(G, ˜G) = 1

n

∑

v∈G
1ltc(v)=l pc(v) (2)

where 1 is the indicator function such that 1x=y equals 1 if x = y and 0 otherwise. Note
that the precision index is a value in the range [0, 1], which takes the value 0 when there is
no overlap between the sets and the value 1 when the overlap between the sets is complete.
To be consistent with the notion of error for the generic graph properties, we report 1 −
precision_index in the results tables so that the lower, the better.

5.2 Randomization experiments

Our framework generates perturbed (i. e. anonymized) networks from the original one by
applying different edge modification methods. For each method, we considered 10 indepen-
dent executions with a randomization ranging from 0% to 25% of the total number of edges.
We quantified the noise introduced on the perturbed data using some generic information
loss metrics and clustering-specific information loss metrics, as previously described.

5.2.1 Perturbation methods

We propose two coreness-preserving edge modification methods using the basic operations
described in Sect. 4: coreness-preserving edge addition and deletion denoted by “Crnss
Add/Del” (or C-A/D for short) following the terminology of Ying and Wu [38] that is based
on coreness-preserving edge addition and deletion, and coreness-preserving edge switch
denoted by “Crnss Switch” (C-Sw). We use as baselines “Rand Add/Del” (R-A/D) and
“Rand Switch” (R-Sw).

5.2.2 Results

We present in Table 2 the average errors over 10 independent runs and 25 levels of ran-
domization for Crnss Add/Del, Crnss Switch, Rand Add/Del and Rand Switch for all the
information loss metrics aforementioned. Note that we do not include the biggest network
DBLP because several results (e.g., betweenness centrality and the spectral measures) could
not be computed in a reasonable time for reasons unrelated to our approach but due to the
metrics in themselves, especially for the 250 versions of a network that eachmethod produces
(so overall 1000 computations per metric).

123

Community-preserving anonymization of graphs 331

Table 2 Average error over 10
independent runs and 25 levels of
anonymization for Crnss Add/Del
(C-A/D), Crnss Switch (C-Sw),
Rand Add/Del (R-A/D) and Rand
Switch (R-Sw) edge modification
processes on 7 generic
information loss metrics

Method dist d t CB CC λ1 μ2

Karate

C-A/D 0.069 0.681 0.042 0.039 0.036 0.296 0.216

C-Sw 0.155 0.842 0.034 0.024 0.040 1.699 0.293

R-A/D 0.048 0.331 0.031 0.030 0.053 0.280 0.058

R-Sw 0.120 0.596 0.019 0.022 0.037 0.119 0.184

Jazz

C-A/D 0.100 0.300 0.096 0.007 0.028 1.035 0.061

C-Sw 0.093 0.100 0.054 0.005 0.025 0.136 0.010

R-A/D 0.188 1.927 0.111 0.008 0.045 2.862 1.856

R-Sw 0.127 0.504 0.105 0.006 0.032 0.654 0.056

URV email

C-A/D 0.083 0.073 0.047 0.126 0.017 1.429 0.050

C-Sw 0.079 0.050 0.028 0.081 0.010 0.081 0.001

R-A/D 0.099 0.508 0.038 0.128 0.147 1.873 0.317

R-Sw 0.114 0.165 0.044 0.088 0.012 0.512 0.003

Polblogs

C-A/D 0.045 0.750 0.043 0.101 0.162 2.856 0.276

C-Sw 0.084 0.123 0.016 0.081 0.005 0.141 0.050

R-A/D 0.116 2.319 0.040 0.144 0.110 8.002 0.429

R-Sw 0.088 0.846 0.033 0.089 0.038 0.518 0.062

Caida

C-A/D 0.055 2.491 0.039 0.010 0.184 27.83 0.007

C-Sw 0.021 0.000 0.017 0.009 0.008 10.28 0.004

R-A/D 0.022 3.973 0.037 0.010 0.238 20.13 0.553

R-Sw 0.066 0.827 0.028 0.019 0.216 32.73 0.006

Bold values indicate the method
that achieves the best result (i. e.
lowest information loss) on each
metric and dataset

Our edge modification methods that preserve the coreness (Crnss Add/Del and Crnss
Switch) perform better than the other methods on all generic metrics, specifically the Crnss
Switchwhich achieves the best result, i. e. lowest information loss, on 29 out of 35 results. For
instance, Fig. 5a illustrates the detailed results for average distance on Jazz network. The 0%
perturbation point in the upper left corner represents the value of this metric on the original
graph. Thus, values close to this point indicate low noise on perturbed data. As we can see,
Crnss Switch remains closer to the original value than the other methods obtaining the lowest
average error value (0.093), but we also note that Crnss Add/Del method gets results close to
these ones, achieving a low average error value (0.1). Rand Add/Del and Rand Switch yield
to the best results on Karate network, which is the smallest network with only 34 vertices and
78 edges. Thus, the total number of modified edges is very low compared to other datasets,
which can be more sensitive to addition, deletion and switch operations.

We want to underline, as we have commented previously, that both methods using edge
switch (Crnss Switch and Rand Switch) achieve pretty good results since they do not change
the vertices’ degree. Therefore, they keepmetrics related to paths (average distance, diameter,
betweenness and closeness centrality) closer to the original ones. The first eigenvalue of the
adjacency matrix is related to the maximum degree, clique number and chromatic number,
which also be more stable when applying edge switch, as can be seen in Fig. 5b. On the

123

332 F. Rousseau et al.

Anonymization %

A
ve

ra
ge

 d
is

ta
nc

e C−A/D
C−Sw
R−A/D
R−Sw

0 5 10 15 20 25 0 5 10 15 20 25

Anonymization %

λ 1

C−A/D
C−Sw
R−A/D
R−Sw

Anonymization %

W
al

kt
ra

p

C−A/D
C−Sw
R−A/D
R−Sw

0 5 10 15 20 25 0 5 10 15 20 25

1.
95

2.
05

2.
15

17
18

19
20

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
70

0.
80

0.
90

1.
00

Anonymization %

F
as

tg
re

ed
y

C−A/D
C−Sw
R−A/D
R−Sw

(a) (b)

(c) (d)

Fig. 5 Perturbation methods results for some generic and clustering-specific information loss measures for
an anonymization varying from 0 to 25%. a dist on Jazz, b λ1 on URV email, c precision index on Karate
(Walktrap), d precision index on Polblogs (Fastgreedy)

contrary, using edge switch implies a strong drawback in terms of privacy, since the degree
sequence remains the same and an attacker can use degree-based knowledge to re-identify
users on anonymous data [3,28,41].

Table 3 shows the error on precision index computed using the four clustering algo-
rithms described in Sect. 5.1.3. The coreness-preserving approaches outperform the others
in all datasets and all clustering methods hence the claim of a community-preserving graph
anonymization technique. It is interesting to underline that, although our Crnss Add/Del
approach does not get the best results on generic metrics for the Karate network, it achieves
the best results on all clustering methods as Fig. 5c illustrates for the Walktrap method.
Therefore, even if the generic metrics could indicate that Rand Switch introduces less noise
on perturbed data, the clustering processes show the opposite. Figure 5d presents similar
behavior on Polblogs using Fastgreedy algorithm. We think that Crnss Add/Del achieves
better clusters preservation than Crnss Switch because the edge addition/deletion operation
is less likely to “break” communities like edge switch could.

5.3 k-Anonymity experiments

In this section, we provide the results of a real k-degree anonymity application. We underline
the impossibility of evaluating themethods based on edge switch (i. e. Crnss Switch and Rand
Switch here) due to the fact that they are unable to change the vertices’ degree and therefore
they cannot be applied in order to achieve k-degree anonymity. As we have claimed, these

123

Community-preserving anonymization of graphs 333

Table 3 Average error over 10
independent runs and 25 levels of
anonymization for Crnss Add/Del
(C-A/D), Crnss Switch (C-Sw),
Rand Add/Del (R-A/D) and Rand
Switch (R-Sw) edge modification
processes on 4 clustering-specific
information loss metrics (IM –
Infomap, ML – Multilevel, FG –
Fastgreedy and WT – Walktrap)

Method IM ML FG WT

Karate

C-A/D 0.172 0.156 0.249 0.247

C-Sw 0.348 0.186 0.315 0.317

R-A/D 0.236 0.186 0.287 0.327

R-Sw 0.284 0.213 0.267 0.323

Jazz

C-A/D 0.086 0.088 0.042 0.071

C-Sw 0.023 0.177 0.108 0.158

R-A/D 0.131 0.118 0.081 0.113

R-Sw 0.101 0.099 0.057 0.078

URV email

C-A/D 0.210 0.340 0.346 0.259

C-Sw 0.271 0.376 0.397 0.289

R-A/D 0.313 0.396 0.402 0.495

R-Sw 0.251 0.373 0.347 0.281

Polblogs

C-A/D 0.070 0.034 0.024 0.023

C-Sw 0.077 0.102 0.074 0.065

R-A/D 0.226 0.230 0.194 0.227

R-Sw 0.123 0.062 0.046 0.066

Caida

C-A/D 0.115 0.239 0.276 0.225

C-Sw 0.129 0.223 0.261 0.200

R-A/D 0.217 0.316 0.343 0.723

R-Sw 0.128 0.241 0.277 0.221

Bold values indicate the method
that achieves the best result (i.e.,
lowest information loss) on each
metric and dataset

methods are good in terms of information loss but they have critical drawbacks in terms of
anonymity.

In the following,we provide the results of a real application focusing on ourCrnssAdd/Del
approach and the baseline Rand Add/Del. We have selected a k-degree anonymous algorithm
based on Edge Add/Del and Edge Rotation to anonymize a network and we have adapted it
to be coreness-preserving, decreasing the data utility loss while achieving the same level of
privacy (the k in k-degree anonymity).

5.3.1 k-Anonymity algorithm

We used a recently developed algorithm that can easily be implemented and adapted: Uni-
variateMicro-aggregation for GraphAnonymization (UMGA) [11,13]. It relies on a two-step
process: (1) degree sequence anonymization and (2) graph perturbation by successive edge
modifications to reach the desired k-degree anonymous sequence. Basically, in order to
smooth the degree sequence, it rotates some edges to increase/decrease some apparent
degrees. Initially, Edge Add/Del and Edge Rotation operations are used by the algorithm
to select the edges that will change during the second step. We compare its data utility loss to
the same algorithm but using Crnss Add/Del and Crnss Rotation (as described in Sect. 4.5) as

123

334 F. Rousseau et al.

Table 4 Average error over 10 levels of k-anonymity for UMGA-Crnss and UMGA-Rand algorithms on 4
clustering-specific information loss metrics (IM – Infomap, ML – Multilevel, FG – Fastgreedy and WT –
Walktrap)

Dataset Method IM ML FG WT

URV email UMGA-Crnss 0.126 0.228 0.228 0.061

UMGA-Rand 0.130 0.291 0.241 0.034

Polblogs UMGA-Crnss 0.009 0.019 0.003 0.007

UMGA-Rand 0.008 0.203 0.006 0.009

Caida UMGA-Crnss 0.054 0.296 0.242 0.239

UMGA-Rand 0.067 0.331 0.208 0.339

DBLP UMGA-Crnss 0.135 0.061 0.442 0.068

UMGA-Rand 0.132 0.090 0.454 0.087

Bold values indicate the method that achieves the best result (i.e., lowest information loss) on each metric and
dataset

building blocks. In both cases, the level of privacy achieved is the same (the k in k-anonymity)
so what matters is the data utility loss only.

5.3.2 Results

Table 4 discloses the results of our experimental tests on the four biggest networks, focusing
on clustering-specific information loss metrics since they are a better estimate for quantifying
the data utility loss on real graph mining processes.

Similarly to previous experiments, UMGA algorithm based on Crnss Add/Del (UMGA-
Crnss) outperforms on 12 of 16 tests the same algorithm based on Rand Add/Del and Rand
Rotation (UMGA-Rand). UMGA-Crnss gets the best results on all datasets using Multilevel
clustering algorithm. For instance, Fig. 6a presents the results on URV email network. As we
can see, the precision index values are reduced considerably for a k ≥ 2 value, but they remain
between 0.7 and 0.8 for UMGA-Crnss while ranging from 0.6 to 0.7 for UMGA-Rand. For
instance, if this network is publicly released with a k-anonymity value equal to 4, researchers
and third-parties who perform clustering or community detection analysis will obtain 80% of
vertices in the same cluster or community as the original data using our coreness-preserving
techniques, while with the same privacy level will decrease to 65% using standard edge
addition and deletion. On the contrary, the precision index values keep close to 0.98 for both
algorithms on Polblogs using Fastgreedy, as we can see in Fig. 6b. Caida being the second
largest tested network, we expect to introduce less noise since the privacy level is the same
(1 ≤ k ≤ 10) and the network is larger than others. Precision index values remain above 0.93
for UMGA-Crnss but decrease for UMGA-Rand from k ≥ 7 as shown in Fig. 6c. Finally,
Fig. 6d presents similar behavior on our largest network, DBLP.

5.4 Scalability analysis

After randomization and k-anonymity information loss analysis we have performed in pre-
vious sections, we want to test our edge modification technique with large and very large
networks. Ourmain goal is to prove that it is able to deal with large networks of thousands and
millions of vertices and edges. We cannot perform the previous analysis with these networks
due to the high complexity of some measures, which cannot be computed in reasonable time
for any methods—baselines or ours. For instance, betweenness centrality, diameter or aver-

123

Community-preserving anonymization of graphs 335

k−anonymity value

M
ul

til
ev

el
UMGA−Crnss
UMGA−Rand

k−anonymity value

F
as

tg
re

ed
y

UMGA−Crnss
UMGA−Rand

k−anonymity value

In
fo

m
ap

UMGA−Crnss
UMGA−Rand

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

0.
7

0.
8

0.
9

1.
0

0.
98

5
0.

99
0

0.
99

5
1.

00
0

0.
90

0.
94

0.
98

0.
85

0.
90

0.
95

1.
00

k−anonymity value

W
al

kt
ra

p

UMGA−Crnss
UMGA−Rand

(a) (b)

(c) (d)

Fig. 6 Precision index for UMGA-Crnss and UMGA-Rand for an anonymization varying from k = 1 to 10.
a URV email (Multilevel), b Polblogs (Frastgreedy), c Caida (Infomap), d DBLP (Walktrap)

Table 5 General properties of
our tested large networks

Dataset n m deg k

Amazon 403,394 2,443,408 12.114 1

Yahoo! 1,878,736 4,079,161 4.342 1

LiveJournal 3,997,962 34,681,189 17.349 1

age distance involve the computation of the shortest paths between all vertices in the network,
which is infeasible for large or very large networks. All tests in this section are made on a 4
CPU Intel Xeon X3430 at 2.40 GHz with 32 GB RAM running Debian GNU/Linux.

5.4.1 Tested networks

We have tested our algorithm with three real and large networks. All these networks are
undirected and unlabeled. Table 5 shows a summary of the networks’ main features including
number of vertices (n), edges (m), average degree (deg) and k-degree anonymity value.
Amazon [23] is based on “customers who bought X also bought Y” feature of the Amazon
website. Yahoo! Instant Messenger friends connectivity graph (version 1.0) [34] contains a
non-random sample of the Yahoo! Messenger friends network from 2003. LiveJournal [36]
is a free online blogging community where users declare friendship with each other.

5.4.2 Performance of our technique

Table 6 shows the results of scalability experiments in our selected networks. The frame-
work computes the time to generate perturbed (i. e. anonymized) networks from the original

123

336 F. Rousseau et al.

Ta
bl

e
6

C
om

pu
ta
tio

n
tim

e
(i
n
hh
:m

m
:s
s)
ov
er

10
le
ve
ls
of

an
on
ym

iz
at
io
n
(f
ro
m

1%
to

10
%

of
to
ta
ln

um
be
r
of

ed
ge
s)
fo
r
C
rn
ss

A
dd
/D
el
(C

-A
/D

),
R
an

d
A
dd

/D
el
(R

-A
/D

)
an
d

R
an

d
Sw

it
ch

(R
-S
w
)
ed
ge

m
od
ifi
ca
tio

n
pr
oc
es
se
s
on

ou
r
te
st
ed

la
rg
e
da
ta
se
ts

1%
2%

3%
4%

5%
6%

7%
8%

9%
10

%

A
m
az
on

C
-A

/D
0:
02

:4
1

0:
07

:1
9

0:
14

:1
5

0:
23

:3
6

0:
35

:2
2

0:
49

:5
1

1:
07

:0
0

1:
27

:3
5

1:
50

:2
4

2:
16

:4
0

R
-A

/D
0:
02

:0
2

0:
03

:4
2

0:
05

:2
0

0:
07

:0
1

0:
08

:4
0

0:
10

:1
9

0:
12

:0
6

0:
13

:4
5

0:
15

:2
3

0:
17

:0
5

R
-S
w

0:
02

:2
0

0:
04

:3
7

0:
06

:5
7

0:
09

:2
2

0:
11

:5
1

0:
14

:1
8

0:
16

:3
9

0:
19

:0
3

0:
21

:3
3

0:
24

:0
0

Ya
ho

o!

C
-A

/D
0:
18

:3
7

0:
55

:5
6

1:
53

:4
5

3:
14

:2
4

4:
57

:0
2

7:
02

:5
3

9:
28

:0
0

12
:2
1:
15

15
:4
6:
29

19
:5
6:
07

R
-A

/D
0:
14

:4
5

0:
29

:3
8

0:
44

:3
6

0:
59

:4
8

1:
15

:0
3

1:
30

:2
8

1:
46

:0
0

2:
01

:5
9

2:
17

:5
0

2:
33

:5
5

R
-S
w

0:
13

:0
4

0:
27

:0
3

0:
41

:1
9

0:
55

:0
5

1:
08

:5
9

1:
23

:1
0

1:
37

:2
6

1:
51

:5
7

2:
06

:0
1

2:
20

:5
6

L
iv
eJ
ou
rn
al

C
-A

/D
2:
52

:5
1

8:
39

:4
8

17
:3
4:
14

29
:5
5:
48

46
:0
0:
40

66
:4
4:
33

86
:5
8:
57

11
0:
35

:1
8

13
6:
56

:3
4

16
9:
35

:1
6

R
-A

/D
1:
13

:0
5

2:
59

:5
1

5:
04

:3
2

7:
19

:0
9

9:
40

:1
6

12
:0
6:
24

14
:3
7:
10

17
:1
1:
42

19
:4
9:
48

22
:3
1:
21

R
-S
w

1:
29

:4
0

3:
43

:0
5

6:
22

:2
8

9:
14

:2
3

12
:0
7:
29

15
:2
3:
19

18
:5
5:
22

22
:5
2:
44

27
:0
7:
22

31
:1
7:
53

123

Community-preserving anonymization of graphs 337

Perturbation (%)

S
ec

on
ds

C−AD
R−AD
R−Sw

0 2 4 6 8 10 0 20 40 60 80 100

0
20

00
0

50
00

0

0
50

00
15

00
0

k values

S
ec

on
ds

UMGA−Crnss
UMGA−Rand

(a) (b)

Fig. 7 Computation time for random-based perturbation and k-degree anonymity experiments on Yahoo!
dataset. a Randomization, b k-degree anonymity

Table 7 Computation time (in hh:mm:ss) of k-degree anonymity (k ∈ (10, 20, 50, 100)) for UMGA-Crnss
and UMGA-Rand algorithms on our tested large datasets

Dataset Method k = 10 20 50 100

Amazon UMGA-Crnss 0:30:56 0:34:24 0:36:11 0:41:29

UMGA-Rand 0:12:48 0:14:13 0:14:19 0:16:55

Yahoo! UMGA-Crnss 04:47:01 05:13:41 05:37:40 06:29:46

UMGA-Rand 04:32:31 04:56:41 04:58:33 05:02:25

LiveJournal UMGA-Crnss 12:07:05 14:16:13 16:23:46 18:46:28

UMGA-Rand 11:38:08 12:25:12 13:04:35 14:12:09

one by applying different edge modification methods. Specifically, we considered coreness-
preserving edge addition and deletion (“CrnssAdd/Del” orC-A/D for short) and our baselines
“Rand Add/Del” (R-A/D) and “Rand Switch” (R-Sw). For each method, we considered a
range from 1 to 10% of the total number of edges.

Rand Add/Del is faster than any other method in all datasets since it is the simplest edge
modification technique. However, as we have seen in aforementioned sections, it introduces
more noise in the anonymized data than our coreness-preserving method. Rand Switch pro-
duces similar results, though some verifications need to be done to check edge switch. Our
proposed method, Crnss Add/Del is slower than others in all experiments. Nevertheless, it
is able to anonymize large and very large networks in reasonable time, as demonstrated in
Table 6.

Additionally, Fig. 7a presents the computation time on Yahoo! dataset. Horizontal axis
represents the perturbation percentage, ranging from 0% (original graph) to 10% of the total
number of edges. Vertical axis indicates the computation time (in seconds) for each method
to reach the perturbation level. Rand Add/Dell and Rand Switch present similar computation
time, which are both lower than Crnss Add/Del.

Table 7 shows the results of our scalability experiments in large networks based on a
real k-degree anonymity application. Details of this algorithm and its implementation can
be found in Sect. 5.3. As in the previous section, we used UMGA algorithm based on Crnss
Add/Del (UMGA-Crnss) andRandAdd/Del andRandRotation (UMGA-Rand).We test both
methods for values of k ∈ {10, 20, 50, 100} in each network and show the computation time
of each method.

123

338 F. Rousseau et al.

UMGA-Rand (based on Edge Add/Del and Edge Rotation operations) consumes less
time than our proposed method based on Crnss Add/Del and Crnss Rotation operations.
However, computation time stays in a similar range due to the fact that degree sequence
anonymization is a time-consuming process and it is the same for both methods. Figure 7b
shows the computation time evolution on Yahoo! dataset.

Summarizing, we claim that our proposed methods achieve higher data utility (i. e. lower
information loss) at a certain cost of higher computation time. However, anonymization
process is done oncewhilemanygraphmining tasks can be performedon anonymous data.We
believe that investing more time anonymizing the data is worth of getting lower information
loss. Finally,wewant to underline that our experiments in a real k-degree anonymity algorithm
presented quite similar computation time but much better data preservation.

6 Re-identification and risk assessment

In this section, we evaluate empirically the impact of external information on the adversary’s
ability to re-identify individuals. For each dataset, we consider each node in turn as a target.
Firstly (6.1), we consider the set of possibleworlds and our analysis focuses on the differences
between Rand Add/Del and Crnss Add/Del. Secondly (6.2), we assume the adversary has
degree-based knowledge. And finally (6.3), that he has 1-neighborhood knowledge.

6.1 The set of possible worlds

Assuming that the randomization method and the number w of fake edges are public, the
adversary must consider the set of possible worlds implied by ˜G and w. Informally, the set
of possible worlds consists of all graphs that could result in ˜G under w perturbations.

Using Ec to refer to all edges not present in E , the set of possible worlds of ˜G under w

randomly edge perturbations, denoted by Ww
Rand(

˜E), corresponds to:

Ww
Rand(

˜E) =
(|E |

w

)(|Ec|
w

)

(3)

where |E | = m is the number of edges, |Ec| = n(n−1)
2 − m is the number of edges of the

graph’s complement.
The set of possibleworlds underw coreness-preserving edge perturbations corresponds to:

Ww
Crnss(

˜E) =
w−1
∏

i=0

(

α(|E | − i)

1

)(

β(|Ec| − i)

1

)

(4)

� αwβw

(|E |
w

)(|Ec|
w

)

(5)

where α and β are parameters to denote, respectively, the percentage of edges that can be
removed from E and added to Ec. As discussed previously, some edges cannot be removed
or added in order to maintain the coreness of the network. Due to the fact that it is very hard
to compute this values theoretically, we compute them empirically on all our tested networks
and present the results in Table 8, where α indicates the values for Crnss Deletion and β for
Crnss Addition. Therefore, these values depend on the network properties and structure, but
typically half of the edges can be removed and between 20–40% of nonexistent edges can
be added to the network while preserving the coreness, which is a very large number given
how sparse real networks are.

123

Community-preserving anonymization of graphs 339

Table 8 α and β experimental
values for the datasets used in our
experiments

Dataset Crnss Deletion (α) Crnss Addition (β)

Karate 0.256 0.310

Jazz 0.557 0.465

URV email 0.492 0.234

Polblogs 0.468 0.222

Caida 0.395 0.317

DBLP 0.456 0.274

0 5 10 15 20 25

Anonymization %

D
eg

re
e

C−A/D
C−Sw
R−A/D
R−Sw

Perturbation (%)

V
er

te
x

pr
op

or
tio

n

Perturbation (%)

V
er

te
x

pr
op

or
tio

n

0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25

0.
00

0.
10

0.
20

0.
30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Anonymization %

1−
N

ei
gh

bo
ur

ho
od

C−A/D
C−Sw
R−A/D
R−Sw

(a) (b)

(c) (d)

Fig. 8 Re-identification (a, d) and risk assessment (b, c). The gray scale on b and c indicates the candidate
set size, from 1 (black) to [21, ∞] (white). (a) Node degree on URV email, b CandH1 on Jazz, c CandH1 on
Polblogs, d 1-Neighborhood on Jazz

6.2 Degree-based attacks

In this section, we consider an attacker with degree-based knowledge. First, we computed
the number of vertices that changed their degree during the perturbation or anonymization
process. It is clear that the higher the proportion of vertices that changed their degree, the
harder the re-identification process will be. Figure 8a presents these values for URV email
dataset.Aswecan see,RandAdd/Del achieves the highest values, followedbyCrnssAdd/Del.
The former gets 30% of vertices that changed their degree at 10% of anonymization, while
the latter achieves 20% at the same anonymization percentage. As previously stated, Rand
Switch and Crnss Switch do not change the vertices’ degree during perturbation process.
Thus, these methods do not protect users against an attacker with degree-based knowledge.

123

340 F. Rousseau et al.

Similar values are observed for the rest of our tested networks, ranging between 30-40% for
Rand Add/Del and 20-30% for Crnss Add/Del.

Second, we assume the adversary computes a vertex refinement query on each node, and
then computes the corresponding candidate set for each node. We report the distribution
of candidate set sizes across the population of nodes to characterize how many nodes are
protected and how many are identifiable. According to Hay et al. [20], the candidate set of a
target vertex vi includes all vertices v j ∈ ˜G such that v j is a candidate is some possible world.
We compute the candidate set of the target vertex vi based on vertex refinement queries of
level 1 (H1) (see Hay et al. [20] for further details) as shown in Eq. 6.

CandH1(vi) = {v j : deg−(v j) ≤ deg(vi) ≤ deg+(v j)} (6)

deg−(v j) =
∥

∥

∥deg(v j)
(

1 − w

|E |
)∥

∥

∥ (7)

deg+(v j) =
∥

∥

∥deg(v j) + (n − 1 − deg(v j))
(w

|Ec|
)∥

∥

∥ (8)

where deg−(v j) is the minimum expected degree of v j and deg+(v j) is the maximum
expected degree after w edge deletion/addition process, and described by the following
equations.We claim that theminimumandmaximumexpected degree is the same under Rand
Add/Del and Crnss Add/Del, since an attacker cannot identity a fake edge on anonymous
network even if this edge changes the coreness of the network because other true edges could
be deleted after adding this one. It is important to underline that under this knowledge model,
Rand Switch and Crnss Switch do not improve the privacy level and the candidate set size
remains the same for all anonymization values.

Figure 8b, c shows the candidate set size (CandH1) evaluation on Jazz and Polblogs
datasets. Perturbation varies along the horizontal axis from 0% (original graph) to 25% and
vertex proportion is represented on the vertical axis. The trend lines show the proportions
of vertices whose equivalent candidate set size falls into each of the following groups: [1]
(black), [2, 4], [5, 10], [11, 20], [21,∞] (white).Aswecan see, candidate set sizes shrinkwhile
perturbation increases in all datasets. The number of nodes at high risk of re-identification (the
black area) decreases quickly up to 5–10% of anonymization. Nevertheless, well-protected
vertices present different behavior on our tested networks. For instance, Jazz dataset does
not achieve a significant percentage of strong protected users up to 15% of anonymization,
but this set is empty on the original network. On the contrary, Polblogs dataset has more
than 50% of well-protected nodes without any kind of anonymization or perturbation. This
property is related to the power-law of real networks, where several users share degree’s
value. Even so, anonymization produces significant improvement in terms of user’s privacy
at 5-10% of perturbation.

6.3 1-Neighborhood-based attacks

Finally, we consider an adversary with 1-neighborhood-based knowledge [41], i.e., an adver-
sary who knows the friends’ set of some target vertices. Similarly to the previous experiment,
we computed the proportions of vertices that change their set of neighbors at distance one
during the perturbation process. In this knowledge model, Rand Switch and Crnss Switch
are also able to preserve users’ privacy, since they modify the relationships among users.
Figure 8d presents results on the Jazz dataset, where we can see that all methods achieve
more than 80% of vertices that changed their 1-neighborhood at 10% of anonymization and
Rand Add/Del gets the highest number.

123

Community-preserving anonymization of graphs 341

7 Conclusions and future work

In this paper, we proposed a novel edge modification technique that better preserves the
communities of a graph while anonymizing it. By maintaining the core number sequence
of a graph, its coreness, our methods Crnss Add/Del and Crnss Switch achieve a better
trade-off between data utility and data privacy than existing edge modification operations. In
particular, they outperform Rand Add/Del in terms of data utility and Rand Switch in terms
of data privacy as empirical results have shown, both on generic graph properties and real
applications, such as clustering.

Several anonymization methods are based on edge modification techniques, i.e., they use
edge addition, edge deletion, edge rotation and edge switch as basic operations to construct
more complex operations. It is true that some of them do not apply edge modification over
the entire edge set but this behavior is specific and different for each anonymization method.
We believe that this covers the basic behavior of edge modification-based methods for graph
anonymization, even though each method has its specific peculiarities. Thus, we claim that
using our coreness-preserving operations all these methods and algorithms can get the same
privacy level while achieving higher data utility. A k-degree anonymous algorithm was used
to prove our claim, demonstrating that it achieves the same privacy level and higher data
utility when it comes to preserve the communities. Furthermore, we demonstrated that our
edgemodification technique is able to deal with large and very large networks with thousands
and millions of vertices and edges.

Future work might involve the reuse of our edge modification operations in other contexts
that rely on the impact of edge/node departure/arrival such as graphgeneratorswith predefined
community structures or the study of engagement dynamics in social networks.

Acknowledgements This work was partly funded by the SpanishMCYT and the FEDER funds under Grants
TIN2011-27076-C03 “CO-PRIVACY” and TIN2014-57364-C2-2-R “SMARTGLACIS”.

References

1. Adamic LA, Glance N (2005) The political blogosphere and the 2004 U.S. election. In: Proceedings of
the international workshop on link discovery, pp 36–43

2. Assam R, Hassani M, Brysch M, Seidl T (2014) (K, D)-core anonymity: structural anonymization of
massive networks. In: Proceedings of the 26th international conference on scientific and statistical database
management, pp 17:1–17:12

3. Backstrom L, Dwork C, Kleinberg, J (2007) Wherefore art thou r3579x? anonymized social networks,
hidden patterns, and structural steganography. In: Proceedings of the 16th international conference on
World Wide Web, pp 181–190

4. Batagelj V, Zaveršnik M (2011) Fast algorithms for determining (generalized) core groups in social
networks. Adv Data Anal Classif 5(2):129–145

5. Baur M, Gaertler M, Görke R, Krug M, Wagner D (2007) Generating graphs with predefined k-core
structure. In: Proceedings of the European conference on complex systems

6. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large
networks. J Stat Mech Theory Exp 2008(10)

7. Bollobás B (1978) Extremal graph theory. Academic Press, London
8. Cai BJ, Wang HY, Zheng HR,Wang H (2010) Evaluation repeated randomwalks in community detection

of social networks. In: Proceedings of the international conference on machine learning and cybernetics,
pp 1849–1854

9. Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E (2007) A model of Internet topology using k-shell
decomposition. Proc Natl Acad Sci USA 104(27):11,150–11,154

10. Casas-Roma J (2014) Privacy-preserving and data utility in graph mining. Ph.D. thesis. Universitat
Autònoma de Barcelona

123

342 F. Rousseau et al.

11. Casas-Roma J, Herrera-Joancomartí J, Torra, V (2013) An algorithm for k-degree anonymity on large
networks. In: Proceedings of the IEEE international conference on advances on social networks analysis
and mining, pp 671–675

12. Casas-Roma J, Herrera-Joancomartí J, Torra V (2014) Anonymizing graphs: measuring quality for clus-
tering. Knowl Inf Syst 44(3):507–528

13. Casas-Roma J, Herrera-Joancomartí J, Torra V (2016) k-degree anonymity and edge selection: improving
data utility in large networks. Knowl Inf Syst. doi:10.1007/s10115-016-0947-7

14. Casas-Roma J, Rousseau F (2015) Community-preserving generalization of social networks. In: Proceed-
ings of the social media and risk ASONAM 2015 workshop

15. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys
Rev E 70:066,111

16. Giatsidis C, Thilikos DM, Vazirgiannis M (2011) Evaluating cooperation in communities with the k-core
structure. In: Proceedings of the IEEE international conference on advances in social networks analysis
and mining, pp 87–93

17. Gleiser PM, Danon L (2003) Community structure in jazz. Adv Complex Syst 6(04):565–573
18. Goltsev AV, Dorogovtsev SN, Mendes JFF (2006) k-core (bootstrap) percolation on complex networks:

critical phenomena and nonlocal effects. Phys Rev E 73(5)
19. Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a

network of human interactions. Phys Rev E 68:065103
20. HayM,MiklauG, JensenD,TowsleyD,Weis P (2008)Resisting structural re-identification in anonymized

social networks. Proc VLDB Endow 1(1):102–114
21. HayM,Miklau G, Jensen D,Weis P, Srivastava S (2007) Anonymizing social networks. Technical Report

No. 07-19. Computer Science Department, University of Massachusetts Amherst, Amherst
22. Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev

E 80:056,117
23. Leskovec J, Adamic LA, Huberman BA (2007) The dynamics of viral marketing. ACM Trans Web

1(1):5:1–5:39
24. Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters.

ACM Trans Knowl Discov Data 1(1):2:1–2:40
25. Liu K, Terzi E (2008) Towards identity anonymization on graphs. In: Proceedings of the ACM SIGMOD

international conference on management of data, pp 93–106
26. Malle B, Schrittwieser S, Kieseberg P, Holzinger A (2016) Privacy aware machine learning and the right

to be forgotten. ERCIM News 107(10):22–23
27. Malliaros FD, Vazirgiannis M (2013) To stay or not to stay: modeling engagement dynamics in social

graphs. In: Proceedings of the 22nd ACM international conference on Information and knowledge man-
agement, pp 469–478

28. Narayanan A, Shmatikov V (2009) De-anonymizing social networks. In: Proceedings of the 2009 30th
IEEE symposium on security and privacy, pp 173–187

29. Pons P, LatapyM (2005) Computing communities in large networks using randomwalks. In: International
symposium on computer and information sciences, vol 3733, pp 284–293

30. RosvallM,BergstromCT(2008)Mapsof randomwalks on complexnetworks reveal community structure.
PNAS USA 105(4):1118–1123

31. Seidman SB (1983) Network structure and minimum degree. Soc Netw 5:269–287
32. Sweeney L (2002) k-anonymity: a model for protecting privacy. Int J Uncertain Fuzziness Knowl Based

Syst 10(5):557–570
33. Wu X, Ying X, Liu K, Chen L (2010) A survey of privacy-preservation of graphs and social networks.

In: Aggarwal CC, Wang H (eds) Managing and mining graph data, advances in database systems, vol 40,
pp 421–453

34. Yahoo! Webscope: Yahoo! Instant Messenger friends connectivity graph, version 1.0 (2003). http://
research.yahoo.com/Academic_Relations

35. Yang J, Leskovec J (2012) Defining and evaluating network communities based on ground-truth. In:
Proceedings of the ACM workshop on mining data semantics, pp 1–8

36. Yang J, Leskovec J (2015) Defining and evaluating network communities based on ground-truth. Comput
Res Repos (CoRR) 42(1):181–213

37. YingX, PanK,WuX, Guo L (2009) Comparisons of randomization and k-degree anonymization schemes
for privacy preserving social network publishing. In: Workshop on social network mining and analysis,
pp 10:1–10:10

38. Ying X, Wu X (2008) Randomizing social networks: a spectrum preserving approach. In: Proceedings of
the SIAM international conference on data mining, pp 739–750

123

http://dx.doi.org/10.1007/s10115-016-0947-7
http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations

Community-preserving anonymization of graphs 343

39. Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res
33(4):452–473

40. Zhang K, Lo D, Lim EP, Prasetyo PK (2013) Mining indirect antagonistic communities from social
interactions. Knowl Inf Syst 35(3):553–583

41. Zhou B, Pei J (2008) Preserving privacy in social networks against neighborhood attacks. In: Proceedings
of the IEEE 24th international conference on data engineering, pp 506–515

42. Zou L, Chen L, Özsu MT (2009) K-automorphism: a general framework for privacy preserving network
publication. Proc VLDB Endow 2(1):946–957

François Rousseau is currently a software engineer at Google Inc.
He received his Engineering Diploma in Telecommunications from
Télécom ParisTech (France), his M.Sc. in Artificial Intelligence from
Université Pierre and Marie Curie – Paris VI (France) and his Ph.D.
in Computer Science from École Polytechnique (France). His current
research interests include text mining and retrieval, machine learning,
graph theory, natural language processing, algorithmics and data struc-
tures.

Jordi Casas-Roma is currently a lecturer at the Faculty of Com-
puter Science, Multimedia and Telecommunications of the Univer-
sitat Oberta de Catalunya, director of the Master on Data Science,
part-time associate professor at Universitat Autònoma de Barcelona
and researcher at KISON group. He received his M.Sc. in Artificial
Intelligence from Universidad Nacional de Educación a Distancia and
his Ph.D. in Computer Science from the Universitat Autònoma de
Barcelona. His current research interests are focused on data mining,
machine learning and data privacy, specifically on privacy-preserving
data publishing.

Michalis Vazirgiannis is a Professor at École Polytechnique (France).
He is actively involved in national and international research and devel-
opment projects, has received the ERCIM and the Marie Curie EU
fellowships, led a DIGITEO chair grant and published more than a hun-
dred forty papers in international refereed journals and conferences.
Since 2014, he leads the AXA Data Science chair. He has supervised
fourteen completed PhD thesis. His current research interests as well as
industrial experience and expertise lie in the areas of data mining and
machine learning for large scale data repositories (e.g., the Web graph,
social networks, medical data), distributed environments for dimen-
sionality reduction and resource management and graph mining (e.g.,
community detection and clustering).

123

	Community-preserving anonymization of graphs
	Abstract
	1 Introduction
	1.1 Highlights
	1.2 Outline

	2 Related work
	2.1 Graph anonymization
	2.2 Graph degeneracy

	3 Preliminary concepts
	3.1 Graph
	3.1.1 Apparent degree

	3.2 Degeneracy
	3.2.1 k-core and main core
	3.2.2 k-shell
	3.2.3 Core number, shell index and true degree
	3.2.4 k-corona, k-lamina and effective degree
	3.2.5 Coreness
	3.2.6 Illustration
	3.2.7 Basic algorithm and complexity
	3.2.8 Optimal linear algorithm

	3.3 Edge modification
	3.3.1 Terminology for anonymization

	4 Our approach
	4.1 Idea and brute force algorithm
	4.2 Coreness-preserving edge modification
	4.3 Coreness-preserving edge deletion: Crnss Deletion
	4.3.1 Algorithm
	4.3.2 Illustration

	4.4 Coreness-preserving edge addition: Crnss Addition
	4.4.1 Algorithm
	4.4.2 Illustration
	4.4.3 Worst case complexity
	4.4.4 Nodes from the 0-shell
	4.4.5 Crnss Add/Del

	4.5 Coreness-preserving edge rotation: Crnss Rotation
	4.6 Coreness-preserving edge switch: Crnss Switch

	5 Experiments
	5.1 Experimental framework
	5.1.1 Datasets
	5.1.2 Generic graph properties
	5.1.3 Clustering-specific graph metrics

	5.2 Randomization experiments
	5.2.1 Perturbation methods
	5.2.2 Results

	5.3 k-Anonymity experiments
	5.3.1 k-Anonymity algorithm
	5.3.2 Results

	5.4 Scalability analysis
	5.4.1 Tested networks
	5.4.2 Performance of our technique

	6 Re-identification and risk assessment
	6.1 The set of possible worlds
	6.2 Degree-based attacks
	6.3 1-Neighborhood-based attacks

	7 Conclusions and future work
	Acknowledgements
	References

