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Abstract The aim of process discovery, originating from the area of process mining, is to
discover a process model based on business process execution data. A majority of process
discovery techniques relies on an event log as an input. An event log is a static source of
historical data capturing the execution of a business process. In this paper, we focus on process
discovery relying on online streams of business process execution events. Learning process
models from event streams poses both challenges and opportunities, i.e. we need to handle
unlimited amounts of data using finite memory and, preferably, constant time. We propose
a generic architecture that allows for adopting several classes of existing process discovery
techniques in context of event streams. Moreover, we provide several instantiations of the
architecture, accompanied by implementations in the process mining toolkit ProM (http://
promtools.org). Using these instantiations, we evaluate several dimensions of stream-based
process discovery. The evaluation shows that the proposed architecture allows us to lift
process discovery to the streaming domain.

Keywords Process mining · Process discovery · Event streams · Abstract representations

1 Introduction

Process mining [1] aims at understanding and improving business processes. The field con-
sists of three main branches, i.e. process discovery, conformance checking and process
enhancement. Process discovery aims at discovering a process model based on event data.
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Conformance checking is concerned with assessing whether a process model and event data
conform to each other in terms of possible behaviour. Process enhancement is concernedwith
improvement of process models based on knowledge gained from event data, e.g. a process
model is extended with performance diagnostics based on event data.

Several process discovery algorithms exist [2–7]. These algorithms all use an event log
as an input. An event log is a static data source describing sequences of executed business
process activities recorded over a historical time span. As the number of events recorded for
operational processes is growing tremendously every year, so does the average event log size.
Conventional process discovery techniques are not able to cope with such large data sets, i.e.
they fail when the data do not fit main memory. Moreover, events are being generated at high
rates, e.g. consider data originating from sensor networks, mobile devices and e-business
applications. Since existing process discovery techniques use static data, they are not able to
capture the dynamics of such event streams in an adequate manner.

In this paper, we focus on process discovery using streams of business process events, i.e.
event streams, rather than event logs. Applying process discovery on event streams allows
us to gain insights into the underlying business process in a live fashion. It furthermore
allows us to deal with situations where (1) event logs are too large to fit main memory, (2)
there is no time to access event data continuously, i.e. real-time constraints and (3) recent
behaviour is more important, i.e. concept drift. A large class of existing process discovery
algorithms transforms the event log into an abstract representation, i.e. an abstraction of the
event log, which is subsequently used to discover a process model. To adopt these algorithms
in a streaming context, it suffices to approximate the abstract representation based on the
event stream. Using abstract representations has several advantages: (1) reusability: we reuse
existing techniques by predominantly focusing on learning abstract representations from
event streams. (2) Extensibility: once we design and implement a method for approximating
a certain abstract representation, any (future) algorithmusing the same abstract representation
is automatically ported to event streams. (3) Anonymity: in some cases, laws and regulations
dictate that we are not allowed to store all event data. Some abstract representations ignore
large parts of the data, effectively storing a summary of the actual event data, and therefore
comply to anonymity regulations.

We present the stream-based abstract representation (S-BAR) architecture that describes
this mechanism in a generic way (Fig. 1). An event stream S represents an (in)finite sequence
of events, emitted over time. An event is represented by a (c, a)-pair, stating that activity a
is executed in context of case c. We maintain a data structure (DT ) that represents the past
behaviour emitted onto stream S. Each time a new event arrives the data structure is kept
up to date by updating its previous state based on the newly received event (δDT ). From the

data structure, an algorithm-specific abstract representation (AT) is deduced (λAT

DT ). After

Fig. 1 Schematic overview of the S-BAR architecture
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learning the abstract representation, we reuse existing translations borrowed from conven-
tional process discovery algorithms to return a process model (γAT

).
The S-BAR architecture is instantiated by designing a data structure, a data structure

update mechanism and a data structure translation function. The actual implementation of
the data structure and related update functions influences the behaviour described by the
discovered processmodel, e.g. using a time-decaying data structure versus a data structure that
approximates the most frequent cases on the stream. Several instantiations of the architecture
have been implemented in the process mining toolkits ProM [8] and RapidProM [9,10].
Using these implementations, we conduct empirical experiments w.r.t. the behaviour of these
algorithms in an event stream setting. The experiments show that the algorithms are able to
capture the behaviour reflected by the event stream. Moreover, the experiments show that
memory usage and processing times of the algorithms have non-increasing trends.

The remainder of this paper is organized as follows. In Sect. 2, we present background
information regarding business processes and process discovery. In Sect. 3, we present event
streams and the notion of event stream-based process discovery. In Sect. 4, we introduce the
S-BARarchitecture. In Sect. 5,we provide several instantiations of the architecture. In Sect. 6,
we present an empirical evaluation of several instantiations of the architecture. In Sect. 7, we
present related work. In Sect. 8, we discuss general challenges in event stream-based process
discovery. Section 9 concludes the paper.

2 Background

In this section, we present general notation used throughout the paper and background con-
cepts regarding business processes and process discovery.

N denotes the set of positive integers, and N0 includes 0. A multiset B over set X is a
function B : X → N0. We write a multiset as [ek11 , ek22 , . . . , eknn ], where for 1 ≤ i ≤ n

we have ei ∈ X , ki ∈ N and ekii ≡ B(ei ) = ki . If for element e, B(e) = 1, we omit its
superscript. If for element e, B(e) = 0, we omit e from the multiset notation. An empty
multiset is denoted as [ ]. Element inclusion applies to multisets, i.e. if e ∈ X and B(e) > 0
then e ∈ B.

A sequence σ of length n relates positions to elements e ∈ X , i.e. σ : {1, 2, . . . , n} → X .
An empty sequence is denoted as ε. We write every non-empty sequence as 〈e1, e2, . . . , en〉.
The set of all possible sequences over a set X is denoted as X∗. We write concatenation of
sequences σ1 and σ2 as σ1 · σ2.

Let X, Y, Z and Z ′ be sets and let f : X → Y and g : Y → Z . Function composition
of f and g is defined as g ◦ f : X → Z , with x �→ g( f (x)) for x ∈ X . Moreover, given
h : Z → Z ′, we write h ◦g ◦ f for h ◦ (g ◦ f ), i.e. h ◦g ◦ f : X → Z ′, with x �→ h(g( f (x)))
for x ∈ X .

2.1 Business processes, models and event logs

Business processes represent the execution of related business activities leading to a business
goal. Consider a bank offering loans to its customers. A business goal of the bank is to accept,
reject or cancel a loan application. The bank’s employees and its enterprise information
system execute activities to achieve this goal, e.g. by checking a client’s credit history and
assessing the loan risk.
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A business process P defines a set of sequences over a set of activities A, i.e. P ⊆ A∗.
If σ ∈ P , then the sequence of business activities σ leads to a business goal and belongs
to the behaviour of P . In this paper, we assume the execution of activities to be atomic and
abstract from data attributes such as resource and timestamp. Hence, we only consider the
sequential ordering of activities (the control-flow perspective). UP denotes the universe of
business processes. A process model M represents a business process and, like a process,
defines a set of sequences over a set of activities A, i.e. M ⊆ A∗. UM denotes the universe
of process models. In this paper, we consider process models that describe behaviour in a
deterministic manner, e.g. Petri nets [12], BPMN [13] and workflow nets [14]. Consider
the BPMN model of a loan application handling process in Fig. 2. It describes that after an
application is received, the first activity to be executed is “Check application completeness”.
Depending upon the completeness of the application, the corresponding form is “Returned
back to the applicant”, or the client’s“credit history is checked” and subsequently a“loan risk
assessment” is performed. The two aforementioned activities can be executed concurrently
with the “appraise property” activity. An “eligibility assessment” of the loan is performed,
eventually leading to a rejection, cancellation or approval of the loan.

Today’s information systems track the execution of business processes within a company.
Such systems store the execution of activities in context of a case, i.e. an instance of the
process. The data stored by the information system are often in the form of an event log.
Consider Table 1 as an example. The execution of an activity in context of a case, e.g.
Approve application executed for case 3, is referred to as an event. A sequence of events,
e.g. the sequence of events related to case 4, 〈Check application form completeness, Check
credit history, …, Approve application〉, is referred to as a trace (written 〈c1, c2, . . . , a4〉
when using abbreviated activity names).

An event log L is a multiset of sequences over a set of activities A, i.e. L : A∗ → N0, and
describes the execution of some P ∈ UP . UL denotes the universe of event logs. An event
log is a sample of the underlying process. Therefore, there might exist process behaviour
that is not present in the event log, e.g. caused by parallelism. In such case, an event log is
incomplete. There might also exist traces in the event log that are not part of the process,
i.e. noisy traces. Noisy traces can be caused by faulty execution of the process, incomplete
specifications or technical issues such as incorrect logging, system errors and mixed time
granularity.

2.2 Process discovery

The goal of process discovery is to discover a process model based on an event log. Several
process discovery algorithms exist [2–7]. These algorithms differ in terms of their underly-
ing computational schemes and data structures as well as their resulting process modelling
formalism. We refer to [1,15,16] for a detailed overview of process discovery algorithms.

A process discovery algorithm γL discovers a process model based on an event log, i.e.
γL : UL → UM. The challenge is to design γL in such way that γL(L) is an appropriate
representation of the underlying process P . Appropriateness of γ (L) depends on the aim of
the process discovery analysis, e.g. ensuring that all behaviour in the event log is present in
the model versus ensuring that the most frequent behaviour is present. Given the different
aims of process discovery analyses, several quality measures are defined in order to judge
their resultingmodel’s appropriateness. Ideally,P is used as a basis to compute thesemetrics;
however, as L is the only tangible sample of P , we typically compute the quality of γL(L)

using L . The four essential process mining quality dimensions are replay fitness, precision,
simplicity and generalization [1,17]. Replay fitness describes what fraction of the behaviour
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Fig. 2 BPMN model of a loan application process (adopted from [11])
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Table 1 Fragment of an event log

Case Activity Resource Timestamp

… … … …

3 Approve application (a4) John 2015-05-08 08:45

4 Check application completeness (c1) Lucy 2015-05-08 09:13

5 Check application completeness (c1) John 2015-05-08 09:14

5 Return application to applicant (r1) Pete 2015-05-08 10:11

5 Receive updated application (r2) Pete 2015-05-08 10:28

6 Check application completeness (c1) Lucy 2015-05-08 10:33

4 Check credit history (c2) Rob 2015-05-08 10:43

5 Appraise property (a1) Pete 2015-05-08 11:00

4 Appraise property (a1) Rob 2015-05-08 11:14

4 Assess loan risk (a2) Rob 2015-05-08 11:35

4 Assess eligibility (a3) Lucy 2015-05-08 11:55

5 Check credit history (c2) John 2015-05-08 11:57

4 Prepare acceptance pack (p1) Lucy 2015-05-08 12:25

4 Check insurance quote request present (c3) Lucy 2015-05-08 12:23

4 Send acceptance pack (s2) Lucy 2015-05-08 12:28

5 Assess loan risk (a2) John 2015-05-08 12:37

4 Verify repayment agreement (v1) Lucy 2015-05-09 13:05

4 Approve application (a4) John 2015-05-09 14:15

… … … …

present in L is also described by γL(L). Precision describes what fraction of the behaviour
described by γL(L) is also present in L . Simplicity describes the (perceived) complexity of the
process model. Since it is unlikely that the event log contains all behaviour (incompleteness),
generalization describes how well the process model generalizes for behaviour not present
in L . Due to noise, an algorithm guaranteeing perfect replay fitness, i.e. all behaviour in
the event log is present in the discovered model, captures behaviour that is not part of the
process. In practice, this leads to very complexmodels that are impossible to be interpreted by
a human analyst. Hence, a process discovery algorithm needs to strike an adequate balance
between the four essential quality dimensions.

3 Event stream-based process discovery

Existing process discovery techniques discover process models in an a posteriori fashion,
i.e. they provide a historical view of the data. However, most information systems allow us
to capture the execution of activities at the moment they occur. Discovering and analysing
process models from such continuous streams of events allows us to get a real-time view of
the process under study. Such view paves the way for new types of process mining analysis,
i.e. we are able to answer more advanced questions such as “What is the current status of
the process?” and “What running cases are likely to cause problems?”. It also allows us to
inspect and visualize recent behaviour and evolution of behaviour in the process, i.e. concept
drift.
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There are several other advantages of studying streams of events rather than event logs.
Trends such as Big Data and Data Science signify the spectacular growth and omnipresence
of data. Typically, real event logs do not fit main memory. Since we assume event streams
to be potentially infinite, analysing them enables us to handle event data of arbitrary size. In
other cases, we do not have the time or are not allowed to access event data continuously
and, hence, need to analyse events at the moment they occur.

In this section, we formalize event streams and event stream-based process discovery.
Additionally, we quantify high-level requirements for the design of event stream- based
process discovery algorithms.

3.1 Event streams

Anevent stream is a continuous streamof events executed in context of an underlying business
process. We represent an event stream as a sequence of pairs consisting of a case identifier
and an activity. Hence, for each event we know what activity was performed in context of
what process instance. When comparing event streams to event logs, we identify two main
differences: (1) an event stream is potentially infinite, and (2) behaviour seen for a case is
incomplete, i.e. in the future new events may be executed in context of a case.

Definition 1 (Event stream) Let A be a set of activities and letC denote the set of all possible
case identifiers. An event stream S is a sequence over C × A, i.e. S ∈ (C × A)∗.

A pair (c, a) ∈ C × A represents an event, i.e. activity a was executed in context of case
c. S(1) denotes the first event that we receive, whereas S(i) denotes the i th event. Consider
stream S1 in Fig. 3 as an example, where event (3, a4) is emitted first (S1(1) = (3, a4)),
event (4, c1) is emitted second and event (5, a1) is the eight and last event emitted onto the
stream up until now. We receive multiple events related to the same case at different points
in time, e.g. the second and seventh event on S1 are related to case 4. Hence, handling such
type of data needs new types of data structures and event processing techniques compared to
conventional process discovery.

3.2 Process discovery

The goal of event stream- based process discovery is to discover a process model using an
event stream as an input. A first step is to approximate, based on S, the presence of some
σ ∈ P and possibly σ ’s frequency w.r.t. S. Given such approximation, the next step is to
deploy a process discovery algorithm onto the approximation in order to obtain a process
model.

A naive approach is to construct an event log based on the event stream by using a data
structure that stores case-sequence pairs (c, σ ) ∈ C × A∗. For every event (c, a) we receive,
we check whether the data structure contains entry (c, σ ′). If so, we update this entry to
(c, σ ′ · 〈a〉). If not, we insert new entry (c, 〈a〉). Whenever we want to discover a new process
model based on the current state of the event stream, we transform the data structure into
an event log and provide it to any conventional process discovery algorithm. Observe that,
since the stream is potentially infinite, this procedure needs infinite memory. Moreover, the
approach includes redundancy, i.e. several (partial) traces that were already analysed in a

Fig. 3 Example event stream S1
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Fig. 4 Example “flower” model

previous call to a discovery algorithm, and are still in memory at the next call, are analysed
twice. Hence, we want the data structure to either represent, or be easily translatable to, some
minimal form of data needed in order to discover a process model.

An example of an algorithm using a minimal data representation is the flower miner.
The flower miner produces a process model that allows for every possible sequence over
the observed activities. Reconsider example stream S1 (Fig. 3) which consists of activities
labelled a1, a4, c1, c2, r1 and r2. In Fig. 4, we depict a flower model, in terms of a Petri
net [12], that allows for all activities on S1.

To ensure that the flower miner uses finite memory, we just need to deploy any finite
memory-based data structure that keeps track of the activities seen on the stream. A wide
variety of such data structures exits, e.g. count-based frequent item data structures [18],
reservoirs [19,20] and time-decay-based models [21]. Whenever we receive a new event
(c, a), we just add a to the data structure. Translating the data structure to a process model
is trivial, i.e. every activity present in the data structure is adopted in the flower model.

The flower miner works, yet it has deficiencies from a process discovery perspective. It
generalizes the behaviour represented by the event stream as much as possible. The resulting
process model very likely allows for much more behaviour than actually present in the
underlying process. Hence, we need techniques that are more precise.

The event log-based approach and the flower miner represent two extremes. Storing the
event stream as an event log requires us to reuse a large part of the data several times. The
flower miner on the other hand neglects a large quantity of information carried by the event
stream and greatly overgeneralizes the stream’s behaviour. We therefore need a scheme that
is in the middle of both extremes, i.e. it does not store the complete event log, yet it stores
enough data to provide meaningful output.

4 The S-BAR architecture

When analysing conventional process discovery algorithms,we observe that amajority shares
a common underlying algorithmic mechanism. The event log is transformed into an abstract
representation, which is subsequently used to construct a resulting process model. Moreover,
several algorithms use the same abstract representation. In Example 1, we illustrate the
directly follows abstraction, used by the α-Miner [3].

Example 1 (The directly follows abstraction and the α-Miner) Consider event log L =
[〈a, b, c, d〉, 〈a, c, b, d〉]. The α-Miner computes a directly follows abstraction based on the
event log. Activity a is directly followed by b, written as a > b, if there exists some sequence
σ ∈ L of the form σ = σ ′ · 〈a, b〉 · σ ′′. In case of event log L , we deduce a > b, a > c,
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b > c, b > d , c > b, c > d . Using these relations as a basis, the α-Miner constructs a Petri
net.

As Example 1 shows, the event log is translated into a directly follows abstraction, which is
subsequently used to construct a processmodel. Other discovery algorithms like the Inductive
Miner [5] and the ILP Miner [7] use the same mechanism to discover a process model. To
adopt these algorithms to an event stream context, it suffices to determine whether we are
able to learn the corresponding abstract representation from the event stream and, if possible,
design a data structure that supports this.

In the remainder of this section, we formalize the notion of abstract representations.
Subsequently, we introduce the stream-based abstract representation (S-BAR) architecture
that captures the notion of event stream-based abstract representation computation in a generic
manner.

4.1 Abstract representations in conventional process discovery

We refine conventional process discovery by splitting γL into two steps. In the first step, the
event log is translated into the abstraction used by the discovery algorithm. In the second
step, the abstraction is translated into a process model. In the remainder, we let T denote
an abstract representation type. AT denotes an abstract representation of type T, and UAT

denotes the universe of abstract representations of type T.

Definition 2 (Abstraction function—event log) LetT denote an abstract representation type.
An abstraction function λAT

L is a function mapping an event log to an abstract representation
of type T.

λAT

L : UL → UAT (1)

Using Definition 2, we define process discovery in terms of abstract representations.

Definition 3 (Process discovery algorithm—abstract representation) Let T denote an
abstract representation type. An abstract representation-based process discovery algorithm
γAT

maps an abstract representation of type T to a process model.

γAT : UAT → UM (2)

Every discovery algorithm that uses an abstract representation internally can be expressed
as a composition of λAT

L and γAT
. Thus, given event log L ∈ UL and abstract representation

typeT, we obtain γL = (γAT ◦λAT

L )(L). For example, consider Fig. 5 depicting the α-Miner

in terms of γAT
and λAT

L .

4.2 Abstract representations in event stream-based process discovery

In this section, we present the S-BAR architecture which captures the use of abstract repre-
sentations in an event stream context in a generic manner. In Fig. 6, the S-BAR architecture is

Fig. 5 The α-Miner in terms of its abstract representation
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Fig. 6 Detailed overview of the S-BAR architecture

depicted schematically. The S-BAR architecture conceptually splits event stream-based pro-
cess discovery into three components, highlighted in grey in Fig. 6. We explain the purpose
of each component, i.e. δDT , λAT

DT and γAT
, by means of an example.

Consider maintaining the directly follows abstraction, introduced in Example 1, on a
stream. To do this, we need a data structure that tracks the most recent activity for each
case. Given such data structure, if we receive new event (c, a), we check whether we already
received an activity a′ for case c or whether a is the first activity received for case c. If we
already received activity a′ for case c, we deduce a′ > a. Subsequently, we update our data
structure such that it now assigns a to be the last activity received for case c.

The first component, i.e. δDT , maintains and updates a (collection of) data structure(s)
that together form a sufficient representation of the behaviour entailed by the event stream. In
context of our example, the first component is mainly concerned with keeping track of pairs
of activities that are in a a′ > a relation. The second component, i.e. λAT

DT , translates the data
structure to an abstract representation. In context of our example, this consists of translating
the pairs of activities that are in a a′ > a relation into the directly follows abstraction. The
third component, i.e. γAT

, translates the abstract representation to a process model and is
inherited from conventional process discovery.

In the remainder, given an arbitrary data structure type T , we let UDT denote the universe
of data structures of type T . A data type T might refer to an array or a (collection of) hash
table(s), yet it might also refer to some implementation of a stream-based frequent item
approximation algorithm such as Lossy Counting [22]. We assume any DT ∈ UDT to use
finite memory.

Definition 4 (Data structure update function) Let A be a set of activities and let C denote
the set of all possible case identifiers. We define a data structure update function δDT as:

δDT : UDT × C × A → UDT (3)

The data structure update function δDT allows us to update a given data structure DT ∈
UDT based on any newly arrived event. In practice, the function typically consists of two
components. One component keeps track of the cases that were already active before and
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maps them in some way to a second (collection of) data structure(s). Such second component
allows us to construct the abstract representation. Thus, when abstracting this mechanism,
given some event stream-based data structure, we need a mechanism to translate the data
structure, i.e. the range of δDT , to an abstract representation.

Definition 5 (Abstraction function—data structure) An abstraction function λAT

DT is a func-
tion mapping a data structure of type T to an abstract representation of type T.

λAT

DT : UDT → UAT (4)

Ideally, translating the data structure is computationally inexpensive. However, in some cases
translating the data structure to the intended abstract representation might be expensive. This
is acceptable, as long as we (re)-compute the abstraction in a periodic fashion or at the user’s
request.

Assume that we have seen i ≥ 0 events on an event streamS and letDT
i ∈ UDT denote the

data structure that approximates the behaviour in the event stream S after receiving i events.
When new event (c, a) ∈ C × A arrives, we are able to discover a new process modelMi+1

by applying
(
γAT ◦ λAT

DT ◦ δDT

) (
DT
i , c, a

)
. In practice, δDT is applied continuously and

whenever, after receiving a new i th event, we are interested in finding a process model we

apply
(
γAT ◦ λAT

DT

) (
DT
i

)
to obtain the process model.

Themain challenge in instantiating the framework is designing a data structureDT ∈ UDT
that allows us to approximate an abstract representation together with accompanying δDT

and λAT

DT functions.

5 Instantiating S-BAR

In this section, we show the applicability of the S-BAR framework by presenting several
instantiations for different existing process discovery algorithms. A large class of algorithms,
e.g. the α-Miner [3], the Heuristics Miner [6,23] and the Inductive Miner [5], is based on
the directly follows abstraction. Therefore, we first present how to compute this abstraction.
Subsequently, we highlight, for each algorithm using the directly follows abstraction as a
basis, the main changes and/or extensions that need to be applied w.r.t. the basic scheme.
To illustrate the generality of the architecture, we also show a completely different class of
discovery approaches, i.e. region-based techniques [2,7]. These techniques work fundamen-
tally different compared to the aforementioned class of algorithms and use different abstract
representations.

5.1 Directly follows abstraction

The directly follows abstraction describes pairs of activities (a, b), written as a > b, if
there exists some sequence σ ∈ L of the form σ = σ ′ · 〈a, b〉 · σ ′′. To approximate the
relation, we let data structure DT ∈ UDT consist of two internal data structures DC and
DA. Within DC , we store (case, activity)-pairs, i.e. (c, a) ∈ C × A, that represent the last
activity a seen for case c. Within DA, we store (activity, activity)-pairs (a, a′) ∈ A × A,
where (a, a′) ∈ DA ⇔ a > a′. The basic scheme works as follows. When a new event
(c, a) arrives, we check whether DC already contains some pair (c, a′). If so, we add (a′, a)

to DA, remove (c, a′) from DC and add (c, a) to DC . If not, we just add (c, a) to DC . DA

represents the directly follows abstraction by means of a collection of pairs; thus, function
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Algorithm 1: DC (Space Saving)

input : k ∈ N, S ∈ (C × A)∗,DA
begin

1 X ← ∅; i ← 0;
2 while true do
3 i ← i + 1;
4 (c, a) ← S(i);
5 if ∃(c′,a′)∈X (c′ = c) then
6 vc ← vc + 1;

7 DA � {(a′, a)};
8 X ← (X ∪ {(c, a)}) \ {(c, a′)};
9 else if |X | < k then

10 X ← X ∪ {(c, a)};
11 vc ← 1;

12 else
13 (c′, a′) ← argmin

(c′,a′)∈X
(vc′ );

14 vc ← vc′ + 1;
15 X ← (X ∪ {(c, a)}) \ {(c′, a′)};

Algorithm 2: DC (Lossy)

input : k ∈ N, S ∈ (C × A)∗, DA
begin

1 i,� ← 0; X ← ∅;
2 while true do
3 i ← i + 1;
4 (c, a) ← S(i);
5 if ∃(c′,a′)∈X (c′ = c) then
6 vc ← vc + 1;

7 DA � {(a′, a)};
8 X ← (X ∪ {(c, a)}) \ {(c, a′)};
9 else

10 X ← X ∪ {(c, a)};
11 vc ← �;

12 if �i/k� �= � then
13 foreach (c′, a′) ∈ X do
14 if vc′ ≤ � then
15 X ← X \ (c′, a′);

16 � ← �i/k�;

Algorithm 3: DA (Frequent)
input : k ∈ N, SA ∈ (A × A)∗
begin

1 X ← ∅, i ← 0;
2 while true do
3 i ← i + 1;
4 (a, a′) ← SA(i);
5 if (a, a′) ∈ X then
6 v(a,a′) ← v(a,a′) + 1;

7 else if |X | < k then
8 X ← X ∪ {(a, a′)};
9 v(a,a′) ← 1;

10 else
11 foreach (x, y) ∈ X do
12 v(x,y) ← v(x,y) − 1;
13 if v(x,y) = 0 then
14 X ← X \ {(x, y)};

λAT

DT consists of translatingDA to the appropriate underlying data type used by the discovery
algorithm of choice.

As an example, consider Algorithms 1 and 2 describing a design of DC based on the
SpaceSaving algorithm [24] and Lossy Counting [22], respectively.

Both algorithms have three inputs, i.e. a maximum size k ∈ N, an event stream S ∈
(C × A)∗ and a finite memory data structure implementing DA. The algorithms maintain
a set of (case, activity)-pairs X , initialized to ∅ (line 1). For each case c present in X , an
associated counter vc is maintained which is used for memory management. When a new
event (c, a) appears on the event stream, the algorithms check whether some pair (c′, a′) s.t.
c = c′ is stored in X (line 5). If this is the case, c’s counter is increased, (a′, a) is added to
data structure DA, and (c, a′) is replaced by (c, a) in X (lines 6–8). The algorithms differ
in the way they process events (c, a) for which �(c′,a′)∈X (c′ = c). The Space Saving-based
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algorithm (Algorithm 1) either adds the element to X if |X | < k or replaces pair (c′, a′) ∈ X
with the lowest corresponding counter (vc′ ) value (Algorithm 1, lines 9–15). The Lossy
Counting- based algorithm cleans up its X -set after each block of k consecutive events and
removes all those entries that have a counter value lower than variable � (lines 9–16).

Both algorithms insert a new element in data structure DA in line 7. Conceptually, the
algorithms generate a stream of (activity, activity)-pairs. Hence, in Algorithm 3 we present
a basic design for DA based on the Frequent Algorithm [25,26] which uses an activity pair
stream SA ∈ (A × A)∗ as an input. Thus, DA � {(a′, a)} in line 7 of Algorithms 1 and 2
represents adding pair (a, a′) at the end of stream SA.

The algorithm stores pairs of activities in its internal set X . Whenever a new pair (a, a′)
arrives, the algorithm checks whether it is already present in X , if so, it updates the corre-
sponding counter v(a,a′). If the pair is not yet present in X , the size of X is evaluated. If
|X | < k, the new pair is added to X and a new counter is created for the pair. If |X | ≥ k,
the new pair is not added; moreover, each counter is decreased by one and if a counter gets
value 0 the corresponding pair is removed.

The generalmechanism ofAlgorithm 3 is very similar toAlgorithm 1. Themain difference
consists of how to update X when |X | ≥ k. All three algorithms use a parameter k which, in
a way, represents the (maximum) size of X . Hence, when we write |DC |, |DA|, respectively,
we implicitly refer to the value of k. It should be clear that we are also able to implement
DC based on the Frequent Algorithm, i.e. we just adopt a different updating mechanism for
X . Likewise, we are also able to design DA based on the Space Saving/Lossy Counting
algorithm. Moreover, for DC we are able to use other types of stream-aware data structures,
i.e. techniques adopting a different scheme to ensure finite memory. Examples of such types
of techniques are Reservoir Sampling [19], and/or Decay- Based Schemes [21]. In the next
sections, we briefly explain how the α-Miner, Heuristics Miner and Inductive Miner use the
directly follows abstraction and what changes to the base scheme must be applied in order
to adopt them in a streaming setting.

5.1.1 The α-miner

The α-Miner [3] transforms the directly follows abstraction into a Petri net. When adopt-
ing the α-Miner to an event stream context, we directly adopt the scheme described
in the previous section. However, the algorithm explicitly needs a set of start and
end activities.

Approximating the start activities seems rather simple, i.e. whenever we receive a new
case, the corresponding activity represents a start activity. However, given that we at some
point remove (case, activity)-pairs from DC , we might designate some activities falsely as
start activities, i.e. a new case may in fact refer to a previously removed case. Approximating
the end activities is more complex, as we are often not aware when a case terminates. A
potential solution is to apply a warm-up period in which we try to observe cases that seem to
be terminated, e.g. by identifying cases that have long periods of inactivity or by assuming
that cases that are dropped out of DC are terminated. However, since we approximate case
termination, using this approach may lead to falsely select certain activities as end activities.

We can also deduce start and end activities from the directly follows abstraction. A start
activity is an a ∈ A with �a′∈A(a′ �= a | a′ > a), and an end activity is an a ∈ A
with �a′∈A(a′ �= a | a > a′). This works if these activities are only executed once at the
beginning, respectively, the end, of the process. In case of loops or multiple executions of
start/end activities within the process, we potentially falsely neglect certain activities as being
either start and/or end activities. In Sect. 8.2, we discuss this problem in depth.
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5.1.2 The Heuristics Miner

The Heuristics Miner [6,23,27] is designed to cope with noise in event logs. To do this, it
effectively counts the number of occurrences of activities, as well as the >-relation. Based
on the directly follows abstraction, it computes a derived metric a ⇒ b = |a>b|−|b>a|

|a>b|+|b>a|+1
that describes the relative causality between two tasks a and b (|a > b| denotes the number
of occurrences of a > b). The basic scheme presented in Sect. 5.1 suffices for computing
a ⇒ b, as long as DA explicitly tracks or approximates, the frequencies of its elements (in
the scheme this is achieved by the internal counters).

5.1.3 The Inductive Miner

The Inductive Miner [5], like the α-Miner, uses the directly follows abstraction and start
and end activities. It tries to find patterns within the directly follows abstraction that indicate
certain behaviour, e.g. parallelism. Using these patterns, it splits the event log into several
smaller logs and repeats the procedure. Due to its iterative nature, the InductiveMiner guaran-
tees to find sound workflow nets [14]. The Inductive Miner has also been extended to handle
noise and/or infrequent behaviour [28]. This requires, like the Heuristics Miner, to count the
>-relation. In [29], a version of the Inductive Miner is presented in which the inductive steps
are directly performed on the directly follows abstraction. In context of event streams, this
is the most adequate version to use as we only need to maintain a (counted) directly follows
abstraction.

5.2 Region theory

Several process discovery algorithms [2,7,30–32] are based on region theorywhich solve the
Petri net synthesis problem [33]. Classical region theory techniques ensure strict formal prop-
erties for the resulting process models. Process discovery algorithms based on region theory
relax these properties. We identify two different region theory approaches, i.e. language-
based and state-based region theory, which use different forms of abstract representations.

5.2.1 Language-based approaches

Algorithms based on language-based region theory [7,30] rely on a prefix closure of the input
event log, i.e. the set of all prefixes of all traces. It is trivial to adapt the scheme presented
to compute the directly follows abstraction (Sect. 5.1) to prefix closures. In stead of storing
(case, activity)-pairs in DC , we store pairs (c, σ ) ∈ C × A∗. We additionally use a data
structure D pc which approximates the prefix closure. Whenever we receive an event (c, a),
we look for a pair (c, σ ) ∈ DC . If such pair exist, we subsequently add σ ′ = σ · 〈a〉 to D pc

and update (c, σ ) to (c, σ ′). If there is no such pair (c, σ ), we add ε and 〈a〉 to D pc and
(c, 〈a〉) to DC . In case of [7], which uses integer linear programming where (an abstraction
of) the prefix closure forms the constraint body, we simply store the constraints inD pc, rather
than the prefix closure.

5.2.2 State-based approaches

Within process discovery based on state-based regions [2], a transition system is constructed
based on a view of a trace. Examples of a view are the complete prefix of the trace, the
multiset projection of the prefix, etc. The future of a trace can be used as well, i.e. given an
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event within a trace, the future of the event are all events happening after the event. However,
future-based views are not applicable in an event stream setting, as the future is unknown.

As an example of a transition system based on a simple event log L = [〈a, b, c, d〉,
〈a, c, b, d〉], consider Fig. 7. In Fig. 7a states are represented by a multiset view of the
prefixes of the traces, i.e. the state is determined by the multiset of activities seen before.
Activities make up the transitions within the system, i.e. the first activity in both traces is a;
thus, the empty multiset is connected to multiset [a] by means of a transition labelled a. In
Fig. 7a, we do not limit the maximum size of the multisets. Figure 7b shows a set view of
the traces with a maximum set size of 1. Again the empty set is connected with set {a} by
means of a transition labelled a. For trace 〈a, b, c, d〉 for example, the second activity is a
b, and thus, state {a} has an outgoing transition labelled b to state {b}. This is the case, i.e. a
connection to state {b} rather than {a, b}, due to the size restriction of size 1.

Consider the following scheme, similar to the scheme presented in Sect. 5.1. Given a
view type V , e.g. a set view, we design DC to maintain pairs (c, vc), s.t. vc is the last view
constructed for case c. Moreover, we maintain a collection of views DV . Updating DV is
straightforward. Given new event (c, a), based on vc we compute some new view v′

c, add it to
DV and update (c, vc) to (c, v′

c) in DC , e.g. updating the size-1 set view means that the new
view based on new event (c, a) is simply the set {a}. However, just maintaining size-1 sets
inDV does not suffice as the relations between those sets, i.e. the transitions in the transition
system, are not present in DV .

The problem is fixed by maintaining the transition system in memory, rather than DV ,
and updating it directly when we receive new events. Given some latest view vc for case c,
i.e. (c, vc) ∈ DC , activity a of new event (c, a) represents the transition from vc to the newly
derived v′

c. Without a limit on the view size, translating the transition system into a Petri net
is rather slow. Hence, in a streaming setting we limit the maximum size of the views. This, in
turn, causes some challenges w.r.t.DC and translation function λAT

DT . Consider the case where
we maintain a multiset/set view of traces with some arbitrary finite capacity k. Moreover,
given k = 2, assume we receive event (c, a) and (c, {a′, a′′}) ∈ DC . The question is whether
the new view for c is {a, a′} or {a, a′′}? Only if we store the last two events observed for c, in
order, we are able to answer this question, i.e. if (c, 〈a′, a′′〉) ∈ DC we deduce the new view
to be {a, a′′}. Finally note that when we aim at removing paths from the transitions system,
for example when we remove cases from c from DC , we need to store the whole trace for c
in order to be able to reduce all states and transitions related to case c.

(a) (b)

Fig. 7 Example transition systems based on L = [〈a, b, c, d〉, 〈a, c, b, d〉], a multiset abstraction
(unbounded), b set abstraction (max. set size 1)
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6 Evaluation

In this section, we present an evaluation of several instantiations of the architecture. We
also consider performance aspects of the implementation. All five algorithms, i.e. α-Miner,
Heuristics Miner, Inductive Miner, ILP (language- based regions) and Transition System
Miner (state-based regions), have been implemented using the schemes presented in Sect. 5
in the ProM [8] framework (http://www.promtools.org). ProM is the de facto standard aca-
demic toolkit for process mining algorithms and is additionally used by practitioners in the
field. Some of the implementations are ported to RapidProM [9] (http://www.rapidprom.
org), i.e. a plugin of RapidMiner (http://www.rapidminer.com), which allows for designing
large-scale repetitive experiments by means of scientific workflows [10]. Source code of
the implementations is available via the stream-related packages within the ProM code base,
i.e. StreamAbstractRepresentation, StreamAlphaMiner, StreamHeuristicsMiner, StreamILP-
Miner, StreamInductiveMiner and StreamTransitionSystemsMiner (code for a package X is
located at http://svn.win.tue.nl/repos/prom/Packages/X). Experiment results, event streams
and generating process models used, are available at https://github.com/s-j-v-zelst/research/
releases/download/kais1/2016_kais1_experiments.tar.gz.

6.1 Structural analysis

As a first visual experiment, we investigate the steady-state behaviour of the Inductive
Miner [5]. For bothDC andDA, we use the Lossy Counting scheme (Sect. 5.1). To create an
event stream, we created a timed Coloured Petri Net [34] in CPN tools [35] which simulates
the BPMNmodel depicted in Fig. 2 and emits the corresponding events. The event stream and
all other event streams used for experiments are free of noise. The model is able to simulate
multiple cases being executed simultaneously. The ProM streaming framework [36,37] is
used to generate an event stream out of the process model.

In Fig. 8, we show the behaviour of the Inductive Miner over time, configured with
|DC | = 75, |DA| = 75, based on a random simulation of the CPNmodel. Initially (Model 1),
the Inductive Miner only observes a few directly follows relations, all executed in sequence.
After a while (Model 2), the Inductive Miner observes that there is a choice between Prepare
acceptance pack and Reject Application. In Model 3, the first signs of parallel behaviour
of activities Appraise property, Check credit history and Assess loan risk become apparent.
However, not enough behaviour is emitted onto the stream to effectively observe the parallel
behaviour yet. In Model 4, we identify a large block of activities within a choice construct.
Moreover, an invisible transition loops back into this block. The Inductive Miner tends to
show this type of behaviour given an incomplete directly follows abstraction. Finally, after
enough behaviour is emitted onto the stream, Model 5 shows a Petri net version of example
process model of Fig. 2.

Figure 8 shows that the InductiveMiner is able to find the originalmodel based on the event
stream. We now focus on comparing the Inductive Miner with other algorithms described in
the paper. All discovery techniques discover a Petri net or some alternative process model
that we can convert to a Petri net. The techniques however differ in terms of guarantees w.r.t.
the resulting process model. The Inductive Miner guarantees that the resulting Petri nets are
sound, whereas the ILP Miner and the Transition System Miner do not necessarily yield
sound process models. To perform a proper behavioural comparative analysis, the soundness
property is often a prerequisite. Hence, we perform a structural analysis of all the algorithms
by measuring structural properties of the resulting Petri nets.
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Fig. 8 Visual results of applying the Inductive Miner on a stream

Using the offline variant of each algorithm, we first compute a reference Petri net. We
generated an event log L which contains enough behaviour such that the discovered Petri
nets describe all behaviour of the BPMNmodel of Fig. 2. Based on the reference Petri net, we
create a 15-by-15 matrix in which each row/column corresponds to an activity in the BPMN
model. If, in the Petri net, two labelled transitions are connected by means of a place, the
corresponding cells in the matrix get value 1. For example, given the first Petri net of Fig. 8,
the labels start and Check_application_completeness (in the figure this is “Check_appl”) are
connected by means of a place. Hence, the distance between the two labels is set to 1 in the
corresponding matrix. If two transitions are not connected, the corresponding value is set
to 0.

Using an event stream based on the CPN model, after each newly received event, we
use each algorithm to discover a Petri net. For each Petri net, we construct the 15-by-15
matrix. We apply the same procedure as applied on the reference model. However, if in
a discovered Petri net a certain label is not present, we set all cells in the corresponding
row/column to −1, e.g. in model 1 of Fig. 8 there is no transition labelled end; thus, the
corresponding rowand column consist of−1 values.Given amatrixM based on the streaming
variant of an algorithm, we compute the distance to the reference matrix MR as: dM,MR =√∑

i, j∈{1,2,...,15}((M(i, j) − MR(i, j))2. For all algorithms, the internal data structures used

were based on Lossy Counting, with size 100.
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Since the Inductive Miner and the α-Miner are completely based on the same abstrac-
tion, we expect them to behave similar. Hence, we plot their corresponding results together
in Fig. 9a. Interestingly, the distance metric follows the same pattern for both algorithms.
Initially, there is a steep decline in the distance metric after which it becomes zero. This
means that the reference matrix equals the matrix based on the discovered Petri net. The
distance shows some peaks in the area between 400 until 1000 received events. Analysing
the resulting Petri nets at these points in time showed that some activities were not present in
the resulting Petri nets at those points. The results for the Transition SystemsMiner (TS), the
ILP Miner and the Heuristics Miner are depicted in Fig. 9b. We observe that the algorithms
behave similar to the α- and Inductive Miner, which intuitively makes sense as the algo-
rithms all have the same data structure capacity. However, the peeks in the distance metric
occur at different locations. For the Heuristics Miner, this is explained by the fact that it
takes frequency into account and thus uses the directly follows abstraction differently. The
Transition System Miner and the ILP Miner use different abstract representations and have
a different update mechanism than the directly follows abstraction, i.e. they always update
their abstraction whereas the directly follows abstraction only updates if, for a given case,
we already received a preceding activity.

6.2 Behavioural analysis

Although the previous experiments provide interesting insights w.r.t. the functioning of the
algorithms in a streaming setting, they only consider structuralmodel quality.Adistance value
of 0 in Fig. 9 indicates that the resulting model is very similar to the reference model. It does
not guarantee that the model is in fact equal or entails the same behaviour as the reference
model. Hence, in this section we focus on measuring quantifiable similarity in terms of
behaviour. We use the Inductive Miner as it provides formal guarantees w.r.t. initialization
and termination of the resulting processmodels. This in particular is a requirement tomeasure
behavioural similarity in a reliable manner. We adapt the Inductive Miner to a streaming
setting by instantiating the S-BAR framework, using the scheme described in Sect. 5.1,
combined with the modifications described in Sect. 5.1.3. For finding start and end activities,
we traverse the directly follows abstraction and select activities that have no predecessor, or,
successor, respectively. We again use Lossy Counting [22] to implement both DC and DA

(Algorithm 2, Sect. 5.1).
We assess under what conditions the Inductive Miner instantiation is able to discover a

process model with the same behaviour as the BPMN model in Fig. 2. In the experiment,
after each received event, we query the miner for its current result and compute replay fitness

(a) (b)

Fig. 9 Distance measurements for the α-Miner, Inductive Miner (IM), ILP Miner (ILP), Transition Systems
Miner (TS) and Heuristics Miner, a distances for α and IM, b distances for TS, ILP and HM
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and precision measures based on a complete corresponding event log. In Fig. 10, the results
are presented for varying capacity sizes of the underlying data structure (Lossy Counting).

For the smallest data structure sizes, i.e. Fig. 10a, we identify that the replay fitness does
not stabilize.When the data structure size increases, i.e. Fig. 10b,we identify the replay fitness
to reach a value of 1 rapidly. The high variability in the precision measurements present in
Fig. 10c suggests that the algorithm is not capable of storing the complete directly follows
abstraction. As a result, the Inductive Miner tends to create flower-like patterns, thus greatly
under-fitting the actual process. The stable pattern present in Fig. 10d suggests that the sizes
used within the experiment are sufficient to store the complete directly follows abstraction.
Given that the generating process model is within the class of re-discoverable process models
of the Inductive Miner, both a replay fitness and a precision value of 1 indicate that the model
is completely discovered by the algorithm.

In the previous experimental setting, we chose to use the same capacity for both DC and
DA. Here we study the influence of the individual sizes of DC and DA. In Fig. 11 we depict
the results of two different experiments in which we fixed the size of one of the two data
structures and varied the size of the other data structure. Figure 11a depicts the results for
a fixed value |DC | = 100 and varying sizes |DA| = 10, 20, . . . , 50. Figure 11b depicts the

(a) (b)

(c) (d)

Fig. 10 Replay fitness and Precision measures based on applying the Stream Inductive Miner: increasing
memory helps to improve fitness and precision, a |DC | = 25, |DA| = 25, b |DC | = 75, |DA| = 75,
c |DC | = 25, |DA| = 25, d |DC | = 75, |DA| = 75

(a) (b)

Fig. 11 Replay Fitness measures for the Stream Inductive Miner, a |DC | = 100, |DA| = 10, 20, . . . , 50,
b |DC | = 10, 20, . . . , 50, |DA| = 100
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results for a fixed value |DA| = 100 and varying sizes |DC | = 10, 20, . . . , 50. As the results
show, the lack of conversion to a replay fitness value of 1 mostly depends on the size of DA

and is relatively independent of the size of DC . Intuitively, this makes sense as we only need
one entry (c, a) ∈ DC to deduce a > b, given that the newly received event is (c, b). Even if
case c is dropped at some point in time, and reinserted later, still information regarding the
directly follows abstraction can be deduced. However, if not enough space is reserved for
the DA data structure, then the data structure is incapable of storing the complete directly
follows abstraction.

6.3 Concept drift

In the previous experiments, we focused on a process model that describes observed steady-
state behaviour, i.e. the process model from which events are sampled does not change
during the experiments. In this section, we assess to what extend the Inductive Miner-based
instantiation of the framework is able to handle concept drift [38,39]. We focus on gradual
drift, i.e. the behaviour of the process model changes at some point in time, though the change
is only applicable for new cases, already active cases follow the old behaviour. In order to
obtain a gradual drift, we manipulated the CPN simulation model of the process model
presented in Fig. 2. The first five hundred cases that are simulated follow the original model.
All later cases are routed to a model in which we swap the parallel and choice structures
within the model (Fig. 12).

Figure 13 depicts the results of applying the Inductive Miner on the described gradual
drift. In Fig. 13a, we depict the results using data structure sizes |DC | = 100 and |DA| = 50
(Lossy Counting). The blue solid line depicts the replay fitness w.r.t. an event log containing

Fig. 12 Changes made to the business process model presented in Fig. 2, a parallel to choice, b choice to
parallel
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(a) (b)

Fig. 13 Replay Fitness measures for the Stream Inductive Miner, given an event stream containing concept
drift, a |DC | = 100, |DA| = 50, b |DC | = 100, |DA| = 100

behaviour prior to the drift, the red dashed line represents replay fitness w.r.t. an event log
containing behaviour after the drift. We observe that the algorithm again needs some time
to stabilize in terms of behaviour w.r.t. the pre-drift model. Interestingly, at the moment that
the algorithm seems to be stabilized w.r.t. the pre-drift model, the replay fitness w.r.t. the
post-drift model fluctuates. This indicates that the algorithm is not able to fully rediscover
the pre-drift model, yet it produces a generalizing model which includes more behaviour,
i.e. even behaviour that is part of the post-drift model. The first event in the stream related
to the new execution of the process is the 6.415th event. Indeed, the blue solid line drops
around this point in Fig. 13a. Likewise, the red dashed line rapidly increases to value 1.0.
Finally, around event 15.000 the replay fitness w.r.t. the pre-drift model stabilizes completely,
indicating that the prior knowledge related to the pre-drift model is completely erased from
the underlying data structure. In Fig. 13b, we depict results for the Inductive Miner using
sizes |DC | = 100 and |DA| = 100. In this case, we observe more stable behaviour, i.e. both
the pre- and post-model behaviour stabilizes quickly. Interestingly, due to the use of a bigger
k-value of the Lossy Counting Algorithm, the drift is reflected longer in the replay fitness
values. Only after roughly the 30.000th event the replay fitness w.r.t. the pre-drift model
stabilizes.

6.4 Performance analysis

Themain goal of the performance evaluation is to assess whether memory usage and process-
ing times of the implementations are acceptable. As the implementations are of a prototypical
fashion, we focus on trends in processing time and memory usage, rather than absolute per-
formance measures. For both processing time and memory usage, we expect stabilizing
behaviour, i.e. over time we expect to observe some non-increasing asymptote. If the pro-
cessing time/memory usage keeps increasing over time this implies that we are potentially
unable to handle data on the stream or need infinite memory.

Within the experiment we measured the processing time and memory usage for handling
the first 25.000 events emitted onto the stream. We again use the Inductive Miner with Lossy
Counting and varying window sizes (parameter k): |DC | = 25 and |DA| = 25, |DC | = 50
and |DA| = 50 and |DC | = 75, |DA| = 75 (represented in the figures as 25 × 25, 50 × 50
and 75×75, respectively). We measured the time the algorithm needs to update bothDC and
DA. The memory measured is the combined size of DC and DA in bytes. The results of the
experiments are depicted in Fig. 14. Both figures depict the total number of events received
on the x axis. In Fig. 14a, the processing time in nanoseconds is shown on the y axis, whereas
in Fig. 14b, the memory usage in bytes is depicted. The aggregates of the experiments are
depicted in Table 2.
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(a) (b)

Fig. 14 Performancemeasurements based on the Stream InductiveMiner, a processing times in nanoseconds,
b memory usage in bytes

Table 2 Aggregate performance measures for the Stream Inductive Miner

25 × 25 50 × 50 75 × 75

Avg. processing time (ns.) 4.168 3.866 3.519

Stdev. processing time (ns.) 3.245 2.589 2.691

Avg. memory usage (byte) 75.392 81.014 84.696

Stdev. memory usage (byte) 75.392 1.230 1.725

As Fig. 14a shows, there is no observable increase in processing times as more events have
been processed. The average processing time seems to slightly decrease when the window
size of the Lossy Counting data structure increases (see Table 2). Intuitively this makes
sense as a bigger window size of the Lossy Counting algorithm implies less frequent cleanup
operations.

Like processing time, memory usage of the Lossy Counting data structures does not show
an increasing trend (Fig. 14b). In this case however, memory usage seems to increase when
the window size of the Lossy Counting algorithm is bigger. Again this makes sense, as less
cleanup operations implies more active members within the data structures, and hence, a
higher memory usage.

7 Related work

For a detailed overview of process mining, we refer to [1]. For an overview of models,
techniques and algorithms in stream-basedmining and analysis, e.g. frequency approximation
algorithms, we refer to [40–42]. Little work has been done on the topic of stream-based
process discovery and stream-basedprocessmining in general. The notion of streamsof events
is not new, i.e. several fields study aspects related to streams of (discrete) events. Compared
to the field of complex event processing (CEP) [43], the S-BAR architecture can be seen as an
event consumer, i.e. a decoupled entity that processes the events produced by the underlying
system. However, whereas the premise of CEP is towards the design of event- based systems
and architectures, this work focuses on the behavioural analysis of such systems. The area of
event mining [44] focuses on gaining knowledge from historical event/log data. Although the
input data are similar, i.e. streams of system events, the assumptions on the data source are
different. Within event mining, data mining techniques such as pattern mining [44, Chpt. 4]
are used as opposed to techniques used within this paper, i.e. techniques discovering end-
to-end process models with associated execution semantics. Also, event mining includes
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methods for system monitoring, whereas the S-BAR architecture can serve as an enabler for
business process monitoring and prediction.

To the best of the author’s knowledge, this paper is the first work that presents a generic
architecture for the purpose of event stream- based process discovery. As such, the work
may be regarded as a generalization and standardization effort of some of the related work
mentioned within this section.

In [45], an event stream-based variant of the Heuristics Miner is presented. The algorithm
uses three internal data structures using both Lossy Counting [22] and Lossy Counting with
Budget [46]. The authors use these structures to approximate a causal graph based on an
event stream. The authors additionally present a sliding window-based approach. Recently,
an alternative data structure has been proposed based on prefix trees [47]. In this work, the
authors deduce the directly follows abstraction directly from a prefix tree which is main-
tained in memory. The main advantage of using the prefix trees is the reduced processing
time and usage of memory. In [48], Redlich et al. design an event stream-based variant of
the CCM algorithm [49]. The authors identify the need to compute dynamic footprint infor-
mation based on the event stream, which can be seen as the abstract representation used by
CCM. The dynamic footprint is translated to a process model using a translation step called
Footprint Interpretation. The authors additionally apply an ageing factor to the collected
trace information to fade out the behaviour extracted from older traces. Although the authors
define event streams similarly to this paper, the evaluation relies heavily on the concept of
completed traces. In [50], Burattin et al. propose an event stream-based process discovery
algorithm to discover declarative process models. The structure described to maintain events
and their relation to cases is comparable with the one used in [45]. The authors present several
declarative constraints that can be updated on the basis of newly arriving events instead of
an event log consisting of full traces.

8 Discussion

In this section, we discuss interesting phenomena observed during experimentation which
should be taken into account when adopting the architecture presented in this paper and in
event stream-based process discovery in general. We discuss limitations w.r.t. the complex-
ity of abstract representation computation and discuss the impact of the absence of trace
initialization and termination information.

8.1 Complexity of abstract representation computation

There are limitations w.r.t. the algorithms we are able to adopt using abstract representations
as basis. This is mainly related to the computation of the abstract representation within the
conventional algorithm.

As an example, consider the α+-algorithm [51] which extends the original α-Miner
such that it is able to handle self-loops and length-1-loops. For handling self-loops, the
α+-algorithm traverses the event log and identifies activities that arewithin a self-loop. Subse-
quently, it removes these from the log and after that calculates the directly follows abstraction.
For example, if L = [〈a, b, c〉, 〈a, b, b, c〉], the algorithm will construct L ′ = [〈a, c〉] and
compute directly follows metrics based on L ′.

In a streaming setting, we are able to handle this as follows. Whenever we observe some
activity a to be in a self-loop and want to generate the directly follows abstraction, then for
every (a′, a) ∈ DA and (a, a′′) ∈ DA, s.t. a �= a′ and a �= a′′, we deduce that (a′, a′′) is part
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(a) (b)

Fig. 15 Two abstract representations, a event log, b event stream

of the directly follows abstraction whereas (a, a), (a′, a) and (a, a′′) are not. Although this
procedure approximates the directly follows relation on the event stream, a simple example
shows that the relation is not always equal.

Imagine a process P = {〈a, b, b, c〉, 〈a, e, b, d〉}. Clearly, any noise-free event log
over this process is just a multiset over the two traces in P . In case of the conventional
α+-algorithm, removing the b-activity leads to the two traces 〈a, c〉 and 〈a, e, d〉. Con-
sider the corresponding directly follows abstraction, depicted in Fig. 15a. Observe that
all possible directly follows pairs that we are able to observe on any stream over P
are: (a, b), (a, e), (b, b), (b, c), (b, d), (e, b). Applying the described procedure yields the
abstraction depicted in Fig. 15b. Due to the information that is lost by only maintaining
directly follows pairs, we deduce non-existing relations (a, d) and (e, c).

In general, it is preferable to adopt an abstraction-based algorithm that constructs the
abstract representation in one pass over the event log.

8.2 Initialization and termination

For the definitions presented in this paper, we abstract from trace initialization and/or ter-
mination, i.e. we do not assume the existence of explicit start/end events. Apart from the
technical challenges related to finding these events, i.e. as described in Sect. 5.1.1 regarding
start/end activity sets used by the α-Miner and Inductive Miner, this can have a severe impact
on computing the abstract representation as well.

If we assume the existence and knowledge of unique start and end activities, adopting any
algorithm to cope with this type of knowledge is trivial. We only consider cases of which
we identify a start event and we only remove knowledge related to cases of which we have
seen the end event. The only challenge is to cope with the need to remove an unfinished case
due to memory issues, i.e. how to incorporate this deletion into the data structure/abstract
representation that is approximated.

If we do not assume and/or know of the existence of start/end activities, whenever we
encounter a case for which our data structure indicates that we have not seen it before, this
case is identified as being a “new case”. Similarly, whenever we decide to drop a case from
a data structure, we implicitly assume that this case has terminated. Clearly, when there is
a long period of inactivity, a case might be falsely assumed to be terminated. If the case
becomes active again, it is treated as a new case again. The experiments reported in Fig. 11
show that in case of the directly follows abstraction, this type of behaviour has limited impact
on the results. However, in a more general sense, e.g. when approximating a prefix closure on
an event stream, this type of behaviour might be of greater influence w.r.t. resulting model.
The ILP Miner likely suffers from such errors and as a result produces models of inferior
quality.

In fact, for the ILP Miner the concept of termination is of particular importance. To
guarantee a single final state of a processmodel, the ILPMiner needs to be aware of completed
traces. This corresponds to explicit knowledge ofwhen a case is terminated in an event stream
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setting. Like in the case of initialization, the resulting models of the ILP miner are greatly
influenced by a faulty assumption on case termination.

9 Conclusion

In this paper, we presented a generic architecture that allows for adopting existing process
discovery algorithms in an event stream setting. The architecture is based on the observation
that many existing process discovery algorithms translate a given event log into some abstract
representation and subsequently use this representation to discover a process model. Thus, in
an event stream-based setting, it suffices to approximate the abstract representation using the
event stream in order to apply existing process discovery algorithms to streams of events. The
exact behaviour present in the resulting process model greatly depends on the instantiation
of the underlying techniques that approximate the abstract representation.

Several instantiations of the architecture have been implemented in the process mining
toolkits ProM and RapidProM. We primarily focused on abstract representation approxima-
tions using algorithms designed for the purpose of frequent item mining on data streams.
We structurally evaluated and compared five different instantiations of the framework. From
a behavioural perspective, we focused on the Inductive Miner as it grantees to produce
sound workflow nets. The experiments show that the instantiation is able to capture process
behaviour originating from a steady-state-based process. Moreover, convergence of replay
fitness to a stable value depends on parametrization of the internal data structure. In case of
concept drift, the size of the internal data structure of use impacts both model quality and
the drift detection point. We additionally studied the performance of the Inductive Miner
instantiation. The experiments show that both processing time of new events and memory
usage are non-increasing as more data are received.

Future work

Within the experiments, we chose to limit the use of internal data structure to the Lossy
Counting-based approach. However, more instantiations, i.e. Frequent/Space Saving, are
presented and implemented. We plan to investigate the impact of several different designs of
the internal data structures w.r.t. both behaviour and performance.

The architecture presented in this work focuses on approximating abstract representations
and exploiting existing algorithms to discover a process model. However, bulk of the work
might be performed multiple times, i.e. several new events emitted to the stream might not
change the abstract representation.We therefore plan to conduct a study towards a completely
incremental instantiation of the architecture, i.e. can we immediately identify whether new
data changes the abstraction or even the resulting model?

Another interesting direction for future work is to go beyond control-flow discovery,
i.e. can we lift conformance checking, performance analysis, etc. to the domain of event
streams? Moreover, in such cases we might need to store more information, i.e. store all
attributes related to events within cases seen so far. We plan to investigate the application
of lossless/lossy compression of the data seen so far, i.e. using frequency distributions of
activities/attributes to encode sequences in a compact manner.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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