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Abstract Nowadays the use of deep network architectures has become widespread in
machine learning. Deep belief networks (DBNs) have deep network architectures to cre-
ate a powerful generative model using training data. Deep belief networks can be used in
classification and feature learning. A DBN can be learned unsupervised, and then the learned
features are suitable for a simple classifier (like a linear classifier) with a few labeled data. In
addition, according to researches, by using sparsity in DBNs we can learn useful low-level
feature representations for unlabeled data. In sparse representation, we have the property
that learned features can be interpreted, i.e., correspond to meaningful aspects of the input,
and capture factors of variation in the data. Different methods are proposed to build sparse
DBNs. In this paper, we proposed a new method that has different behavior according to
deviation of the activation of the hidden units from a (low) fixed value. In addition, our
proposed regularization term has a variance parameter that can control the force degree of
sparseness. According to the results, our new method achieves the best recognition accu-
racy on the test sets in different datasets with different applications (image, speech and text)
and we can achieve incredible results when using a different number of training samples,
especially when we have a few samples for training.

Keywords Deep belief network · Restricted Boltzmann machine · Normal sparse RBM ·
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1 Introduction

From many years ago, artificial neural networks have been used in artificial intelligence
applications. Pattern recognition, voice and speech analysis and natural language processing
are some of these applications that use artificial neural networks. Due to some theoretical
and biological reasons, deep models and deep network architectures with many nonlinear
processing layers were suggested.

These deepmodels havemany layers and parameters thatmust be learnt.When the learning
process is so complicated and a huge number of parameters are needed, artificial neural
networks are rarely used. The problem of this number of layers is that training is time-
consuming and training becomes trapped at local minima. Therefore, we cannot achieve
acceptable results. One important tool for dealing with this problem is to use DBNs (deep
belief networks) that can create neural networks, including many hidden layers [16] with
unsupervised learning.

Deep belief networks can be used in classification and feature learning.Data representation
is very important in machine learning. Therefore, much work has been done for feature
preprocessing, feature extraction and feature learning. In feature learning, we can create
a feature extraction system and then use the extracted features in classification and other
applications. Using unlabeled data in high-level feature extraction [15] and also increasing
discrimination between extracted features are the benefits of DBN for feature learning [1,8].
According to this advantage, DBN can be learnt unsupervised and then the learnt features
are suitable for a simple classifier (like a linear classifier) with a few labeled data.

Layers of DBN are created from the restricted Boltzmann machine (RBM) that is a gener-
ative and undirected probabilistic model. RBMs use a hidden layer to model the probability
distribution of visible variables. Indeed, we can create a DBN for hierarchical processing
using stacking RBMs. Therefore, most of the improvements in DBNs are due to the improve-
ment in RBMs. This paper studies an improvement in training by using a new regularization
term in the sparse RBM model.

Sparsity has recently become a concept of great interest and has become a key ingredient in
deep belief networks. Bengio has argued that if one is going to have fixed-size representations,
then sparse representations are more efficient (than non-sparse ones) in an information-
theoretical sense, allowing for variation in the effective number of bits per example [2].

Another argument in favor of sparsity is that the fixed-length representation is going
to be used as input for further processing, so that it should be easy to interpret. A highly
compressed encoding is usually highly entangled, so that no subset of bits in the code can
really be interpreted unless all the other bits are taken into account. Instead, wewould like our
fixed-length sparse representation to have the property that individual bits or small subsets of
these bits can be interpreted, i.e., correspond to meaningful aspects of the input, and capture
factors of variation in the data [2].

According to researches, sparse coding learns useful low-level feature representations for
unlabeled data [22]. Now, suppose that we are interested in learning more complex, higher
level features. For example, wemaywant to learn object-part features from images rather than
just edge detectors. With this goal in mind, it appears to be fairly plausible to attempt to build
hierarchical feature representations using sparse coding. However, it is not straightforward
to apply sparse coding recursively to build multiple levels of hierarchy. We hypothesize that
this difficulty may be due to the following factors.

First, sparse coding (with real-valued inputs) assumes a non-sparse input distribution,
whereas the output distribution of sparse coding is very sparse; applying another sparse
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coding on the top of the sparse coding output may not satisfy the modeling assumption.
Second, the optimization (i.e., inference) in sparse coding is fairly expensive since it involves
L1 regularized optimization [14].

Therefore, an alternative approach has been used in building hierarchical representation.
The main idea is to use deep learning algorithms that can provide hierarchical representation.
One of these deep learning algorithms is DBN. Unlike sparse coding, the RBMs can be
easily stacked to form a hierarchical representation called DBNs. Furthermore, approximate
inference for RBMs and DBNs is computationally efficient [14]. In this paper, we develop a
new sparse variant of the deep belief networks.

Different methods are proposed to build sparse RBMs [9,14,21]. These different methods
are based on a different regularization term definition. In one of these definitions, the regu-
larization term quadratically penalizes a deviation of the expected activation of the hidden
units from a (low) fixed level p [14]. In another paper, based on the rate distortion theory, the
penalty factor is the activation probability in hidden units [9]. In this paper, we proposed a
new regularization term that has different behavior according to deviation of the activation of
the hidden units from a (low) fixed level p and in addition, our proposed regularization term
has a variance parameter that can control the force degree of sparseness. According to the
results, our new method achieves the best recognition accuracy on the test sets in different
datasets with different applications.

The rest of this paper is organized as follows: In Sect. 2, RBM and DBN are described.
SparseRBMmethods and our proposedmethod in this paper are presented in Sects. 3 and 4. In
Sect. 5, some experiments are conducted and the proposedmethod is compared to some other
methods in the tasks of digit recognition on the MNIST dataset, spoken letter recognition on
the ISOLET dataset and document topic classification on the 20 Newsgroups dataset. Finally,
Sect. 6 concludes the paper.

2 Deep belief networks (DBNs) and restricted Boltzmann machines
(RBMs)

DBNs are composed of multiple layers of RBMs. Outputs of hidden layer in each RBM can
be considered as input for the next RBM layer (see Fig. 1). With this method, DBN will be
trained layer by layer [7].

An RBM is a Markov random field with two groups of hidden and visible units. In RBMs,
each neuron is connected to all neurons in the other layer. However, there are no connec-
tions between neurons in the same layer [4]. This restriction in RBMs causes conditional
independence between visible and hidden units.

The joint probability distribution under the model uses an energy function of {v,h}.

E(v,h) = −vTWh − aT v − bT h

= −
gv∑

i=1

gh∑

j=1

wi jvi h j −
gv∑

i=1

aivi −
gh∑

j=1

b j h j (1)

where wi j represents the symmetric interaction term between visible unit i and hidden unit
j , while bi and a j are bias terms for hidden units and visible units, respectively.

According to energy function, the joint probability distribution of RBMmodel with visible
and hidden units is defined.
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Fig. 1 Multiple layers of RBMs.
Outputs of hidden layer in each
RBM can be considered as input
for the next RBM layer. Shaded
nodes are visible units

P(v) =
∑

h

P(v,h) = 1

Z

∑

h

exp (−E(v,h)) (2)

where Z is partition function or normalization constant. Since there are no connections
between neurons in the same layer, the conditional distributions are factorial and are given
by:

P
(
h j = 1

∣∣v
) = g

(
b j +

∑

i

viwi j

)
(3)

P
(
vi = 1

∣∣h
) = g

⎛

⎝ai +
∑

j

h jwi j

⎞

⎠ (4)

where g(.) is the logistic sigmoid function [18].
Training in RBMs maximizes probability distribution in training data with respect to the

model parameters.

maximize{wi j ,ai ,b j}
1

m

m∑

l=1

log
(
P

(
v(l)

))
(5)

where the parameter m is the number of training data samples and W, a and b are RBM
parameters. To maximize probability distribution, these RBM parameters need to be learnt.
Because of the presence of Z , gradient calculation is not possible. Therefore, sampling
methods are used in gradient calculation.
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Fig. 2 Visualization of 100 bases learned by the second hidden layer in DBN (left) and nsDBN (right) from
the MNIST digit dataset. Here, each second layer base was visualized as a weighted linear combination of the
first layer bases

∂ log P(v)
∂wi j

=< vi h j >data − < vi h j >model (6)

The expectation< vi h j >data is the expectation observed in the training set (with h j sampled
given vi according to the model), and < vi h j >model is the expectation under the distribu-
tion defined by the model [19]. Since complete computing of < vi h j >model is extremely
time-consuming, so other sampling methods such as contrastive divergence (CD) [7], persis-
tent contrastive divergence (PCD) [23] and free energy in persistent contrastive divergence
(FEPCD) [11] can be used instead. Computation steps in the CD1 method are illustrated in
Fig. 2.

3 Sparse RBM

Different methods are proposed to build sparse RBMs [9,14,21]. Essentially, RBMs learn
non-sparse distributed representations. In all proposed methods, the learning algorithm in
RBM has been changed to enforce RBM to learn sparse representation. The goal of sparsity
in RBM is that most hidden units have zero values or in other words, the activation probability
of hidden units be close to zero. For this purpose, a regularization term (Lsparsity) is defined
to reduce the average activation probability on the training data. This regularization ensures
that the “firing rate” of the model neurons (corresponding to the latent random variables h j )
is kept at a fairly low level, so that the activations of the model neurons are sparse [14]. Thus,
given a training set

{
v(1), . . . , v(m)

}
comprisingm examples, the optimization problem in (5)

will be changed by adding the regularization term:

maximize{wi j ,ai ,b j}
1

m

m∑

l=1

log
(
P

(
v(l)

))
+ λLsparsity (7)

where λ is a regularization constant. Thus, our objective is the sum of a log-likelihood term
and a regularization term (i.e., a tradeoff between “likelihood” and “sparsity”). In principal,
we can apply gradient descent to this problem; however, computing the gradient of the log-
likelihood term is expensive. Fortunately, an efficient approximation to the gradient of the
log likelihood like CD, PCD or FEPCD can be used. Therefore, in each iteration we can
apply the approximation to the gradient of the log-likelihood update rule, followed by one
step of gradient descent using the gradient of the regularization term, as summarized in
Algorithm 1.
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Algorithm 1 Sparse RBM learning algorithm [15]

1. Update the parameters (W ,a,b) using approximation to the gradient of the log likelihood
like CD, PCD or FEPCD.

2. Update the parameters (W ,a,b) using the gradient of the regularization term.
3. Repeat steps 1 and 2 until convergence or reach the max epoch.

Different researchers have used different regularization terms. One of them penalizes
quadratically as a deviation of the expected activation of the hidden units from a (low) fixed
level p [15] (we name it quadratic sparse RBM or qsRBM).

Lsparsity = −
n∑

j=1

∣∣∣∣∣p − 1

m

m∑

l=1

E

[
h(l)
j

∣∣v(l)
]∣∣∣∣∣

2

(8)

where E[.] is the conditional expectation on the j th hidden unit given the data and p is a
constant controlling the sparseness of the n hidden units h j . Most researchers use this method
as sparsity technique.Another paper used the cross entropy between the desired (p) and actual(

1
m

∑m
l=1 E

[
h(l)
j

∣∣v(l)
])

distributions of activations [21]. Due to identical equations of this

method and qsRBM, we avoid expressing it for brevity.
In another paper based on rate distortion theory, the penalty factor is the activation prob-

ability of hidden units [9] (we call it rate distortion sparse RBM or rdsRBM).

Lsparsity = −
m∑

l=1

∥∥∥P
(
h(l)

∣∣v(l)
)∥∥∥

1
(9)

In another paper, the authors offered a theoretical approach for sparse constraints in the DBN
using the mixed norm for both nonoverlapping and overlapping groups [5].

Lsparsity = −
∑

M

∥∥∥P
(
h(l)

∣∣v(l)
)∥∥∥

2
(10)

where M is the number of groups formed in it. In a similar paper [17], without using groups,
the logarithm of output value has been used.

Lsparsity = −
m∑

l=1

log

(
1 + P

(
h(l)

∣∣v(l)
)2)

(11)

Finally, among these different methods, one more cited (qsRBM) and the most recent
one (rdsRBM) are selected to be compared with the proposed method. In the following, we
explain a new regularization term with different properties that improves the classification
results.

4 Normal sparse RBM (nsRBM)

In this paper, we proposed a new regularization term that has different behavior according to
deviation of the activation of the hidden units from a (low) fixed level p . We used normal
probability density function as the regularization term.

Lsparsity =
n∑

j=1

f
(
q j , p, σ

2) (12)
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Fig. 3 Left-hand side figure normal pdf with p = 0.09 and σ 2 = 0.05 in the interval of [0, 1]. Right-hand
side figure the gradient of the first figure. This figure shows different behaviors according to the difference
between activation of hidden units and a target value (p)

where f is a normal probability density function, q j is the average of conditional expectation
on the j th hidden unit given the data, p is a constant (low) fixed level that controls the
sparseness and σ 2 is variance.

f
(
q j , p, σ

2) = 1

σ
√
2π

e
− 1

2

( q j−p
σ

)2
(13)

where σ is standard deviation [10].

q j = 1

m

m∑

l=1

E

[
h(l)
j

∣∣v(l)
] h j can only take values 0 or 1−−−−−−−−−−−−−−−→

q j = 1

m

m∑

l=1

P
(
h(l)
j = 1

∣∣v(l)
)

= 1

m

m∑

l=1

q(l)
j (14)

In the above equation E [.] is the conditional expectation on the j th hidden unit given the
data, m is the number of training set and q(l)

j = g(I j ) is equal to the activation probability
of the hidden unit h j given v and g is the logistic function. This penalty function and its
derivative are depicted in Fig. 3.

According to Fig. 3, maximum updates in parameters (or maximum of absolute value of
gradient) occur when activation probability in the hidden units is not near zero or one. This
figure shows that when activation probability is near the mean of normal pdf, which is near
zero, parameter updates are inclined to zero and the hidden unit acts well. When activation
probability is near one, the unit may indicate an important factor that must be active and
therefore, we penalize it only a little bit. If this hidden unit does not indicate an important
factor, after some epochs, the activation probability deviates from one. In addition, zero value
is not a suitable value because this means that the unit is dead and does not work properly.
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Fig. 4 Normal pdf with p = 0.1 and different variance values (σ 2 = 0.05, σ 2 = 0.1, σ 2 = 0.15). Penalty
function can be controlled by different variance values

Finally, if activation probability in the hidden units is not near zero or one, which means
that the unit cannot show a specific factor and has little information, the gradient will update
parameters exponentially to have activation probability near zero value.

In addition, our proposed regularization term has a parameter that can control the force
degree of sparseness. According to Fig. 4 by different variance values, we can control the
penalty value or degree of sparseness.

According to Algorithm 1, the gradient of regularization term must be used in step 2. The
gradient of our regularization term can be computed as follows:

∂

∂wi j
Lsparsity = ∂

(
f
(
q j , p, σ 2

))

∂wi j
= ∂

(
f
(
q j , p, σ 2

))

∂q j
× ∂

(
q j

)

∂ I
× ∂ (I )

∂wi j
(15)

where I j = b j + ∑
i viwi j is equal to the sum of inputs to hidden unit j .

∂
(
f
(
q j , p, σ 2

))

∂q(l)
j

=
(
p − q j

)

σ 2 f
(
q j , p, σ

2) (16)

∂
(
q j

)

∂ I
× ∂ (I )

∂wi j
= 1

m

m∑

l=1

q(l)
j

(
1 − q(l)

j

)
v

(l)
i (17)

where q(l)
j = g(I j ) is equal to activation probability of hidden unit h j given v and g as the

logistic function. Therefore, the RBM parameters are updated with the regularization term
based on the following equations:

∂

∂wi j
Lsparsity ∝ 1

m

(
p − 1

m

m∑

l=1

q(l)
j

)
f
(
q j , p, σ

2)
m∑

l=1

q(l)
j

(
1 − q(l)

j

)
v

(l)
i (18)

Finally, for hidden bias we have the following equation:

∂

∂b j
Lsparsity ∝ 1

m

(
p − 1

m

m∑

l=1

q(l)
j

)
f
(
q j , p, σ

2)
m∑

l=1

q(l)
j

(
1 − q(l)

j

)
(19)

Finally, by comparing the proposed method with other methods, it can be concluded that
this method has some features that is rarely seen in other methods. One of them is that
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other methods have an invariant form in their regularization term but the regularization term
in nsDBN can be changed and can control the force degree of sparseness. This advantage
enables better controlling of the force degree of sparseness. The other benefit of our method
is that the new regularization term has different behaviors according to deviations of the
activation of the hidden units from a (low) fixed value. According to these qualifications, it
will be depicted in the following experiments that our proposed method outperforms other
methods.

5 Results

The method proposed in this paper was evaluated on different datasets with different appli-
cations and input type. These datasets are in the tasks of digit recognition on the MNIST
dataset with discrete feature values between 0 and 255, spoken letter recognition on the
ISOLET dataset with real feature values and a document topic classification on the 20 News-
groups dataset with binary feature values. Also, we used the DeeBNet MATLAB toolbox
[12] (the toolbox implemented by the authors) in the experiments. In addition, we used the
new FEPCDmethod [17] to approximate the gradient of the log likelihood (see Sect. 2). Our
nsRBM method has been implemented and is available online.1

5.1 MNIST dataset

MNIST2 dataset includes images of handwritten digits [13] (10 classes of digits 0–9). Each
digit was carefully located in the center of each 28*28 image. The image pixels have discrete
values between 0 and 255, most of which have the values at the edge of this interval [20]. The
datasetwas divided to train and test parts including 60,000 and 10,000 images, respectively. In
our experiments, these discrete values were mapped to the interval [0–1] using the min–max
normalization method as following:

x ′
i = xi − min(X)

max(X) − min(X)
(20)

where xi is a sample attribute value, min(X) is the minimum value of entire dataset (in the
MNIST dataset, this value is 0), max(X) is the maximum value of entire dataset (in the
MNIST dataset, this value is 255), and x ′

i is the normalized value.
As the first result, we used an RBM and a normal sparse RBM with 500 hidden units.

Figure 5 shows a histogram of activation probability of hidden units for one image. According
to this figure, normal sparse RBM can reduce activation of hidden units significantly.

In another test with the sameRBMand nsRBM, the bases in nsRBMaremore informative.
Figure 6 shows that the resulted bases learnt by nsRBM have a clear structure and in the
nsRBM method, the greatest proportion of interesting feature detectors was learnt.

After learning an RBM with 500 hidden units, we learnt a new RBM and nsRBM with
100 hidden units on the activation probability of hidden units produced by RBM and nsRBM,
respectively. These stacked RBMs and nsRBMs composed a DBN and an nsDBN. The bases
generated by the second hidden layer are visualized in Fig. 7.

1 Available online at “http://ceit.aut.ac.ir/~keyvanrad/DeeBNetToolbox.html”.
2 Available online at “http://yann.lecun.com/exdb/mnist/”.
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Fig. 5 Activation probability of hidden units for one image obtained by RBM (left) and normal sparse RBM
(right). According to this figure, normal sparse RBM can significantly reduce activation of hidden units

Fig. 6 Visualization of 484 bases learned by RBM (left) and nsRBM (right) from the MNIST digit dataset.
Here bases are weights corresponding to each pixel in each hidden unit. Bases in nsRBM are more informative
and have a clear structure compared to classic RBM

According to Fig. 7, the bases of the second hidden layer learnt by nsDBN are more
abstract than those obtained by DBN. It is obvious that they learned the digits distinctly and
can capture higher order correlations among the input pixel intensities.

For a better comparison and to demonstrate the superiority of this method in learning fea-
tures, several experiments have been conducted. In these experiments, our proposed method
is compared with two other sparsity methods (qsRBM and rdsRBM), classic RBM, principal
component analysis and raw features. Also, all models have been trained on 20,000 training
samples of MNIST dataset (similar to [9]) to extract 500 features from visible data (except
in raw features where all input features are used).

Now with these learnt models, features of 10, 20, 50, 100, 500 and 1000 images per class
are used in training a linear classifier. The reason of using a simple linear classifier is to
achieve a better comparison between strength of learnt features. Also for better classifier
evaluation, image selection in each class and linear classifier training has been run twenty
times separately and averages on results have been reported.
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Fig. 7 Visualization of 100 bases learned by the second hidden layer in DBN (left) and nsDBN (right) from
the MNIST digit dataset. Here, each second layer base is visualized as a weighted linear combination of the
first layer bases

Table 1 Digit recognition error rate on MNIST dataset on training (with 10, 20, 50, 100, 500 and 1000
samples per class) and test sets, and by a linear classifier that has been trained on active probability of hidden
units produced by rate distortion sparse RBM (rdsRBM) using four best parameters

Parameters (rdsRBM) Number of samples

λ p σ 2 10 20 50 100 500 1000

0.02 – – 16.240 11.482 7.996 6.520 4.401 3.849

0.01 – – 16.674 11.732 8.151 6.612 4.374 3.685

0.005 – – 16.446 11.798 8.013 6.379 4.121 3.562

0.001 – – 16.817 11.972 8.302 6.564 4.274 3.601

In order to facilitate the comparison, the best results were highlighted in bold

Table 1 displays error rate on the MNIST test set produced by a linear classifier trained
on active probability of hidden units produced by rdsRBM with the four best parameters.
Also, Tables 2 and 3 display error rate on qsRBM and nsRBM, respectively, with four best
parameter combinations. In our experiments, we did a simple grid search for about three
parameters using different grid points per parameter. For example, in MNIST dataset, all
combination of five different values for cost value (in the interval [0.1, 3]), six different
values for target value (in the interval [0.01, 0.1]) and three different values for variance
(in the interval [0.05, 0.15]) were tested on nsRBM method and finally, four best parameter
combinations were selected.

In order to facilitate the comparison, the best results were highlighted in bold. According
to these results, the nsRBM has the best results under each training sample size.

In Table 4, the recognition ability based on raw data (784 features), transformed codes
produced by PCA (500 features), RBM, qsRBM, rdsRBM and nsRBM (all with 500 hidden
units) are compared. In this table, the results obtained by the best parameter combinations
for each of the qsRBM, rdsRBM and nsRBM are presented. According to Table 4, it can be
seen that nsRBM always achieves the best recognition accuracy on the MNIST test set for
all different numbers of samples.
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Table 2 Digit recognition error rate on MNIST dataset training (with 10, 20, 50, 100, 500 and 1000 samples
per class) and test sets, and by a linear classifier that has been trained on active probability of hidden units
produced by quadratic sparse RBM (qsRBM) using four best parameters combination

Parameters (qsRBM) Number of samples

λ p σ 2 10 20 50 100 500 1000

2 0.1 – 15.864 10.857 7.252 5.891 3.799 3.221

1 0.07 – 15.713 10.855 7.290 5.789 3.783 3.165

1 0.03 – 15.040 10.376 7.061 5.789 3.956 3.428

0.5 0.07 – 16.128 10.885 7.452 5.835 3.780 3.171

In order to facilitate the comparison, the best results were highlighted in bold

Table 3 Digit recognition error rate on MNIST dataset training (with 10, 20, 50, 100, 500 and 1000 samples
per class) and test sets, and by a linear classifier that has been trained on active probability of hidden units
produced by normal sparse RBM nsRBM using four best parameters combination

Parameters (nsRBM) Number of samples

λ p σ 2 10 20 50 100 500 1000

3 0.09 0.05 15.031 10.262 6.810 5.483 3.633 3.081

3 0.07 0.05 14.758 9.894 7.054 5.568 3.698 3.128

2 0.07 0.1 14.563 10.518 6.956 5.545 3.747 3.199

0.5 0.05 0.1 15.733 10.418 7.083 5.573 3.741 3.253

In order to facilitate the comparison, the best results were highlighted in bold

Table 4 Digit recognition error rate on MNIST dataset on training (with 10, 20, 50, 100, 500 and 1000
samples per class) and test sets, and by a linear classifier that has been trained on raw data, transformed codes
produced by PCA and active probability of hidden units produced by RBM, qsRBM, rdsRBM and nsRBM

Methods (features) Number of samples

10 20 50 100 500 1000

RAW 23.100 17.416 12.806 10.767 7.646 6.700

PCA 22.546 17.199 12.990 10.706 7.596 6.719

RBM 17.734 12.291 8.567 6.825 4.445 3.734

qsRBM 15.040 10.376 7.061 5.789 3.956 3.428

rdsRBM 16.446 11.798 8.013 6.379 4.121 3.562

nsRBM 15.031 10.262 6.810 5.483 3.633 3.081

In order to facilitate the comparison, the best results were highlighted in bold. It can be seen that nsRBM
always achieves the best recognition accuracy on the MNIST test set for all different number of samples

A notable point in these results is the superiority of features obtained from all sparse
methods compared to other non-sparse features. However, this result was predictable because
as discussed before, according to learning theory, to obtain a good generalization, it is enough
that the total number of bits needed to encode the whole training set be small, compared to the
size of the training set [2]. This property can be obtained by sparsity. In addition, these sparse
features are closer to brain function, because it seems that our brains use a representation
that is sparse and only 1–4% of the neurons are active at a given time [2].
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Table 5 Digit recognition error rate onMNIST training (with 10, 20, 50, 100, 500 and 1000 samples per class)
and test sets, and by a linear classifier that has been trained on active probability of hidden units produced by
the first and second layers in DBN, qsDBN, rdsDBN and nsDBN

Method Number of samples

10 20 50 100 500 1000

DBN 15.947 11.321 7.958 6.440 4.102 3.478

qsDBN 13.929 9.483 6.728 5.577 3.777 3.233

rdsDBN 15.123 10.738 7.372 5.938 3.840 3.265

nsDBN 13.368 9.291 6.508 5.263 3.418 2.899

The best results are highlighted in bold. nsDBN always achieves the best recognition accuracy on the training
and test sets for different number of samples

Another notable point in these results is that our method outperforms all other methods.
This superiority is due to the regularization term that has different behaviors according to the
difference between activation value of hidden units and a (low) fixed value. In addition, the
regularization term has a variance parameter that can control the force degree of sparseness.

Since a DBN can learn higher levels of representation in its layers [2], in the next experi-
ments, a layer with 100 hidden neurons was added to last models (RBM, qsRBM, rdsRBM
and nsRBM). After learning new models with their learning methods, a feature vector of
learnt features in first and second layer was used for training linear classifier (500 and 100
features in first and second layers, respectively). Table 5 displays the error rate on the test
set. According to Table 5, we can see again that nsDBN always achieves the best recognition
accuracy on the training and test sets when using a different number of samples.

5.2 ISOLET dataset

In the ISOLET3 dataset, 150 speakers utter the name of each of 26 types of letters of the
alphabet twice. Hence, there are 52 training examples from each speaker. The speakers are
grouped into sets of 30 speakers each and are referred to as isolet1, isolet2, isolet3, isolet4
and isolet5. The train data appear in the isolet1+2+3+4 data file in sequential order, i.e.,
first the speakers from isolet1, then isolet2, and so on. The test set, isolet5, is a separate
file. Due to three missing examples, there are 7797 examples in total referred to as isolet1-
isolet5 (6238 training examples and 1559 test examples). The feature vector has 617 features
including spectral coefficients, contour features, sonorant features, pre-sonorant features and
post-sonorant features [3].

Since features have real values, the Gaussian visible units are used [6]. As the first result in
the ISOLET dataset, we used an RBM and a normal sparse RBMwith 500 hidden units. Fig-
ure 8 shows the histogram of activation probability of hidden units for all test data. According
to this figure, normal sparse RBM can reduce activation of hidden units significantly.

Similar to the MNIST test, our proposed method is compared with two other sparsity
methods (qsRBM and rdsRBM), classic RBM, principal component analysis and raw fea-
tures. Also, all models have been trained on 3640 feature vectors (i.e., 140 feature vectors
per class) of ISOLET dataset to extract 500 features from visible data (except in raw features
where all input features are used).

3 Available online at “https://archive.ics.uci.edu/ml/datasets/ISOLET”.
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Fig. 8 Histogram of activation probability of hidden units for all test data in ISOLET dataset by RBM (left)
and normal sparse RBM (right). Normal sparse RBM reduces significantly the activation of hidden units

Table 6 Spoken letter recognition error rate on ISOLET dataset on training (with 10, 20, 50 and 100 samples
per class) and test sets, and by a linear classifier that has been trained on raw data, transformed codes produced
by PCA and active probability of hidden units produced by RBM, qsRBM, rdsRBM and nsRBM

Method Number of samples

10 20 50 100

RAW 13.836 8.996 6.084 5.413

PCA 14.034 9.573 6.565 5.455

RBM 14.082 9.531 6.247 5.282

qsRBM 13.162 8.929 5.956 4.278

rdsRBM 13.807 9.051 6.071 4.676

nsRBM 12.742 8.450 5.930 4.740

The best results are highlighted in bold

Now with these learnt models, features of 10, 20, 50 and 100 samples per class are used
in training a linear classifier. For each combination of training data size and algorithm,
we trained 20 classifiers with randomly chosen training sets for the linear classifier and
then used the average classification error to evaluate the performance of the corresponding
algorithm. Similar to the MNIST test, several values of hyper-parameters were chosen to
conduct experiments. For a summary of results, only the best model was reported.

In Table 6, the recognition ability based on raw data (617 features), transformed codes
produced by PCA (500 features), RBM, qsRBM, rdsRBM and nsRBM (all with 500 hidden
units) are compared. In this table, the results obtained by the best parameter combinations for
each of qsRBM, rdsRBM and nsRBM are presented. In order to facilitate the comparison,
the best results were highlighted in bold. According to Table 6, it can be seen that nsRBM in
most cases achieves the best recognition accuracy on the ISOLET test set.

Similar to experiments done on MNIST, in order to compare the recognition ability of
representations learnt byDBN, qsDBN, rdsDBNandnsDBN, a layerwith 100 hidden neurons
was trained. After learning newmodels with their learning methods, a feature vector of learnt
features in first and second layerwas used for training linear classifier (500 and 100 features in
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Table 7 Spoken letter recognition error rate on ISOLET training (with 10, 20, 50 and 100 samples per class)
and test sets, produced by a linear classifier that has been trained on active probability of hidden units produced
by the first and second layer in DBN, qsDBN, rdsDBN and nsDBN

Method Results with different number of samples

10 20 50 100

DBN 13.239 8.874 5.991 5.109

qsDBN 12.758 8.448 5.892 4.262

rdsDBN 13.435 8.958 5.859 4.596

nsDBN 12.473 8.287 5.795 4.057

The best results are highlighted in bold

Fig. 9 Histogram of activation probability of hidden units for all test data in 20 Newsgroups dataset by RBM
(left) and normal sparse RBM (right). Normal sparse RBM reduces activation of hidden units

first and second layer, respectively). Table 7 displays the error rate on the test set. According
to Table 7, it can again be seen that nsDBN always achieves the best recognition accuracy
on the training and test sets when using a different number of samples.

5.3 20 Newsgroups dataset

The20Newsgroups4 dataset is organized into 20different newsgroups, each corresponding to
a different topic. The 20 newsgroups dataset has become a popular dataset for experiments in
text applications ofmachine learning techniques, such as text classification and text clustering.

For a text classification experiment, we used a version of the 20 Newsgroups5 with 18774
documents in which the training and test sets (60 and 40%, respectively) containing docu-
ments collected at different times. We used the 5000 most frequent words for binary input
features.

Since the features have binary values, the binary visible units are used. As the first result
in the 20 Newsgroups dataset, we used an RBM and a normal sparse RBM with 500 hidden
units. Figure 9 shows the histogram of activation probability of hidden units for all test data.
According to this figure, normal sparse RBM can reduce activation of hidden units.

4 Available online at “http://qwone.com/~jason/20Newsgroups”.
5 Available online at “http://qwone.com/~jason/20Newsgroups/20news-bydate-matlab.tgz”.
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Table 8 Document topic classification error rate on 20 Newsgroups dataset on training (with 10, 20, 50,
100, 200 and 350 samples per class) and test sets, and by a linear classifier that has been trained on raw
data, transformed codes produced by PCA and active probability of hidden units produced by RBM, qsRBM,
rdsRBM and nsRBM

Method Number of training samples

10 20 50 100 200 350

RAW 67.847 59.093 47.819 40.474 35.091 31.425

PCA 68.010 60.360 51.236 44.596 39.405 36.025

RBM 47.644 43.254 38.775 35.889 33.872 32.620

qsRBM 47.403 42.091 37.747 35.492 33.058 31.295

rdsRBM 47.242 42.617 38.787 36.362 34.466 33.310

nsRBM 46.490 41.955 37.724 35.263 32.959 30.990

The best results are highlighted in bold

Table 9 Document topic classification error rate on 20 Newsgroups dataset on training (with 10, 20, 50, 100,
200 and 350 samples per class) and test sets, and by a linear classifier that has been trained on active probability
of hidden units produced by the first and second layer in DBN, qsDBN, rdsDBN and nsDBN

Method Number of training samples

10 20 50 100 200 350

DBN 46.460 42.644 38.939 36.312 34.315 32.853

qsDBN 46.424 41.705 37.345 34.933 32.695 31.083

rdsDBN 45.9423 42.171 38.468 36.223 34.133 32.934

nsDBN 45.433 40.977 37.382 34.995 32.620 30.953

The best results are highlighted in bold

Similar to the MNIST test, our proposed method is compared with two other sparsity
methods (qsRBM and rdsRBM), classic RBM, principal component analysis and raw fea-
tures. Also, all models have been trained on 7500 feature vectors (i.e., 375 feature vectors
per class) of 20 Newsgroups dataset to extract 500 features from visible data (except in raw
features that all input features are used).

Now with these learnt models, features of 10, 20, 50,100,200 and 350 feature vectors
per class are used in training a linear classifier. For each combination of training data size
and algorithm, we trained 20 classifiers with randomly chosen training sets for the linear
classifier and then used the average classification error to evaluate the performance of the
corresponding algorithm. Similar to theMNIST test, several values of hyper-parameters were
chosen to conduct experiments. For a summary of results, only the best model was reported.

In Table 8, the recognition ability based on raw data (5000 features), transformed codes
produced by PCA (500 features), RBM, qsRBM, rdsRBM and nsRBM (all with 500 hidden
units) are compared. In this table, the results obtained by the best parameter combinations for
each of qsRBM, rdsRBM and nsRBM are presented. In order to facilitate the comparison,
the best results were highlighted in bold. According to Table 8, it can be seen that nsRBM
achieves the best recognition accuracy on the 20Newsgroups test set in all cases. In particular,
the performance improvement in small training sets is more significant.

Similar to the MNIST test, in order to compare the recognition ability of representations
learnt by DBN, qsDBN, rdsDBN and nsDBN, we trained a layer with 100 hidden neurons.
After learning new models with their learning methods, a feature vector of learnt features in
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first and second layer has been used for training linear classifier (500 and 100 features in first
and second layer, respectively). Table 9 displays the error rate on the test set. According to
Table 9, we can see again that in most cases, nsDBN achieves the best recognition accuracy
on the test sets when using a different number of training samples.

6 Conclusion

In this paper, we discussed a new sparse RBM method. Different methods are proposed to
build sparse RBMs. In this paper, we proposed a new method that has different behaviors
according to a deviation of the activation of the hidden units from a (low) fixed value and in
addition, our proposed regularization term has a variance parameter that can control the force
degree of sparseness. According to the results, our new method achieves the best recognition
accuracy on the test sets when using a different number of training samples even when we
have only a few labeled samples per class. For better comparison, we used three different
datasets in different applications includingMNIST for image recognition, ISOLET for speech
recognition and 20 Newsgroups for text categorization.

In addition, we observed that our proposed method (normal sparse RBM or nsRBM) can
reduce activation of hidden units significantly. According to the results, bases that have been
learnt by nsRBM have a clear structure and in the nsRBM method a much larger proportion
of interesting feature detectors were learnt. In addition, the recognition ability based on raw
data, PCA, RBM, qsRBM, rdsRBM and nsRBM are compared and nsRBM achieves the best
recognition accuracy on the test sets when using a different number of samples.

For future work, wewould like to focus on controlling the force degree of sparseness in the
proposed method. This can be done by gradually decreasing the variance. This means that in
the first epochs we set a large variance that has a small force on sparsity and by increasing the
epochswe increase the sparsity force by decreasing the variance (see Fig. 4). Another improv-
ing idea is to use different variance in different feature directions (or hidden units). In this new
idea, we set the variance according to distribution of activation probability in hidden units.
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