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Abstract Nearest neighbor search is a core process inmany datamining algorithms. Finding
reliable closestmatches of a test instance is still a challenging task as the effectiveness ofmany
general-purpose distance measures such as �p-norm decreases as the number of dimensions
increases. Their performances vary significantly in different data distributions. This is mainly
because they compute the distance between two instances solely based on their geometric
positions in the feature space, and data distribution has no influence on the distance measure.
This paper presents a simple data-dependent general-purpose dissimilarity measure called
‘mp-dissimilarity’. Rather than relying on geometric distance, it measures the dissimilarity
between two instances as a probability mass in a region that encloses the two instances in
every dimension. It deems two instances in a sparse region to be more similar than two
instances of equal inter-point geometric distance in a dense region. Our empirical results in
k-NN classification and content-based multimedia information retrieval tasks show that the
proposed mp-dissimilarity measure produces better task-specific performance than existing
widely used general-purpose distance measures such as �p-norm and cosine distance across
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a wide range of moderate- to high-dimensional data sets with continuous only, discrete only,
and mixed attributes.

Keywords Distance measure · �p-norm · Cosine distance · mp-dissimilarity

1 Introduction

In order to make a prediction for a test instance, many data mining algorithms search for its k
closest matches or nearest neighbors (k-NNs) in the given training set and make a prediction
based on the k-NNs. They use a (dis)similarity or distance measure to find k-NNs. However,
finding reliable k-NNs becomes a challenging task as the number of dimensions increases.
In high-dimensional space, data distribution becomes sparse which makes the concept of
distance meaningless, i.e., all pairs of points are almost equidistant for a wide range of data
distributions and distance measures [1,6,12].

Let D = {x(1), x(2), · · · , x(N )} be a collection of N data instances in an M-dimensional
space X . Each instance x is represented as an M-dimensional vector 〈x1, x2, · · · , xM 〉. Let
d : X × X → R (where R is a real domain) be a measure of dissimilarity between two
vectors in X . The most common approach of measuring dissimilarity of two data instances
x and y is based on a geometric model where X is assumed to be a metric space (which
has nice mathematical properties) and d(x, y) is estimated as their geometric distance in the
space. We use distance measures to refer to dissimilarity measures which are metric.

Minkowski distance (aka �p-norm) [10] is a widely used distancemeasure. It estimates the
dissimilarity of x and y by combining their distances in each dimension. Euclidean distance
(�2-norm) is a popular choice of distance function as it intuitively corresponds to the dis-
tance defined in the real three-dimensional world. In bag-of-words vector representation of
documents, cosine distance (aka angular distance) has been shown to produce more reliable
k-NNs than �2-norm [26]. Cosine distance is proportional to the Euclidean distance of the
length normalized vectors (i.e., they are translated in the space to be of unit lengths).

The performance of general-purpose distance measures such as �p-norm and cosine
distance depends on the data distribution: A distance measure that performs well in one
distribution may perform poorly in others. This has been suspected to be due to the fact
that these distance measures compute the dissimilarity between two instances solely based
on their geometric positions in the vector space, and data distribution (positions of other
vectors) is not taken into consideration.

Many psychologists have expressed their concerns on the geometricmodel of dissimilarity
measure [17,31] arguing that the judged dissimilarity between two objects is influenced by
the context of measurements and other objects in proximity. Krumhansl [17] has suggested a
distance density model of dissimilarity measure arguing that two objects in a relatively dense
region would be less similar than two objects of equal distance but located in a less dense
region. For example, two Chinese individuals will be judged as more similar when compared
in Europe (where there are less Chinese and more Caucasian people) than in China (where
there are many Chinese people).

In order to understand the influence of data distribution in judged dissimilarity, let us
consider an example of a data set with distributions in dimensions i and j as shown in
Table 1. In this example, x(1) and x(2) have the same values in dimensions i and j . Their
value in dimension i is significantly different from the rest of the instances, but their value is
a common value in dimension j (9 out of 10 instances have the same value). In a geometric
distance measure such as �p , because x (1)

i − x (2)
i = x (1)

j − x (2)
j = 0, the differences in

dimensions i and j have the same contribution in d(x(1), x(2)). The main concern raised by

123



Data-dependent dissimilarity measure 481

Table 1 An example of data
distribution in two dimensions

x . . . xi x j . . .

x(1) . . . 9 1 . . .

x(2) . . . 9 1 . . .

x(3) . . . 2 1 . . .

x(4) . . . 1 1 . . .

x(5) . . . 1 1 . . .

x(6) . . . 1 1 . . .

x(7) . . . 1 1 . . .

x(8) . . . 1 1 . . .

x(9) . . . 1 1 . . .

x(10) . . . 0 5 . . .

psychologists is that having the same value in dimension j (where probability of the value
is high) does not provide the same amount of information about the (dis)similarity between
x(1) and x(2) as having the same value in dimension i (where the probability of the value is
small). This scenario where many instances have the same value in many dimensions can be
very common in high-dimensional spaces as data often lies in a low-dimensional subspace.
For example, in bag-of-words vector representation, many entries in document vectors are
zero as each document has only a small number of terms from the dictionary.

In this paper, we propose a simple data-dependent general-purpose dissimilarity measure
called ‘mp-dissimilarity’ in which dissimilarity between two instances is estimated based on
data distribution in each dimension. Rather than using the spatial distance in each dimension,
mp-dissimilarity evaluates the dissimilarity between two instances in terms of probability
data mass in a region covering the two instances in each dimension. The final dissimilarity
between the two instances is estimated by combining dissimilarity in every dimension as
in �p-norm. The intuition behind the proposed dissimilarity measure is that two instances
are likely to be dissimilar if there are many instances in-between and around them in many
dimensions. Under the proposed data-dependent dissimilarity measure, two instances in a
dense region of the distribution are more dissimilar than two instances in a sparse region,
even if the two pairs have the same geometric distance, which is prescribed by psychologists.

Our empirical evaluation in k-NNclassification and content-basedmultimedia information
retrieval tasks shows that the proposedmp-dissimilaritymeasure produces better task-specific
performance than existing widely used general-purpose distance measures such as �p-norm
and cosine distance across a wide range of moderate- to high-dimensional data sets with
continuous only, discrete only, and mixed attributes.

The rest of the paper is organized as follows. Previous work related to this paper is
discussed in Sect. 2. The proposed mp-dissimilarity is presented in Sect. 3, followed by
empirical results in Sect. 4. The relationship of mp-dissimilarity with �p-norm after rank
transformation of data is discussed in Sect. 5 followed by the related discussion in Sect. 6.
Finally, we conclude the paper with conclusions and future work in the last section. From
now on, we refer to mp-dissimilarity and �p-norm by mp and �p , respectively.

2 Related work

In this section, we review some widely used techniques to measure dissimilarity between
instances in domains with continuous only, discrete only, and mixed attributes.
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2.1 Dissimilarity measures in continuous domain

In continuous domain where each dimension is numeric, i.e., ∀i xi ∈ R, the dissimilarity
between twoM-dimensional vectors x and y is primarily based on their positions in the vector
space. Minkowski distance of order p > 0 (also known as �p-norm distance) is defined as
follows:

dmink,p(x, y) = �p(x, y) = ‖x − y‖p =
(

M∑
i=1

abs(xi − yi )
p

) 1
p

(1)

where abs(·) is an absolute value.
Euclidean distance (p = 2) is a popular choice of distance function as it intuitively

corresponds to the distance defined in the real three-dimensional world.
As distance in each dimension has equal influence, �p is very sensitive to the units and

scales of measurement.Min–max normalization (x ′
i = xi−mini

maxi−mini
, where mini andmaxi are

the minimum and maximum values in dimension i respectively) is commonly used to rescale
feature values in the unit range ([0,1]). Even though min–max normalization takes care of
scale differences between different dimensions, it does not take care of differences in variance
across different dimensions. A unit distance in a dimension with low variance may not be the
same as that in a dimension with high variance. In order to ensure the equal variance in each
dimension, standard deviation normalization (x ′′

i = xi
σi

where σi is the standard deviation
of values of instances in dimension i) is used in the literature. We call the �p applied on
standard deviation normalized vectors as standardized �p (s-�p) i.e., s-�p(x, y) = �p(x′′, y′′).
Standardized �p with p = 2 (s-�2) is the simplest variant ofMahalanobis distance [10] where
the covariance matrix is a diagonal matrix of variance of values in each dimension.

The Mahalanobis distance [10,22] is defined as follows:

dmah(x, y) =
√

(x − y)T�−1(x − y) (2)

where � ∈ RM×M is the covariance matrix of D.
Rather than using the inverse of the sample covariance matrix, metric learning litera-

ture focus on learning a generalized Mahalanobis distance [5,18,32,33] from D defined as
follows:

dgenMah(x, y) =
√

(x − y)T�(x − y) (3)

where � ∈ RM×M is a positive semi-definite matrix.
Since � is positive semi-definite, it can be factorized as � = �T� where � ∈ Rω×M

and ω is a positive integer and dgenMah(x, y) can be written as: dgenMah(x, y) = ‖�x −
�y‖2 [5,18,32]. The generalized Mahalanobis distance is the Euclidean distance of vectors
transformed by matrix�. The goal of metric learning is to learn a transformation matrix� to
improve the task-specific performance of the Euclidean distance, subject to some optimality
constraints, e.g., similar instances become closer to each other (similarity constraints) and
dissimilar instances are separated further apart from each other (dissimilarity constraints).
Learning the best � requires learning intensive optimization which is expensive in high-
dimensional and/or large data sets. Furthermore, � is optimized specifically for the given
task; and it may not be good for other tasks using the same data set. It is not a general-purpose
measure like �p .

In many high-dimensional problems, data have the same value (0 or any other constant)
in many dimensions. This leads to sparseness in data distribution. For example, only a small
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proportion of terms in a dictionary appear in each document of a corpus. Many entries of
a term vector representing a document are zero. Euclidean distance is not a good choice of
distance measure in such problems. The direction of vectors is more important than their
lengths. The angular distance measure (aka cosine distance) [10] is a more sensible choice
to measure dissimilarity between two documents. The cosine distance between two vectors
x and y is defined as follows [10]:

dcos(x, y) = 1 −
∑M

i=1 xi × yi√∑M
i=1 x

2
i ×

√∑M
i=1 y

2
i

(4)

Cosine distance is proportional to Euclidean distance when the vectors are length normal-
ized to be of unit lengths which is referred as cosine normalization in the literature. Different
term weighting schemes are used to adjust the positions of the document vectors in the space
based on the importance of their terms in order to improve the task-specific performance of the
cosine distance [19,25]. Cosine distance with term frequency–inverse document frequency
(TF-IDF)-based term weighting [25] has been shown to perform well in many text-mining
problems such as text categorization, text clustering, and text retrieval tasks.

In both metric learning and term weighting, the focus is to transform data so that task-
specific performance of the Euclidean or cosine distance is maximized in the given data set.
Some aspects of data distribution is taken into consideration in the transformation in metric
learning and in term weighting, but still restricted to be a metric in the transformed space,
i.e., dissimilarity is still computed solely based on geometrical positions in the transformed
space.

2.2 Dissimilarity measures in discrete domain

In discrete domain, each attribute is a categorical attribute, i.e., ∀i xi ∈ {vi,1,· · · , vi,ui }where
vi, j is a label out of ui possible labels for xi . A discrete attribute can be ordinal (where there
is an ordering of discrete labels vi,1 < vi,2 < · · · < vi,ui ) or nominal (where there is no
ordering of discrete labels).

In order to measure similarity between two labels xi and yi for a discrete attribute i ,
s(xi , yi ), the simplest overlap approach assigns maximum similarity of 1 if xi = yi and
minimum similarity of 0 if xi 	= yi [7,29]. Other approaches such as occurrence frequency
(OF) and inverse occurrence frequency (IOF) [7] estimate s(xi , yi ) based on the frequencies
of xi and yi in D if xi 	= yi and assign maximum similarity of 1 if xi = yi regardless of
the frequency. The definition of s(xi , yi ) based on overlap, OF, and IOF [7] is provided in
Table 2.

Lin [20] defined similarity using information theory and suggested a probabilistic measure
of similarity in ordinal discrete domain. The similarity between two ordinal labels xi and yi
is defined as follows:

Table 2 s(xi , yi ) of two labels
xi and yi of a nominal attribute i .
f (xi ) is the occurrence frequency
of label xi in D; N = |D|

s(xi , yi ) xi = yi xi 	= yi

Overlap 1 0

OF 1 [1 + log N
f (xi )

× log N
f (yi )

]−1

IOF 1 [1 + log f (xi ) × log f (yi )]−1
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slin,ord(xi , yi ) = 2 × log
∑max(xi ,yi )

zi=min(xi ,yi )
P(zi )

log P(xi ) + log P(yi )
(5)

where P(xi ) is the probability of xi and it is estimated from D as P̂(xi ) = f (xi )+1
N+ui

where
f (xi ) is the occurrence frequency of label xi in D.
Boriah et al. [7] usedLin’s information theoretic definition of similarity in nominal discrete

domain as follows:

slin,nom(xi , yi ) = 2 × log P(xi ∨ yi )

log P(xi ) + log P(yi )
(6)

In multivariate discrete domain, dissimilarity1 between two instances x and y using Lin’s
measure can be estimated as follows [7]:

dlin(x, y) = 1 − 1

M

M∑
i=1

slin(xi , yi ) (7)

Boriah et al. [7] have shown that dlin performs better than dof and diof in discrete domains.
Even though measures such as sof , sio f and slin assign similarity between xi and yi in each
dimension based on the distribution of labels if xi 	= yi , they assign the maximum similarity
of 1 in the case of xi = yi regardless of the distribution of the label.

2.3 Dissimilarity measures in mixed domain

Many real-world applications have both continuous and discrete attributes resulting in mixed
domain. In order to measure (dis)similarity between two instances in such a domain, the most
commonly used �p-norm uses the overlap approach to measure dissimilarity between two
labels xi and yi of a discrete attribute i as xi − yi = 0 if xi = yi ; and 1 otherwise.

Other approaches include converting attributes into continuous only or discrete only and
using (dis)similarity measures designed for continuous or discrete domain. A continuous
attribute can be converted into a discrete attribute through discretization [13]. A discrete
attribute with u discrete labels can be converted into u continuous attributes as follows: Each
discrete label is converted into a binary attribute where 0 represents the absence of the label
and 1 represents the presence, and all converted u binary attributes are treated as continuous
attributes [13].

3 Data-dependent dissimilarity measure

In order to measure dissimilarity between x and y, instead of using abs(xi − yi ) in Eq. 1,
we propose to consider the relative positions of x and y with respect to the rest of the data
distribution in each dimension. The dissimilarity between x and y in dimension i can be
estimated as the probability data mass in region Ri (x, y) that encloses x and y. If there are
many instances in Ri (x, y), x and y are likely to be dissimilar in dimension i . Using the same
power mean formulation as in �p-norm, the data-dependent dissimilarity measure based on
probability mass is defined as:

mp(x, y) =
(

1

M

M∑
i=1

( |Ri (x, y)|
N

)p
) 1

p

(8)

1 We used dissimilarity so that it is consistent with other distance or dissimilarity measures.
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Fig. 1 Ri (x, y)

Fig. 2 Contour plots of dissimilarity of points in the space with reference to the centre (0.5, 0.5), based onmp

(with δ for each dimension i set to σi
2 where σi is the standard deviation of values of instances in dimension

i) in three data distributions (uniform: left column, normal: middle column, and bimodal: right column). The
darker the color, the lesser the dissimilarity (a) p = 2.0, (b) p = 0.5

where |Ri (x, y)| is the data mass in region Ri (x, y) = [min(xi , yi ) − δ,max(xi , yi ) + δ]
(i.e., |Ri (x, y)| = |{zi : min(xi , yi ) − δ ≤ zi ≤ max(xi , yi ) + δ}|), δ ≥ 0, p > 0 and N is
the total number of instances in D. An example of Ri (x, y) is shown in Fig. 1.

The region is extended by small δ > 0 beyond xi and yi to consider the density distribution
around them along with the distribution in-between them. The role of parameter p is similar
to that in �p , i.e., p controls the influence of the dissimilarity in each dimension.

We call the proposed dissimilarity measure mp(x, y) as ‘mp-dissimilarity’. This
measure captures the essence of the distance density model proposed by psychologists
[17] which prescribes that two instances in a sparse region are more similar than two
instances in a dense region. Although mp employs the same power mean formulation
as �p , the core calculation is based on probability mass rather than distance. The pro-
posed mp-dissimilarity has a probabilistic interpretation which is provided in “Appendix
1”.

The dissimilarity between a pair of instances using Eq. 8 depends on the distribution of
data. Fig. 2 shows the contour plots of mp-dissimilarity between the point (0.5,0.5) and any
other point in the feature space in three different data distributions (uniform, normal and
bimodal) for p = 2.0 and p = 0.5. In contrast, �p or dcos would produce the same contour
in all three distributions. Under uniform distribution and infinite samples, mp will yield the
same result as �p because the data mass in Ri (x, y)will be proportional to abs(xi − yi ). This
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Fig. 3 Defining Ri (x, y) using bins

is depicted in the two contour plots in the first column in Fig. 2 where they exhibit similar
contour plots to those of �2 and �0.5.

3.1 Time complexity and efficient approximation

In continuous domains, estimatingmp(x, y) using Eq. 8 is expensive, especially when either
x or y is an unseen instance, as it requires a range search in each dimension to estimate
|Ri (x, y)|. One-dimensional range search can be done in O(log N ) using binary search trees
resulting in the time complexity of O(M log N ) tomeasure dissimilarity of a pair of instances
against O(M) of �p . It is expensive to compute in large data sets.

Alternatively, |Ri (x, y)| can be approximated efficiently by using a histogram, i.e., divide
the range of real values in each dimension i into b bins (hi1, hi2, · · · , hib). The number
of instances in each bin can be computed in a preprocessing step. When two instances x
and y are given for dissimilarity measurement, Ri (x, y) can be computed by using the bins
in-between x and y as shown in Fig. 3. Even though the approximation using bins does not
extend the range exactly by δ beyond xi and yi , the bins (where xi and yi fall into) provide
a reasonable approximation of the distribution around xi and yi .

If hil and hio are the two bins in which min(xi , yi ) and max(xi , yi ) fall, respectively, then
|Ri (x, y)| can be estimated as follows:

|Ri (x, y)| =
o∑

q=l

|hiq | (9)

Note that the binning can be done in two ways: (i) equal width: Each bin is of the same
size (bins in dense region have more data mass than those in the sparse region); (ii) equal
frequency: Each bin has approximately the same number of instances as much as possible
(bins are smaller in dense region than those in the sparse region). The former one is sensitive
to outliers. If there is only one instance having significantly different value than others, it
may affect the discrimination between the other instances as they all may fall in the same
bin, and many bins in the middle will be left empty. Hence, we used the latter approach of
binning where each bin has approximately the same number of instances with b = 100 using
WEKA implementation2 [13] in this paper. Note that bins in a dimension can have different
data mass if many instances have the same values in that dimension making them impossible
to split in b bins with the equal data mass.

The preprocessing requires a total of O(NMb+Mb2) time and O(Mb2) space complex-
ities. It builds the histogram and the pairwise dissimilarity matrix of bins in each dimension.
A histogram of b bins is built for each dimension and the number of instances falling in
each bin can be calculated in O(NMb) time. The dissimilarity matrix for |Ri (·, ·)| can be
precomputed for each pair of bins in each dimension in O(Mb2) time and stored in O(Mb2)

2 We used sufficiently large b in order to discriminate instances well.
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space. Having preprocessed, the dissimilarity between two instances in each dimension can
be done as a table look-up in O(1) time, resulting in O(M) time to measure dissimilarity
between a pair of instances, equivalent to those of �p and dcos .

3.2 Handling discrete attributes

For ordinal discrete attributes, |Ri (x, y)| can be estimated as follows:

|Ri (x, y)| =
max(xi ,yi )∑

zi=min(xi ,yi )

f (zi ) (10)

where f (zi ) is the frequency of discrete label zi in D.
Unlike dlin that assigns dissimilarity in an ordinal attribute i based on the frequencies of

labels if xi 	= yi and assigns minimal dissimilarity of 0 regardless of the distribution of labels
if xi = yi , mp assigns dissimilarity based on the frequency of the label even in the case of
xi = yi .

For nominal discrete attributes, |Ri (x, y)| can be estimated as follows:

|Ri (x, y)| =
{
f (xi ) if xi = yi
N otherwise

(11)

It is interesting to note the difference between mp and the existing dissimilarity measures
for nominal domains such as dlin , dof and diof [7]. For a nominal attribute i , they use the
frequency of labels if two instances have different labels (xi 	= yi ), and assign the maximal
similarity of 1 (or minimal dissimilarity of 0) if xi = yi . In contrast, mp uses the opposite
approach and uses the frequency of the label if xi = yi and assigns the maximal dissimilarity
of 1 otherwise. In the case of xi = yi , existing measures assign maximal similarity of
1 without considering the distribution of the label. It might be the case that all the other
instances have the same label, and there is no discrimination between instances w.r.t the
attribute.

The frequency of each discrete label can be computed in a preprocessing step which
requires O(NM) time and O(Mu) (where u is the average number of discrete labels per
dimension) space.

3.3 Dissimilarity measure in bag-of-words vector representation

In the case of bag-of-words (bow) [26] vector representations, each component of a vector
represents frequency of a feature (term in documents or a visual descriptor in images). Given
any two vectors x and y, many features have zero frequency i.e., xi = yi = 0 for many
dimensions, because a document contains only a small proportion of words in the dictionary.
Since the absence of a feature in both the instances does not provide any information about
the (dis)similarity of x and y, those features should be ignored. Hence, in the bow vector
representation, mp-dissimilarity of x and y is estimated using only those features that occur
in either of x or y as follows:

mp(x, y) =
⎛
⎝ 1

|Fx,y|
∑
i∈Fx,y

( |Ri (x, y)|
N

)p
⎞
⎠

1
p

(12)
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where Fx is the set of features that occur in x (i.e., Fx = {i : xi > 0}), and |Fx,y| = |Fx ∪ Fy|
is the normalization term employed to account for different numbers of features used for
measuring dissimilarity of any two instances.

It is important to ignore those features which have zero frequency in both instances (xi =
yi = 0); otherwise,mp would assign large dissimilarity w.r.t those features asmany instances
in the data set will have 0 values. This is not an issue for �p because it assigns 0 dissimilarity
when xi = yi = 0.

3.4 Distinguishing properties of mp

3.4.1 Data-dependent self-dissimilarity

The distinguishing characteristic of mp against the geometry-based (�p and dcos) and prob-
abilistic (dlin) dissimilarity measures discussed in Sect. 2 is the self-dissimilarity. The
self-dissimilarity ofmp is not zero, and it ranges from the minimum of 1

N to the maximum of
1, depending on the data distribution in each dimension. In contrast, �p(x, x) = dcos(x, x) =
dlin(x, x) = 0 irrespective of the data distribution. Because of the data-dependent self-
dissimilarity, mp is non-metric.

The approximation of |Ri (x, y)| using equal-frequency bins will yield a nonzero constant
self-dissimilarity formp only if each bin has the same number of instances in each dimension.
This is often not be possible because there are duplicate values in many instances and this
occurs in many dimensions. This is a common characteristic of many high-dimensional
data sets because data often lie in a low-dimensional subspace. As a result, bins often have
different numbers of instances resulting in data-dependent self-dissimilarity. The advantageof
data-dependent self-dissimilarity of mp over data-independent self-dissimilarity of existing
measures is discussed in Sect. 5.

In discrete domains, unlike dlin , dof and diof based measures that use the probabilities
of categorical labels only in the case of different labels, mp uses the probability of the label
even in the case of matching labels—data-dependent self-dissimilarity in action.

3.4.2 m p is equivalent to �p only under uniform distribution

Under uniform distribution and infinite data, mp is equivalent to �p as the data mass in
the range is proportional to its length. This is the only condition under which mp—a data-
dependent measure—is equivalent to �p—a geometric model-based measure.

3.4.3 Robust to scale, units of measurement and outliers

As mp is based on counts and does not use the feature values in the dissimilarity measure
directly, it is robust to scale and units of measurements in continuous domains. It does
not require preprocessing of data to address the scaling issue (min–max normalization) or
difference in variance across different dimensions (standard deviation normalization). In
many real-world applications, different properties of data may have been represented or
measured in different scales (e.g., income is represented in dollars and age in normal integer
scale: One unit difference is not the same in these two attributes). This can be the case in
high-dimensional problems where different properties are measured by different sensors.
Also for the same reason (i.e., based on the count and not the actual feature values), mp is
less sensitive to outliers. In the case of �p , outliers can have an adverse impact as they might
change variance significantly.
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4 Empirical evaluation

This section presents the results of experiments conducted to demonstrate that simply by
replacing the geometric distance with the probability mass in each dimension, mp produces
better task-specific performances than �p and dcos across a wide range of data sets. We
have evaluated the performance of mp against the general-purpose dissimilarity measures of
Minkowski distance (�p), Minkowski distance after standard deviation normalization (s-
�p), Cosine distance (dcos) and Lin’s probabilistic measure (dlin) in k-nearest neighbor
(k-NN) classification and content-based multimedia information retrieval (CBMIR) tasks.
We used two settings of p ∈ {0.5, 2.0} in �p , s-�p and mp resulting in eight measures:
dcos, dlin, �0.5, �2, s-�0.5, s-�2,m0.5 andm2. All dissimilarity measures and algorithms were
implemented in Java using the WEKA platform [13].

We used moderately high to high-dimensional (M ≥ 20) data sets from different applica-
tion areas such as text, image, music, characters and digits recognition, medical and biology,
games. In text collections, documents were represented by TF-IDF [25] weighted ‘bag-of-
words’ [26] vectors. Feature values in each dimension in all other non-text data sets were
normalized to be in the unit range. For dlin , continuous attributes were converted into ordinal
attributes using discretization as in the case of mp .

The properties of the data sets are provided in Table 3. NG20, R52, R8, Webkb were
from ([8])3; Ohscal, Wap, New3s and Fbis were from [14]4; Caltech256 (sift bag-of-words
features) from [30]5; Corel and Gtzan were from [34]; HBA was from [2] and the rest of the
other data sets were from UCI [4]6 and WEKA [13]7.

We discuss the experimental setups and results in k-NN classification and content-based
multimedia information retrieval (CBMIR) tasks in the next two subsections.

4.1 k-NN classification

In the k-NN classification context, in order to predict a class label for a test instance x, its k
nearest neighbors were searched in the training set using all eight dissimilarity measures and
the most frequent label in k-NNs was predicted as the class label for the test instance. All
classification experiments were conducted using a tenfold cross-validation: 10 train-and-test
trials using 90% of the given data set for training and 10% for testing.We set k to a commonly
used value of 5 (i.e., k = 5). The average classification accuracy (%) over a tenfold cross-
validation was reported. The accuracies of two algorithms were considered to be significantly
different if their confidence intervals (based on two standard errors over the tenfold cross-
validation) did not overlap. The average classification accuracies over the tenfold cross-
validation of the eight dissimilarity measures in all data sets are provided in Table 4.

Out of 30 data sets,m0.5 andm2 produced the best result or equivalent to the best result in
23 and 16 data sets, respectively. Eitherm0.5 orm2 produced significantly better classification
accuracy than any other contenders in the New3s, Ohscal, Wap, R52, NG20, R8, Webkb,
Caltech, Corel, Connect-4 and Hypothyroid data sets. The summarized results in the last two
rows inTable 4 show that bothm0.5 andm2 produced consistently top or near top results across
different data sets.m0.5 andm2 have average ranking of 1.97 and 2.37, respectively; whereas

3 http://web.ist.utl.pt/acardoso/datasets/.
4 http://www.cs.waikato.ac.nz/ml/weka/datasets.html.
5 http://homes.esat.kuleuven.be/~tuytelaa/unsup_features.html.
6 https://archive.ics.uci.edu/ml/datasets.html.
7 Available with WEKA software http://www.cs.waikato.ac.nz/ml/weka/.
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Table 3 Data sets used to compare the performance ofmp with other distance or dissimilarity measures. The
number of nominal attributes (Mnom) is provided in bracket along with the total number of dimensions (M)
and c is the number of classes in a data set

Name N M (Mnom) c Application area

New3s 9558 26,832 (0) 44 Text (TREC Collection)

Ohscal 11,162 11,465 (0) 10 Text (Ohsumed patients’ information)

Arcene 200 10,000 (0) 2 Bioinformatics (Cancer)

Wap 1560 8460 (0) 20 Text (Yahoo web pages)

R52 9100 7369 (0) 52 Text (Reuters Collection)

NG20 18,821 5489 (0) 20 Text (20 Newsgroup)

Gisette 7000 5000 (0) 2 Digits Recognition

R8 7674 3497 (0) 8 Text (Reuters Collection)

Fbis 2463 2000 (0) 17 Text (TREC Collection)

Webkb 4199 1816 (0) 4 Text (University web pages)

Ads 3279 1558 (1555) 2 Internet Advertisements

Caltech 30,607 1000 (0) 257 Image

Mnist 70,000 784 (0) 10 Digits Recognition

Mfeat 2000 649 (0) 10 Digits Recognition

Isolet 7797 617 (0) 26 Spoken letters

Madelon 2600 500 (0) 2 Artificial data

Arrhythmia 452 279 (73) 2 Medical (Cardiac Arrhythmia)

Gtzan 1000 230 (0) 10 Music

Ismis 12,495 191 (0) 6 Music

Hba 1500 187 (0) 15 Music

Musk2 6598 166 (0) 2 Chemoinformatics

Corel 10,000 67 (0) 100 Image

Splice 3190 60 (60) 3 Bioinformatics (DNA)

Miniboone 129,596 50 (0) 2 Physics (particles)

Connect-4 67,557 42 (42) 3 Game (Connect-4)

Annealing 898 38 (32) 6 Steel annealing

Satellite 6435 36 (0) 7 Satellite Image

Chess 3196 36 (36) 2 Game

Hypothyroid 3772 29 (22) 4 Medical (Thyroid)

Credit-g 1000 20 (13) 2 Finance (Credit risks)

the average rank of the closest contender dcos is 3.30. Table 5 provides the summarized
result in terms of the win:loss:draw counts of m0.5 and m2 against the other six contenders
using confidence interval based on the two standard errors in the tenfold cross-validation
(standard errors are provided in Table 10 in “Appendix 3”). It shows that both m0.5 and m2

had significantly more wins than losses against all other contenders.
Note that in data sets with nominal attributes only (e.g., Connect-4, Chess, and Splice),

dcos , �p and s-�p produced exactly the same results because they are effectively the same
measure. Because of the one-of-all transformation, all the vectors are of the same length of
M (as each instance has exactly M 1s) in which case dcos is proportional to �2. Since the
difference in each dimension is either 0 or 1, the parameter p is meaningless.
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Table 4 Average accuracy of 5-NN classification over a tenfold cross-validation. The average accuracy and
average rank of measures in 30 data sets are included in the last two rows

Data set dcos �0.5 �2 s-�0.5 s-�2 dlin m0.5 m2

New3s 76.28 24.35 64.78 27.53 36.72 1.97 80.11∗ 79.51

Ohscal 60.30 19.57 42.64 15.51 26.62 6.84 73.22∗ 71.94

Arcene 82.00 84.00 83.50 83.50 80.00 82.00 84.00 79.50

Wap 73.53 22.95 35.06 19.62 25.90 29.42 82.82∗ 82.50∗
R52 87.44 74.79 76.18 72.09 62.74 0.97 90.07∗ 88.63

NG20 83.44 27.05 58.07 27.50 58.37 4.82 84.63∗ 81.80

Gisette 97.76∗ 94.59 96.50 95.16 95.77 92.30 96.77 97.73∗
R8 90.36 81.89 79.59 80.02 70.11 51.90 94.94∗ 93.72

Fbis 77.91∗ 48.18 70.40 49.61 60.74 56.23 79.21∗ 78.85∗
Webkb 73.40 51.28 63.85 51.34 62.47 47.30 85.23∗ 84.31

Ads 96.43 96.49 96.46 97.26∗ 97.07∗ 94.54 96.59∗ 97.04∗
Caltech 11.40 2.90 8.46 3.49 8.74 1.52 13.83 14.68∗
Mnist 97.66∗ 95.62 97.19 95.49 94.79 41.58 95.77 97.23

Mfeat 98.00 98.15 98.20 98.20 98.15 97.78 97.85 98.20

Isolet 88.37∗ 83.71 89.16∗ 83.42 87.51 81.49 79.68 82.42

Madelon 57.27 60.92∗ 56.88 60.23∗ 53.92 58.65 59.23∗ 55.00

Arrhythmia 63.93 64.83 63.93 65.48 68.15∗ 71.00∗ 71.90∗ 69.88∗
Gtzan 70.90∗ 65.00 70.40∗ 63.10 65.20 70.40∗ 72.00∗ 68.80

Ismis 94.53 94.35 94.41 94.10 94.14 95.42∗ 95.54∗ 94.48

Hba 50.20 59.07 52.00 59.40 53.67 65.27∗ 67.07∗ 60.73

Musk2 96.45 95.35 96.62 95.18 97.03∗ 95.01 95.01 95.47

Corel 24.59 35.66 23.68 36.82 28.80 37.67 39.76∗ 35.30

Splice 78.21 78.21 78.21 78.21 78.21 85.52∗ 84.64∗ 83.17

Miniboone 92.65 93.03∗ 92.63 92.84 92.89 76.76 92.77 92.94∗
Connect-4 74.85 74.85 74.85 74.85 74.85 30.29 76.62 77.11∗
Annealing 84.65 87.88 85.09 88.65 85.53 89.76∗ 89.64∗ 85.87

Satellite 84.86 90.68∗ 90.97∗ 90.54∗ 91.03∗ 90.65∗ 90.97∗ 90.85∗
Chess 96.24∗ 96.24∗ 96.24∗ 96.24∗ 96.24∗ 96.31∗ 93.52 95.87∗
Hypothyroid 93.43 93.72 93.45 94.30 94.25 94.94 95.71∗ 94.19

Credit-g 72.40 72.20 72.40 71.60 72.80 70.80 73.20 71.80

Avg. Acc. 77.65 68.92 73.39 68.71 70.41 60.64 81.08 79.98

Avg. Rank 3.30 4.07 3.60 3.97 3.83 4.67 1.97 2.37

Boldface represents a measure which has significantly better performance than all other competitors and
represents the best or equivalent to the best performance (it is not used when all the measures produced the
best or equivalent to the best results, e.g., Arcene, Mfeat, and Credit-g)

All eight measures had run time in the same order of magnitude. For example, predicting
class labels for instances in one fold of train-and-test in NG20 took 21,458seconds for m2

and 26,484 seconds for m0.5 in comparison to 16,296 (dcos), 28,168 (�0.5), 24,380 (�2),
29,210 (s-�0.5), 25,944 (s-�2) and 20,515 (dlin) seconds. In Corel, m2 and m0.5 took 37 and
47seconds whereas dcos took 22s followed by 32 (�2), 45 (�0.5), 47 (s-�2), 59 (s-�0.5) and
90 (dlin) seconds.
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Table 5 Win:loss:draw counts of
m0.5 and m2 w.r.t other measures
in 5-NN classification

m0.5 m2

dcos 18:5:7 16:5:9

�0.5 18:4:8 17:3:10

�2 19:4:7 17:2:11

s-�0.5 19:3:8 16:4:10

s-�2 21:4:5 16:2:12

dlin 17:2:11 16:7:7

Table 6 Average P@10 over N queries. The average P@10 and average rank of measures in 10 data sets are
included in the last two rows

Data set dcos �0.5 �2 s-�0.5 s-�2 dlin m0.5 m2

New3s 0.66 0.16 0.47 0.14 0.15 0.03 0.69∗ 0.68

Ohscal 0.48 0.17 0.27 0.15 0.15 0.10 0.61∗ 0.59

Wap 0.64 0.18 0.24 0.16 0.16 0.20 0.73∗ 0.72∗
R52 0.81 0.69 0.70 0.66 0.59 0.33 0.85∗ 0.83

NG20 0.71∗ 0.19 0.42 0.19 0.40 0.06 0.697 0.65

Fbis 0.68∗ 0.36 0.57 0.34 0.45 0.41 0.68∗ 0.67

Caltech 0.08 0.02 0.06 0.03 0.06 0.01 0.09 0.10∗
Gtzan 0.53∗ 0.49 0.53∗ 0.48 0.49 0.53∗ 0.54∗ 0.51

Hba 0.37 0.44 0.38 0.45 0.40 0.50∗ 0.51∗ 0.46

Corel 0.16 0.24 0.16 0.25 0.19 0.253 0.27∗ 0.24

Avg. P@10 0.51 0.29 0.38 0.29 0.30 0.24 0.57 0.55

Avg. Rank 3.20 5.30 4.40 5.80 5.80 5.50 1.20 2.70

Boldface represents a measure which has significantly better performance than all other competitors and ∗
represents the best or equivalent to the best performance

4.2 Content-based multimedia information retrieval (CBMIR)

Given a query instance q for a retrieval task, all the instances in a data set were ranked in
ascending order of their dissimilarity to q based on a dissimilarity measure; and the first
k instances were presented as the relevant instances to q. For performance evaluation, an
instance was considered to be relevant to q if they have the same category label. A good
information retrieval system returns relevant instances at the top. Hence, the precision in the
top 10 (P@10) retrieved results was used as the performance measure. The same process was
repeated for each instance in a data set as a query and the rest of the instances were ranked.
The average P@10 of N queries was reported. For information retrieval task, we used 10
data sets with 10 or more classes from multimedia (text, music and image) applications:
New3s, Ohscal, Wap, R52, NG20, Fbis, Caltech, Gtzan, Hba and Corel. The average P@10
of dcos, �0.5, �2, s-�0.5, s-�2, dlin,m0.5 and m2 are provided in Table 6.

Table 7 presents the summarized result in terms of the win:loss:draw counts of m0.5 and
m2 using confidence interval based on the two standard errors over N queries (standard
errors are provided in Table 11 in “Appendix 3”). It shows that both m0.5 and m2 produced
significantly better retrieval results than the other six contenders in many data sets: m0.5 had
only 1 loss and between 7 and 10 wins; m2 has at least 7 wins and at most 3 losses. The

123



Data-dependent dissimilarity measure 493

Table 7 Win:loss:draw counts of
m0.5 and m2 w.r.t other measures
in CBMIR

m0.5 m2

dcos 7:1:2 7:2:1

�0.5 10:0:0 7:1:2

�2 9:0:1 9:1:0

s-�0.5 10:0:0 8:1:1

s-�2 10:0:0 9:0:1

dlin 8:0:2 7:3:0

detailed result in Table 6 shows that, out of 10 data sets used, m0.5 and m2 produced the best
result or equivalent to the best result in 9 and 6 data sets, respectively. They have the average
ranking of 1.20 and 2.70, respectively whereas the closest contender dcos has an average
ranking of 3.2.

5 Relation to � p with rank transformation

In the first glance, it appears that mp (Eq. 8 with δ = 0) is equivalent to �p with rank trans-
formation [9] in continuous domains because they both measure dissimilarity based on the
number of instances in-between the two instances undermeasurement. In rank transformation
[9], instances in each dimension are ranked in ascending order with the smallest value having
ranked 1, the second smallest value having ranked 2, and so on. The values of instances are
then replaced by their ranks. If there are n < N instances which have the same value and the
value has rank r , then all instances are assigned the same rank r ; and the next available rank
is r + n (i.e, the minimum rank is assigned in the case of tie)8.

The distance between two instances in each dimension after the rank transformation as
discussed above can be defined as: abs(rank(xi ) − rank(yi )) = |{zi : min(xi , yi ) ≤ zi <

max(xi , yi )}|. In mp (with δ = 0) using the implementation based on the range search,
|Ri (xi , yi )| = |{zi : min(xi , yi ) ≤ zi ≤ max(xi , yi )}|9.

These two formulations are equivalent only if all values in dimension i are distinct, i.e.,
|Ri (xi , yi )| = abs(rank(xi ) − rank(yi )) + 1. They are different when there are duplicate
values; and the degree of difference is proportional to the number of duplicates.

It is interesting to note that the self-dissimilarity of xi if there are duplicate xi : abs(rank
(xi ) − rank(xi )) = 0 versus |Ri (xi , xi )| = f (xi ) where f (xi ) is the frequency of xi . Even
though rank difference between xi and yi is density (data) dependent when xi 	= yi (i.e., the
rank difference between xi and yi is larger in denser region than in sparse region even if the
geometric distance is the same), it is zero irrespective of the distribution when xi = yi . In the
extreme case where all the instances have the same value in dimension i , the self-dissimilarity
is 1 (maximum) in the case of mp , whereas the self-dissimilarity of �p after rank transfor-
mation is 0 (minimum). Often in high-dimensional real-world problems, many instances can
have the same value in many dimensions, e.g., many documents in a collection can have the
same occurrence frequency of a term; or different individuals can have the same age, etc.

We have compared the performances of mp and �p with rank transformation (�rankp ) in
the k-NN classification task using data sets with continuous attributes only (as rank trans-

8 Another approach of assigning rank in the case of tie is to assign the average rank, i.e., r+(r+1)+···+(r+n)
n .

9 We used the implementation based on the range search and not the approximation using binning in order to
have similar formulation as �p with rank transformation.
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Table 8 The average accuracy of
k-NN (k = 5) classification in a
tenfold cross-validation. The
distinct values statistic α is
provided in the second column

Data set α �rank2 m2 �rank0.5 m0.5

Hba 0.973 60.40 60.73 66.67 66.93

Gtzan 0.966 68.40 68.50 71.50 71.50

Arcene 0.378 84.50 79.50 80.00 84.00

Mfeat 0.320 97.95 98.20 97.80 97.90

Madelon 0.054 55.08 55.23 59.23 59.73

Satellite 0.011 90.72 90.80 90.69 90.94

Fbis 0.005 64.60 78.85 59.40 79.21

Wap 0.002 26.54 82.82 25.19 82.50

Webkb 0.002 61.28 84.31 59.18 85.23

R8 0.001 85.80 93.72 87.35 94.94

Boldface represents significantly
better performance than the
corresponding contender

formation is applicable only in continuous domains). Both �rankp and mp (since the efficient
approximation of Ri (·, ·) as discussed in Sect. 3.1 is not used) have high time complexities.
Estimating |Ri (·, ·)| in mp and computing the rank of an unseen value of a test instance in
�rankp in each dimension requires O(log N ) time using binary search resulting in the total
time complexity of measuring dissimilarity of a pair instances to be O(M log N ) which is
very expensive in large data sets. We only managed to get a tenfold cross-validation of k-NN
classification completed in 24 h in ten relatively small data sets only: Hba, Gtzan, Arcene,
Mfeat, Madelon, Satellite, Fbis, Wap, Webkb, and R8.

In order to provide an idea about the number of duplicate values per dimension in a data
set, the factor of distinct values averaged over all dimensions, i.e., α, is calculated as:

α = 1

M

M∑
i=1

wi

N
(13)

wherewi is the number of distinct values in dimension i . α = 1 indicates that the data set has
unique values in all dimensions (no duplicate at all) and α = 1

N indicates that all instances
have the same value in each and every dimension.

The average accuracies of 5-NN classification over a tenfold cross-validation using �rank2 ,
�rank0.5 , m2 and m0.5 are provided in Table 8. Based on two standard error confidence interval
significance test, �rank2 &m2 and �rank0.5 &m0.5 produced similar results inHba,Gtzan,Arcene,
MFeat, Madelon and Satellite; but bothm2 andm0.5 produced significantly better accuracies
than �rank2 and �rank0.5 in Fbis, Wap, Webkb, and R8. These results show that mp performs
better than �rankp in the case where many instances have the same values (i.e., there are only
a very few distinct values) in many dimensions.

In order to further demonstrate this difference, we conducted experiments with the Hba
and Gtzan data sets (having large α) by increasing the number of duplicate values in many
dimensions. The range of values in dimension i was divided into 10 equal-width bins rep-
resented by bin id 1, 2, · · · , 10 and an instance’s value was replaced by the id of the bin in
which the instance falls into, resulting in many duplicate values in dimension i . In order to
control the number of dimensions with duplicate values, we introduced a parameter a that
determines the proportion of attributes to be converted into bins, i.e., a = 0 indicates that no
attribute was converted into bins (i.e., values in all attributes were left as they were and no
duplicate values were introduced) and a = 1.0 indicates that all attributes were converted
into bins (i.e., many instances have duplicate values in all dimensions). The k-NN (k = 5)
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Fig. 4 5-NN classification accuracies of �rank2 , �rank0.5 ,m2 and m0.5 for different values of a

Table 9 The distinct values statistic α for different values of a

Data set a = 0 a = 0.1 a = 0.2 a = 0.5 a = 0.75 a = 1.0

Hba 0.973 0.881 0.783 0.485 0.241 0.006

Gtzan 0.966 0.870 0.774 0.486 0.246 0.009

classification accuracies of �rank2 , �rank0.5 ,m2 and m0.5 in the Hba and Gtzan data sets with
a = 0, 0.1, 0.2, 0.5, 0.75 and 1.0 are shown in Fig. 4 and correspondingα values are provided
in Table 9.

Figure 4 shows that there is a significant difference between the classification accuracies
ofm2 andm0.5 in compare to those of �rank2 and �rank0.5 for a ≥ 0.75 in both the Hba and Gtzan
data sets. This indicates that mp can provide more reliable nearest neighbors than �rankp if
many instances have duplicate values in many dimensions. This superior performance ofmp

over �rankp is primarily due to the data-dependent self-dissimilarity.
Furthermore, the rank transformation is possible in continuous domains only. In contrast,

mp not only can apply to both continuous and discrete domains, but has a seamless treatment
of mixed attribute type domains.

6 Discussion

In a high-dimensional space, the most widely used Euclidean distance (�2-norm) becomes
ineffective.Many researchers have argued that it is due to the ‘concentration’ effect of �p , i.e.,
pairwise distances become almost equal or similar and the contrast between the nearest and
farthest instances diminishes [1,6,12]. Let dmax(x, d) and dmin(x, d) be the dissimilarity
of x to its farthest and nearest neighbors in D using dissimilarity measure d , respectively. For
a given instance, the distance between the nearest and farthest instances does not increase
as fast as the distance to the nearest instance for many distributions [6], i.e., the ‘relative

contrast’
(
dmax(x,�p)−dmin(x,�p)

dmin(x,�p)

)
vanishes as the number of dimensions increases.

In our investigation, we observed that mp is more concentrated than �p and dcos , i.e.,
the relative contrast of mp is smaller than that of �p and dcos . Despite having a higher
concentration effect, mp provides more reliable nearest neighbors than �p and dcos in many
data sets, particularly in high-dimensional problems (see the experimental results in Sects. 4.1
and 4.2). This indicates that the negative impact of the concentration phenomenon in practice
may not be as severe as it is thought theoretically in the literature. This finding is consistent
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with that suggested by François et al. [12]. The detailed empirical result of the phenomenon of
concentration ofm2, �2 and dcos is provided in the “Concentration” section of “Appendix 2”.

Another issue of distance measures in high-dimensional spaces discussed in the literature
is “hubness” [24]. Let Nk(y) be the set of k nearest neighbors of y; and k-occurrences of x,
Ok(x) = |{y : x ∈ Nk(y)}|, be the number of other instances in the given data set where x
is one of their k nearest neighbors. As the number of dimensions increases, the distribution
of Ok(x) becomes considerably skewed (i.e., there are many instances with zero or small
Ok and only a few instances have large Ok) for many widely used distance measures [24].
The instances with large Ok(·) are considered as “hubs,” i.e., the popular nearest neighbors.
Hubness becomes prominent in high-dimensional space, and it affects the performance of
k-NN based algorithms. For example, if x is a hub, it appears in the k-NN sets of many
test instances and contributes in the prediction decisions, but it may not be relevant to make
predictions for all of those test instances.

We observed that the hubness phenomenon in mp is not as severe as in the case of �p and
dcos when the number of dimensions is increased particularly in non-uniform distributions.
This may contribute to the superior performance of mp over �p and dcos . The detailed
empirical result of the phenomenon of hubness ofm2, �2 and dcos is provided in the “Hubness”
section of “Appendix 2”.

In order to circumvent the high-dimensionality issue, dimensionality reduction [11] tech-
niques are used before using distance measures. In continuous domain, Principal Component
Analysis (PCA) [16] is commonly used to project data into a lower-dimensional space defined
by principal components with high variance. The principal components are computed by the
eigen decomposition of covariance or correlation matrix which is computationally expensive
in the case of large M and N . It relies on variance of data in each dimension which may not
be enough to capture the characteristics of local data distribution. As it selects the dimensions
with high variance, we may lose differences between instances in the dimensions with low
variance.

In a nutshell, themain purpose of PCA is dimensionality reduction that enables an applica-
tion to high-dimensional data sets; and it usually does not improve predictive accuracy. This
is exactly what we observed in the 5-NN classification task. For example, 5-NN classification
accuracies of dcos and �2 were increased in Corel and Hba but that of �0.5 was decreased
in both data sets. Similarly, the classification accuracies of all three measures decreased
significantly in Mnist and R52. In general,m2 andm0.5 in the original space (without dimen-
sionality reduction) produced better and consistent results across different data sets. The
detailed results of this comparison are provided in Table 12 in “Appendix 4”.

Note that PCA changes the distribution of data to maximize the variance (which is defined
by inter-point distances). Thus, it does not make sense to apply PCA when using mp .

Different data-dependent distance metric adaptation techniques are discussed in the lit-
erature to improve task-specific performance of distance measures in a given data set.
Weighted Minkowski distance [10] assigns weight to the distance in each dimension based
on the observed data. Note that standardized Euclidean distance (s-�2) is a simple weighted
Euclidean distance where the distance in each dimension is weighted by the inverse of data
variance in that dimension. Assigning weights more intelligently requires some learning or
optimization. In transductive learning, Lundell and Ventura [21] corrected the Euclidean
distance between two instances based on meta-clustering which itself relies on pairwise
Euclidean distances and can be computationally expensive in large and high-dimensional
problems.

Metric learning [32,33] projects data from the original space to a new low-dimensional
space that best suits the Euclidean distance to solve the task at hand. Rather than projecting
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data in low-dimensional space by ignoring dimensions with small eigen values, regularized
matrix relevance learning [28] uses a regularization scheme which inhibits decays in the
eigen profile. Both of these techniques require intensive learning which is computationally
expensive in large and/or high-dimensional data sets. They optimize distance metric specifi-
cally for the given task which may not be good for other tasks using the same data set. They
are not a general-purpose measures like mp , �p or dcos .

All the adaptive metric learning techniques discussed in the literature attempt to adjust the
inter-point distances in the space based on the data distribution that satisfies some optimality
constraints. Because the transformed space is still embedded in the Euclidean space, the self-
similarity is still constant regardless of the data distribution, and they still rely on geometric
model andmetric assumptions. Even thoughmetric-basedmeasures have a nicemathematical
properties, their assumptions might be inappropriate to model some problems. Recently,
Schleif and Tino [27] discussed issues of metric-based proximity learning and provided a
comprehensive review of non-metric proximity learning.

In this paper, we focus on general-purpose distance or dissimilarity measures which
requires no learning. We have evaluated the performance of the proposed data-dependent
general-purpose dissimilarity measure mp against the geometric general-purpose distance
measures �p and dcos . In the future, it would be interesting to investigate how learning can be
applied to data-dependent dissimilarity measure such as mp to produce non-metric learning
and then compare non-metric learning with metric learning.

Because of the implementation ofmp using bins, one can see some similaritywith Locality
Sensitive Hashing (LSH) [15]. The aims of binning are different in the two cases. In LSH,
bins are used to find a small set of candidate nearest neighbors of a test instance quickly
where the k-NNs are searched using the Euclidean distance. In contrast, mp probability data
mass in bins is used as a measure of dissimilarity directly. It is an open question whether
LSH can be used to generate candidate set quickly formp . LSH has a nice theoretical bounds
for the Euclidean distance but it is not clear if similar bounds can be derived for mp .

7 Conclusions and future work

In this paper, we proposed a new dissimilaritymeasure called “mp-dissimilarity”. It estimates
the dissimilarity between two instances in each dimension as a probability data mass in
the region enclosing the two instances. The final dissimilarity between the two instances
is estimated by combining all single-dimensional dissimilarities as in the case of �p . The
fundamental difference between the formulations of mp and �p is the replacement of the
geometric distance with the probability mass in each dimension.

Our empirical evaluations in k-NN classification and content-based multimedia informa-
tion retrieval tasks show that mp provides better closest matches than those provided by �p
and cosine distance in high-dimensional spaces. Its performance is more consistent across
different data sets. By simply replacing the geometric distance in each dimension with the
probability mass, k-NN using mp significantly improves the performance of k-NN using �p
in many high-dimensional data sets.

In contrast to the commonly used distancemeasures,mp is not using the values of instances
in each dimension in the measure directly. Because it is based on data mass, it is insensitive to
units and scale of measurement and the difference in variance of values of instances between
dimensions. Thus, it does not require any preprocessing such as min–max normalization to
rescale values in the same range, or standard deviation normalization to ensure unit variance
across all dimensions, or TF-IDF weighting to adjust the importance of a term in a document.
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Even though �p can be made data dependent though rank transformation, it is applicable
only in the case where all instances have distinct values (or a few duplicates only) in each
dimension. However, the data-dependent characteristics of mp is applicable in both cases of
with andwithoutmany instances havingduplicate values inmanydimensions.Many instances
having duplicate values inmany dimensions are a common characteristic of high-dimensional
data sets where data lies in a low-dimensional subspace. In such high-dimensional data sets,
mp produces better task-specific performance than �p with the rank transformation.

Future work includes investigating learning for mp and compare the non-metric learning
with metric learning; examining the effectiveness of mp in other data mining tasks such as
clustering, anomaly detection, vector quantization and SVM kernel learning; and developing
indexing schemes for mp to speed up the nearest neighbor search in the case of large N .
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Appendix 1: Probabilistic interpretation of mp

The formulation of mp(x, y) (Eq. 8) has a probabilistic interpretation. The simplest form
of data-dependent dissimilarity measure is to define an M-dimensional region R(x, y) that
encloses x and y, and to estimate the probability of a randomly selected point t from the
distribution of data, φ(x), falling in R(x, y), P(t ∈ R(x, y)|φ(x)). Let R(x, y) has length of
Ri (x, y) in dimension i . Assuming that the dimensions are independent, P(t ∈ R(x, y)|φ(x))
can be approximated as:

P(t ∈ R(x, y)|φ(x)) ≈
M∏
i=1

P(ti ∈ Ri (x, y)|φi (x)) (14)

where P(ti ∈ Ri (x, y)|φi (x)) is the probability of ti falling in Ri (x, y) for dimension i .
The approximation in Eq. 14 is sensitive to outliers. An approximation which is tolerant to

outliers can be estimated by replacing the product with the summation [23]. The sum-based
approximation relates to the probability of t in Eq. 14 under the following outlier model.
Consider a data generation process in which in order to sample ti , a coin with probability of
turning head (1 − ε) is flipped. If the coin turns head, ti is drawn from the distribution of
data in dimension i , φi (x), where the probability of sampling ti is Pi (ti |φi (x)), otherwise it
is sampled from the uniform distribution with probability 1/A, and A is a constant.

Lemma 1 [23] Under the data generation process described above, the probability of a data
point P ′(·) can be approximated as

P ′(t|φ(x), ε) ≈ C1 + C2 ×
M∑
i=1

Pi (ti |φi (x))

where C1 and C2 are constants.

Proof Under the outlier model, the probability of generating the value of the i’th dimension
ti is
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P ′(ti |φ(x), ε) = ε/A + (1 − ε)P(ti |φi (x)) (15)

We assume that each dimension is generated independently, hence

P ′(t|φ(x), ε) ≈
M∏
i=1

P ′(ti |φ(x), ε) =
M∏
i=1

(ε/A + (1 − ε)P(ti |φi (x)))

= (ε/A)M + (ε/A)M−1(1 − ε)

M∑
i=1

P(ti |φi (x)) + O
(
(1 − ε)2

)
In the extreme case where the probability of generating ti from the uniform distribution

(i.e., the outlier component) is high, i.e., ε is close to 1, only the first two terms matter.
Assuming C1 := (ε/A)M and C2 := (ε/A)M−1(1 − ε), the lemma follows. ��

In addition to the above approximation given byMinka [23], we propose that the chance of
ti being drawn from the outlier model can be further reduced by sampling from φi (x)p , p > 1
when coin turns up head in the above mentioned data generation process. The probability
of sampling ti from φi (x)p is P(ti |φi (x))p

Zi,p
, where P(·)p is the probability of a random event

occurring in p successive trials and Zi,p is the normalization constant to ensure the total
probability sums up to 1 in the i th dimension.

Lemma 2 Under the data generation process of sampling from exponential distribution
described above, the probability of a data point P ′′(·) can be approximated as

P ′′(t|φ(x), ε, p) ≈ C1 + C2 ×
M∑
i=1

Pi (ti |φi (x))p

Zi,p

where C1, C2, and {Zi,p}Mi=1 are constants.

Proof This follows from Lemma 1 by drawing ti from φi (x)p p > 1 when coin turns up
head in the data generation process. ��

As a result of Lemma 2 (by considering the outlier tolerant model), P(t ∈ R(x, y)) can
be approximated as:

P(t ∈ R(x, y)) ≈ C1 + C2 ×
M∑
i=1

Pi (ti ∈ Ri (x, y))p

Zi,p
(16)

Note that P(t ∈ R(x, y)) is a data-dependent dissimilarity measure for x and y. All
the constants on RHS of Eq. 16 are independent of x and y and they are just the scaling
factors of the dissimilarity measure. Particularly, in order to find the nearest neighbor of x
among a collection of data instances, the only important term in the measure is

∑M
i=1 Pi (ti ∈

Ri (x, y))p . The constants can be ignored as they do not change the ranking of data points.
Hence, by ignoring the constants in Eq. 16,mp(x, y) can be expressed as its rescaled version
as follows:

mp(x, y) =
(

1

M

M∑
i=1

Pi (ti ∈ Ri (x, y))p
) 1

p

(17)

where the outer power of 1
p is just a rescaling factor and 1

M is a constant.
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In practice, Pi (ti ∈ Ri (x, y)) can be estimated from D as:

P̂i (ti ∈ Ri (x, y)) = |Ri (x, y)|
N

(18)

Hence, Eqs. 17 and 18 lead to mp defined in Eq. 8.

Appendix 2: Analysis of concentration and hubness

In order to examine the concentration and hubness of the three dissimilarity measures m2,
�2 and dcos in different data distributions with the increase in the number of dimensions,
we used synthetic data sets with uniform (each dimension is uniformly distributed between
[0,1]) and normal (each dimension is normally distributed with zero mean and unit variance)
distributions with M = 10 and M = 200. Feature vectors were normalized to be in unit
range in each dimension.

Concentration

The relative contrast between the nearest and farthest neighbor is computed for all N = 1000
instances in each data set using m2, �2 and dcos . The relative contrast for each instance in
uniform and normal distributions with M = 10 and M = 200 are shown in Fig. 5.

The relative contrast of all three measures decreased substantially (note that the y-axes
have different scales in Fig. 5) when the number of dimensions was increased from M = 10

Fig. 5 Relative contrast
(
dmax(x,d)−dmin(x,d)

dmin(x,d)

)
of m2, �2 and dcos . Note that x axis is instance id and

corresponding y axis value is the relative contrast of that instance
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Fig. 6 The O5 distributions ofm2, �2 and dcos in synthetic data sets. Note that x axis is in the log scale hence
x axis value is log(O5 + 1) to consider the case of O5 = 0

toM = 200 in both distributions. It is interesting to note thatm2 has the least relative contrast
in both distributions with M = 10 and M = 200; and dcos has the maximum relative contrast
in all cases. The relative contrasts of �2 and m2 are almost the same except in the case of
normal (M = 200), where the relative contrast of �2 is slightly higher than that of m2 for
many instances.

This suggests that m2 is more concentrated than �2 and dcos . Even in real-world data sets,
we observed that m2 is more concentrated than �2 and dcos .

Hubness

In order to examine the hubness phenomenon, 5-Occurrences of each instance x ∈ D is
estimated, i.e., O5(x) = |{y : x ∈ N5(y)}|, where N5(y) is the set of 5-NN of y. Then, the
O5 distribution is plotted for each measure (m2, �2 and dcos) in all four synthetic data sets
which is shown in Fig. 6.

The O5 distributions of all threemeasures become skewedwhen the number of dimensions
was increased from M = 10 to M = 200 in both distributions. It is interesting to note that
the O5 distributions of m2 in uniform and normal distributions are almost similar for both
M = 10 and M = 200, whereas those of �2 and dcos in the case of normal distribution are
more skewed than those in uniform distribution for both M = 10 and M = 200. Note that
the O5 distributions of m2 and �2 in uniform distribution are similar for both M = 10 and
M = 200. This is because of the fact thatm2 is proportional to �2 under uniform distribution
(also reflected in Fig. 2a). In the case of normal distribution andM = 200, the O5 distribution
ofm2 is less skewed than those of �2 and dcos . There are 361 and 348 (out of 1000) instances
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with O5 = 0 (which do not occur in the 5-NN set of any other instance) in the case of �2
and dcos , respectively; whereas there are only 161 instances with O5 = 0 in the case of m2.
Similarly, the most popular nearest neighbors using �2 and dcos have O5 = 146 and 152,
respectively; whereas the most popular nearest neighbor using m2 has O5 = 69.

We observed similar behavior in many real-world data sets as well where the O5 distri-
bution of m2 is less skewed than that of �2 and dcos .

Appendix 3: Standard error

Table 10 shows the standard error of classification accuracies (in %) of k-NN classification
(k = 5) over a tenfold cross-validation (average classification accuracy is presented in Table 4
in Sect. 4.1).

Table 10 Standard error of accuracies of k-NN classification (k = 5) over a tenfold cross-validation. Average
classification accuracy is presented in Table 4 in Sect. 4.1

Data set dcos �0.5 �2 s-�0.5 s-�2 dlin m0.5 m2

New3s 0.35 0.59 0.67 0.67 0.66 0.03 0.34 0.36

Ohscal 0.57 0.48 0.49 0.81 0.70 0.01 0.26 0.26

Arcene 2.49 1.45 1.83 1.98 2.11 2.00 2.96 2.17

Wap 0.78 0.65 0.72 0.66 0.77 1.07 0.83 1.08

R52 0.51 0.23 0.44 0.45 0.42 0.13 0.31 0.25

NG20 0.22 0.42 0.39 0.30 0.24 0.05 0.19 0.23

Gisette 0.16 0.23 0.19 0.27 0.23 0.44 0.22 0.14

R8 0.29 0.40 0.51 0.42 0.45 0.08 0.25 0.29

Fbis 0.80 2.90 1.04 1.91 1.30 1.47 0.71 0.75

Webkb 0.53 0.43 0.75 0.30 0.70 0.28 0.51 0.40

Ads 0.28 0.24 0.30 0.20 0.29 0.23 0.28 0.29

Caltech 0.15 0.09 0.20 0.09 0.14 0.06 0.10 0.11

Mnist 0.08 0.09 0.08 0.09 0.08 0.28 0.07 0.06

Mfeat 0.30 0.32 0.29 0.25 0.32 0.40 0.37 0.38

Isolet 0.45 0.27 0.40 0.23 0.48 0.22 0.33 0.33

Madelon 1.04 1.30 1.18 1.46 1.35 0.78 0.79 0.98

Arrhythmia 2.00 1.32 2.01 1.76 1.42 1.68 1.89 2.34

Gtzan 1.68 1.32 1.61 1.41 1.49 1.48 1.20 1.67

Ismis 0.23 0.24 0.20 0.28 0.24 0.17 0.16 0.19

Hba 1.18 1.31 0.88 1.20 1.21 1.50 1.12 1.36

Musk2 0.18 0.15 0.21 0.15 0.14 0.16 0.13 0.09

Corel 0.44 0.38 0.41 0.41 0.38 0.43 0.49 0.38

Splice 0.67 0.67 0.67 0.67 0.67 0.59 0.41 0.54

Miniboone 0.07 0.07 0.07 0.07 0.05 0.05 0.06 0.07

Connect-4 0.11 0.11 0.11 0.11 0.11 0.19 0.17 0.12

Annealing 1.24 1.48 1.22 1.30 1.35 1.38 1.46 1.46

Satellite 0.29 0.38 0.27 0.35 0.22 0.28 0.39 0.34

Chess 0.39 0.39 0.39 0.39 0.39 0.33 0.29 0.34

Hypothyroid 0.15 0.13 0.15 0.23 0.17 0.21 0.27 0.13

Credit-g 1.41 1.12 1.37 1.12 1.26 1.10 0.89 1.25
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Table 11 Standard error of P@10 over N queries. Average P@10 is presented in Table 6 in Sect. 4.2

Data set dcos �0.5 �2 s-�0.5 s-�2 dlin m0.5 m2

New3s 0.004 0.002 0.004 0.002 0.002 0.002 0.003 0.003

Ohscal 0.003 0.002 0.002 0.002 0.001 0.001 0.003 0.003

Wap 0.009 0.006 0.007 0.006 0.006 0.006 0.008 0.008

R52 0.003 0.004 0.004 0.004 0.004 0.004 0.003 0.003

NG20 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002

Fbis 0.006 0.005 0.007 0.005 0.006 0.006 0.006 0.006

Caltech 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Gtzan 0.009 0.010 0.010 0.010 0.010 0.009 0.010 0.010

Hba 0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.007

Corel 0.002 0.003 0.002 0.003 0.002 0.003 0.003 0.003

Table 11 shows the standard error of precision at top 10 retrieved results (P@10) over
N queries in content-based multimedia information retrieval (average P@10 is presented in
Table 6 in Sect. 4.2).

Appendix 4: Comparison with geometric distance measures after dimen-
sionality reduction

Average 5-NN classification accuracies over a tenfold cross-validation of dcos, �0.5 and �2
before and after dimensionality reduction through PCA along with those of m0.5 and m2 in

Table 12 Average accuracy of 5-NN classification over a tenfold cross-validation

Data Dim. red. with PCA Orginal dimensions
set dcos �0.5 �2 dcos �0.5 �2 m0.5 m2

Caltech 12.76 03.80 07.17 11.40 02.90 08.46 13.83 14.68

Corel 28.32 26.84 28.50 24.59 35.66 23.68 39.76 35.30

Fbis 71.87 56.44 65.00 77.91 48.18 70.40 79.21 78.85

Gissette 96.66 72.24 95.50 97.76 94.59 96.50 96.77 97.73

Gtzan 72.40 51.10 65.90 70.90 65.00 70.40 72.00 68.80

Hba 57.47 41.70 55.20 50.20 59.07 52.00 67.07 60.73

Ismis 94.86 92.41 93.96 94.53 94.35 94.41 95.54 94.48

Isolet 87.43 84.28 87.77 88.37 83.71 89.16 79.68 82.42

Madelon 57.85 51.62 55.14 57.27 60.92 56.88 59.23 55.00

Mfeat 97.90 97.20 98.10 98.00 98.15 98.20 97.85 98.20

Miniboone 92.47 92.36 92.79 92.65 93.03 92.63 92.77 92.94

Mnist 94.99 92.07 95.24 97.66 95.62 97.19 95.77 97.23

Musk2 96.15 97.42 96.54 96.45 95.35 96.62 95.01 95.47

R8 80.87 61.17 65.77 90.36 81.89 79.59 94.94 93.72

Satellite 88.98 90.09 90.74 84.86 90.68 90.97 90.97 90.85

Webkb 72.02 51.25 59.14 73.40 51.28 63.85 85.23 84.31

Avg. 75.19 66.37 72.03 75.39 71.90 73.81 78.48 77.54
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the original space in 16 out of 22 data sets with continuous only attributes are provided in
Table 12. With PCA, the number of dimensions was reduced by projecting data in the lower-
dimensional space defined by the principal components capturing 95% of the variance in
data. The principal components were computed by the eigen decomposition of the correlation
matrix of the training data to ensure that the projection is robust to scale differences in the
original dimensions. Note that PCA did not complete in 24 h in the remaining six data sets
with M > 5000: New3s (26,832), Ohscal (11,465), Arcene (10,000), Wap (8460), R52
(7369) and NG20 (5489).
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