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Abstract How can we discover interesting patterns from time-evolving high-speed data
streams? How to analyze the data streams quickly and accurately, with little space overhead?
How to guarantee the found patterns to be self-consistent? High-speed data stream has been
receiving increasing attention due to its wide applications such as sensors, network traffic,
social networks, etc. Themost fundamental task on the data stream is frequent patternmining;
especially, focusing on recentness is important in real applications. In this paper, we develop
two algorithms for discovering recently frequent patterns in data streams. First, we propose
TwMinSwap to find top-k recently frequent items in data streams, which is a deterministic
version of our motivating algorithm TwSample providing theoretical guarantees based on
item sampling. TwMinSwap improves TwSample in terms of speed, accuracy, andmemory
usage. Both require only O(k) memory spaces and do not require any prior knowledge
on the stream such as its length and the number of distinct items in the stream. Second,
we propose TwMinSwap- Is to find top-k recently frequent itemsets in data streams. We
especially focus on keeping self-consistency of the discovered itemsets, which is the most
important property for reliable results, while using O(k) memory space with the assumption
of a constant itemset size. Through extensive experiments, we demonstrate thatTwMinSwap
outperforms all competitors in terms of accuracy and memory usage, with fast running time.
We also show that TwMinSwap- Is is more accurate than the competitor and discovers
recently frequent itemsets with reasonably large sizes (at most 5–7) depending on datasets.
Thanks to TwMinSwap and TwMinSwap- Is, we report interesting discoveries in real world
data streams, including the difference of trends between the winner and the loser of U.S.
presidential candidates, and temporal human contact patterns.
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1 Introduction

How can we discover currently emerging patterns in high-speed data streams, like keyword
streams from social networks or click streams from e-commerce sites? How to track them in
real time with high accuracy and small memory requirements? How can we guarantee results
to be self-consistent? These questions are directly related to recently frequent pattern mining
in a data stream.

Formally, a data stream is defined by a sequence of transactions, each of which is a set of
items, arriving one by one. Usually, the length of the stream and the number of distinct items
are very large numbers, possibly infinite. Due to this massiveness, it is impossible to store
all the information from the stream, and thus it becomes important to efficiently use mem-
ory spaces. As a result, most data stream mining algorithms [29,30] perform approximation
rather than exact computation, and the followings are generally required [6]. First, the stream
should be scanned as few times as possible: only one scan is enough for many recent algo-
rithms. Second, the amount of used memory spaces should be limited and independent of the
number of distinct items and the stream length, e.g. O(k) space complexity for finding top-k
frequent items. Third, processing a transaction at each time should be fast because the rate of
transaction arrival can be bursty, e.g. Internet traffic may be exploded by network anomalies
like DDoS (Distributed Denial of Service) attacks. Fourth, an up-to-date result should be
available on demand. These requirements allow that data stream mining algorithms run in
real time with small memory spaces.

A number of studies [9,10,17,21,32,38] have shown efficacy of their methods in finding
frequent patterns including items and itemsets in a data stream, but still it is not clear whether
they can find recent frequent patterns (items or itemsets) correctly. Although a pattern whose
frequency decreases over time tends to have a small count by construction of algorithms,
it is not done explicitly. Another problem is that among discovered frequent patterns, it is
hard to know when they have become frequent. Depending on applications, the problem is
crucial. For example, when we monitor keywords mentioned in SNS, it is important to know
which one is the current trend and which one is the past trend. Also, in an e-commerce site,
a manager would be interested in sets of products co-purchased frequently not just in the all
days but in recent days to understand consumers’ current needs correctly. To overcome this
weakness, finding recent frequent patterns from a data stream has been also studied [1,13,18].
However, they have limitations in accuracy, running time, and memory usage.

In this paper, we propose two recently frequent pattern mining algorithms: TwMinSwap
for items and TwMinSwap- Is for itemsets. The idea is to count items or itemsets with
time-weighting, which means that a value of an item or itemset decreases over time.

TwMinSwap is a deterministic version of our motivating algorithm TwSample which is
a sampling-based randomized algorithmwith theoretical guarantees. TwMinSwap improves
TwSample in terms of speed, accuracy, and memory usage. Both algorithms only require
O(k) space complexity. Especially, TwMinSwap requires no other parameter than k and
α (time-decaying factor), and this simplicity enables to not only save memory spaces
but also reduce per-item processing time. Table 1 compares our proposed TwMinSwap
with other competitors, and Fig. 1 shows the plots of memory usage versus error in esti-
mated time-weighted counts for them. TwMinSwap outperforms the others in terms of
precision and recall, time-weighted count estimation, and memory usage; its speed is com-
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Table 1 Comparison of performance of TwMinSwap, TwSample and competitors

[Recommended] Competitors
TwMinSwapa TwSampleb TwFreqc TwHCountd

Precision and Recall Highest Low Lowest High

Error in TwCount Lowest Medium Highest Lowest

Memory Usage Smallest Largest Small Largest

Time Fast Slowest Medium Fastest

For each row, we write the best in bold and the worst with the canceled line. Our TwMinSwap outperforms
the others in precision and recall, error in estimation of time-weighted counts, and memory usage, where in
running time, it is the second best one. The precision and recall and the error are defined in Eqs. 2 and 3,
respectively. For more related works, we refer to [13,18,31]
a Section 3.2
b Section 3.1
c Zhang et al. [39]
d Chen and Mei [9]
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Fig. 1 Our proposed algorithm TwMinSwap outperforms the others in both memory usage and error of
estimated time-weighted counts of top-k items. Despite comparable estimation of TwHCount(10) to that of
TwMinSwap, TwHCount(10) requires much more memory space. a Static distribution, b dynamic distribu-
tion

parable to the fastest competitor TwHCount requiring large memory spaces (see also
Fig. 5).

Our second algorithm TwMinSwap- Is is devised for finding the top-k recently frequent
itemsets in data streams. TwMinSwap- Is always keeps at most k itemsets, and outputs self-
consistent results, i.e. the Apriori property1 holds in the found top-k itemsets, which makes
the results more reliable. Also themaximum size of itemsets found remains reasonable, while
the competitor’s can be arbitrary large. Table 2 briefly compares TwMinSwap- Is and the
competitor.

Conducting extensive experiments, we demonstrate that TwMinSwap finds top-k time-
weighted frequent items with small memory spaces, and small error in terms of precision
and recall, and estimated time-weighted counts. Also applying TwMinSwap to real-world
data streams, we show that tracking recently frequent activities and keywords enables to

1 If an itemset μ is frequent, its every subset ν ⊆ μ is also frequent.
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Table 2 Comparison of performance of TwMinSwap- Is and the competitor

TwMinSwap- Is (Sect. 4) Skip LC- SS [38]

Consistency in Result Apriori property No guarantee

Max. Size of Itemsets Reasonable (5–7) Arbitrary (10–20)

TwMinSwap- Is guarantees the Apriority property for its result, which is not the case for Skip LC- SS, and
outputs itemsets with the maximum size 5–7. This size of the output itemsets is reasonable because a large
portion of transactions in the used data have a size smaller than 7. Note that by construction Skip LC- SS can
result in itemsets of an arbitrarily large size

discover sudden bursts of attentions to currently hot events and trends in real time. We also
evaluate TwMinSwap- Is in accuracy and non-triviality of results. TwMinSwap- Is outputs
top-k itemsets whose time-weighted counts are highly correlated with the ground truth, and
the result includes an itemset of a size at most 5–7 where a large proportion of transactions
in data are of a size less than 7: depending on datasets, up to 95% of transactions have a size
smaller than or equal to 7.

Our contributions are summarized as follows.

1. Method Based on time-weighted counting, we proposeTwMinSwap and TwMinSwap-
Is for finding top-k recently frequent items and itemsets, respectively. TwMinSwap
with O(k) memory requirement is a deterministic variation of our motivating random-
ized algorithm TwSample. Moreover, extending TwMinSwap to itemsets, we develop
TwMinSwap- Is which guarantees the Apriori property in the results.

2. Performance We show that TwMinSwap outperforms in precision, accuracy and time-
weighted count estimation, and that the speed ofTwMinSwap is comparable to that of the
fastest competitorTwHCount. Especially,TwMinSwap is 1.5× better in time-weighted
count estimation and 2.5× better in memory usage than the second best competitors. We
also show that TwMinSwap- Is finds itemsets whose time-weighted counts show high
correlation with the true values, and whose sizes are non-trivial, i.e. 5–7.

3. Discovery We apply TwMinSwap and TwMinSwap- Is to real-world data streams and
show interesting discoveries. They include difference of trends between the winner and
the loser of U.S. presidential candidates, and different human contact patterns in real life.

The rest of the paper is organized as follows. In Sect. 2, we give related works including
algorithms with and without time-weighting. In Sect. 3, we describe and analyze TwSample
and TwMinSwap for recently frequent items, and in Sect. 4 we develop TwMinSwap- Is
for recently frequent itemsets. In Sects. 5 and 6, performance evaluation results, including
comparison with competitors, are presented for TwMinSwap and TwMinSwap- Is, respec-
tively. In Sect. 7, we show the discovery results of applying TwMinSwap to real-world data
streams. Finally, we conclude our work in Sect. 8.

Table 3 lists the symbols frequently used in this paper.

2 Related works

2.1 Finding frequent items

There have been numerous studies to find frequent items from a data stream, including not
only developing methods but also comparing them [10,32]. Here, we classify them into three
categories as follows.
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Table 3 Table of symbols Symbol Description

N Stream length

n # of distinct items

k # of (time-weighted) frequent items

α Time-decaying factor (0 < α < 1)

u, v; μ, ν Item; itemset

2μ Power set of μ

c, cu Counter (of u)

Tu Set of timestamps that u occurs

W (u) Time-weighted count of u

L(u) Penalized time-weighted count of u

t, ti /tcur Timestamps/current timestamp

K Set of discovered (time-weighted) frequent items

λ Penalty term for L(u)

σ Increase ratio of λ

Sampling-based Approach This approach involves a probabilistic process, and obtained
items are random samples over all the items occurring in a data stream. Vitter [37] proposed
a uniform sampling method from a data stream by which, in essence, higher frequency items
are sampled much more than lower ones. Improving the space requirement for the sam-
pling, Gibbons and Matias [17] invented a method called concise sampling which efficiently
represents sampled items. By slightly modifying the method, they also proposed counting
sampling to estimate the frequency of each item more accurately. A similar approach was
adopted in [33] to obtain high frequency items.

Counter-based Approach A very basic form of the counter based approach is Majority
that finds themajority item in a stream if it exists [3,16].BygeneralizingMajority,Misra and
Gries [36] developed amethod to find items occurring at least N/k times and it was improved
in per-item processing time by Demaine et al. [14] and Karp et al. [22]. LossyCounting
[33] does the same job, but it additionally guarantees that no item whose count is less than
N (1/k − ε) is reported. SpaceSaving [35] reduces the space requirement not only for an
arbitrary data distribution but also for a Zipf distribution.

Sketch-based Approach The sketch-based approach is usually based on using multiple
hash functions to map incoming items to a hash table. This can be also understood as main-
taining a list of independent counters where each counter is shared by a few items, and the
sharing is determined by the hash functions. Charikar et al. [8] proposed CountSketch that
computes items appearing at least N/(k + 1) times with probability 1 − δ while requiring
O(k/ε2 log N/δ)memory spaces. The space requirement was improved byCountMin [11].
GroupTest [12] was developed for a hot item query, which groups items and assumes one
frequent item in each group. Jin et al. [20] improvedGroupTest in space and their algorithm
guarantees the minimum count of items outputted.

2.2 Finding recent frequent items

Despite many algorithms to find frequent items from a data stream, researchers have agreed
that recent items are more important than old ones and answering a query of finding recently
frequent items is often required. Below, we introduce two approaches for the purpose.
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Sliding Window-based Approach This approach divides recent times into window blocks,
performs counting for items in the windows, and aggregates them. Golab et al. [18] proposed
a method based on basic window blocks for identifying frequent items in packet streams in
which item frequency is known to follow a power-law distribution. They also extended the
work to the more general case that the item frequency follows a multinomial distribution
[19]. There have been works using windows of various sizes. Arasu and Manku [1] provided
deterministic and randomized algorithms for ε-approximate quantiles over sliding windows.
Dallachiesa and Palpanas [13] studied the problem in ad hoc time windows. They use over-
lapping window blocks whose sizes exponentially grow by which a query for frequent items
during a certain recent time period can be answered more accurately.

Time-aware-based Approach This approach implicitly considers the recentness. Liu et al.
[31] proposed a pruning method, a key operation of counter-based algorithms, considering
time information so that an older item is more likely to be pruned than a more recent one
when the memory becomes full. A similar approach has been examined in [9,39,40]. All of
them adopt a time fading factor in developingmethods to find frequent items which decreases
a weight of an item over time. As a result, recent items have more weights, leading to more
accurate results. Our proposed algorithms, whose preliminary version appeared in [28], in
this paper also belong to this category. We show that time-weighted counting can be done
via sampling which guarantees its accuracy in expectation, and propose our main algorithm
TwMinSwap via derandomization.

2.3 Finding frequent itemsets

In this problem, an object from a data stream is a set of items called a transaction, and every
subset of the transaction is a candidate to be found as a frequent itemset. This means that
there is an exponentially many candidates on the length of a transaction, and thus the problem
becomes more challenging than frequent item mining.

LossyCounting has been refined for frequent itemset mining and that with an informa-
tion decaying parameter [7,33]. The problemhas been studiedwith various aspects. Examples
include focusing maximal frequent itemsets [23,27], targeting streams with bursty transac-
tions [38], and window-based approaches [5,26]. Several studies [6,7] have taken a similar
approach of our time-weighted counting. They preserve the Apriori property using a prefix-
tree lattice structure, but its space requirement increases as the number of distinct items gets
larger. In contrast, our proposed algorithm TwMinSwap- Ismaintains only O(k) entries for
the top-k recently frequent itemsets as well as keeping the Apriori property.

3 Recently frequent item mining

In this section, we propose our method for finding time-weighted top-k items from a data
stream. The main idea is derandomization of a sampling-based algorithm. As a result,
we propose a deterministic algorithm TwMinSwap, which requires only O(k) memory
spaces where k is the number of time-weighted frequent items that we want to find. To
develop TwMinSwap, we first propose a sampling-based randomized algorithm TwSam-
pleto guarantee performance in expectation,which helps understand a theoretical background
of TwMinSwap. However, the probabilistic nature of TwSample requires several indepen-
dent sampling sessions to achieve high accuracy, leading to large memory spaces and slow
running time. On the other hand, TwMinSwap achieves high accuracy with fast running time
while using only a single session.
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We start with the definition a time-weighted count of an item [9,39,40].

Definition 1 (Time-weighted Count) Let u be an item occurring in a data stream at times
t1, . . . , tc. The time-weighted count of the item u is defined by

W (u) =
c∑

i=1

αtcur−ti ,

where 0 < α < 1 is a decaying parameter and tcur is the current time.

3.1 Randomized algorithm

Todevelop a sampling-based randomized algorithm,wefirst define a penalized time-weighted
count as follows.

Definition 2 (Penalized Time-weighted Count) Let u be an item occurring in a data stream
and let Tu be a set of the times at which u has occurred. The penalized time-weighted count
of the item u is defined by

L(u) =
∑

t∈Tu
αtcur−t+λ−1,

where 0 < α < 1 is a decaying parameter, tcur is the current time, and λ ≥ 1 is a default
penalty term for items just arriving.

Let the sequence of items till time tcur be u1, . . . , utcur . Given 0 < α < 1 and λ ≥
1, our randomized algorithm samples each item ut with probability αtcur−t+λ−1. This is
incrementally done with increasing λ over time to ensure that the number of distinct items
in the samples is at most k. Indeed, our algorithm can be understood as an extension of the
uniform sampling in a data stream [17] to a time-weighted sampling. Below, we call that u
is monitored if u has been sampled at least once.

Precisely, our randomized algorithm TwSample requires three parameters: the maximum
number k of monitored items, the time-weighting factor α, and the increase ratio σ for the
penalty term λ. Also there are three pieces of information incrementally updated: the penalty
term λ, the set K of monitored items, and counters cv associated with each v ∈ K . Initially,
λ = 1 and K = ∅. A new item u currently arriving is determined whether sampled or not
with probability αλ−1. The sampling is done as follows: if u is currently monitored, i.e.
u ∈ K , cu is incremented by 1; otherwise u is added to K with its associated counter cu = 1.
After the sampling, if |K | > k, downsampling is applied to all the sampled items so far
with increasing λ. Precisely, λ is incremented by σ , and for each v ∈ K , cv is updated by a
random number drawn from binomial(cv, α

σ ).2 If cv becomes 0, v is evicted from K . This
downsampling is repeated until |K | ≤ k. Lastly, whenever one time step passes, all items
in K are unconditionally downsampled as follows: for each v ∈ K , cv = binomial(cv, α).
Algorithm 1 fully describes TwSample.

Effect of σ Essentially, σ determines the sampling rate for evicting existing items so that
the number of sampled items does not exceed k. As σ gets smaller, the amount of decrements
of each item count in Line 14 is reduced, leading to longer time for the eviction process
in Line 12 to 15. Accuracy may increase since we do not evict more than required. On the

2 Here, binomial(ω, θ) denotes a binomial random variable with the number ω of independent trials and the
success probability θ .

123



398 Y. Lim, U. Kang

Algorithm 1: TwSample: Randomized Time-Weighted Counting
Input: A data stream S, a number k of counters, a decaying parameter α, and increase ratio σ of the

penalty term.
Output: Top-k time-weighted frequent items K (continuously updated)

1 λ ← 1.
2 K ← ∅.
3 foreach new item u from S do
4 Downsampling(α).

5 if bernoulli(αλ−1) = 1 then
6 if u ∈ K then
7 cu ← cu + 1.
8 else
9 K ← K ∪ {u}.

10 cu ← 1.
11 end
12 while |K | > k do
13 λ ← λ + σ .
14 Downsampling(ασ ).
15 end
16 end
17 end

18 Subroutine Downsampling(θ)
19 foreach v ∈ K with counter cv do
20 cv ← binomial(cv, θ).
21 if cv = 0 then
22 K ← K \ {v}.
23 end
24 end

other hand, as σ gets larger, the eviction process finishes quickly, although the accuracy may
decrease since we may evict more than one item.

The following lemma shows that the sampling probability of any individual item is equal
to its penalized time-weight.

Lemma 1 At time tcur with the penalty term λ, each item u occurring at time t ≤ tcur has
been sampled with probability

Pr
[
u is sampled

] = αtcur−t+λ−1.

Proof Let u be a new item at t = 1 and tcur = 1. It is unconditionally sampled because λ = 1,
and all counters are empty. In other words, u is sampled with the probability αtcur−t+λ−1 = 1.

Let tcur ≥ 1. Assume that the lemma holds for time tcur . That is, for each sample v at
time t ≤ tcur , it has been sampled with probability αtcur−t+λ−1. Let us consider the process
for tnext = tcur + 1. In Line 4, all samples are downsampled with probability α. This means
that after Line 4, remaining samples are with probability αtcur+1−t+λ−1 which matches the
sampling probability at time tnext = tcur + 1.

Next, we verify from Line 5 to 11. Let u be a new item occurring at t = tnext . Clearly, u is
sampled with probability αtnext−t+λ−1 = αλ−1 by Line 5, regardless of whether u is currently
monitored or not. Let us verify the downsampling. Let d be the number of iterations by the
while statement in Line 12. Then, after the downsampling, each sample experiences re-
sampling with probability αdσ , and thus each sample is with probability αtnext−t+λ+dσ−1

which matches the update of λ = λ + dσ .
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Note that the sampling probability does not increase over time since λ increases or remains
the same at every time step. Hence, an item that is not a sample at a certain time cannot be a
sample in the future. 	


From Lemma 1, we obtain the following corollary which states that the expected count
of a distinct item is equal to its penalized time-weighted count.

Corollary 1 At any time tcur in TwSample, the expectation of a counter cu of a monitored
item u ∈ K is

E [cu] = L(u) =
∑

t∈Tu
αtcur−t+λ−1,

where Tu is a set of times at which u has occurred.

Since we know λ at any time, we can compute the expected time-weighted count for a
monitored item u. That is, the estimated time-weighted count of u ∈ K becomes α1−λcu .
Next, we show that as an item becomes more insignificant, the probability that it is not
monitored increases exponentially.

Lemma 2 At any time, the probability pu that an item u is monitored satisfies the following
inequality:

pu ≥ 1 − exp (−L(u)/2) .

Proof Note that pu = Pr [cu > 0] since cu = ∑|Tu |
i=1 cu(i) is a random variable where cu(i)

indicates whether the i-th occurrence of u is sampled or not. Applying the Chernoff bound,
we obtain the following inequality:

pu = Pr [cu > 0] = 1 − Pr [cu = 0] ≥ 1 − exp (−E [cu] /2) .

Since E [cu] = L(u) by Corollary 1, the proof is done. 	

Although TwSample is simple and provides the theoretical guarantees of its output,

its performance may be degraded due to its probabilistic nature. First, the running time
may become slow because the number of iterations for the downsampling with increasing
λ is not fixed and the time for drawing random variables from binomial(c, θ) used in the
downsampling depends on c. Second, discovered top-k items and the associated countersmay
be inaccurate due to unintendedly large λ. This inaccuracy can be resolved by maintaining
s number of independent sessions each of which monitors at most k items, but it leads to
morememory spaces and longer running time. In the next section, we propose a deterministic
variation of TwSample, which is fast and requires a single session of monitored items of
size at most k.

3.2 Deterministic algorithm

In this section, we propose TwMinSwap for efficient top-k time-weighted frequent items
discovery. This algorithm is a deterministic version of TwSample with truncating insignif-
icantly old items. Concretely, the time-decaying factor α has the same meaning as that in
TwSample, but affects counts of items in a deterministic manner.

The main idea is to record the expected number of samples for each item directly instead
of applying the random process. Concretely, for an item u occurring at t ≤ tcur , instead of
incrementing cu by 1 with probability αtcur−t , we increment cu by αtcur−t with probability 1.
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Algorithm 2: TwMinSwap: Deterministic Time-Weighted Counting
Input: A data stream S, the number of counters k, and a decaying parameter α.
Output: Top-k time-weighted frequent items K (continuously updated)

1 K ← ∅.
2 tcur ← 0.
3 foreach new item u from S do
4 tcur ← tcur + 1.
5 foreach v ∈ K do
6 cv ← cv × α.
7 end

8 if u ∈ K then
9 cu ← cu + 1.

10 else if |K | < k then
11 K ← K ∪ {u}.
12 cu ← 1.
13 else
14 v∗ ← argminv∈K cv .
15 if cv∗ < 1 then
16 K ← K \ {v∗} ∪ {u}.
17 cu ← 1.
18 end
19 end
20 end

Then, the downsampling with rate θ becomes that for each monitored item v ∈ K , cv = θcv .
With this deterministic scenario, however, we encounter a problemwhen all counters become
full. Precisely, because the expected count for an item occurring at least one time in the
stream never becomes 0, it needs pruning for dropping an insignificant monitored item to
start monitoring a new item. We propose a simple heuristic for the pruning which does
not require additional memory spaces, leading to smaller memory usage compared with the
previous approaches [9,39,40]. We note that this proposed pruning method here corresponds
to decreasing the sampling rate by increasing λ in TwSample.

Details of the heuristic for the pruning are as follows. Let K be a set of currentlymonitored
items where |K | = k, and u be an item just arriving from a data stream. Our pruning method
first finds an item v∗ ∈ K having the minimum time-weighted count cv∗ = minv∈K cv . If
cv∗ < 1, we drop v∗ and start monitoring u with initial count 1; otherwise, u is ignored. This
swapping of u and v∗ makes sense because cv∗ is computed by a fewmost recent occurrences
of v∗ but smaller than the effect 1 by the single occurrence of u at tcur . In this strategy, a
newly added item is not evicted for the next r timesteps even though it never occurs where
r is the number of items with a count less than 1 at its addition time. The overall procedure
of TwMinSwap is described in Algorithm 2.

Advantages of TwMinSwap are summarized as follows. First, its memory usage is small.
For each item, only an item identifier and its time-weighted count are maintained. This
simple structure enables to reduce per-itemcomputation comparedwith similar counter-based
approaches [39], and greatly saves memory spaces compared with sketch-based algorithms
[9]. Second,TwMinSwap requires theminimal parameters: k andα. This especially gives the
benefit of reducing efforts for parameter tuning in practice. Third, in contrast to TwSample,
TwMinSwap guarantees to output k number of items so long as N ≥ k.

Per-itemProcessing TimeThemain time-consuming operations are: (1) computing an item
with theminimumcount, and (2)multiplyingα to all counters each ofwhich requires scanning
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K . The second operation can be eliminated bymaintaining the most recent time for each item
when it occurs [39]. In this way, we benefit in speed when a new item is already monitored.
In contrast, the first operation taking O(k) time is unavoidable. Although an efficient data
structure was proposed for the case without time-weighting [14], it cannot be applied to our
time-weighted case since our counters record real numberswithwhichdifferencebetween two
numbers is unfixed. As a result, TwMinSwap requires O(k) computation for each iteration.

3.2.1 Analysis

We analyze TwMinSwap especially for the condition that a monitored item is not evicted
from K . More precisely, Lemmas 3 and 4 state that TwMinSwap will not evict items whose
frequencies of occurrences are above certain thresholds for a general and a power-law item
distribution cases, respectively.

Lemma 3 Let 0 < α < 1 be a time-decaying parameter of TwMinSwap. Any item with
count c ≥ 1 will not be evicted from K if it occurs at least once per every 1 − logα γ times
where γ = min {1 + α, c}.
Proof Assume that v ∈ K with count cv = c ≥ 1 at a certain time occurs for every d times.
Note that any item whose count is at least 1 is never evicted from K by construction. Let us
define the following function.

g(r + 1) = (g(r)α + 1) αd−1,

where g(1) = cαd−1. It is clear that g(r) is cv after rd − 1 time steps. Since cv always
decreases from (r − 1)d + 1 to rd − 1, it suffices to show that g(r) ≥ 1 with d ≤ 1− logα γ

for every r ≥ 1 where γ = min {1 + α, c}.
For r = 1, assume that c ≤ 1 + α; then,

g(1) = cαd−1 ≥ cα− logα c = 1.

Assume that c > 1 + α.

g(1) = cαd−1 > (1 + α)αd−1 ≥ (1 + α)α− logα(1+α) = 1.

For r > 1, assume that g(r − 1) ≥ 1; then,

g(r) = (g(r − 1)α + 1) αd−1 ≥ (α + 1)αd−1

≥ min {1 + α, c} × α− logα min{1+α,c} = 1.

	

Below,we showwhich item is expected not to be evicted from K before the next occurrence

of the item for a power-law item distribution.

Lemma 4 Let n be the number of items and let us consider a power-law itemdistributionwith
the exponent 2. Any monitored item i ≤ √

(1 − logα(1 + α))/1.7 with count ci ≥ α1−1.7i2

is expected not to be evicted.

Proof For an item i ∈ [1, n], the probability that it occurs in a stream is

Pr [i occurs] = i−2/Z ,
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where Z is the normalization constant. Hence, the expected number of occurrences before
i occurs becomes i2Z . Since an occurrence of i obeys geometric(i−2/Z), the probability
that i does not occur during i2Z time steps is less than 1/e.

Assume that ci ≤ α+1. The following guarantees in expectation that i will not be evicted
by Lemma 3:

1 − logα ci ≥ i2Z ⇐⇒ 1 − i2Z ≥ logα ci ⇐⇒ α1−i2Z ≤ ci .

The feasible i should satisfy

α1−i2Z ≤ α + 1 ⇐⇒ i ≤
√
1 − logα(1 + α)

Z
.

Assume ci > α + 1. The following inequality guarantees in expectation that i will not be
evicted by Lemma 3:

1 − logα(1 + α) ≥ i2Z ⇐⇒ i ≤
√
1 − logα(1 + α)

Z
.

Finally, Z ≤ ∑∞
j=1 j−2 = π2/6 ≤ 1.7, which completes the proof. 	


4 Recently frequent itemset mining

In this section,we describeTwMinSwap- Is to find the top-k time-weighted frequent itemsets
in data streams. The overall procedure is similar to TwMinSwap, i.e. maintaining at most k
recently frequent itemsets, accepting a new itemset which is likely to be recently frequent,
and evicting a maintained itemset whose value is assessed to be smaller than that of the new
one.

Algorithm 3 shows the outline of TwMinSwap- Is where Faded , Ordering, Most Rel
and MostCold will be defined later. At a high level, Faded calculates � ⊆ K that contains
insignificant itemsets; Ordering sorts 2I in relevance to K where 2I is the power set of
I ; Most Rel() returns and removes the most relevant itemset to K in ; MostCold(�)

returns and removes the most insignificant itemset in �.
To define those functions, our approach is to introduce several properties that should be

satisfied by the algorithm and propose appropriate implementations of Ordering, Faded,
MostRel andMostCold. We start with defining the following concept.

Definition 3 (Closeness) Let K be a set of itemsets. The set K is closed3 if and only if the
Apriori property holds in K , that is, for every μ ∈ K ,

ν ∈ 2μ \ ∅ �⇒ ν ∈ K .

Example ofCloseness.Let us consider two sets of itemsets as follows: K1 = {a, b, c, d, ab, bc}
and K2 = {a, b, c, d, ab, bc, abc}. Note that K1 is closed by definition, but K2 is not closed
because ac ∈ 2abc is not an element of K2.

Let K be the set of itemsets maintained by the algorithm; the desired properties of our
itemset mining are as follows.

– (P1) K should be always closed.
– (P2) For ν, μ ∈ K , ν ⊂ μ implies cν ≥ cμ where cν and cμ are the counts of itemsets ν

and μ, respectively. Note that ⊂ denotes a proper subset.

3 This is a different concept from closed frequent itemsets [2].
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Algorithm 3: TwMinSwap- Is: Deterministic Time-Weighted Counting for Itemsets.
Input: A data stream S, the number of counters k, and a decaying parameter α.
Output: Top-k time-weighted frequent itemsets K (continuously updated)

1 K is initialized by k empty sets with counts ci ...ck set to 0.
2 foreach transaction I from S do
3 foreach μ ∈ K do cμ ← cμ × α.
4 � ← Faded(K , I ).
5  ← Ordering(I, K ).
6 while || > 0 do
7 ω ← Most Rel().
8 if ω ∈ K then
9 cω ← cω + 1.

10 else if |�| > 0 then
11 θ ← MostCold(�).
12 K ← K \ {θ} ∪ {ω}.
13 cω ← 1.
14 else
15 break
16 end
17 end
18 end

The first property (P1) is to keep K satisfying the Apriori property, the most fundamental
property in frequent itemset mining, in which all subsets of any frequent itemset should be
frequent. The second property (P2) is a stronger condition than (P1). Note that in the ideal
case, the number of occurrences of an itemset cannot be larger than that of its any subset.

To achieve the properties (P1) and (P2), we propose two scoring functions for selecting
new itemsets from I and evicting faded itemsets in K , respectively. The first one measures
irrelevance of an itemsetwith respect to a set of itemsets, which is formally defined as follows.

Definition 4 (Irrelevancy of an Itemset) Given an itemset μ, its irrelevancy with respect to
a set K of itemsets is defined as

fK (μ) = ∣∣2μ \ K
∣∣ + 1

|μ| .

The first term of fK (μ)measures the irrelevance ofμ to K : the score gets smaller as more
subsets of μ are in K . The second term is used for preferring a larger itemset to a shorter one
at the same relevance degree. Note that an itemset gets more relevant to K as its irrelevancy
is closer to 0. Next, we define the hotness of an itemset in K , which is used to rank itemsets
in K .

Definition 5 (Hotness of an Itemset) Given an itemset μ ∈ K and a new transaction I , the
hotness h(μ) of μ is defined by

h(μ) = ρμ + 1

|μ| ,

where ρμ = j if μ has the j-th smallest yμ = cμ + δ(μ ⊆ I ) among all itemsets in K , and
δ(·) = 1 if · is true and 0 otherwise.

In terms of hotness, an itemset is preferred as its size gets smaller at the same count. This
is the same as sorting itemsets in K by their counts first and by their sizes for the ties. Note
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that an itemset has a higher hotness score as its time-weighted count becomes larger, i.e. as
its recent frequency becomes larger.

With these two scoring functions, we determine the four main operations Ordering,
Faded,MostRel andMostCold as follows.

– Ordering constructs a priority queue for all itemsets generated by a new transaction I ,
where an itemset μ’s priority is inversely proportional to the irrelevancy fK (μ).

– Faded constructs a priority queue for itemsets in K , where an itemset μ’s priority is
inversely proportional to the hotness h(μ). During the construction, only itemsetsμ ∈ K
such that cμ < 1 and μ � I are considered.

– Most Rel and MostCold become pop operations for the priority queues by Ordering
and Faded , respectively.

In terms of implementations, Faded is easy because given a transaction I , counts and
sizes for itemsets considered in Faded do not change from Line 4 to Line 17 of Algorithm 3.
As a result, Faded outputs an ordinary queue consisting of itemsets sorted in the ascending
order of their hotness. Accordingly, MostCold becomes a pop operation of the queue.

In contrast, there is a performance issue when implementing Ordering and Most Rel
because the irrelevancy of an itemset changes depending on the previously inserted itemsets
(subsets of I ) into K . A naive approach is to compute the most relevant itemset per request,
that is, whenever Most Rel is called. However, the computation is expensive. We present an
efficient implementation for Ordering and Most Rel in Sect. 4.1.

Lastly, we prove that Algorithm 3 satisfies the properties (P1) and (P2). We start with
examining addition to and deletion from the itemsets K in Algorithm 3. First, Lemma 5
states that (P1) holds if itemsets are added to K by Ordering and Most Rel without deleting
itemsets from K .

Lemma 5 Assume that (P1) and (P2) hold. Let ψi be an itemset returned by the i-th call
to Most Rel() where  = Ordering(I, K ). Then, K ∪ {ψ1, . . . , ψi } is closed for every
0 ≤ i ≤ 2|I | − 1.

Proof Let Xi = {ψ1, . . . , ψi }. For i = 0, the statement holds since Xi = ∅. Assume that for
0 ≤ i ≤ 2|I | −2, K ′

i = K ∪ Xi is closed. Lettingμ = ψi+1, suppose that there is ν ⊂ μ such
that ν /∈ K ′

i+1. Consider ν ⊂ χ ⊆ μ. It holds χ /∈ K ′
i ; if χ ∈ K ′

i , ν ∈ K ′
i since K

′
i is closed.

Let V = 2ν \ K ′
i andU = 2μ \ K ′

i . We know |V | ≤ |U | by ν ⊂ μ. We also know |V | �= |U |
because χ /∈ V by χ ⊃ ν and χ ∈ U by χ /∈ K ′

i . As a result, we obtain |V | < |U |. Then, ν
has a higher priority than μ as follows.

fK ′
i
(ν) = |V | + 1

|ν| ≤ |V | + 1 ≤ |U | < |U | + 1

|μ| = fK ′
i
(μ)

In other words, μ is not the itemset of the highest priority at the (i + 1)-th iteration, and
consequently μ �= ψi+1 which is a contradiction. 	


Below, Lemma6 states that (P1) holds if itemsets in K are removed in the order determined
by Faded and MostCold without adding itemsets to K .

Lemma 6 Assume that (P1) and (P2) hold. Let φi be an itemset returned by the i-th call
to MostCold(�) where � = Faded(K , I ). Then, K \ {φ1, . . . , φi } is closed for every
0 ≤ i ≤ |K |.
Proof Let Yi = {φ1, . . . , φi }. For i = 0, the statement holds since Yi = ∅. For K = ∅, the
proof is done. Below, we consider K �= ∅. Assume that for 0 ≤ i ≤ |K | − 1, K ′

i = K \ Yi
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is closed. Letting ν = φi+1, suppose that there is μ ⊃ ν such that μ ∈ K ′
i+1. From (P2),

cν ≥ cμ; also, if μ ⊆ I , ν ⊂ I . Then, the following equation holds:

h(ν) = ρν + 1

|ν| > ρμ + 1

|μ| = h(μ),

where ρ is the rank defined by Definition 5. This implies μ has a higher priority than ν, and
thus μ /∈ K ′

i+1 which is a contradiction. 	

Lemmas 5 and 6 state that if K is closed, adding itemsets by {Ordering, Most Rel} to and
removing itemsets by {Faded, MostCold} from K keep K closed, respectively. Next, we
show that (P1) is preserved by TwMinSwap- Is where both the addition and the removal
operations are performed.

Lemma 7 TwMinSwap- Is guarantees (P1).

Proof Initially, K = ∅, and thus (P1) and (P2) hold. Assume that (P1) and (P2) hold at
the beginning of a certain iteration, and let I be a new transaction. Let X ⊆ 2I be a set of
itemsets added to K and Y ⊆ K be a set of itemsets deleted from K during the iteration. We
already show that two operations K = K ∪ X and K = K \ Y preserve (P1) by Lemmas 5
and 6, respectively.

Suppose that K ′ = K ∪ X \ Y is not closed. This means that there is at least one pair of
itemsets μ ∈ K ′ and ν /∈ K ′ such that ν ⊂ μ. There are the following two cases: μ ∈ K \ Y
or μ ∈ X . Assume that μ ∈ K \ Y ; then ν ∈ Y since K is closed. But, this implies K \ Y is
not closed, which is a contradiction to Lemma 6. Assume that μ ∈ X . It holds ν ∈ Y since
ν ∈ K ∪ X by Lemma 5. By the definition of Faded , Y does not contain any itemset that
is a subset of I ; but ν ⊆ I since ν ⊂ μ ∈ X , which is a contradiction. Consequently, K ′ is
closed. 	


The following lemma states that subsets of I already contained in K are considered before
those not in K .

Lemma 8 Assume that (P1) and (P2) hold. Let ψi be an itemset returned by the i-th call
to Most Rel() where  = Ordering(I, K ). If i is the largest number such that ψi ∈ K,
then for every 1 ≤ j ≤ i , ψ j ∈ K.

Proof The size of any itemset is finite. For μ ⊆ I contained in K , |2μ \ K | = 0, and for
ν ⊆ I not contained in K , |2ν \ K | ≥ 1. Thus, always fK (μ) < fK (ν). 	

With Lemma 8, Algorithm 3 guarantees that all itemsets μ such that μ ⊆ I and μ ∈ K
are unconditionally considered, i.e. cμ = cμ + 1 at Line 9 of Algorithm 3. This is because
processing such μ does not affect K . In other words, the while loop of Algorithm 3 never
reach Line 15 before counts of all itemsets μ ∈ K are incremented by 1 at Line 9.

Lemma 9 TwMinSwap- Is guarantees (P2).

Proof Initially, K = ∅, and thus both (P1) and (P2) hold. Assume that (P1) and (P2) hold
at the beginning of a certain iteration; let I be a new transaction. Note that cν = 0 if ν /∈ K .
We denote K and cμ after processing I by K ′ and c′

μ, respectively. Consider μ ∈ K ′ and its
proper subset ν �= ∅.

Case 1 μ /∈ K . It means that μ is a new itemset added to K during the iteration, and
thus c′

μ = 1 by Line 13. Also it implies μ ⊆ I and also ν ⊂ I . Assume ν ∈ K . We obtain
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c′
ν = αcν + 1 > 1 = c′

μ from Lemma 8. Assume ν /∈ K . We know by Lemma 7 that ν is
added to K during the iteration as like μ. That is, c′

ν = 1 = c′
μ. Consequently, c

′
μ ≤ c′

ν .
Case 2 μ ∈ K . It holds ν ∈ K ′ and ν ∈ K due to Lemma 7. In addition, cμ ≤ cν holds.

Assume μ ⊆ I . It also implies ν ⊆ I ; then due to Lemma 8, both cν and cμ are guaranteed
to increase by 1 in Line 9. Thus, c′

μ = αcμ + 1 ≤ αcν + 1 = c′
ν . Assume μ � I ; then

c′
μ = αcμ ≤ αcν ≤ c′

ν . 	

The following lemma shows that TwMinSwap- Is does not miss itemsets that occur at a

rate above a certain threshold.

Lemma 10 Let 0 < α < 1 be a time-decaying parameter of TwMinSwap- Is. Any itemset
with count c ≥ 1 will not be evicted from K if it occurs at least once per every 1 − logα γ

times where γ = min {1 + α, c}.
Proof Considering an itemset instead of an item, this is proved by the proof of Lemma 3. 	

4.1 Implementation for ordering and MostRel

In this section, we describe an efficient implementation for Ordering and Most Rel.
As stated previously, Ordering returns a priority queue  for 2I where a smaller irrele-

vancy score implies a higher priority, and Most Rel is a pop operation for . The problem
is that adding an itemset μ ∈ 2I to K may change irrelevancies of other itemsets. For
instance, let I = {a, b} and K = {{a}}; the irrelevancy fK ({a, b}) of {a, b} is currently
3.5 = |2{a,b} \ K | + 1/|{a, b}|, but if we add {b} to K , fK ({a, b}) = 2.5.

A naive solution is to search for the itemset of the highest priority whenever Most Rel
is called; accordingly Ordering performs nothing. This approach, however, results in
O(|2I ||K |2) time complexity for each iteration, which is discussed in Sect. 4.1.3. In contrast,
our implementation presented in Sects. 4.1.1 and 4.1.2 reduces it to O (|K | (|I | + log |K |)),
as shown in Lemma 13.

In our implementation, Ordering constructs a priority queue  as a triple (�, T , z)
where � is an ordered list only for the itemsets of the highest priorities, T ⊇ � additionally
contains unordered itemsets that have relatively lower priorities than those in �, but have
relatively higher priorities than the others, and zμ for μ ∈ T conceptually records how many
subsets of μ are kept in K . Here, T is a candidate set for �, and every ν ∈ T is contained
in � if zν exceeds a certain threshold which will be specified in Sect. 4.1.1. Our Most Rel
returns the itemset μ of the highest priority in  = (�, T , z), and updates  according to
the change of irrelevancies of itemsets by the addition of μ to K .

4.1.1 Ordering

Ordering has two tasks. First, it increases the counter of every itemset in K ∩ 2I by 1. That
is, all itemsets originally considered at Line 9 of Algorithm 3 are processed before the while
loop. By Lemma 8, this preserves the correct processing order for 2I .

Second, Ordering constructs a priority queue  where a smaller irrelevancy implies
a higher priority. The queue  keeps a correctly ordered list � only for itemsets with the
highest priorities. Precisely, � contains every itemset μ ∈ 2I such that 2 < fK (μ) ≤ 3
which means that all nonempty proper subsets of μ are already in K . Note that adding any
itemset in � to K guarantees the (P1) property.

In addition, a set T ⊆ 2I of itemsets, where � ⊆ T , with relatively lower priorities
than � is kept unordered, which is a wait-list for addition to �. Precisely, the unordered set
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T includes every itemset ν ∈ 2I whose any subset with length |ν| − 1 is in K , and every
singleton of 2I . Each itemset ν ∈ T has an associated value zν recording the number of
subsets of ν already contained in K , i.e. |2ν ∩ K |. Instead of the exact number, we set zν to
the number of such subsets whose length is at least |ν|−1, which enables to reduce time cost
for updating zν . Note that by Lemma 7, zν = |ν| implies that all nonempty proper subsets of
ν are contained in K . This also means that zμ = |μ| for every μ ∈ �. Similarly, zν = |ν|+1
implies (2ν \ ∅) ⊆ K . As a result, the priority queue  returned by Ordering consists of
the triple (�, T , z).

To describe  = (�, T , z) more formally, we define the following two sets related to an
itemset.

Definition 6 (1-smaller Subset) Given an itemset μ, its 1-smaller subsets S(μ) consists of
subsets of μ whose length is smaller than μ by 1. That is,

S(μ) = {ν ⊂ μ : |ν| = |μ| − 1}.
We especially denote the inclusion of μ to S(μ) by

S+(μ) = S(μ) ∪ {μ}.
Definition 7 (1-larger Superset) Given an itemsetμ and a transaction I , its 1-larger supersets
L I (μ) in I consist of supersets of μ in I whose length is larger than μ by 1. That is,

L I (μ) = {ν ⊂ I : μ ⊂ ν and |ν| = |μ| + 1}
We especially denote the inclusion of μ to L I (μ) by

L+
I (μ) = L I (μ) ∪ {μ}.

Letting � = (2I ∩ K ) ∪ ∅, the priority queue  = (�, T , z) is determined by Ordering as
follows.

T =
⋃

μ∈�

L+
I (μ),

zμ = |S+(μ) ∩ K |, ∀μ ∈ T ,

� = {μ ∈ T : zμ = |μ|}.
(1)

Algorithm 4 presents the whole procedure of Ordering. In Line 1, Scan(K , I ) performs
the first task. It computes � = K ∩ 2I , which is sorted in the descending order of their
lengths, while increasing cμ by 1 for every μ ∈ �.

After appending ∅ to �, the second task is performed, i.e. �, T , and z are constructed.
Every μ ∈ � is added to T with zμ = |μ| + 1 since μ ∈ K . For each ν ∈ L I (μ), if ν ∈ T ,
we set zν = min(zν +1, |ν|+1): i.e. if ν is an element of�, zν = |ν|+1 remains unchanged.
If ν /∈ T , ν is added to T with zν = 1. After that, if zν becomes equal to |ν|, ν is added to
the tail of �.

Note that itemsets in� are sorted in the ascending order of their irrelevancy scores fK . This
is because 1) |2ν \K | = 2 by zμ = |μ| for every μ ∈ �, and 2)� is sorted in the descending
order of their lengths due to � considered in the descending order of itemset lengths at Line
4 of Algorithm 4. Also note that fK (μ) < fK (ν) for μ ∈ � and ν ∈ 2I \ K \ � because all
nonempty proper subsets of μ are in K , but not for ν, i.e. fK (μ) ≤ 3 and fK (ν) > 3.

Figure 2 shows an example of  = (�, T , z) constructed by Ordering for a given K
and I . The leftmost box corresponds to the current K and I ; the middle corresponds to 
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Algorithm 4: Implementation of Ordering
Input: A transaction I , and a set K of itemsets currently counted.
Output: A priority queue  = (T , �, z).

1 � ← Scan(K , I ).
2 Append ∅ to �. // � is a double ended queue
3 T ← � ← ∅.
4 for every μ ∈ � in the order do
5 T ← T ∪ {μ}.
6 zμ ← |μ| + 1.
7 for every ν ∈ L I (μ) do
8 if ν ∈ T then
9 zν ← min(zν + 1, |ν| + 1).

10 else
11 T ← T ∪ {ν} with zν ← 1.
12 end
13 if zν = |ν| then
14 �.push_tail(ν).
15 end
16 end
17 end

{a, b, c}, 2 {a, b, d}, 1

{a, b}, 3 {a, c}, 2 {a, d}, 1 {b, c}, 3 {b, d}, 1 {c, d}, 1

{a}, 2 {b}, 2 {c}, 2 {d}, 1

∅, 1

1

2

Ω = (Φ, T, z)

{a, b, d}, 1

{a, b}, 3 {a, d}, 1 {b, c}, 3 {b, d}, 1 {c, d}, 1

{a}, 2 {b}, 2 {c}, 2 {d}, 1

∅, 1

1

2

Ω = (Φ, T, z)

{a, c, d}, 1 {a, b, c}, 3

{a, c}, 3

MostRel(Φ)

{a, b}
{b, c}
{e}

{a}
{b}
{c}

1

1

1
1

0.9

2

I = {a, b, c, d}

Ordering(I,K)

Scan(K, I) {b, c, d}, 1 {b, c, d}, 1
CountK

{a, b}
{b, c}
{a}
{b}
{c}
∅

Ψ

Fig. 2 Example of  = (�,T , z) and its change by Most Rel. The boxes correspond to T where the green
ones correspond to � and the gray ones contain itemsets already in K . Each box shows the corresponding
itemsetμ and zμ. The attached number to a green box denotes the priority in�where a smaller number means
a higher priority. The dotted line denotes set inclusion relation for two sets; note that for the itemset μ of each
non-gray box, zμ is equal to the number of dotted lines attached to the bottom of the box. Calling Most Rel
returns {a, c} with the highest priority and updates  as in the rightmost figure. After that, Algorithm 4 adds
{a, c} to K and evicts {e} from K since {e} is the only element that neither has the count at least 1 nor is an
element of 2I , i.e. {e} is the only element of� = Faded(K , I ). This completes the iteration since� becomes
empty (color figure online)

after calling Ordering(I, K ). The itemset and the number in each box are an element of
T and the corresponding z value, respectively. The itemset in each gray box corresponds to
μ ∈ 2I ∩ K for which the associated count cμ increases by 1 in Scan(K , I ). The green
boxes correspond to�, and the priority of the itemset is attached to each box where a smaller
number implies a higher priority. Note that all nonempty proper subsets of the itemset in each
green box are already in K , and {a, c} has a higher priority than {d} because |{a, c}| > |{d}|.

As a result, � consists of itemsets of the highest priorities with the correct order.

Lemma 11 The time complexity of Algorithm 4 is O (|K | (|I | + log |K |)) with a constant
itemset size.

Proof Line 1 requires O(|K | log |K |). First, computing �̂ = K ∩ 2I takes O(|K |) time
since each element μ ∈ K is verified if it is a subset of I or not by checking each u ∈ I for
every u′ ∈ μ. Second, sorting �̂ takes O(|K | log |K |) since |�̂| ≤ |K |.
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For every set μ, |L I (μ)| ≤ |I | by definition. Thus, the outer and inner for loops run at
most |K | ≥ |�| and |I | ≥ |L I (μ)| iterations, respectively. As a result, Algorithm 4 has
O (|K | (|I | + log |K |)) time complexity. 	

4.1.2 MostRel

Next, we explain Most Rel in detail which returns the itemset μ of the highest priority in
 = (�, T , z). Finding μ is trivial because � is sorted in the ascending order of fK , i.e. the
desired itemset is at the head of�. As shown inAlgorithm 3,μ returned byMost Rel is added
to K at Line 12, or the iteration terminates. Note that μ never enters Line 9 of Algorithm 3
since the task in Line 8–9 is already processed in Scan of Algorithm 4. In this scenario, there
are two problems: 1) � can be empty after removing μ, and 2) � can be out of order due to
the addition of μ to K . Thus, we need to update  appropriately for the next use.

Before adding μ to K , � contains the top-|�| itemsets in the correct order, and zν for
ν ∈ � is unchanged unless ν itself is added to K . In other words, the relative order of itemsets
in � remains the same. Thus, we only need to focus on itemsets newly added to � by the
addition of μ to K . Candidates for such itemsets are those ν for which zν increases by 1.
Considering these candidates, the update is done for preserving the definitions of �, T and
z given by Eq. (1) after the addition of μ to K .

Algorithm 5: Implementation of Most Rel
Input: A priority queue  = (T ,�, z), and a transaction I .
Output: The most relevance itemset μ.

1 μ ← �.pop().
2 for every ν ∈ L I (μ) do
3 if ν ∈ T then zν ← zν + 1.
4 else T ← T ∪ {ν} with zν ← 1.
5 if zν = |ν| then
6 �.push_head(ν).
7 end
8 end
9 zμ ← zμ + 1.

Algorithm 5 describes the update procedure. In the algorithm, �.pop() returns the head
itemset of � and remove it. In Line 2, every ν whose zν changes is examined. If ν is already
in T , its zν increases by 1; otherwise ν is added to T with zν = 1. After that if zν = |ν|, ν is
placed at the head of �, i.e. ν has the highest priority. This addition guarantees the correct
order because for every itemset ω ∈ �, zω = |ω| and |ν| > |μ| ≥ |ω|.

Figure 2 shows the change of  = (�, T , z) by Most Rel in the rightmost figure. The
itemset {a, c} of the highest priority before calling Most Rel is popped from �. Note that
the update is done for the case {a, c} is added to K so that the box of {a, c} is colored in
gray. Accordingly, z{a,b,c} where {a, b, c} ∈ L I ({a, c}) increases by 1 which makes {a, b, c}
added to � because z{a,b,c} = |{a, b, c}| = 3. Note that {a, b, c} has a higher priority than
{d} since {a, b, c} is added at the head of �, which matches |{a, b, c}| > |{d}|. Another
element {a, c, d} ∈ L I ({a, c}) is newly added to T with z{a,c,d} = 1.

Lemma 12 The time complexity of Algorithm 5 is O(|I |) with a constant itemset size.

Proof The time consumption is determined by the for loop, and L I (μ) ≤ |I | for every set
μ. 	
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4.1.3 Time costs of TwMinSwap- Is and naive method

Below, we analyze the time complexity of TwMinSwap- Is.

Lemma 13 The time complexity ofTwMinSwap- Is for every new transaction is O(|K |(|I |+
log |K |)) with a constant itemset size.

Proof The only remaining time-consuming part is the while loop in Line 6 of Algorithm 3.
Line 8 of Algorithm 3 is never reached in our implementation, and |�| ≤ |K |. Hence,
the number of iterations by the while loop is O(|K |). Combining Lemmas 11 and 12, the
processing for a new transaction takes O (|K | (|I | + log |K |)). 	


Comparing with our implementation, the naive approach described at the beginning of
Sect. 4.1 is greatly degraded. It requires O(1) and O(|2I ||K |) times for Ordering and
Most Rel, respectively, since for every μ ∈ 2I , fK (μ) should be calculated whenever
Most Rel is called. More worse is that Most Rel is called at most K times while Ordering
is called only one time for every new transaction. Consequently, the naive approach takes
O(|2I ||K |2) time for each transaction. Consequently, TwMinSwap- Is is orders of magni-
tude faster than the naive method.

5 Experiments on frequent item mining

In this section, we present experimental results to show the performance of our proposed
TwMinSwapwith synthetic data streams. Especially, we want to answer the following ques-
tions:

Q1 How many top-k time-weighted frequent items can we discover?
Q2 How accurately can we estimate time-weighted counts of the discovered items?
Q3 How fast is TwMinSwap?

5.1 Setup

We consider two types of data streams generated from power-law distributions to simulate
bursty item occurrences where N is the stream length and n is the number of distinct items.

– Static distribution: N size-one transactions are generated from the following power-law
distribution.

Pr
[
i is generated

] ∝ i−β,

where i ∈ [1, n].
– Dynamic distribution: for 0 ≤ r ≤ 1, the first r N size-one transactions are generated

from

Pr
[
i is generated

] ∝ i−β,

and the last (1 − r)N size-one transactions are generated from

Pr
[
i is generated

] ∝ (n − i + 1)−β,

where i ∈ [1, n]. This provides the setting that frequent items differ from time-weighted
frequent items.
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Table 4 Top-5 items with and without time-weighting for the two types of item distributions

No time-weighting Time-weighting

Rank Static Dynamic Static Dynamic

(High) 1 1 1 1 10000

2 2 2 2 9999

3 3 3 5 9998

4 4 10000 4 9995

(Low) 5 5 4 7 9997

With the dynamic itemdistribution, frequent items are different from those for the static distribution. Especially,
with time-weighting, frequent items are completely different between the static and the dynamic distributions—
items recently occurring many times are placed in high ranks for the dynamic distribution

Table 4 shows the difference between the two types of distributions.
In our experiments, β is varied in {0.5, 0.75, 1, 1.25, 1.5, 1.75}; N = 106, n = 104, r =

0.8 and k = 50 are fixed. Here, as β gets larger, item frequencies get skewed more. Note that
although the stream length N is fixed in our experiments, the per-item time and the space
complexities of our algorithms are independent on N .

We consider the following competitors, and in our experiments, all methods are imple-
mented in Java.

– TwFreq [39]: a counter-based algorithm to find time-weighted frequent items from a
data stream.

– TwHCount [9]: a sketch-based algorithm to find time-weighted frequent items from a
data stream.

– SpaceSaving [10,35]: a counter-based algorithm to find frequent items from a data
stream. Since this is without time-weighting, we compare this algorithm with the others
only in precision and recall.

The memory requirements for all the algorithms are as follows. TwMinSwap, TwFreq,
and SpaceSaving require O(k) memory spaces; TwSample requires O(sk) where s is the
number of parallel sessions each of which independently samples at most k distinct items;
TwHCount requires O(k + rm) where r is the number of hash functions and m is a range
size of the hash functions.

We denote TwSample with s number of the independent sessions by TwSample(s),
and TwHCount with the hash table size w% of n, i.e. rm = wn

100 , by TwHCount(w). For
TwSample, we use s = 10 and σ = 0.0001; for TwSample and TwMinSwap, we use
α = 0.99; for TwHCount, we use the parameters in the original paper [9], and set hash
table sizes rm to 1 and 10% of n.

The overall comparison is summarized in Table 1 and Fig. 1. TwMinSwap outperforms
the others in terms of accuracy and memory usage, and its speed is comparable to that of the
fastest competitor TwHCount.

5.2 Discovering top-k time-weighted frequent items

Figure 3 presents accuracy of discovered items in terms of precision and recall defined as
follows:

precision = |� ∩ �̂|
|�̂| , and recall = |� ∩ �̂|

|�| , (2)
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Fig. 3 Our proposed TwMinSwap shows the best performance in both precision and recall whose values
are close to 1, regardless of the distribution types and their β values. For distributions with small β in which
frequencies of items are relatively even, TwSample shows low precision and recall, but as β gets larger, the
values rapidly increase. TwFreq also shows better performance for large β, but the improved precision and
recall are limited below 0.8. Regardless of the hash table size, TwHCount shows the second best perfor-
mance; however, the performance is below that of TwMinSwap. As expected, SpaceSaving is degraded for
the dynamic item distributions while performing well on average for the static item distributions. a Static
distribution, b static distribution, c dynamic distribution, d dynamic distribution

where � and �̂ are the sets of the true and estimated top-k items, respectively. Overall,
our proposed TwMinSwap outperforms other algorithms regardless of the types of item
distributions and the exponent values β. Its precision and recall are always very close to
1. TwSample(10) improves precision and recall as β gets larger in general. The reason
why the recall of TwSample(10) is low for β = 1.75 is that a large amount of probability
density is assigned to only fewer items as β gets larger, leading to a small number k̂ < k of
discovered items. The exact numbers are 33 and36 for the static and the dynamic distributions,
respectively. For TwMinSwap and TwHCount, always k̂ = 50, and for TwFreq, always
k̂ ≥ 49.

TwFreq shows a similar pattern toTwSample(10), but its improvement is less significant
than TwSample(10). TwHCount results in high precision and recall regardless of hash
table sizes, but they are still below TwMinSwap. SpaceSaving performs quite well for the
static item distributions: both precision and recall are about 0.9 on average. However, since
SpaceSaving does not consider a time-weighting factor, for the dynamic item distributions
its performance is greatly degraded as β gets larger.

The overall result implies that our time-weighted counting plays an important role in
finding recent frequent items from data streams.

5.3 Estimating time-weighted counts

Accurately estimating time-weighted counts for discovered items enables to quantitatively
compare them. Figure 4 shows estimated time-weighted counts of the discovered top-k items.
The error εi for 1 ≤ i ≤ k is calculated as follows:

εi =
∣∣xi − x̂i

∣∣
xi

, (3)

where xi and x̂i are the true and estimated time weighted counts of the top-i th item, respec-
tively. Notably,TwMinSwap estimates the true time-weighted counts very accurately, which
is shown by the blue line (almost overlapped with green).

Since TwFreq provides an upper and a lower bounds of the true time-weighted count,
we choose the mean of the two bounds. In general, as ranks of items get lower, its accu-
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Fig. 4 The estimated time-weighted counts by TwMinSwap are the most accurate. The plots show the error
in estimated time-weighted counts of the algorithms for at most k number of discovered items (the lower, the
better). While TwHCount(10) shows the second best performance, TwHCount(1) using smaller memory
spaces performs poorly especially for small β. The accuracy of TwFreq is generally better for high rank items
than for low rank items. TwSample(10) shows slightly better performance than TwFreq on average, but in
contrast to TwFreq, there is no great degradation of the estimations for low rank items in TwSample(10)

racy is generally degraded. One reason of the poor estimation of TwFreq for low rank
items is that TwFreq is originally developed to find frequent items having time-weighted
counts above a certain threshold rather than top-k ones though it maintains at most k items.
TwSample(10) shows the third best performance and estimates time-weighted counts more
accurately for relatively large β. The performance is slightly better than TwFreq on average,
but TwSample(10) is not degraded for relatively low rank items.

The performance of TwHCount highly depends on the hash table size rm. The esti-
mation of TwHCount(1) results in larger error while TwHCount(10) is comparable to
TwMinSwap. This is notable because the estimation of TwMinSwap is as accurate as that
of TwHCount(10) which keeps an additional hash table of size 0.1n for accuracy. The
comparison of the error on average is shown in Fig. 1.

5.4 Running time

Figure 5 shows running times of the algorithms taken to process all the items in the data
streams. The overall trend is that running time decreases over increasing β. This is because
with largeβ, the probability of a new item being alreadymonitored increases, leading to infre-
quent invoking eviction processes such as DownSampling in TwSample. TwSample(10)
shows the slow running times due to performing 10 independent sampling.

Although TwFreq has the same per-item processing time as TwMinSwap in the big-O
notation, TwFreq involves more computations for the eviction process than TwMinSwap.
TwFreq updates more variables and scans monitored items twice while TwMinSwap scans
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Fig. 5 TwMinSwap is faster than TwSample(10) and TwFreq in most cases of β. Although TwHCount
is slightly faster than TwMinSwap, its memory usage is much larger than TwMinSwap as shown in Fig. 1.
a Static distribution, b dynamic distribution

themonce.As a result, the running time ofTwFreq changesmore dramatically thanTwMin-
Swap.

Since TwHCount has O(r) per-item processing time, it is the fastest. In fact, this fast
running time is achieved by maintaining the hash table of size rm for approximate time-
weighted counting, which leads to more memory spaces than TwMinSwap. Although the
running time of TwHCount does not depend on m, to guarantee small error of estimated
time-weighted counts of discovered items, rm should be large as shown in Fig. 4. In our
experiments, rm = 0.1n is satisfactory while rm = 0.01n is not.

All algorithms show no meaningful difference in running time with respect to the two
types of distributions.

5.5 Effect of parameters α and k

We investigate the two parameters of TwMinSwap: the time-decaying factor α and the
number k of time-weighted frequent items to be discovered. Figure 6 shows precision and
mean of error of TwMinSwap while changing α and k for a dynamic item stream with
β = 1. TwMinSwap works very accurately for α ∈ {0.9, 0.95, 0.99}. For extremely large
α = 0.999, TwMinSwap is relatively degraded with a small k, but still keeps the precision
of about 0.7 and the error of about 0.2.

6 Experiments on frequent itemset mining

In this section, we present experimental results to show the performance of our proposed
TwMinSwap- Is.

6.1 Setup

Table 5 lists the datasets used in our experiments. Figure 7a shows the cumulative size
distribution of transactions for every dataset. Note that a large portion of transactions have a
short length. We consider the following competitor:
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Fig. 6 Precision and error of TwMinSwap with changing k and α. A dynamic stream with β = 1 is used.
TwMinSwap outputs accurate results unless α becomes too large. Even for extremely large α = 0.999, the
accuracy is maintained as about 0.7 and 0.2 for the precision and the error, respectively, when k is small, and
improved as k gets larger. a Precision, b error

Table 5 Dataset used in our experiments on frequent itemset mining

Name # of Trans. Max. Trans. Len. Description

Retail [4] 88,162 76 From retail market

BMS1a 59,602 267 Click stream

BMS2a 77,512 161 Click stream

a http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

– Skip LC- SS [38]: a method to find frequent itemsets in data streams which is based on
combining LossyCounting and SpaceSaving.

Although Skip LC- SS does not consider time-weighting, we choose it as a competitor
to examine the effect of the Apriori property preserved in the top-k results: Skip LC- SS
maintains atmost k itemsets but neglects theApriori property in them. For all experiments, we
use k = 1000 and α = 0.999.We omit evaluation using precision and recall since calculating
the true time-weighted counts for all itemsets is intractable: e.g., there are 2267 − 1 itemsets
for the largest transaction of BMS1.

6.2 Results

Figure 7b shows the true time-weighted count and the true count of itemsets for Retail
found by TwMinSwap- Is and Skip LC- SS over their ranks, respectively. TwMinSwap- Is
ranks itemsets according to their true time-weighted counts, while Skip LC- SS does not
perform well.4 The main reason for the poor performance of Skip LC- SS is that it swaps
itemsets frequently since it randomly selects itemsets to be monitored among all subsets
of a transaction. In addition, we observe that TwMinSwap- Is detects recently frequent
itemsets despite its small occurrences in total. For instance, in Retail, the two itemsets of
μ = {39, 48, 4994} and ν = {36, 16430, 16431} occur 129 and 9 in the stream, respectively.
At the end of the stream, however, only ν is identified as one of the top-k itemsets by
TwMinSwap- Is, because ν occurs more recently than μ as shown in Fig. 8.

4 In the original paper proposing Skip LC- SS, k is set to a large 50,000 ≤ k ≤ 70,000.
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Fig. 8 In Retail, itemset {36, 16430, 16431} occurs only 9 times but very recently, which leads to it detected
byTwMinSwap- Is. In contrast, much frequent one {39, 48, 4994}with 129 occurrences over the entire stream
is not identified as a time-weighted frequent itemset by TwMinSwap- Is since it is rare in recent times. We
omit points for which the corresponding y-axis value is 0 or remains the same as the previous one

Figure 9a shows average error in time-weighted count over all itemsets discovered by
TwMinSwap- Is. During the entire stream, TwMinSwap- Is maintains small error in time-
weighted counts on average. Figure 9b shows the size distribution of itemsets found by
TwMinSwap- Is for every dataset. The largest itemset size is about 5–7, and most of trans-
actions in the datasets are shorter than the size as shown in Fig. 7a. In other words, an itemset
whose length is larger than 7 has a low chance to be frequent in the time-weighted count in
nature.

7 Discovery

In this section, we present discoveries from applying our methods to several real-world data
streams. For each dataset, the used time decaying factor α is specified. Although choosing
the optimal α is not trivial, we observed that in practice, TwMinSwap and TwMinSwap- Is
work well with a large α ≥ 0.9.
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Fig. 9 a Error in time-weighted count for itemsets found by TwMinSwap- Is for Retail. Note that while
processing the stream, the error is kept low for all datasets. b Size distribution of itemsets found by
TwMinSwap- Is. Itemsets of a moderate size (5–7) are discovered for every dataset

7.1 MemeTracker dataset

Setup The MemeTracker dataset [24] provides quotes and phrases from blogs and news
media. We consider a keyword stream consisting of words in the quotes and the phrases
where 571 stopwords provided in [25] are excluded. The stream covers time period between
August 2008 and April 2009; the length of the stream is 1,681,760,809; we consider 1 min
as one time step.

Results We run TwMinSwap with k = 300 and α = 0.9, and examine top-300 keywords
for every month.

Figure 10a shows the tracking results of keywords related to the U.S. presidential election
inNov 4 2008. The values for eachmonth are normalized time-weighted counts divided by the
sumof those of k number of discovered items. Sincemultiple items can occur at one time step,
this normalization is required to eliminate effects of undesirably large time-weighted counts
due to relatively large stream lengths for certain time periods. Both keywords related to the
candidates obama and mccain were mentioned actively before, and received less attentions
after the election. Notably, despite high frequencies of both keywords, the winner obamawas
more frequently mentioned in blogs and media than the losermccain. Even after the election,
obama occasionally becomes hot.

Figure 10b, c show sudden arising and quick vanishing of keywords closely related to two
incidents: the Mumbai terror attack in Nov 2008, and the Gaza War beginning on Dec 2008.
Although each incident happened in the last part of a month, TwMinSwap correctly detects
related keywords as hot items in the report for that month.

7.2 Amazon movie review dataset

Setup The Amazon movie review dataset [34] provides user reviews with product id infor-
mation where the movie title of each product id can be checked by http://www.amazon.com/
dp/PRODUCT_ID. We consider the stream of the product ids. The stream covers the period
from Aug 20 1997 to Sep 25 2012; the length of the stream is 7,911,684; the number of
distinct product ids is 253,059.
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Fig. 10 a Changes of time-weighted counts of keywords related to the presidential election in Nov 4 2008.
The keywords obama, mccain and vote become hot keywords before and cooled down after the election.
Notably, the winner obama is more actively mentioned than the loser mccain before the election. Also, the
winner obama does not disappear after the election in contrast to the losermccain. bChanges of time-weighted
counts of keywords related to the Mumbai terror attack in Nov 26 2008. As similar to the pattern for the Gaza
War, keywords related to the Mumbai terror attack such as india, mumbai and terrorists show sudden rises
right after the attack time. c Changes of time-weighted counts of keywords related to the Gaza War beginning
in the last part of Dec 2008. In December, several keywords related to the war suddenly had arisen and quickly
disappeared. Note that the war ended in the middle part of January
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Fig. 11 Changes of time-weighted counts of movies reviewed by users in Amazon. We observe two patterns.
(1) The general pattern is doubly-active attention to movies when they are released at theaters and in DVDs.
(2) The minor pattern is periodical attention: e.g., A Christmas Carol is popular in every winter

Results We run TwMinSwap with k = 100 and α = 0.9. Figure 11 shows the tracking
result of several movies among the top-100, which is summarized as two patterns. The major
pattern is doubly-active attention when a movie is released at theaters and in DVD as for
Minority Report, X-Men 2, The Day After Tomorrow, Ratatouille, and Captain America: The
First Avenger. The other pattern is periodical attention: e.g. A Christmas Carol appears in
every winter.

7.3 Yelp dataset

Setup The Yelp dataset5 provides tip data for businesses by users. Here, the tips are short
comments about the businesses, and each business has several associated categories. We
consider the stream of the business ids. The stream covers the period from April 16 2009 to

5 http://www.yelp.com/dataset_challenge/.
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Fig. 12 Count distribution over time for shopping-related categories—Shopping and Shopping Centers. For
each month, the value is calculated with respect to top-30 businesses. In winter, there were a number of visits
to shopping businesses

February 11 2014; the length of the stream is 113, 993; the number of distinct businesses is
15, 585.

Results We run TwMinSwap with k = 50 and α = 0.9, and track the top-30 hot businesses
per month. For each month, we obtain a category distribution with respect to the top-30
businesses. Figure 12 shows the result for shopping-related categories—Shopping and Shop-
ping Centers. Around the new years, shopping activity increased. This reflects that there are
several special days such as Christmas, New Year, and Valentine Day in winter.

7.4 Human contact dataset

Setup The Human Contact dataset,6 originally provided in [15], contains physical human
contact information over 9 months. The dataset is given as an undirected multigraph with
timestamps for edges where a node and an edge correspond to a person and its contact,
respectively. To make it transactional data, we (1) divide time into non-overlapping intervals
of 10 min, (2) construct a subgraph with nodes and edges appearing in each interval, and

6 http://konect.uni-koblenz.de/networks/mit.
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Fig. 13 Time-weighted counts of several itemsets over time. We observe three patterns in physical human
contacts: periodical (black), occasional (red), and rare (green) (color figure online)

(3) for each node in the subgraph, make one transaction consisting of all neighbors of the
person corresponding to the node. The resulting stream contains 94 persons and 239, 443
transactions.

Results We run TwMinSwap- Is with k = 300 and α = 0.998. We divide the 9 months
into 100 equal-sized time intervals, and track the top-300 time-weighted frequent itemsets
at every interval boundary. Figure 13 shows changes of time-weighted counts for several
itemsets, which exhibit different contact patterns, over time. For instance, the three persons
10, 15 and 35 in black meet a number of common people periodically. Such meetings are
occasional for the persons 34, 37, 51 and 89 in red, and rare for 11, 12, 27, 41 and 67 in
green. This shows the effectiveness of TwMinSwap- Is in discovering temporal patterns in
stream data.

8 Conclusion

In this paper we propose algorithms to track recently frequent patterns in high-speed data
streams:TwMinSwap for items andTwMinSwap- Is for itemsets. WeproposeTwMinSwap
for efficient time-weighted counting of items in data streams. TwMinSwap is inspired by
TwSample, our sampling-based randomized algorithm with theoretical guarantees. Both
methods require only O(k) memory spaces for tracking top-k items. We also propose
TwMinSwap- Is for time-weighted itemset counting. TwMinSwap- Is guarantees self-
consistency in results, i.e., the Apriori property holds, and requires O(k) memory spaces
for a constant itemset size. Conducting extensive experiments on synthetic and real data
streams, we show that TwMinSwap is fast and outperforms all existing methods in accu-
racy; TwMinSwap- Is is accurate and discovers itemsets of a non-trivial length. Analyzing
real-world data streams, we discover interesting patterns, including the difference of trends
between the winner and the loser of the U.S. presidential election, and temporal patterns in
physical human contacts.
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