
Knowl Inf Syst (2017) 53:365–390
DOI 10.1007/s10115-017-1037-1

REGULAR PAPER

Distributed and scalable sequential pattern mining
through stream processing

Chun-Chieh Chen1,2 · Hong-Han Shuai3 ·
Ming-Syan Chen2,4

Received: 4 July 2015 / Revised: 19 December 2016 / Accepted: 1 March 2017 /
Published online: 20 March 2017
© Springer-Verlag London 2017

Abstract Scalability is a primary issue in existing sequential pattern mining algorithms for
dealing with a large amount of data. Previous work, namely sequential pattern mining on
the cloud (SPAMC), has already addressed the scalability problem. It supports the MapRe-
duce cloud computing architecture for mining frequent sequential patterns on large datasets.
However, this existing algorithm does not address the iterative mining problem, which is the
problem that reloading data incur additional costs. Furthermore, it did not study the load bal-
ancing problem. To remedy these problems, we devised a powerful sequential pattern mining
algorithm, the sequential pattern mining in the cloud-uniform distributed lexical sequence
tree algorithm (SPAMC-UDLT), exploiting MapReduce and streaming processes. SPAMC-
UDLT dramatically improves overall performance without launching multiple MapReduce
rounds and provides perfect load balancing across machines in the cloud. The results show
that SPAMC-UDLT can significantly reduce execution time, achieves extremely high scala-
bility, and provides much better load balancing than existing algorithms in the cloud.

Keywords Sequential pattern mining · Data mining · Cloud computing · MapReduce ·
Big data · Streaming MapReduce

B Chun-Chieh Chen
ccchen@arbor.ee.ntu.edu.tw

Hong-Han Shuai
hhshuai@nctu.edu.tw

Ming-Syan Chen
mschen@ntu.edu.tw

1 Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan

2 Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

3 Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu,
Taiwan

4 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-017-1037-1&domain=pdf

366 C.-C. Chen et al.

1 Introduction

In recent years, we havewitnessed a large increase in the amount of data generated by Internet
users. To understand the meaning of these data, it is no longer sufficient to look at individual
instances of the data. Rather, it is often necessary to reason through sequences, or fragments,
of information within the data. These sequences can describe a temporal effect of the data
generated by the same user, or a correlation of information from various sources.

The process of uncovering important sequential patterns in a large dataset, called sequen-
tial pattern mining [25,51], has been applied in various fields, including genetic analysis,
customer behavior prediction, and intrusion detection of network attacks. Data sequence dis-
covery builds on classic algorithms, such as searching for a substring in a text file. To discover
the frequent patterns, it is possible to conduct repeated searches of the file in a brute force
manner, which is obviously not efficient. For better efficiency, more sophisticated algorithms,
such as apriori-based [3,4,34], projection-based [14,15,30,49], and pattern growth-based
algorithms [16,18,30,49], have been proposed. However, currently, the amount of data is
generally several orders of magnitude more than that for which these algorithms were origi-
nally designed. Hence, typical problems such as heavy memory use and high computational
load occur. As a result, modern algorithms are designed to be compatible with parallel pro-
cessing in order to cope with increasing amounts of data. These methods usually start by
dividing the possible pattern space into several subsets, and processing each subset on a
different processor core1 or computation server.2 Such distributed systems are widely used
framework include [1,11,14,40,50].

The previously mentioned algorithms are usually designed to discover frequent patterns
only within a subset of the data. Although many useful dataset observations can be derived
from these patterns, for some applications, a more global observation may be necessary,
particularly when relatively long sequences tend to go beyond the boundaries of the subset.
For this purpose, one can adapt these algorithms to run with the relatively large data subsets,
or process the subsets in multiple passes and combine the results through standard reduction
processes. These methods are clearly sub-optimal and waste a considerable amount of com-
putational resources. Therefore, it is imperative to design an algorithm specifically for global
sequence discovery in a large dataset.

One of the promising solutions, SPAM [4], performs frequent pattern mining by using ver-
tical bitmap presentation and only requires one database scan. Moreover, [7] extended SPAM
to a cloud version and focused on increasing scalability by using the iterative MapReduce
model. The core value of this design is mining a sequential database using parallel processing
so that sub-tasks can be distributed and executed by many machines simultaneously.

However, using iterative MapReduce model for mining frequent sequential patterns suf-
fers from the many problems detailed in Sect. 4. One of the major problems is the unbalanced
workload. Specifically, the candidate generation inmining phasemay incur unbalancedwork-
loads for different mappers since the frequency of each item is different. Therefore, most
of machines may waste a lot of time in waiting for few machines, which deteriorates the
performance of iterative MapReduce model. To address these challenges, we propose a
cloud-based sequential pattern mining algorithm in a streaming MapReduce model, namely
sequential pattern mining in the cloud-uniform distributed lexical sequence tree algorithm
(SPAMC-UDLT). By using distributed message queue technique [13,22], in-memory com-

1 OpenMP, http://www.openmp.org/.
2 MPI, http://www.open-mpi.org/.

123

http://www.openmp.org/
http://www.open-mpi.org/

Distributed and scalable sequential pattern mining through… 367

puting design, and streaming MapReduce model, we can improve SPAMC in many folds.
Our primary contributions are as follows.

– To improve the waiting time of mappers during mining phase due to the unbalanced
workloads, we modify the frequent sequential pattern mining algorithm for fitting the
streaming MapReduce model instead of using the iterative MapReduce model.

– We develop a distributed streaming tree, which provides the capability of breaking the
data dependence and improves efficiency of data access. In addition, the frequently used
data are cached in local memory to avoid data reloading.

– The analysis on time complexity, space complexity, and waiting time is provided, which
shows the advantage of SPAMC-UDLT theoretically. Moreover, the experimental results
show that SPAMC-UDLT can achieve extremely high scalability and provide high speed
processing in the cloud.

The remainder of this paper is organized as follows.We review the background and related
work in Sect. 2. The process of sequential pattern mining is described in Sect. 3. Then, the
proposed algorithm, SPAMC-UDLT, is described in Sect. 4. The experimental results are
shown in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Preliminary

In this section, we introduce the definition of sequential pattern mining in Sect. 2.1. The
related studies of sequential pattern mining are surveyed in Sect. 2.2. Then, we explore
different MapReduce models relevant to this research in Sect. 2.3.

2.1 Sequential pattern mining

Sequential pattern mining is to discover highly frequent patterns in a sequential database.
The detailed formal definition is given as follows:

Definition 1 Let D be a sequence database and I = {x1, . . . , xm} be a set of m different
items. S = {s1, . . . , si } is a sequence consisting of an ordered list of itemsets, where i denotes
the index of the sequence, consisting of a set of items. Itemset si denotes a subset of items∈ I .
A sequential pattern is defined as an ordered sequence of itemsets that frequently occurs in
database D. If a sequence Sa = {a1, . . . , an} is contained in a sequence Sb = {b1, . . . , bm},
where 1 ≤ n ≤ m such that a1 ⊆ b1, a2 ⊆ b2, . . . , an ⊆ bn , then Sa is a subsequence
of Sb. Sequential pattern mining is to find all subsequences whose occurrence frequencies
≥ min_sup, where min_sup is the minimal support threshold.

A subsequence Sa is frequent with l items and Sa is extended to longer subsequences by
appending an itemset to the end of Sa or appending a sequence with length 1 to end of Sa ,
where |Sa | = l and l ≥ 1. Thus, we can find a frequent sequential pattern with subsequences
in database |D|, where the subsequence occurrences ≥ min_sup ∗ |D|. For the details on
subsequence generation, please refer to [4].

2.2 Related works

We first review traditional sequential pattern mining techniques designed for running on
a single machine and focus on the related studies of distribution-based and cloud-based
methods. Traditionalmethods can be generally classified into apriori-based, projection-based,
and pattern growth-based algorithms.

123

368 C.-C. Chen et al.

Apriori-based algorithms, including AprioriAll, GSP, and SPAM, mainly generate candi-
dates and prune sequential patterns on the basis of the apriori principle [3,4,34]. On the other
hand, projection-based algorithms, including FreeSpan and PrefixSpan, project the database
into sub-databases and generate length-k patterns on the basis of the length-(k − 1) patterns
without candidate generation [15,30]. Although the efficiency of these algorithms has been
gradually enhanced, their design is inherently suited to a single machine environment and
hence, they cannot deal with a large amount of data because of limited resources.

In the past decade, a variety of sequential pattern mining algorithms, such as apriori-based
methods and pattern growth methods, have been developed for mining frequent patterns effi-
ciently. In [31], the authors proposed time-aware SPAM to efficiently find temporal frequent
patterns which fulfill minimal support and are within a user-defined period. On the other
hand, Batal et al. [5] proposed to accelerate the process of mining frequent temporal pat-
terns by exploiting a statistical test to effectively filter out nonpredictive temporal patterns
on medical health data since a large portion of frequent temporal patterns on medical health
data is irrelevant to the classification task. Moreover, ClaSP [12] exploited a vertical database
representation to grow the patterns by recursively exploring the corresponding sub-trees for
frequent closed patterns. For mining high utility patterns efficiently, Bai-En et al. [33] pro-
posed a UMST framework, which adopt a MST-tree to generate mobile sequential patterns
for mobile commerce applications. Luo et al. [24] proposed MSPS algorithm for mining
maximal sequential patterns, which applied sampling method, prefix tree structure, and trim-
ming process to improve the mining performance. In paper [29], SPMLS algorithm considers
two constraints, which limit the maximum event length and maximum sequence length, to
mine long sequences in two phases.

In addition, sequential mining can be applied in biological sequence mining, such as a
protein DNA analysis in [17,21,41], which modifies PrefixSpan method to parallelly extract
the frequent pattern on many machines in parallel. In DFSP [23], the authors propose a
three-dimensional list for mining DNA sequences, which adopts direct access strategy and
binary search to index the list structure to enumerating candidate patterns. Also, the author
compares the advantage and disadvantage of bitmap presentation algorithms and projection-
based algorithms in [26]. However, these works focus on efficiently mining the frequent
patterns under different domain-specific constraints or on different types of data (e.g.,medical
database), where we focus on the general cases without any constraints. Therefore, our work
can be regarded as a complement to existing works for accelerating the mining process.

Moreover, numerous distributed algorithms have been proposed; these algorithms divide
data into multiple small chunks and perform the mining process in parallel with multiple
machines with shared-memory environment. In paper [11], the authors propose a distributed
apriori-based algorithm that processes generate-and-test operations in a heterogeneous cluster
environment on the basis of the block-based partition method. Zaki et al. [50] proposed the
pSPADE algorithm based on the shared-memory architecture that can share a database via
networking. Guralnik and Karypis [14] proposed a tree-projection-based algorithm on a
distributed system that deconstructs a projection tree into many partitions, achieving higher
scalability and reducing the effect of load imbalance. Papapetrou et al. propose ACME [32],
which finds frequent patterns by using an arrangement tree [28], whereas ACME applies tree
structure to extract longer motif sequences on supercomputers. The previously mentioned
algorithms have demonstrated that the sequential patterns can be mined in a distributed
manner in a shared-memory system, and the local memory has to be shared among distributed
machines. When the processed data are stored on another machine, the machine has to access
data through communicationwith eachother duringminingphase,which increases themining
overhead. In contrast, SPAMC-UDLT adopts distributed memory architecture and splits the

123

Distributed and scalable sequential pattern mining through… 369

input data into many data partitions without data dependency. Therefore, mining process can
be performed on each data partition independently, i.e., mappers do not need to communicate
with each other at either map phase or reduce phase during mining phase.

On the other hand, some researchers attempted to design algorithms in cloud computing.
In [45], the authors propose parallel closed sequential mining on the cloud, which extends the
sequential patterns on the basis of forward and backward extension. Wang et al. [42] propose
PTDS, which divides transactions into smaller data partition and then applies PrefixSpan
in MapReduce model. In MG-FSM [27], each machine employs FP-growth within gap con-
straints and adopts projection database concept inMapReduce,which includes preprocessing,
partition, and mining phases for mining n-gram datasets. The authors of [19] first proposed
a cloud-based sequential pattern mining DPSP for a progressive database. In this algorithm,
the input data are divided into many progressive windows, and these data perform candidate
generation onmanymachines independently. Then, reducer uses the support assembling jobs
to count the occurrence frequencies of candidate sequential patterns. However, these works
focus on efficiently mining the frequent patterns under different domain-specific constraints
or on different types of data by using MapReduce.

The cloud-based frequent sequential pattern mining, SPAMC splits complete lexical tree
into sub-trees, andmachines employ iterativeMapReducemodel on sub-trees to generate fre-
quent patterns. SPAMC provides higher data scalability than those of the existing distributed
algorithms [7]. However, the iterative MapReduce jobs incur a performance inefficiency
problem on SPAMC by reloading the intermediate results and launching the MapReduce
jobs. To solve the inefficiency problem, we proposed a SPAMC-UDLT algorithm to ensure
load balancing and improve the system performance in streaming MapReduce. The details
of SPAMC-UDLT algorithm will be described in Sect. 4.

2.3 Highlights on MapReduce models

To the best of our knowledge, algorithm design can be especially effective when matched to
a suitable model. Data mining behavior differs in mining performance in different models.
In this section, we demonstrate the main distributed processing models in the cloud, i.e.,
MapReduce, iterative MapReduce, and streaming model, in order to obtain better algorithm
design and understand different MapReduce models. Basically, MapReduce model is used to
perform simple data-intensive computations and iterative MapReduce model is used to apply
MapReduce to iterative algorithms. We apply the appropriate model, streaming MapReduce
model, to mining frequent sequential patterns in an more effective and efficient manner.

2.3.1 MapReduce model

The MapReduce model was originally proposed at Google [9]. This model represents the
data in 〈key, value〉 pair and then runs in rounds, which are composed of three consecutive
phases, namely map, shuffle, and reduce. The input and output formats of MapReduce can
be expressed as follows:

– Mapper: 〈key input, value input〉 to list〈key map, value map〉
– Reducer: 〈key map, list (values)〉 to list〈key reducer, value reducer〉

In themap phase, eachmapper accesses the input data by a tuple at one time. After completely
processing all the key-value pairs of each mapper, the algorithm generates the results in the
key-value type. MapReduce will aggregate all pairs with the same key to the same reducer

123

370 C.-C. Chen et al.

in shuffle phase. Finally, the machines will process all the keys and the associated values in
reduce phase.

Further, many implementations of MapReduce, such as [2,20], have been proposed. In
Dryad, the authors proposed a Dryad system, which allows the developers to control jobs
and data flow over a directed acyclic graph (DAG). Through the control flow of DAG, the
algorithm can easily share data between machines in MapReduce.

Overall, MapReduce can provide a high performance for data-intensive computing and
good scalability in the case of a large amount of data, easily decompose the problem into
smaller ones, and increase the number of reusable functions in a distributed environment.

2.3.2 Iterative MapReduce model

To handle naturally recursive algorithms, the data have to be loaded from extra storage and
transmitted across the network in multiple MapReduce jobs. To reduce the data transmission
cost, an iterative MapReduce model was proposed. In [6], the authors proposed Hadoop
frameworks to serve iterative algorithms by reusing the existing Hadoop framework. To
reduce the I/O cost in data access, the mappers and reducers cached the intermediate data in
a local disk on each iteration. Then, with loop-aware scheduling, mappers and reducers can
reload and reuse the cached data from their own local disk. To achieve a better performance,
the authors proposed an extendedmodel of the in-memoryMapReduce runtime called twister
[10,39]. The twister allows the worker nodes to send data directly via a broker network.
The data for mappers are sent to appropriate reducers where they get cached until reducers
use them in the execution. Moreover, the intermediate results of mappers are stored on a
local machine. Thus, the overhead of data transmission and data loading can be reduced. In
summary, the iterative MapReduce model can effectively share intermediate results between
machines in each iteration and reduce the cost of relaunching MapReduce jobs by buffering
data in the distributed machines.

2.3.3 Streaming MapReduce model

The streaming MapReduce model processes jobs as a series of computations in many dis-
crete time intervals. The data are collected or loaded periodically from distributed storage.
Then, the interval data are independently processed in key-value pairs on each machine. In
this model, the system will repeatedly launch mappers and then launch reducer tasks in a
fixed time interval. After all received data are processed by performing parallel computation,
such as map or reduce, the results will write to the streaming storage. In [48], the authors
proposed a discretized stream model that performs computations as a number of short tasks
with a spark computing engine [47], where it can write intermediate results as the input to
the next interval, and reuse data by using resilient distributed datasets (RDDs) in an iterative
program. The authors [46] proposed to assist the composition of web services on large-scale
data by considering the parallel technology, i.e., MapReduce framework. Compared with our
proposedmodel, ourmodel focuses on balancing the load ofmining frequent patterns dynam-
ically and combining both of advantage from MapReduce and streaming model together to
accelerate the access of frequent pattern candidates. Recently, there have been many popular
streaming frameworks including Spark, Storm, Samza, and S4 [35–38]. By exploiting the
benefits of these frameworks, the machines can easily perform an iterative algorithm with
oneMapReduce round and share data though a string buffer with minimum system overhead.

123

Distributed and scalable sequential pattern mining through… 371

Itemset
Cid Tid {A} {B} {C} {D}
1 1 1 0 0 0
1 3 0 1 0 0
1 7 0 0 1 0
1 12 1 0 0 0
2 2 1 0 0 1
2 4 0 1 0 0
2 - 0 0 0 0
2 - 0 0 0 0
3 5 0 1 1 0
3 8 0 1 0 0
3 9 0 0 1 0
3 - 0 0 0 0
4 6 1 0 0 0
4 10 0 1 0 0
4 11 1 0 0 0
4 - 0 0 0 0

Cid Sequence
1 ({A},{B},{C},{A})
2 ({A,D},{B})
3 ({B,C},{B},{C})
4 ({A},{B},{A})

(a)

(b)

Fig. 1 a Sequence database D. b Vertical bitmap of D

3 Review on SPAM and SPAMC

This section is divided into two subsections that discuss sequential pattern mining algorithms
that can mine the frequent sequential patterns by using a bitmap representation. The first
subsection reviews a state-of-the-art algorithm for mining sequential patterns, and the second
subsection introduces a cloud-based sequential pattern mining algorithm. The advantages of
these algorithms are that they can scan a database at once and can effectively generate all the
frequent sequential patterns by using a bit operation.

3.1 SPAM

To avoid multiple database scans of Apriori-based approaches and to enhance the mining
efficiency, Ayres et al. proposed the SPAM algorithm [4] that utilizes the vertical bitmap
data structure to achieve an efficient counting process. SPAM only requires one database
scan since it transforms the original database into a vertical bitmap table as shown in Fig. 1.
Specifically, all sequences are arranged in the proposed lexicographic sequence tree T , of
which each node represents a candidate pattern and the root is labeled with. The construction
of T follows two recursive rules: (1) if v is a node in the tree, then the children of v are all
nodes v′ such that v is a subsequence of v′, and (2) for all nodes u ∈ T , if v′ is a subsequence
of u, v must be a subsequence of u. With this structure, each sequence in the lexicographic
tree can be derived as (1) sequence-extended sequence, which is generated by adding a new
transaction consisting of a single item to the end of its parent’s sequence, and (2) itemset-
extended sequence, which is generated by adding an item to the last itemset in the parent’s
sequence. Starting from the root node, the candidate itemsets are generated by performing
the sequence-extension step (S-step) and the itemset-extension step (I-step) to iteratively
extend sequential patterns with the depth-first search strategy. With the vertical bitmap data
structure, support counting can be efficiently processed by a fast bit-AND operation, e.g., the
Intel architecture provides 256 bits AND operation in one machine instruction.3 We show

3 If the bitmap vector is extremely sparse, the word-aligned hybrid code (WAH) [44] can serve for our goal.
Specifically,WAH is a run-length encoding for compressing input data towords,whereANDs can be efficiently
performed on any two words, and thus the bitmap representations can still work in this situation.

123

372 C.-C. Chen et al.

(c)

I-step

1 0 0
0 AND 1 0
0 0 0
1 0 0
1 0 0
0 AND 1 0
0 0 0
0 0 0
0 1 0
0 AND 1 0
0 0 0
0 0 0
1 0 0
0 AND 1 0
1 0 0
0 0 0

S-step

1 0 0 0
0 transform 1 AND 1 1
0 1 0 0
1 1 0 0
1 0 0 0
0 transform 1 AND 1 1
0 1 0 0
0 1 0 0
0 0 1 0
0 transform 0 AND 1 0
0 0 0 0
0 0 0 0
1 0 0 0
0 transform 1 AND 1 1
1 1 0 0
0 1 0 0

{A} {B} {A , B} {A} {A}s {B} {A},{B}Cid Tid
1 1
1 3
1 7
1 12
2 2
2 4
2 -
2 -
3 5
3 8
3 9
3 -
4 6
4 10
4 11
4 -

(a) (b)

{A}

{A},{B} {A,A}

{A,A},{C}

{A,A},{C,B} {A,A},{C,D}

root

Sequence extension
Itemset extension

{A},{A} {A,B}{A},{C}

...

{}

{A,C}

Fig. 2 An example of a I-step, b S-step, and c lexicographic sequence tree T

the example of bitmap information in Fig. 1 and the examples of I-step and S-step for item
{A} in Fig. 2. We set min_sup as 50%. For S-step, the bitmap representation of {A} is first
transformed to {A}s by setting the index of the first 1 bit in {A} as 0 and all the bits behind
this bit as 1. Then, S-step is processed by ANDing {A}s with {B}, and I-step is processed
by ANDing {A} with {B}. After finishing I-step and S-step, we accumulate the number of
sequences that have more than one “true” bit in the bitmap results and derive that the support
count of {{A, B}} is 0 and that of {{A}, {B}} is 3. After counting the support, if the support
count is larger than or equal to min_sup, depth-first traversal continues until no patterns
can be generated. Moreover, to reduce the search space in tree traversal, SPAM also applies
pruning techniques to both S-step and I-step on the basis of the Apriori principle.

The major problem of SPAM is that the memory usage is inefficient. When the sequences
become long with high frequency, SPAM takes more memory to store the bitmap of gen-
erated patterns. Furthermore, when the numbers of sequences and distinct items increase,
the required space for the vertical bitmap representation also increases significantly, which
hinders the capability of SPAM tomine sequential patterns on large-scale datasets on a single
machine.

123

Distributed and scalable sequential pattern mining through… 373

Mapper 1 Mapper 2 Mapper m

Reducer 1 Reducer 2 Reducer n

frequent items (store into DHT) &
corresponding bitmap information

Mapper 1 Mapper 2 Mapper m

Reducer 1 Reducer 2 Reducer n

input sequence database

frequent sequential patterns

Phase 1:
Scanning Phase

Phase 2:
Mining Phase

iterative
MapReduce
round

Fig. 3 SPAMC with iterative MapRedcue

3.2 SPAMC

In SPAMC, the authors attempt to make a breakthrough by designing a cloud-based mining
paradigm that can significantly enhance the scalability of sequential pattern mining in an
iterative MapReduce model. Figure 3 shows the framework of SPAMC, and the algorithmic
form of SPAMC is shown in Algorithm 1. SPAMC is a cloud-based version of sequential
pattern mining algorithm, consisting of two phases: (1) scanning phase and (2) mining phase.

3.2.1 Scanning phase of SPAMC

To avoid a situation in which big data may not be fully loaded into the main memory of a
singlemachine and to enhance efficiency, SPAMCreads the input databasewith aMapReduce
round. The sequences in input database D are equally split into several partitions. Each
mapper reads a set of partitioned data, and each partition will be transformed into a key-
value pair 〈I tem, (Cid, T id)〉, where the key is an item and the value is the pair of Cid and
Tid (customer identity and timestamp). For the Reduce job, the output pairs of identical keys

123

374 C.-C. Chen et al.

are sent to the same reducer. Note that if the number of sequences is large, more reducers can
be used for accelerating the reducer job. The output pairs with identical keyswill be sent to the
same reducer. After accumulating the support counts of all items, each reducer will build the
bitmap of each item. Only the itemswhose support counts are larger than or equal tomin_sup
will be retained. Finally, the reducer outputs the frequent items as 〈Cid, (I tem, bitmap)〉
pairs and outputs these items as 〈I tem, (Cid, bitmap)〉 to a distributed hash table (DHT).

3.2.2 Mining phase of SPAMC

The main concept of mining phase is to generate the candidate subsequences by splitting the
huge lexical sequence tree into many sub-trees, and to create all candidate sequential patterns
by traversing the sub-trees in a parallel manner. In particular, SPAMC carried out mining
phase by iteratively executing the MapReduce rounds, and each round constructs a partial
sub-tree with a pre-defined limited tree depth. Mining phase contains two main procedures:
(1) mapper side: lexical sequence tree construction and (2) reducer side: merging for support
counting.

(1) Mapper Side: The sub-tree construction of a lexical sequence tree (LST) is designed for
parallel processing. LST contains the information of all subsequences and helps SPAMC
generate candidate sequential patterns independently on MapReduce. Each node repre-
sents one candidate pattern. Recall that the outputs of scanning phase are numerous
〈Cid, (i tem, bitmap)〉 pairs. Each input with the same Cid is sent to the same mapper
and is inserted into the local LST.

To generate candidate subsequences, SPAMC performs the modified version of sequence-
extension step and itemset-extension step of SPAM on a distributed LST. The extension
process with various nodes at the same tree depth can be distributed and processed in idle
mappers. Further, a node may be assigned more than one customer data within each bitmap
to perform candidate generation. Note that it is possible that a node parallelly utilizes a bit-
AND operation on a bitmapwith differentCid data. Being irrelevant to one another, different
nodes and received data can be processed distributively. After constructing all sub-trees on
mappers, SPAMC extends candidate subsequences by running the I-step and S-step of SPAM
on all nodes of sub-trees. SPAMC sets the depth, which is the maximum depth of sub-trees,
such that the running time of mining phase can be bound by a limited depth. If there are any
nodes whose node depth is less than the maximum sub-tree depth, there are new candidate
sequential patterns that can be generated. Thus, for these nodes, mappers repeatedly perform
the I-step and S-step until DFS traversal of all nodes is completed or no candidate sequential
patterns are generated. Then the mapper outputs the newly candidate sequential patterns as
〈sequence, (Cid, bitmap)〉 to the merging step.

(2) Reducer Side: The key task of reducers is to merge candidate subsequences generated
from sub-trees on more than one machine. Reducers merge the local results from different
mappers, and the output with identical subsequences is sent to the same reducer. The input is
in the form of 〈sequence, (Cid, bitmap)〉, where the value field consists of Cid and bitmap
in each sub-tree. All candidate sequential patterns are read. Then, the reducer summarizes
the support of each candidate subsequence by directly performing the bit counting on the
corresponding bitmap. In order to reduce both time and space complexity, SPAMC proposes
a global view of pruning that removes any infrequent candidate subsequence. If the depth of
a candidate subsequence is equal to the limited depth of this sub-tree and the count is larger
than or equal tomin_sup, an increasing number of new candidate sequential patterns may be

123

Distributed and scalable sequential pattern mining through… 375

generated. Then, the candidate subsequence is put into the candidate set that is an input of the
next round of MapReduce. If the candidate subsequence is frequent in the global database,
the reducer outputs this candidate subsequence to the final results in 〈sequence, count〉
pairs, where count is the occurrence frequency of the sequential patterns. Then, SPAMC
algorithm performs new candidate generation and iteratively performsMapReduce jobs until
the candidate set is empty.

Although the abovementioned SPAMC can find frequent sequential patterns in large
dataset, it is surfer from load unbalanced problem as it induces a huge overhead in long
waiting time in mining phase. Also, it is not suitable to be implemented in a MapReduce
framework as it induces a huge cost in data reloading when a MapReduce job is relaunched.

4 SPAMC-UDLT algorithm

To efficiently discover the sequential patterns, we propose a new cloud-based sequential pat-
tern mining algorithm adopting streaming MapReduce model, namely SPAMC-UDLT, with
its two-phase framework shown in Fig. 4. The first phase, i.e., scanning phase, reads the input
database with one MapReduce round and outputs the frequent item with the bitmap repre-
sentation, while the second phase, i.e., mining phase, generates the candidate subsequences

Mapper 1 Mapper 2 Mapper m

Reducer 1 Reducer 2 Reducer n

Frequent items
(store into DHT)

Mapper 1 Mapper 2 Mapper m

input sequence database

frequent sequential patterns

Phase 1:
Scanning Phase

UDLT with corresponding
bitmap information

Phase 2:
Mining Phase

Fig. 4 SPAMC-UDLT with streaming MapReduce model

123

376 C.-C. Chen et al.

and outputs the frequent sequential patterns. There are three key challenges that exist in the
design of SPAMC-UDLT, which are listed in the following paragraphs.

C1. Data reloading. Because the results of scanning phase (frequent items and the bitmap
representations) will be accessed multiple times in mining phase, a new technique is required
for minimizing the reloading effort.

C2.Unbalancedworkload.The candidate generation inmining phasemay incur unbalanced
workloads for different mappers since the frequency of each item is different. For example,
given 2 mappers and 2 items (A and B), one basic solution is to use one mapper for mining
all the frequent sequential patterns related to A and the other mapper for B. However, the
number of frequent sequential patterns related to A may be much greater than that related to
B. In this case, the mapper for B wastes a lot of time in waiting for the mapper for A. It is a
challenge to minimize the waiting time of each mapper for maximizing the speed of frequent
sequential pattern mining.

C3. No communication allowed between mappers. In mining phase, mappers cannot
directly communicate with each other due to the natural property of MapReduce, which
has been designed intentionally to make sure that reliability of each map task is governed
independently by the reliability of the machine. In our case, we can only gather the generated
candidates in reducer, which increases the dependency between each task. It is a challenge
to break this dependency in order to improve efficiency.

We address the first challenge in scanning phase and the latter two in mining phase.

4.1 Scanning phase of SPAMC-UDLT

Given the input database, the goal of scanning phase of SPAMC-UDLT is to generate fre-
quent items with their bitmap representations and then store them in an efficient way so
as to be accessed by mining phase. First, in order to increase the data scalability for large-
scale datasets and reduce the waiting time induced by distributed file system, we adopt
the streaming MapReduce model, in which the input data are transformed into a streaming
queue. Afterward, SPAMC-UDLT distributes the transactions to each mapper with an almost
equal amount of data from the streaming queue Q, and each mapper stores the data into the
local memory. Afterward, SPAMC-UDLT distributes the transactions to each mapper with
an almost equal amount of data from the streaming queue Q, and each mapper stores the
data into the local memory. Since the output types of the Map should match the input types
of the Reduce, the key-value pairs are designed as 〈I tem, (Cid, T id)〉 for calculating the
frequency of each item. Therefore, the mapper takes as input (Cid, T id, I tem) and outputs
a key-value pair, 〈I tem, (Cid, T id)〉, to the reducers. Figure 5 shows an illustrative example
of scanning phase. Eight transactions are assigned to mapper 1 and then stored in the local
memory. For item {C}, mapper 1 outputs the key-value pairs as 〈C, (1, 7)〉, 〈C, (3, 5)〉, and
〈C, (3, 9)〉. After all the data are loaded, the mappers transform the input data to key-value
pairs to reducers.

Intuitively, all outputted pairs with the same key are sent to the same reducer. Then, the
reducer counts the frequency of the received pairs, with each reducer taking the input pairs
and summarizing the frequency of distinct items. After accumulating the support counts of
all the items, each reducer constructs a bitmap of each frequent item. Since the supports
of all items and the corresponding bitmap will be accessed by mappers in mining phase
multiple times (the first challenge), we cache the information in the local memory so that it
can be efficiently accessed by different mappers. Specifically, we use a distributed hash table

123

Distributed and scalable sequential pattern mining through… 377

Mapper 1

Mapper 2

DHT

Database D

D

A
B

(1,1), (2,2)
(3,5), (4,10)

(2,2)

Key Value

A

B

C

D

(1,1), (1,12)

(1,3), (3,5),
(3,8)

(1,7), (3,5),
(3,9)

(2,2), (4,6),
(4,11)

(2,4), (4,10)

(2,2)

Key Value

Reducer

frequent items
min_sup = 50%

Cid Tid Itemset
1 1 {A}
1 3 {B}
1 7 {C}
1 12 {A}
2 2 {A, D}
2 4 {B}
3 5 {B,C}
3 8 {B}
3 9 {C}
4 6 {A}
4 10 {B}
4 11 {A}

Cid Tid {A} {B} {C}
1 1 1 0 0

3 0 1 0
7 0 0 1
12 1 0 0

2 2 1 0 0
4 0 1 0

3 5 0 1 1
8 0 1 0
9 0 0 1

4 6 1 0 0
10 0 1 0
11 1 0 0

collected
by

Key

C (1,7), (3,5), (3,9)

A

B

(1,12), (4,6),
(4,11)
(1,3), (2,4),
(3,8)

Key Value

Key Value

{A}

(1,1001)
(2,10)
(3,000)
(4,101)

{B}

(1,0100)
(2,01)
(3,110)
(4,010)

{C}

(1,0010)
(2,00)
(3,101)
(4,000)

{A}, bitmap
{B}, bitmap
{C}, bitmap

UDLT

Fig. 5 Example of scanning phase

(denoted as DHT) to store this shared common information in the cloud. If the occurrence
of some items is larger than the minimum support, these items are defined as frequent, and
written as 〈I tem, (Cid, bitmap)〉 to DHT . The detailed algorithm of scanning phase is
shown in Algorithms 3 and 4.

123

378 C.-C. Chen et al.

4.2 Mining phase of SPAMC-UDLT

In mining phase, the goal is to efficiently generate candidate frequent sequential patterns
and frequent sequential patterns in a parallel manner. However, the workloads for different
machines are usually unbalanced since the frequencies of items are different. Hence, most
of the machines may be idly waiting for the machines with high workloads due to the unbal-
anced workloads. To balance the workloads of different machines when generating candidate
patterns, we propose to adopt the streaming MapReduce model to address the second chal-
lenge. Moreover, we propose a shareable uniform distributed lexical sequence tree (UDLT)
in a streaming form to store the candidate frequent sequential patterns to address the third
challenge, because the intermediate results of candidate frequent sequential patterns can be
transmitted in a streaming form without running reducers in UDLT. Moreover, since UDLT
overcomes the limitation of data accessibility in mappers, it also facilitates the operation of
the streaming MapReduce model.

Specifically, UDLT starts with a root node. After generating a candidate frequent item, we
insert a data node into UDLT with the frequent candidate item and its corresponding bitmap.
Our goal is to enable the sequence extension and itemset-extension processes for each data
node of UDLT to be performed independently so as to further generate frequent candidates.
Therefore, UDLT is implemented as a distributed queue Q and the data node can be accessed
as an element in Q. That is, by using distributed message queue implementation in Kafka
[13,22], the data nodes are stored in distributedmachines.When there are no data nodes in the
local storage, the machines can directly access other machines via networking. Therefore,
UDLT can achieve a better load balance and improve the overall access performance by
increasing the data locality. Through the proposed UDLT, each machine can independently
read the data node in distributed queue Q.Moreover, themachines only need to run themapper
procedure since UDLT contains the information of the current subsequences. Therefore, we
can independently generate candidate sequential patterns on each machine.

Figure 6 and Algorithm 5 show the flowchart and pseudocode of mining phase, respec-
tively. Recall that the outputs of scanning phase are sequences of 〈I tem, (Cid, bitmap)〉 in
UDLT, and DHT has been already cached on local memory in scanning phase. First, each
mapper reads an input by a key (I tem) fromUDLT in a random order and stores it to the local

{A} {B} {C}

{B},{A}

UDLT (implemented in distributed queue Q)

Write back
to UDLT

Read data
from UDLT

...

Tr
ee

co
ns

tru
ct

io
n

C
an

di
da

te
ge

ne
ra

tio
n

{B},{B}

{A},{B}

{A,A} {A},{A} {A},{C}

{B},{A} {B},{B}

{A},{B}

{A,A} {A},{A} {A},{C}

Mapper 2 on machine 2 Mapper 3 on machine 3

A
dd

 n
ew

 n
od

e
to

 U
D

LT

.........

3 enihcaM2 enihcaM1 enihcaM

UDLT

Mapper 1 on machine 1
Mapper 1
on machine 1

3 enihcaM2 enihcaM1 enihcaM

Fig. 6 Flowchart of mining phase of SPAMC-UDLT

123

Distributed and scalable sequential pattern mining through… 379

memory in line 5 of Algorithm 5. Then, it uses the breadth-first search strategy on UDLT to
discover all frequent sequential patterns.

To discover the frequent sequential patterns efficiently,we adopt a bitmap representation of
sequences (lines 6 and 8 of Algorithm 5). The advantage of the bitmap representation is that it
can find the occurrence of itemsets byANDing operations, which is computationally efficient.
There are two steps for generating the candidate frequent sequential patterns: sequence-
extension step (S-step) and itemset-extension step (I-step). Let Il,i denote the i-th frequent
itemset with the length l. In S-step, given a bitmap representation of a processed itemset
Il,i and the bitmap of the j-th frequent item, i.e., bmpI1, j , we transform bmpIl,i into a new
bitmap bmp′

Il,i
by setting the first 1-bit of Il,i as 0 and all the bits behind this bit as 1. By

ANDing the transformed bitmap bmp′
Il,i

with each frequent item bitmap bmpI1, j , we obtain
the new bitmap of the candidate itemset {{I1,i }, {I1, j }|∀ j}. On the other hand, in I-step, by
ANDing bmpIl,i with each frequent item bitmap bmpI1, j , we obtain the new bitmap of the
candidate itemset {{I1,i , I1, j }|∀ j}.

After finishing the S-step and I-step on the processed itemset Il,i , all candidate itemsets
generated by the itemset Il,i are obtained. By counting the number of 1 bits in bmp{{I1,i },{I1, j }}
and bmp{{I1,i ,I1, j }}, we obtain the support of candidate itemsets for pruning. If the support of
itemsets is greater than the minimum support, the candidate is marked as a frequent itemset
and is outputted as an 〈I temset, (Cid, bitmap)〉 pair to UDLT (lines 9 to 10). In addition,
when mappers finish the I-step and S-step process of the received nodes, mappers also write
the frequent pattern in format 〈I temset, occurrences〉 to the final results, which is located
at distributed file system (HDFS). The mining process runs repetitively until all nodes in
UDLT are traversed and no more frequent candidate itemsets are generated.

Example 1 Mining phase of SPAMC-UDLT.

Take Fig. 7 as an example. After scanning phase, SPAMC-UDLT outputs {A}, {B}, and
{C} to the queue of UDLT as frequent items. We assume that mapper 1 gets 〈{A}, ((1, 1001),

123

380 C.-C. Chen et al.

{A} {B} {D}

{A},{B} {A,A} {B},{A} {B},{B} {B,C}

{B},{A},{A} {B},{A},{B} {B},{A},{C} {B,C},{A}{A,A},{C}

{A,A},{C,B}

Tr
ee

 c
on

st
ru

ct
io

n

Data node

root

Sequence extension
Itemset extension

{A},{A} {A,B}{A},{C}

S-step
I-step

{}

Root node

{A,C}

{C}

frequent items
min_sup = 25%
(i.e., 1 customers)

C
an

di
da

te
 g

en
er

at
io

n

S-step

Cid Tid {A} A {A,A}
1 1 1

3 0
7 0
12 1

3 5 0
8 0
9 0

&

Cid Tid {A} ({A})s {A} {A},{A}
1 1 1 0 0

3 0 1 0
7 0

transformed
1 0

12 1
bitmap

1 1

3 5 0 0 0
8 0 0 0
9 0 0 0

&

I-step

0
10

12
4

2 0
0

4 6 1 0 0
10 0 1 0
11 1 1 1

&

&

&

0
12

4
2

4 6 1
10 0
11 1

&

&

&

1
0
0
1

0
0
0

0
1

1
0
1

1
0
0
1

0
0
0

0
1

1
0
1

1
0
0
1

0
0
0

0
1

1
0
1

Fig. 7 UDLT of the example database in mining phase

(2, 10), (4, 101))〉 and mapper 2 gets 〈{B},((1, 0100), (2, 01), (3, 110), (4, 010))〉 as the
input. Both tree data nodes {A} and {B} are removed from the queue of UDLT. After this,
I-step and S-step are performed on data nodes {A}, {B}, {C} to generate candidate itemsets.
The dashed lines and bold lines represent S-step and I-step, respectively. Using item {A}
as an example of S-step and I-step, the bitmap of item {A}, i.e., bmp{A}, is represented
as 100110000101, and the transformed bitmap of item {A}, i.e., bmp′{A}, is represented as
011101000011. Next, we perform ANDing for bmp′{A} and bmp{A} with each frequent item
bitmap in S-step and I-step, respectively. In S-step, after the ANDing operation, we obtain
000100000001 as the bitmap of candidate itemset {{A}, {A}}. The 4th and 12th bits of itemset
{{A}, {A}} for Cid 1 and 4 are both 1, which implies that the itemset {{A}, {A}} appears in
transactions 11 and 12. Therefore, the number of occurrences of itemset {{A}, {A}} is 2,
which is equal to min_sup = 2, and thus itemset {{A}, {A}} is a frequent itemset. Mapper 1
outputs node {{A}, {A}} to UDLT. In I-step, we perform Anding on bmp{A} and bmp{A}, and
obtain the bitmap of itemset {{A, A}} as 100110000101, which implies that the occurrence
of {{A, A}} is 5. Therefore, the occurrence of itemset {{A, A}} is large than min_sup = 2,
and Mapper 1 also outputs {{A, A}} to UDLT. Meanwhile, mappers 2 and 3 also perform
S-step and I-step on itemset {A}with frequent items {B} and {C}, respectively. Themappers
consequently use a breadth-first search to traverse UDLT to discover all frequent candidates.
After completing generation of candidate itemset, we obtain candidate itemsets {{A}, {A}},
{{A}, {B}}, {{A}, {C}}, {{A, A}}, {{A, B}}, {{A,C}}, which are the child nodes of node {A}.
Similarly,weobtain candidate itemsets {{B}, {A}}, {{B}, {B}}, {{B,C}} for node {B}. Finally,
mappers write these frequent candidate itemsets to the final results. The mining process runs
repetitively until all nodes in UDLT are traversed and no more frequent candidate itemsets
are generated.

4.3 Discussions

Wefirst show an example of which SPAMCperforms transaction database poorly. Afterward,
we compare the search strategies of SPAM and SPAMC-UDLT.

123

Distributed and scalable sequential pattern mining through… 381

Fig. 8 Example of data skew
and load inbalance {}

{A} {B}

{A},{A}

sub-tree 1
sub-tree 2

{A,A, ,A} {A},...,{A}

Mapper 1

Mapper 2

(n-1) nodes

Example 2 We show a transaction database where SPAMC performs poorly.

Consider Fig. 8 as an example, where the minimum support is 2, the number of machines
is m, the number of sequence is n, and the number of distinct items is 2. The mining phase
of SPAMC sends {A} and {B} to mapper 1 and mapper 2, respectively. Afterward, item {A}
generates the sub-tree 1 on mapper 1 and item {B} generates the sub-tree 2 on mapper 2.
Mapper 1 generates n − 1 frequent itemsets and mapper 2 only generates 1 frequent itemset.
Because SPAMC adopts the iterative MapReduce model, the mapper 2 wastes a very long
time until themapper 1 finished. Thewaiting time is dominated by the running time ofmapper
1, i.e., the time for processing n − 1 tasks.

In contrast, the proposed SPAMC-UDLT adopts the streaming MapReduce model. Each
mapper reads a candidate frequent itemset and outputs the generated candidate frequent
itemsets. Note that UDLT is implemented by using distributed queue technique. Therefore,
UDLT data nodes can be accessed by any distributed machines. As shown in the bottom of
Fig. 8, {A} is accessed bymapper 1 and {B} is accessed bymapper 2.Whenmapper 2 finished
the mining process on {B}, it will read another candidate frequent itemset, {{A}, {A}}, which
is generated by mapper 1 and stored to UDLT. Therefore, the waiting time of SPAMC-UDLT
is � n

m � tasks, and thus the ratio of waiting time between SPAMC and SPAMC-UDLT is
� n
m �/(n − 1), which is close to m for a large n.
In the following, we compare the search strategies of SPAM (sequential) and SPAMC-

UDLT (parallel). Specifically, SPAM adopts the Depth-First Search (DFS) strategy on a
lexicographic tree for generating candidate frequent patterns. The advantage of adopting the
DFS strategy is that the memory usage can be minimized because only the information of
the parent nodes is required. However, as shown in Example 2, when adopting the DFS
strategy in distributed systems (i.e., SPAMC), it suffers from the data unbalancing problem
in generating candidate frequent patterns since the heights of sub-trees for the extended
sequences are usually different. As such, themachine for the shortest extended sequence idles
and waits until the machine for the longest extended sequence finished its job. Moreover,
when applying to large-scale datasets, each distributed machine needs to access the required
global information, i.e., frequent item and corresponding bitmap information, which incurs
additional costs in data communication and synchronization between distributed machines.

In contrast, SPAMC-UDLT adopts a Breadth-First Search (BFS) strategy. SPAMC-UDLT
first performs S-step and I-step to extend all candidate frequent sequences for a UDLT
node, and each machine is then assigned to count the support only for a candidate frequent
sequence. Therefore, the load is balanced since the computation time for each machine is

123

382 C.-C. Chen et al.

Table 1 Parameters of synthetic
datasets

Parameter Description

D Number of sequences (each sequence presents a
customer data)

C Average transactions per sequences

T Average number of items per transaction

N Number of distinct items

S Average length of sequences

max |S| Maximum length of sequence patterns

close. However, the major cost for parallelizing the UDLT with BFS strategy on distributed
machines is that SPAMC-UDLT requires saving the frequent items and its corresponding
bitmaps, and distributing this information to all the machines since the UDLT nodes require
this information for generating new candidate frequent sequential patterns. To reduce the
cost, SPAMC-UDLT further utilizes data caching and broadcasts the used information. For
details on algorithm analysis of SPAMC-UDLT, please refer to online appendix [8].

5 Performance evaluation

In this section, we evaluate the performance of SPAMC-UDLT on the cloud computing
platform. We have conducted extensive experiments to verify the performance of SPAMC-
UDLT with big data. The dataset and environment are presented in Sect. 5.1 and Table 1.
The other experimental results are as follows:

5.1 Datasets and system environment

We implement SPAMC-UDLT on Hadoop 1.2.1, Spark 0.8.1, kafka 0.7.2, and jdk-7u3 in a
cloud environment consisting of 32 machines. One machine serves as both master and slave,
and the other 31 machines are solely slaves. All the experiments are performed on machines
with 2.93-GHz Intel Xeon CPU, 4-GB main memory, and 1-GB network. The synthetic
datasets used in the experiments are generated using the IBM Quest data mining tool [3] and
the real dataset used in [43]. The parameters of synthetic datasets are listed in Table 1.

5.2 Comparison with existing methods on single machine

We first investigate the performance efficiency of SPAMC-UDLT and several sequential
pattern mining algorithms with differentmin_sup from 0.6 to 0.08% on a dataset containing
500,000 sequences each with an average of 128 transactions (C = 128, S = 8, N = 26, and
T = 20). In order to compare the performance of SPAM, GSP, and PrefixSpan, which are
inherently designed for running on a single machine, we only test the smaller dataset. Note
that SPAMcannot handle large datasets because of thememory limitation on onemachine. As
can be seen in Fig. 9a, a higher overhead (longer execution time) is incurred when min_sup
is decreased. As shown in Fig. 9b, SPAMC-UDLT performs well, even if min_sup is low.
As the minimum support is lower, more and longer frequent candidate sequential patterns
will be generated. In this case, the overall execution time of SPAMC-UDLT is close to that of
SPAMC when the dataset is small. Moreover, we can infer from Fig. 9b that SPAMC-UDLT
outperforms the SPAM bymore than one order of magnitude whenmin_sup is less than 3%.

123

Distributed and scalable sequential pattern mining through… 383

0
5000

10000
15000
20000
25000
30000

E
xe

c.
 T

im
e

(s
ec

.)

minimum support (%)

PrefixSpan
SPAM
GSP
SPAMC-UDLT

0

50000

100000

150000

200000

0 2 4 6 8 10

E
xe

c.
 T

im
e

(s
ec

.)

minimum support (%)

SPAM
SPAMC
SPAMC-UDLT

(a) (b)

Fig. 9 Execution time of a comparative algorithms b SPAM, SPAMC, and SPAMC-UDLT with varied
min_sup

0

10000

20000

30000

40000

50000

800 1600 3200 6400 12800

E
xe

c.
 T

im
e

(s
ec

.)

number of sequences D (k)

SPAMC
DPSP
SPAMC-UDLT

1

2

4

8

16

1 2 4 8 16

sp
ee

du
p

number of nodes

SPAMC-UDLT

(a) (b)

Fig. 10 a Scalability of SPAMC-UDLT, SPAMC and DPSP. b Speedup

5.3 Scalability

To verify the capability of sequential pattern mining in the cloud, we attempt to execute
SPAMC-UDLT, SPAMC, and DPSP on datasets containing upto 12.8 million transactions
with S = 8, T = 20, N = 26 and C = 128. We try different min_sup settings, and
because all results show a similar trend, we report the results on different datasets with
min_sup at 0.01%. For the illustrations shown in Fig. 10a, 32 machines are used, and the
number of sequences D in the datasets were in the range 800,000 to 12,800,000 (average 128
transactions per sequence). The results show that SPAMC-UDLT provides good scalability
and scales nicely as we increase the number of transactions in the datasets. Comparing the
proposed algorithmwith SPAMC,we have found that the execution time increases drastically
after the 6400k benchmark. This phenomenon is attributed to increasedmemory consumption
and higher network traffic cost. In DPSP, which focuses on a progressive database with a
specific time range, when the number of transactions increases, more rounds of MapReduce
are implemented, leading to a longer execution time.

5.4 Speedup of SPAMC-UDLT

We evaluate Speedup of SPAMC-UDLT on a medium-size dataset which contains 800,000
customers. Each customer is associated with 64 transactions, and there are 26 distinct items.
Each machine runs on 4GB memory and 2.4GHz CPU core. The minimum support, i.e.,
min_sup, is set as 0.7%. Let Tm denote the running time of SPAMC-UDLT form machines.

123

384 C.-C. Chen et al.

Speedup is defined as follows.

Speedup = T1
Tm

. (1)

Figure 10b shows Speedup with different number of machines. As the number of machines
increases from 1 to 16, Speedup increases linearly. Speedup does not linearly increase from
16 to 32 because the size of the dataset is not large. In other word, the data size in each
machine is too small to show the superiority of SPAMC-UDLT since the communication
cost contributes more running time than the computations.

5.5 Real dataset

We have additionally compared SPAMC-UDLTwith MG-FSM on a real dataset, i.e., Twitter
dataset [43]. Twitter dataset includes 12,053,495 tweets, 510,603 users, and 1,434,862 distinct
items. The gap of MG-FSM is set as 0 for a fair comparison. Moreover, min_sup is ranged
from 0.0033 to 0.00005%.

Figure 11a, b presents the execution time of SPAMC-UDLT, SPAMC, and MG-FSM on
Twitter data, where the maximum length of frequent pattern, i.e., max|S|, is set as 4 and 12,
respectively. All results show that SPAMC-UDLT outperforms other baseline algorithms. As
the length of frequent patterns increases or the minimum support decreases, the advantages
of SPAMC-UDLT are highlighted.

Specifically, Fig. 11a shows that SPAMC-UDLT significantly outperforms SPAMC and
MG-FSM in terms of the execution time. This is because the initial cost of the 4 MapReduce
rounds dominates the execution time when the maximum length of frequent patterns is short.
Moreover, Fig. 11b shows that the execution time ofMG-FSM is faster than SPAMC because
SPAMC spends more time for reloading frequent items. It is worth noting that when the
number of frequent items increases, the difference between SPAMC-UDLT and MG-FSM
becomes larger since MG-FSM spends more time scanning data in multiple MapReduce
rounds, whereas SPAMC-UDLT adopts the streaming MapReduce model.

Moreover, we report the running time of writing frequent sequential patterns for Twit-
ter dataset in terms of the percentage of total running time. Given min_sup = 0.003 and
0.00005%, the number of generated frequent patterns is 1,246,184–21,895,083. When maxi-
mum sequential pattern lengthmax|S| = 4, SPAMC-UDLT spends 28% of total running time
on writing outputs. Moreover, when the maximum sequential pattern length max|S| = 12,
the percentage of total running time for writing outputs decreases to 24% since the time of

90

120

150

180

210

E
xe

c.
 T

im
e

(s
ec

.)

min_sup (10-3 %)

MG-FSM
SPAMC-UDLT
SPAMC

0

500

1000

1500

2000

3.30 2.50 1.65 0.80 0.40 0.08 0.05 3.30 2.50 1.65 0.80 0.40 0.08 0.05

E
xe

c.
 T

im
e

(s
ec

.)

min_sup (10-3 %)

MG-FSM
SPAMC-UDLT
SPAMC

(a) (b)

Fig. 11 Execution time with maximum length of frequent patterns (max|S|) varied: amax|S| = 4 bmax|S| =
12

123

Distributed and scalable sequential pattern mining through… 385

reading candidate frequent itemsets for generating more candidate frequent itemsets is more
than that of outputting the number of frequent itemsets.

5.6 Resource usage

On the basis of our experiments performed on the 12,800,000–102,400,000 transactions with
distinct number of items N = 8 and N = 26. Figure 12a shows that the memory requirement
of SPAMC is higher than that of SPAMC-UDLT. The dataset contains only 8 distinct items
and average of 64 items per transaction; thus, the saving of memory usage in SPAMC-UDLT
is not significant because the memory requirement in SPAMC, which depends on the number
of distinct items, is not large. In order to measure the average memory usage in SPAMC and
SPAMC-UDLT, each machine records the number of output candidate sequential patterns
and the maximal number of intermediate results by a log file. Then, we summarize the
log information from different machines to obtain the results of memory usage. Figure 12b
shows that SPAMC-UDLT requires 40–50%of thememory size required by SPAMC, thereby
reducing the memory usage of the mining phase in the streaming MapReduce model.

We analyze network traffic on the same dataset as above. Figure 13a shows the network
usage of the comparison of SPAMC-UDLT and SPAMC. The bandwidth usage of SPAMC
is approximately 70% that of SPAMC-UDLT, whereas the DHT needs to be distributed to all
the machines. When the number of transactions is smaller withmin_sup = 0.01%, the DHT
transmission is themajor cost of the networking. Figure 13b shows that the networkbandwidth
requirement of SPAMC is considerably lower than that of SPAMC-UDLT, whereas SPAMC-
UDLT mines frequent sequential patterns via distributed queue implementation. Thus, the
frequent candidates need to be transmitted, which assists in increasing network usage. It is a

0

5000

10000

15000

A
vg

. M
em

or
y

(M
B

)

SPAMC
SPAMC-UDLT

number of transactions (x106)
12.8 25.6 51.2 102.4

(a)

0

10000

20000

30000

40000

50000

A
vg

. M
em

or
y

(M
B

)

SPAMC

SPAMC-UDLT

number of transactions (x106)
12.8 25.6 51.2 102.4

(b)

Fig. 12 Memory usage of SPAMC and SPAMC-UDLT with a 8 distinct items and b 26 distinct items

0

1000

2000

3000

4000

A
vg

. N
et

w
or

k
U

sa
ge

(M
B

)

number of transactions (x106)

SPAMC
SPAMC-UDLT

0
50000

100000
150000
200000
250000
300000
350000

A
vg

. N
et

w
or

k
U

sa
ge

(M
B

)

number of transactions (x106)

SPAMC
SPAMC-UDLT

12.8 25.6 51.2 102.4 12.8 25.6 51.2 102.4

(a) (b)

Fig. 13 Average network usage of SPAMC and SPAMC-UDLTwith a 8 distinct items and b 26 distinct items

123

386 C.-C. Chen et al.

0

20000

40000

60000

80000

100000

E
xe

c.
 T

im
e

(s
ec

.)

Number of machines

800k cust.
1,600k cust.
3,200k cust.
6,400k cust.

0

20000

40000

60000

80000

100000

32 16 8 32 16 8

E
xe

c.
 T

im
e

(s
ec

.)

Number of machines

800k trans.
1,600k trans.
3,200k trans.
6,400k trans.

(a) (b)

Fig. 14 Effect of the number of machines: a SPAMC and b SPAMC-UDLT

trade-off between the space usage and the network bandwidth in the proposed algorithm; in
general, SPAMC-UDLT has a better performance than SPAMC for larger datasets with less
min_sup for the same parameters.

5.7 Sensitivity to parameters

This section discusses the sensitivity analysis of many important parameters such as the
number of machines and the number of distinct items.

5.7.1 Effect of the number of machines

The performance evaluation of various numbers of machines is conducted. We use 8, 16,
and 32 machines to execute SPAMC-UDLT and SPAMC on four datasets with the number
of sequences ranging from 800,000 to 6,400,000. Each sequence with 128 transactions has
64 items in average. With min_sup set to 0.01%, as shown in Fig. 14a, the execution time
decreases as the number of machines increases. Note that the execution time is affected
by the dataset characteristics, the computational complexity of the mining phase, and the
time spent on data transmission between machines. Therefore, the time saved will not be
fully proportional to the number of machines. Furthermore, as shown in Fig. 14b, SPAMC-
UDLT provides nicely load balancing, removes the cost of multiround MapReduce, and thus
achieves a better performance than SPAMC.

5.7.2 Effect of the number of distinct items

We report the execution time on 500,000 sequences with the number of distinct items N
varying from 10 to 100. Each sequence with the average transactions per sequences S =
8 and average number of items per transaction T = 8. Figure 15a shows the results of
min_sup = 2% and min_sup = 0.02% obtained using SPAMC. Note that the execution
time increases with an increase in the dataset size. This increase is mainly attributed to the
facts that SPAMC-UDLT and SPAMC are based on SPAM and that SPAM takes more space
to store the bitmap informationwhen N is larger. In Fig. 15b, the curve shows that as N grows,
the execution time increases. Because there are more candidate frequent patterns transmitted
to the distributed queue, the execution time is determined by the UDLT access time in the
network. In such a context, this experiment reveals that the advantage of SPAMC-UDLT is
more prominent when the number of distinct items is small.

123

Distributed and scalable sequential pattern mining through… 387

0

5000

10000

15000

20000

25000

30000

E
xe

c.
 T

im
e

(s
ec

.)

number of distinct items

min_sup=0.02%

min_sup=2%

0

2000

4000

6000

8000

10000

12000

10 20 40 80 100 10 20 40 80 100

E
xe

c.
 T

im
e

(s
ec

.)

number of distinct items

min_sup=0.02%

min_sup=2%

(a) (b)

Fig. 15 Execution time with distinct items varied: a SPAMC and b SPAMC-UDLT

6 Conclusion

In this paper, we proposed SPAMC-UDLT that is a highly scalable cloud-based sequential
pattern mining algorithm in streaming MapReduce model. Through streaming MapReduce
model, the mining process is finished in oneMapReduce job without reloading data. Besides,
by applying the distributed message queue technique on UDLT, we guarantee that the mining
job can be completed with limited memory and achieve nice load balancing in the cloud.
Also, mappers in SPAMC-UDLT can independently execute the mining process in a dis-
tributed manner. Thus the execution time can be reduced by working on more machines very
efficiently. Furthermore, the experimental results show that SPAMC-UDLT can significantly
improve the scalability of sequential pattern mining in the cloud.

There are some research directions that can be investigated further. One future direction
is to extend the proposed algorithm and streaming MapReduce model in a heterogeneous
cloud environment. It may more effectively mine frequent sequential patterns. Also, the
design concept in this paper can apply to other data mining algorithms which need to process
mining procedure recursively for solving big data issues. Another direction includes the
design of more effective distributed data structure for improving memory space efficiency.

References

1. Hadoop A (2012) http://hadoop.apache.org/
2. Hama A (2012) http://hama.apache.org/
3. Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the 11th international con-

ference on data engineering (ICDE’95), pp 3–14
4. Ayres J, Flannick J, Gehrke J et al (2002) Sequential pattern mining using a bitmap representation. In:

Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining
(KDD’02), pp 429–435

5. Batal I, Valizadegan H, Cooper GF et al (2013) A temporal pattern mining approach for classifying
electronic health record data. Trans Intell Syst Technol (TIST’13) 63:1–22

6. Bu Y, Howe B, Balazinska M et al (2010) Haloop: efficient iterative data processing on large clusters. In:
Proceedings of the VLDB endowment (PVLDB’10), pp 285–296

7. Chen CC, Tseng CY, Chen MS (2013) Highly scalable sequential pattern mining based on MapReduce
model on the cloud. IEEE international congress on big data (BigData Congress’13), pp 310–317

8. Chen CC , Shuai HH, and ChenMS (2016) Appendix of distributed and scalable sequential patternmining
through stream processing. https://www.csie.ntu.edu.tw/~d96944011/kais2016/appendix

9. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM
(CACM’08) 51:107–113

123

http://hadoop.apache.org/
http://hama.apache.org/
https://www.csie.ntu.edu.tw/~d96944011/kais2016/appendix

388 C.-C. Chen et al.

10. Ekanayake J, Li H, Zhang B et al (2010) Twister: a runtime for iterative MapReduce. In: Proceeding
of the 19th ACM international symposium on high performance distributed computing (HPDC’10), pp
810–818

11. Fang W, Lu M, Xiao X et al (2009) Frequent itemset mining on graphics processors. In: Proceedings of
the 5th international workshop on data management on new hardware (DaMoN’09), pp 34–42

12. Gomariz A, Campos M, Marin R et al (2013) ClaSP: an efficient algorithm for mining frequent closed
sequences. In: Proceedings of the 17th Pacific-Asia conference on knowledge discovery and data mining
(PAKDD’13), pp 50–61

13. Goodhope K, Koshy J, Kreps J et al (2012) Building LinkedIn’s real-time activity data pipeline. IEEE
Data Eng Bull (Data Eng Bull’12) 35:33–45

14. GuralnikV,KarypisG (2004) Parallel tree-projection-based sequencemining algorithms. Parallel Comput
(PARALLEL COMPUT’04) 30:443–472

15. Han J, Pei J, Mortazavi-Asl B et al (2000) FreeSpan: frequent pattern-projected sequential pattern mining.
In: Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery and data
mining (KDD’00), pp 355–359

16. Han J, Pei J, Yan X (2005) Sequential pattern mining by pattern-growth: principles and extension. Foun-
dations and advances in data mining. Springer, Berlin

17. Ho J, Lukov L, Chawla S (2005) Sequential pattern mining with constraints on large protein databases.
In: Proceedings of the 12th international conference on management of data (COMAD’05), pp 89–100

18. Huang JW, Tseng CY, Ou JC et al (2008) A general model for sequential patternmining with a progressive
database. IEEE Trans Knowl Data Eng (TKDE’08) 20:1153–1167

19. Huang JW, Lin SC, Chen MS (2010) DPSP: distributed progressive sequential pattern mining on the
cloud. 14th Pacific–Asia conference on knowledge discovery and data mining (PAKDD’10), pp 27–34

20. Isard M, Budiu M, Yu Y et al (2007) Dryad: distributed data-parallel programs from sequential building
blocks. ACM SIGOPS Oper Syst Rev (SIGOPS’07) 41:59–72

21. Ji X, Bailey J, Dong G (2007) Mining minimal distinguishing subsequence patterns with gap constraints.
Knowl Inf Syst (KAIS’07) 11:259–286

22. Kreps J, Narkhede N, Rao J (2011) Kafka: a distributed messaging system for log processing. NetDB
workshop

23. Liao CC, Chen MS (2014) DFSP: a Depth-First SPelling algorithm for sequential pattern mining of
biological sequences. Knowl Inf Syst (KAIS’14) 38:623–639

24. Luo C, Chung S (2008) A scalable algorithm for mining maximal frequent sequences using a sample.
Knowl Inf Syst (KAIS’08) 15:149–179

25. Mabroukeh NR, Ezeife CI (2010) A taxonomy of sequential pattern mining algorithms. ACM Comput
Surv (CSUR’10) 43:1–41

26. Mane RV (2013) A comparative study of Spam and PrefixSpan sequential pattern mining algorithm
for protein sequences. In: Proceedings of the 3rd international conference on advances in computing,
communication, and control (ICAC3’13), pp 147–155

27. Miliaraki I, Berberich K, Gemulla R et al (2013) Mind the gap: large-scale frequent sequence mining. In:
Proceedings of the 2013ACMSIGMOD international conference onmanagement of data (SIGMOD’13),
pp 797–808

28. Papapetrou P, Kollios G, Sclaroff S et al (2009) Mining frequent arrangements of temporal intervals.
Knowl Inf Syst (KAIS’09) 21:133–171

29. Parimala M, Sathiyabama S (2012) SPMLS: an efficient sequential pattern mining algorithm with candi-
date generation and frequency testing. Int J Comput Sci Eng (IJCSE’12) 4:601–607

30. Pei J, Han J, Mortazavi-asl B et al (2001) PrefixSpan: mining sequential patterns efficiently by prefix-
projectedpattern growth. In: Proceedings of the 7thACMSIGKDDinternational conferenceonknowledge
discovery and data mining (KDD’01), pp 215–224

31. Perer A, Wang F (2014) Frequence: interactive mining and visualization of temporal frequent event
sequences. In: Proceedings of the 19th ACM international conference on intelligent user interfaces
(IUI’14), pp 153–162

32. Sahli M, Mansour E, Kalnis P (2014) ACME: a scalable parallel system for extracting frequent patterns
from a very long sequence. VLDB J (VLDBJ’14) 23:871–893

33. Shie BE, Hsiao HF, TsengV (2013) Efficient algorithms for discovering high utility user behavior patterns
in mobile commerce environments. Knowl Inf Syst (KAIS’13) 37:363–387

34. Srikant R, Agrawal R (1996)Mining sequential patterns: generalizations and performance improvements.
In: Proceedings of the 5th international conference on extending database technology (EDBT’96), pp 3–17

35. Samza (2013) https://samza.incubator.apache.org/
36. Storm: distributed and fault–tolerant realtime computation (2012) http://storm.incubator.apache.org/
37. Spark: Lightning-fast cluster computing (2013) https://spark.incubator.apache.org/

123

https://samza.incubator.apache.org/
http://storm.incubator.apache.org/
https://spark.incubator.apache.org/

Distributed and scalable sequential pattern mining through… 389

38. S4: Distributed Stream Computing Platform (2010) https://incubator.apache.org/s4/
39. Twister: iterative MapReduce (2012) https://iterativemapreduce.org/
40. White Tom (2009) Hadoop: the definitive guide. O’Reilly Media, Newton
41. Wang K, XuY, Yu JX (2004) Scalable sequential pattern mining for biological sequences. In: Proceedings

of the 13th ACM international conference on information and knowledge management (CIKM’04), pp
178–187

42. Wang X, Wang J, Wang T et al (2010) Parallel sequential pattern mining by transaction decomposition.
International conference on fuzzy systems and knowledge discovery (FSKD’10), pp 1746–1750

43. Weng L, Menczer F, Ahn YY (2013) Virality prediction and community structure in social networks. Sci
Rep 3. doi:10.1038/srep02522

44. WuK, Otoo EJ, Shoshani A (2002) Compressing bitmap indexes for faster search operations. In: Proceed-
ings of 14th international conference on scientific and statistical database management (SSDBM’02), pp
99–108

45. Yu D, Wu W, Zheng S et al (2012) BIDE-based parallel mining of frequent closed sequences with
MapReduce. In: Proceedings of the 12th international conference on algorithms and architectures for
parallel processing (ICA3PP’12), pp 177–186

46. Yu D, Zhu Q, Shao J et al (2014) Parallel execution of data-intensive web services based on data-flow
constructs and I/O operation ratio. Int J Database Theory Appl (IJDTA’14) 7:129–138

47. Zaharia M, Chowdhury M, Das T et al (2012) Resilient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on networked systems
design and implementation (NSDI’12), p 2

48. Zaharia M, Chowdhury M, Das T et al (2012) Discretized streams: an efficient and fault-tolerant model
for stream processing on large clusters. In: Proceedings of the 4th USENIX conference on hot topics in
cloud computing (HotCloud’12), pp 215–224

49. ZakiMJ (1998) Efficient enumeration of frequent sequences. In: Proceedings of the 7thACM international
conference on information and knowledge management (CIKM’98), pp 68–75

50. Zaki MJ (2001) Parallel sequence mining on shared-memory machines. J Parallel Distrib Comput
(JPDC’01) 61:401–426

51. Zhao Q, Bhowmick SS (2003) Sequential pattern matching: a survey. ITechnical report CAIS Nayang
Technological University Singapore, pp 1–26

Chun-Chieh Chen received the M.S. degree from the Department of
Computer Science and Information Engineering, National Central Uni-
versity, Taiwan, in 2006, and the Ph.D. degree at the Graduate Insti-
tute of Networking and Multimedia at the National Taiwan Univer-
sity, Taipei, Taiwan, in 2016. From 2009 to 2016, he is a member of
Network Database Lab (NetDB Lab). He was an member of Phi Tau
Phi Scholastic Honor Society in 2006 and 2016. His research interests
include multimedia applications, big data, data mining, and cloud com-
puting.

123

https://incubator.apache.org/s4/
https://iterativemapreduce.org/
http://dx.doi.org/10.1038/srep02522

390 C.-C. Chen et al.

Hong-Han Shuai received the B.S. degree from the Department of
Electrical Engineering, National Taiwan University (NTU), Taipei, Tai-
wan, R.O.C., in 2007, the M.S. degree in computer science from NTU
in 2009, and the Ph.D. degree in Graduate Institute of Communication
Engineering in 2015. He is now an assistant professor in NCTU. His
research interests are in the area of social network analysis, data min-
ing, and video processing.

Ming-Syan Chen received the Ph.D. degrees in Computer, Informa-
tion and Control Engineering from The University of Michigan, Ann
Arbor, MI, USA. He is now the Dean of the College of Electrical
Engineering and Computer Science and also a Distinguished Professor
in EE Department at National Taiwan University. He was a research
staff member at IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, USA from 1988 to 1996, the Director of GICE from 2003
to 2006, the President/CEO of Institute for Information Industry (III),
which is one of the largest organizations for information technology in
Taiwan, from 2007 to 2008, and also a Distinguished Research Fellow
and the Director of Research Center of Information Technology Inno-
vation (CITI) in the Academia Sinica from 2008 to 2015. His research
interests include databases, data mining, social networks, and multi-
media networking, and he has published more than 350 papers in his
research areas. Dr. Chen is a Fellow of ACM and a Fellow of IEEE.

123

	Distributed and scalable sequential pattern mining through stream processing
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Sequential pattern mining
	2.2 Related works
	2.3 Highlights on MapReduce models
	2.3.1 MapReduce model
	2.3.2 Iterative MapReduce model
	2.3.3 Streaming MapReduce model

	3 Review on SPAM and SPAMC
	3.1 SPAM
	3.2 SPAMC
	3.2.1 Scanning phase of SPAMC
	3.2.2 Mining phase of SPAMC

	4 SPAMC-UDLT algorithm
	4.1 Scanning phase of SPAMC-UDLT
	4.2 Mining phase of SPAMC-UDLT
	4.3 Discussions

	5 Performance evaluation
	5.1 Datasets and system environment
	5.2 Comparison with existing methods on single machine
	5.3 Scalability
	5.4 Speedup of SPAMC-UDLT
	5.5 Real dataset
	5.6 Resource usage
	5.7 Sensitivity to parameters
	5.7.1 Effect of the number of machines
	5.7.2 Effect of the number of distinct items

	6 Conclusion
	References

