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Abstract Microarray datasets with missing values need to impute accurately before analyz-
ing diseases. The proposed method first discretizes the samples and temporarily assigns a
value in missing position of a gene by the mean value of all samples in the same class. The
frequencies of each gene value in both types of samples for all genes are calculated sepa-
rately and if the maximum frequency occurs for same expression value in both types, then
the whole gene is entered into a subset; otherwise, each portion of the gene of respective
sample type (i.e., normal or disease) is entered into two separate subsets. Thus, for each gene
expression value, maximum three different clusters of genes are formed. Each gene subset
is further partitioned into a stable number of clusters using proposed splitting and merging
clustering algorithm that overcomes the weakness of Euclidian distance metric used in high-
dimensional space. Finally, similarity between a gene with missing values and centroids of
the clusters are measured and the missing values are estimated by corresponding expression
values of a centroid having maximum similarity. The method is compared with various sta-
tistical, cluster-based and regression-based methods with respect to statistical and biological
metrics using microarray datasets to measure its effectiveness.
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1 Introduction

DNAmicroarray techniques give an overall outlook of gene expression, observing themRNA
levels of thousands or more number of genes. Microarray dataset [7,15] is basically a large
matrix of expression levels of observations or genes under different experimental conditions
or samples. The datasets generally contain missing values in time of preparation, such as
dust or spotting or scratches on the slide, insufficient resolution, hybridization failures and
image corruption [25]. But a good number of algorithms for gene dataset analysis take
a complete dataset as input. Therefore, more accurate prediction of missing values is an
important preprocessing step to form complete dataset and perform further experiments.
Approximately 5% or more cell values of the matrix can often be missing unless extreme
care is taken by the organization [36,44].

1.1 Literature review

The researchers propose several methods [8,24,48,49] to deal with missing values. The
expensive and more time-consuming method presents in [5], where the original experiment
is repeated until dataset without missing values is obtained. On the other hand, the method in
[1] ignores missing value-related genes, which usually loses useful information and may bias
the result if the remaining genes not capable to present the complete dataset. Some methods
[1,38] impute themissing values by a constant such as zero (0), or by themean of the available
sample values, which distort correlations among expression values. Another method [17]
considers the relationships among gene expression values. It first measures the similarity
between a gene with missing value and genes without missing values before predicting the
missing values of the gene by observed values of themost similar genes. In the papers [19,41],
a missing value estimation method called singular value decomposition imputation (SVD-
impute) is reported where missing values are estimated by identifying the K most significant
Eigen genes. The paper [41] proposes a method called weighted KNN-impute that constructs
the missing values using a weighted average of K most similar genes. Estimation ability
of the method [41] is more robust than others, such as imputation by zero, row average or
SVD-impute. In [30], a KNN-based missing data estimation algorithm is proposed based
on the temporal and spatial correlation of sensor data. The methods discuss in [30,41] have
better performance than prior method, but drawback is that their estimation ability depends
on parameter K (i.e., number of neighbor genes used to impute missing value) for which
no theoretical way exists to determine them appropriately and thus needs to be specified by
the user. In the paper [34], the missing values are estimated using fuzzy c-means clustering
algorithm and semantic similarity among gene expression data, but the method requires gene
oncology structure among several genes, which depend on biological knowledge, whereas,
in the paper [4,25,46,47], cluster-based algorithms have been proposed to deal with missing
values which do not need such parameters but microarray dataset is very high dimensional
and there exist large number of genes with large number of samples which may degrade the
clustering performance. Also performance of these methods depends on number of clusters
whose selection becomes very crucial. In the paper [37], the missing values are estimated
to preprocess the datasets using fuzzy c-means clustering-based expectation maximization
(EM) method.

The KNN-impute [41] method depends on the intuitive assumption that the genes closed
to each other are potentially similar. The measurement considers both distance computation
between genes and the number of nearest neighbors (K ). As the missing gene may contain
variant number of missing values, so the genes without missing values may have different
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lengths and their distances are inaccurate. The paper [21] proposes a sequential KNN impu-
tation method (SKNN-impute) where missing values are estimated sequentially starting with
a gene having the smallest missing rate. It uses the genes without any missing values for
estimating the missing values of the genes. The SKNN-impute method iteratively estimates
the missing values of the genes based on the ascending order of their missing rates. The paper
[3] proposes an iterative KNN imputation method (IKNN-impute) which first replaces all
missing values of a gene by the row average of all values in it. Then an iterative process is per-
formed to obtain all missing values same as SKNN-impute method. The paper [31] proposes
a similarity-based missing value estimation technique (PCM-impute), but it considers only
single similar gene for estimating missing value. The improved version [32] (HCS-impute)
of paper [32] is also a KNN-based algorithm that selects eight neighbors of a gene, but the
demerit of the method is that it needs the value of K in advance.

The Bayesian principal component analysis (BPCA) [28] method estimates the missing
values by linear combination of certain principal axis vectors, where the parameters are
identified by Bayesian estimation method. On the other hand, local least squares (LLS)
[22], sequential local least square (SLLS) [46,47] and iterated local least square (ILLS) [6]
methods utilize multiple regression models to impute the missing values from KNN genes of
the missing value-related genes. Recently, bi-cluster-based estimation methods (BIC) [18]
such as bi-cluster-based least square (bi-iLS) [8] and bi-cluster-based BPCA (bi-BPCA) [27]
aim to estimate missing values with some integrated approaches and give acceptable results.
Another method [16] estimates missing values with high accuracy using triple imputation
strategies (TRIIM) based on BPCA, LLS and EM concepts.

1.2 Contribution and comparison

In the paper, a novel ‘Missing Value Estimation Technique through Cluster Analysis’
(MVETCA) has been proposed on microarray dataset for imputing missing values that not
only overcomes the constraints of the existing methods but also gives significantly better sta-
tistical measures like less normalized root mean square error (NRMSE) [39], high conserved
pairs proportion (CPP) [11] and high biomarker list concordance index (BLCI) [29].

The proposed method of missing value estimation consists of the following steps:

i. The dataset is discretized to Z-score using transitional state discrimination (TSD)method
[43], and the genes are characterizedby N discrete sample values. The samples are divided
into two disjoint classes, because they are collected from both normal and tumor patients.
So, the frequencies of sample values are calculated separately in each class for each gene.

ii. The whole gene set is partitioned into two clusters; one contains all genes without any
missing values termed as ‘NOMISS’ and the other contains all genes with missing values
termed as ‘MISS.’ Then missing values of genes inMISS is filled up using the mean gene
value for all samples belonging to the same class, either normal or disease class. And
finally, all genes in MISS are also replicated in NOMISS. Thus, all missing values are
temporarily estimated.

iii. Based on the frequencies of discrete sample values, the gene set NOMISS is partitioned
into maximum 3N gene subsets, explained in Sect. 2.2. Now, N out of 3N clusters
contains whole part (i.e., normal and cancerous samples) of the genes while each N of
remaining 2N clusters contains only one part (i.e., either normal or cancerous samples)
of the genes.

iv. Each gene in gene set MISS is associated with one of the N subsets containing whole
portion, or each of its two portions (i.e., normal and cancerous) is associated with one
of the 2N respective subsets containing only one portion. The association of gene is
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Fig. 1 The overall work flow of proposed missing value estimation method

determined by measuring the similarity of the gene expression values with the gene
subsets, explained in Sect. 2.3.1.

v. Now the 3N gene subsets are partitioned into optimal number of clusters (optimality is
determined through validation indices) using similarity-based clustering algorithmwhere
similarity factors are measured between centroid of each partition and associated portion
of the missing value-related gene. The missing values of the associated portion of the
gene are imputed by the respective values of the centroid with most similar partition.
Thus, missing values of each gene are imputed by repeating steps (iv) and (v).

The pictorial representation of the proposed method is shown in Fig. 1.
TheHCS-imputemethod [32] uses eight similar genes, andSKNN-impute [21] and IKNN-

impute [3] use twenty or less similar genes to estimate missing values, but the proposed
methodMVETCA has no such limitation. In KNN-impute [41], PCM-impute [31] and HCS-
impute [32], the missing values are estimated only with the help of NOMISS genes. In
SKNN-impute [21], sequentially the missing values are estimated according to the non-
decreasing order of count of missing values of MISS genes and NOMISS dataset is updated
after estimating the missing values one by one. But IKNN-impute [3], bi-BPCA [27], TRIIM
[16] and proposed method use full dataset to estimate missing values. In IKNN-impute [3],
row-average method considering all sample values of a gene is used to temporarily estimate
the missing values of MISS and update the NOMISS set accordingly. Similarly, bi-BPCA
[27] uses BPCA and TRIIM [16] uses BPCA, LLS and EM method to temporarily estimate
the missing values of MISS and update the NOMISS set accordingly. But MVETCA uses
cancerous or normal sample values,which ismore logicalwith respect to expression values for
a particular class. TheMVETCA uses Hamming distance-based similarity function, whereas
other methods use Euclidian distance metric for similarity measurement of genes, which is
not so effective especially in case of high-dimensional datasets. The proposed MVETCA
method is compared with some other imputation methods with the help of some statistical
measures like NRMSE [39], CPP [11] and BLCI [29] considering six publicly available
microarray datasets.

The paper is organized into four sections. Section 2 describes the proposed missing value
estimation technique through cluster analysis. The experimental results and performances
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of the proposed method are evaluated for various benchmark microarray datasets in Sect. 3.
Finally, the work is concluded in Sect. 4.

2 Missing value estimation

The efficientmicroarray technology [12] evaluates the gene expressions simultaneously under
different experimental conditions. Generally, microarray dataset contains missing values for
which almost (5–50%) genes are affected. Missing value is a crucial problem needs to handle
before analysis of the microarray data in order to acquire important knowledge. Therefore,
missing value imputation is a necessary preprocessing step to estimate proper expression
values.

2.1 Gene expression discretization

Initially, dataset DS = (U,C) has some missing values which are temporarily estimated by
the mean gene value for all samples belong to the same class (either normal or disease), of
a gene, where U the universe of discourse contains g genes and C the condition attribute set
contains s samples. The gene subset with missing values is referred as MISS, and the initial
estimated whole gene set is termed as NOMISS. The transitional state discrimination (TSD)
method [43] is used to discretizeMISS and NOMISS. The discretization factor fi j , based on
which the dataset is discretized, is computed for sample C j ∈ C of gene gi ∈ U , using Eq.
(1), for i = 1, 2,…,g and j = 1, 2, …, s.

fi j = Mi
[
C j

] − μi

δi
(1)

where μi and δi are the mean and standard deviation of gene gi , respectively, and Mi [C j ] is
the sample value C j in gene gi . Then, mean (Ni ) of negative sample values and mean (Pi )
of positive sample values of each gene gi are calculated and discretized to one of N (here,
N = 5) fuzzy linguistic terms using Eq. (2).

fi j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

′V L ′ |i f fi j ≤ Ni′L ′ |i f Ni < fi j < 0
′Z ′ |i f fi j = 0
′H ′ |i f 0 < fi j < Pi′V H ′ |i f fi j ≥ Pi

(2)

2.2 Structure of correlated gene subsets

Based on the frequencies of discrete sample values, the genes of NOMISS are partitioned
into 3N different groups. N out of 3N groups contains whole (i.e., normal and cancerous
samples) of the genes while each N of remaining 2N groups contains only one portion (i.e.,
either normal or cancerous samples) of the genes.

Either a gene of MISS is associated with one of the N groups containing whole gene
or each of its two portions (i.e., normal and cancerous) is associated with one of the 2N
respective groups containing only one portion.

Let the samples of the dataset are collected together from s1 normal and s2 cancerous
patients and so each gene contains s1 normal and s2 cancerous samples. Let each gene
gi ∈ NOMI SS is represented as gi = {gni1, gni2, , . . . gnis1 , gci1, gci2, . . . , gcis2} where gni j for

123



714 S. K. Pati, A. K. Das

j = 1, 2, . . ., s1 are normal samples and gcik for k = 1, 2, . . ., s2 are cancerous samples. Fre-
quencies of discrete expression values for samples {gni1, gni2, . . ., gnis1} and {gci1, gci2, . . ., gcis2}
of gene gi are computed as

{
f niV L , f niL , f niZ , f niH , f niV H

}
and

{
f ciV L , f ciL , f ciZ , f ciH , f ciV H

}
,

respectively, where f niV L is the frequency of expression value ‘VL’ in normal samples of
gene gi , similar meaning of other terms. Let f nimax = max

{
f niV L , f niL , f niZ , f niH , f niV H

}
and

f cimax = max
{
f ciV L , f ciL , f ciZ , f ciH , f ciV H

}
. The gene subsets are formed as follows:

If f nimax and f cimax are computed from:
(i) Same discrete expression value say ‘VL’ then the gene gi = {gni1, gni2, . . ., gnis1 , gci1, gci2,

. . ., gcis2} is placed in subset GENE_WHOLEVL (abbreviated as GWVL, subsequently used
throughout the paper). Similarly, considering other discrete values, total of five subsets
GWVL,GWL, GWZ, GWH and GWVH are formed. Each of these five subsets contains genes
of NOMISS, where maximum frequency of discrete value occurs for same discrete value in
both normal and cancerous samples.

(ii) Different discrete expression value say f nimax occurs for ‘VL’ and f cimax occurs for ‘VH.’
In this case, the normal part {gni1, gni2, . . . , gnid1} of gi is placed in subset GENE_NORMALVL

(abbreviated as GNVL), and same treatment takes place for other discrete values. And can-
cerous part {gci1, gci2, . . . , gcid2} of gi is placed in subset GENE_CANCERVH (abbreviated as
GCVH), same situation occurs for other discrete values. Thus, gene subsetsGNVL,GNL,GNZ,
GNH and GNVH are formed, each of which contains normal samples of genes whose maxi-
mum frequency discrete value differs from that of cancerous samples. Similarly, gene subsets
containing only cancerous samples are formed which are GCVL,GCL,GCZ, GCH and GCVH.

Thus, fifteen subsets are formed for the genes of NOMISS. These subsets are created
according to the gene expression values of the dataset, and each subset contains similar
nature of expression values.

2.3 Gene clustering and analysis

The ideal input for a clustering algorithm is a dataset without any noise. When the exper-
imental data deviates from this property, it poses different problems for different types of
clustering algorithms. Missing values in the dataset used during cluster analysis are a very
crucial problem handled carefully for high-dimensional data.

2.3.1 Gene subset selection

The set NOMISS is partitioned into fifteen subsets without missing values, and each subset
contains geneswith similar nature according to their expression values. On the other hand, the
set MISS contains genes with missing values need to be estimated prior to gene data analysis.

Each gene g j ∈ MI SS is denoted by g j =
{
gnj1, g

n
j2, . . . , g

n
js1

, gcj1, g
c
j2, . . . , g

c
js2

}
, where

some missing normal and cancerous samples gnjk and gcjl , for k = 1, 2, . . ., s1 and l =
1, 2, . . ., s2 need to be estimated. The method computes the frequency of discrete expression
values in both normal and cancerous samples of gene g j ∈ MI SS. If maximum frequency
occurs in both types of samples for sameexpressionvalue, say ‘VH’, then g j is related to subset
GWVH. But if maximum frequency occurs for different expression values, say ‘VL’ and ‘VH’
for normal class and cancerous class, respectively, then normal samples {gnj1, gnj2, . . . , gnjs1}
of g j is associated with GNVL and cancerous samples {gcj1, gcj2, . . . , gcjs2} of gene g j is
associated with GCVH. Thus each gene g j ∈ MI SS is either

(i) Linked with any one subset of the set GW = {GWVL,GWL,GWZ,GWH,GWVH} or
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(ii) Normal portion of it is linked with any one of GN = {GNVL,GNL,GNZ,GNH,GNVH}
and cancerous portionof it is associatedwith anyoneofGC = {GCVL,GCL,GCZ,GCH,

GCVH}.

2.3.2 Clustering of gene subset by splitting and merging

Themost common distancemetric used for distancemeasure is Euclidean distance. Though it
is very useful in lowdimensions, it does notworkwell in high-dimensional cancer dataset. It is
observed that Euclidean distance does not capture the similarity of high-dimensional objects.
Rather, bitwise similarity measurement, i.e., Hamming distance is more powerful for missing
value estimation of genes. Here, gene subset associated with missing gene g j ∈ MI SS is
partitioned using similarity-based proposed clustering algorithm which provides set of K -
clusters. If g j is associated with a subset of the set GW, then only that subset of genes is
clustered to impute the missing values of g j . And if missing values of g j arise both in normal
portion and cancerous portion, the corresponding subsets of both the set GN and GC are
clustered; otherwise, clustering algorithm is applied only on the corresponding subset of
either GN or GC.

The gene subset is grouped into significant clusters capture the normal structure of the data
to find genes with related functionality. Cluster analysis has been applied in different fields,
like information science to social sciences [23] and biological science [33]. The relationships
of genes are established from available information using clustering algorithms [13,35,40].
The aimof clustering algorithms is to collect the similar nature genes in a cluster anddissimilar
genes in different clusters according to their expression values. The validity indices [2,14]
proposed by the researchers measure the goodness of clusters by checking entropies of
the partition, membership distributions, clusters separation and compactness. The proposed
method introduces merging and splitting procedure [9] on initial set of clusters, validates
newly generated clusters using cluster validation indices and finally produces optimal set of
clusters used to impute the missing values of the genes. Some notations and terms used in
the algorithm are described below.

A. Notation and Definition
For convenience, following notations are used in proposed clustering algorithm:

Ci: It is the ith cluster, where i = 1, 2, …, k.
xk: It is the kth object of any cluster.
ni: Number of objects of ith cluster.
S (xk,Ci): It is the similarity function which computes bitwise matching of discrete
sample values of ith cluster center to the kth object xk of ith cluster.
S(Ci,Cj): It is the similarity function which computes bitwise matching of the ith cluster
center with jth cluster center.

Few terminologies are defined below for understanding the proposed clustering algorithm:

Definition 1 (Combine Center) Combine centerCCcombi j of two clustersCi andCj (i, j =
1, 2, . . ., k and i �= j) is the weighted mean of centers of two clusters Ci and Cj, computed
using Eq. (3) and is considered as the center of combined cluster Cij, where Ci and C j are
the mean of Ci and Cj, respectively.

CCcombi j =
(
ni × Ci

) + (
n j × C j

)

ni + n j
(3)
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Definition 2 (Similarity Factor) Similarity factor between two clusters Ci and Cj (i, j =
1, 2, . . ., k and i �= j) is denoted by CSFi j and is defined by Eq. (4).

CSFi j =
∑

xk∈Ci
S

(
xk,CCcombi j

) + ∑
xk∈C j

S
(
xk,CCcombi j

)

ni + n j
+ S(Ci ,C j ) (4)

Definition 3 (Merging factor) Let C1,C2, . . . ,Ck be the k clusters. The merging factor MF
is the cluster validation index for k clusters computed using Eq. (5) that is used to evaluate
the clusters to obtain optimal set of clusters.

MF =
∑k

i=1
∑

x j∈Ci
S

(
x j ,Ci

)

∑k
i=1

(
min

1≤ j≤k,i �= j
S(Ci ,C j )

) (5)

Definition 4 (Splitting Factor) It is the ratio of intra-cluster similarity to the minimum inter-
cluster similarity of ith cluster to all other clusters. The Split Factor SFi is calculated using
Eq. (6) for each individual cluster.

SFi =
∑

xk∈Ci
S (xk,Ci )

min
1≤ j≤k,i �= j

S(Ci ,C j )
(6)

Definition 5 (Mean of Split Factor) It is an average split factor of all clusters used as a
threshold value (γ ), calculated using Eq. (7) to split a cluster.

γ = 1

k

k∑

i=1

SFi (7)

B. Merging of Clusters

Let there are n genes in a subset which need to be clustered. Initially, each gene is considered
as a separate singleton cluster, and thus, n clusters C1, C2, …, Cn are formed. For any two
clusters Ci and C j (i , j = 1, 2, . . ., n and i �= j) similarity factor CSFi j is computed using
Eq. (4) with the implication that, if the similarity of the combine cluster (Cij) is high and at
the same time the similarity of the two respective cluster centers is high, then the similarity
factor (CSFi j ) between the cluster is high and the clusters are much similar to each other
according to the nature of objects of clusters. This implies that higher the similarity factor
between the pair, more similar the clusters are. In Eq. (4), the weighted mean (CCcombi j )
representing the center of combined cluster (Ci j ) is computed using Eq. (3) and original gene
expression values of Ci and C j are used, not the discrete values.

Thus, a similarity matrix S = (CSFi j )n×n is created using Eq. (4) which is a symmetric
matrix with empty diagonal entries, as the similarity of a cluster with itself is not required.
All the n(n−1)

2 similarity factors reside above the leading diagonal of S stored the information
based on which clusters are merged. In every iteration, only the cluster pair with maximum
similarity are merged and reducing the number of clusters by one.

Initially, themerging factor (MF) is computed usingEq. (5) and it is usedwhile themerging
process is over to measure the better clustering phenomenon that finally helps to form the
stable set of clusters. In Eq. (5), if the numerator value is high (i.e., the points of each cluster
are much more similar) and denominator is low (i.e., the cluster centers are more dissimilar),
then the cluster qualities are good enough. High value of MF corresponds to clusters that
are formed with more similar nature points and centers are more dissimilar with each other.
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So the larger the MF value better is the clustering. The merging procedure continues if MF
value increases; otherwise, splitting procedure resumes, explained in Sect. 2.3.2C.

Let C1,C2, . . . ,Cn be the n number of clusters. After first merging, (n − 1) clusters
are obtained whose MF value MFn−1 is computed using Eq. (5). The process terminates if
MFn−1 is larger than MFn by a threshold value (set experimentally) and the system is rolled
back to the previous state to preserve the previous set of n clusters; otherwise, same process
is repeated with (n − 1) clusters.

The algorithm of merging process is given in detail below:

Algorithm: Merging_Clusters (Clus, n)
Input: Clus = {C1, C2, …, Cn} of n clusters for n genes. 
Output: The set of modified clusters in Clus.
Begin

MFold = MF value of Clus using Eq. (5) 

For i = 1 to n do

For j = i+1 to n do

CSFij = Similarity factor between Ci and Cj in Clus using Eq. (4)

End
End
max = S12 /*compute maximum similarity factor*/

For i = 1 to n do

For j = i+1 to n do

If (CSFij > max) then

max = SFij

p = i

q = j

End
End

End
Cpq = Cp ∪ Cq

Clus = Clus ∪ {Cpq} – {Cp} – {Cq} 

MFnew = MF value of Clus using Eq. (5) 

If ((MFnew > MFold) | | ((|MFnew - MFold|) < δ )))  then /* δ > 0, a small threshold value*/

n = n – 1

Merging_Clusters (Clus, n - 1)

End
Else Clus = Clus ∪ {Cq}  ∪ {Cp} – {Cpq} /*roll back to obtain previous clusters*/

Return Clus
End.

C. Splitting of clusters

There is some possibility that the objects are situated in dissimilar manner within the clusters.
Such clusters are known as dissimilar clusters which need to be split into two or more
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clusters. In splitting process, the intra-cluster (within cluster) similarities are measured for
each individual cluster. The measurement is performed with the comparison between cluster
center and objects of corresponding cluster. Also inter-cluster (between clusters) similarity
between each pair of clusters is measured comparing respective cluster centers. Now the split
factor is calculated using Eq. (6) for each individual cluster. In Eq. (6), if numerator value
is large and denominator value is small, then the split factor is high which implies that the
cluster is compact with respect to its objects and other cluster centers; otherwise, the cluster
is scattered. Now a threshold value (γ ) is calculated using Eq. (7) to measure the scattering
of each individual cluster.

If split factor of any cluster is less than the γ value, then the corresponding cluster is split
into three clusters considering centroid of the cluster and two most dissimilar objects within
the cluster as their centers. The other objects of the cluster are placed in one of the three
newly formed clusters to which they are more similar. The algorithm of splitting process is
described in detail below:

Algorithm: Splitting_Clusters (Clus, n)

Input: Clus = {C1, C2,… ,Cn} of n clusters obtained after merging.

Output: Set of clusters in Clus.

Begin

For i = 1 to n do

Calculate SFi using Eq. (6)

End

Calculate value using Eq. (7)

/* if split factor of cluster Ci is less than threshold γ, it splits into three clusters Cl1, Cl2 and Cl3 */ 

For i = 1 to n do

If (SFi < γ ) then

Let, μi is the center of cluster Ci.

Let, Xp and Xq are the most dissimilar objects of Ci based on bit wise matching.    

Cl1 = {μi}

Cl2 = {Xp}

Cl3 = {Xq}

For j = 1 to |Ci| do

If (Xj is the most similar with μi) then

Cl1 = Cl1 ∪ {Xj}

Else if (Xj is the most similar with Xp) then

Cl2 = Cl2 ∪ {Xj}

Else Cl3 = Cl3 ∪ {Xj}

End

CLUS = CLUS – {Ci}∪ {Cl1}∪ {Cl2}∪ {Cl3}

End

End

End.
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After splitting procedure, suppose n number of clusters is formed. The proposed method
computes some cluster validity indices, such as (i) DB-index, (ii) Dunn-index, (iii) H-index
and (iv) SC-index using Eqs. (8), (9), (12) and (13), respectively, of the obtained clusters. If
two or more validity indices dominate the previous index values, then merging and splitting
procedures are continued; otherwise, current k clusters are considered as stable clusters. The
above-mentioned validity indices and their values for cluster validation are described below:

(i) DB-index: The Davies–Bouldin (DB) [10] index is defined in Eq. (8).

DB = 1

k

k∑

i=1

max
1≤i≤k and i �= j

{
σi + σ j

dS
(
Ci ,C j

)

}

(8)

where k is the number of clusters, σi is the average dissimilarity of all patterns in cluster
i to their cluster center Ci , σ j is the average dissimilarity of all patterns in cluster j to
their cluster centerC j , and dS

(
Ci ,C j

)
is the dissimilarity of cluster centersCi andC j .

Small values of DB correspond to clusters that are compact, and whose centers are less
similar from each other. The minimum of the DB-index determines the actual number
of clusters.

(ii) Dunn’s index: The Dunn’s index (DN) [26] is defined in Eq. (9).

DN = min
1≤i≤k

⎧
⎨

⎩
min

i+1≤ j≤k

⎧
⎨

⎩
δ
(
Ci ,C j

)

max
1≤l≤n

∂ (Cl)

⎫
⎬

⎭

⎫
⎬

⎭
(9)

where δ
(
Ci ,C j

)=max
{
dS

(
Ci ,C j

) |xi ∈Ci , x j ∈ C j
}
and ∂ (Cl) = min

{
dS

(
Ci ,C j

)

|xi , x j ∈ Ci
}
. The S

(
Ci ,C j

)
is the dissimilarity of two points of Ci and C j . The max-

imum of the DN-index determines the actual number of clusters.
(iii) H-index: The similarity within cluster (SSW) and similarity between clusters (SSB)

are defined using Eqs. (10) and (11), respectively.

SSW = 1

n

k∑

i=1

∑

j∈ci
S

(
x j ,C j

)
(10)

where k is the total number of clusters, C j is the respective cluster centers and n is the
total number of objects.

SSB = 1

n

k∑

i=1

ni S
(
Ci , X̄

)
(11)

The Hartigan (H) [50] index is defined by Eq. (12).

H = −log

(
SSW

SSB

)
(12)

The minimum value of the H-index is determined as the desire number of clusters.
(iv) SC-index: The Silhouette Coefficient (SC) [45] is defined by Eq. (13).

SC = 1

k

k∑

i=1

(bi − ai )

max (ai , bi )
(13)
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where ai is the average dissimilarity of ith objects with all other objects within the same
cluster. bi is the lowest average dissimilarity of ith object to any other cluster. The maximum
of the SC-index is determined as the desire number of clusters.

The overall flow diagram of cluster validation method is shown in Fig. 2:

2.4 Similarity measurement

As each gene in the dataset is of s-tuple (i.e., samples), so the centroids of k clus-
ters are also of s = (s1 + s2)-tuples. Let the centroids of cluster t are CENTREt =
{Cn

t1,C
n
t2, . . .,C

n
ts1 ,C

c
t1,C

c
t2, . . .,C

c
ts2}, for t = 1, 2, . . ., k, where Cn

t j is the centroid of
jth normal samples in cluster t , for j = 1, 2, . . ., s1 and Cc

t j is the centroid of jth cancerous
samples of cluster t, for j = 1, 2, . . ., s2. Now the similarity S jt of gene g j ∈ MI SS with
cluster t is the number of samples matching the values to that of centroid of t . The procedure
to measure the similarity of a gene with a cluster is described below:

Procedure: Similarity_Gene_Cluster (gene gj, cluster t)

Input: and t-th cluster center among k clusters of the subset associated with .

Output: Similarity between gene and cluster t.

Begin

/* gene and centroid of 

Cluster t is */

Sjt =0; //similarity between gene gj and cluster t

For i = 1 to s1 do

If ( = ) then

Sjt = Sjt + 1;

End

For i = 1 to s2 do

If ( = ) then

Sjt = Sjt +1;

End

Return (Sjt);

End.

Thus, similarity of g j with all k clusters is obtained and if S j P is maximum for 1 ≤
P ≤ k, then the missing gnjq will be predicted by Cn

pq , 1 ≤ q ≤ s1 and missing gcjrwill be
estimated by Cc

pr , 1 ≤ r ≤ s2. Thus, the missing values are estimated for each gene g j . The
overall algorithm for missing value estimation through cluster analysis (MVETCA) is given
below:
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No

Yes

Merging Procedure
Then Roll-back the previous 
best validity indices related step 
and save the cluster number n

Splitting procedure

Calculate DB-index, Dunn-
index, H-index and SC-index

Majority validity 
indices dominate 
previous values?

Start

Fig. 2 Overall flow diagram of cluster validation method

Algorithm: MVETCA (MISS, NOMISS)

Input: MISS = Set of genes with missing values; NOMISS = Set of genes without missing values

Output: Complete dataset with estimated missing values

Begin

The NOMISS is discretized with N number of the discrete values, using Eq. (1) and Eq. (2)

For each gene in NOMISS do 

Compute F1 = Frequency of discrete value which is the maximum in normal samples

Compute F2 = Frequency of discrete value which is the maximum in cancerous samples

If (f1 and f2 occurs for same discrete value) then

Put whole gene into one of N gene subsets associated with respective discrete value. 

Else, put normal and cancerous part of gene separately into two subsets of 2N gene subsets 

End

Perform proposed clustering algorithm to find optimal number of clusters for each of 3N gene subsets

For each gene g in MISS do 

Determine its associated set among 3N gene subsets

Select cluster center to which gene g has maximum similarity

Impute missing value of the sample in g by corresponding sample value of the selected center. 

End

End.

3 Experimental results and performance evaluation

Experimental studies presented provide an evidence of effectiveness of the proposed
MVETCA method on gene expression datasets. Experiments are carried out on different
kinds of microarray datasets [20]. Each dataset contains two or more types of samples, nor-
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Table 1 Summary of gene expression dataset

Dataset #Genes Class name #Samples (class1/class2)

Leukemia1 7129 ALL/AML 38 (27/11)

Lung cancer 12533 MPM/ADCA 32 (16/16)

Prostate cancer 12600 Tumor/normal 102 (52/50)

Breast cancer 24481 Relapse/non-relapse 78 (34/44)

DLBCL data 6817 DLBCL/FL 77 (58/19)

Colon cancer 2000 Negative/positive 62 (40/22)

Leukemia2 12582 ALL/MLL/AML 57 (20/17/20)

mal and cancerous. The numbers of genes, classes and samples contained in the various
datasets are listed in Table 1.

3.1 Efficiency of cluster analysis

To impute missing values, first the correlated gene subsets are identified, then the clustering
algorithm is applied on appropriate gene subset and finally the missing values are estimated.
To prove the efficiency of clustering algorithm, the algorithm applied on subsets of each
dataset, optimal number of clusters are obtained and comparison is made with well-known
K-means [35,40] and Fuzzy C-means [13,35] clustering techniques with same number of
clusters by some validity indices [10,26,45,50].

3.1.1 Comparative study

In the proposed method, initially all points are treated as individual clusters and after suc-
cessive iteration of merging and subsequent splitting process, discussed in Sect. 3, optimal
number of clusters is obtained. Considering same number of clusters obtained by the pro-
posed method, K-means [35,40] and Fuzzy C-means [13,35] algorithm are applied on the
same subsets and a comparison is made on six mentioned gene datasets (for some initial
clusters) as listed in Tables 2, 3, 4, 5, 6, 7 and 8. The results show that DB, DN, SC and
H indices produced by the proposed method are better than that produced by other methods
in most of the cases (show in bolt and shaded font), which confirms the potentiality and
superiority of the proposed method.

3.1.2 Optimal cluster selection

The proposed method modifies the clusters iteratively, and finally, based on the validity
indices optimal number of clusters is obtained. To demonstrate how the work finds the
optimal number of clusters, one group of data (such as GWZ) for each dataset is selected
and graph is plotted against ‘Cluster number’ and ‘validity indices.’ The following figures
(Figs. 3, 4, 5, 6, 7, 8, 9) show the validity indices for different number of clusters. In figures,
we have considered one group from each dataset and the validity indices are computed for
different number of clusters obtained iteratively by our proposed clustering algorithm. It is
noted that initially there are large number of clusters, which gradually become stable by
splitting and merging procedures.
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Fig. 3 Optimal no. of cluster for GWZ set of Leukemia1 dataset

Fig. 4 Optimal no. of cluster for GCL set of Lung cancer dataset

Fig. 5 Optimal no. of cluster for GWZ set Prostate cancer dataset

In all diagrams (Figs. 3, 4, 5, 6, 7, 8, 9), it is observed that DB and H value decreases
and DN and SC value increases up to a certain number of clusters. According to proposed
clustering algorithm, in any iteration if two or more validity indices dominate their previous
values, then procedure is continued, and otherwise, the clusters used in this iteration are
considered as the optimal clusters. For example, in case of GWZ set of Leukemia1 dataset,
DN-index, H-index and SC-index dominate their previous values (as shown in Fig. 3) in the
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Fig. 6 Optimal no. of cluster for GWZ set of Breast cancer dataset

Fig. 7 Optimal no. of cluster GWZ set for DLBCL dataset

Fig. 8 Optimal no. of cluster for GWL set of Colon cancer dataset

iteration with 35 clusters, and so the process is continued. Finally the process terminates with
six clusters when DN-index, H-index and SC-index dominate their previous values. Similar
analysis is made for other datasets using Figs. 4, 5, 6, 7, 8, 9 to visualize optimal number of
clusters obtained by the algorithm, as given in Tables 2, 3, 4, 5, 6, 7 and 8.
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Fig. 9 Optimal no. of cluster for GWL set of Leukemia2 dataset

3.2 Performance analysis

Experimental results presented here provide an evidence of effectiveness of the proposed
MVETCA algorithm on publicly available benchmark microarray datasets. The microarray
dataset is divided into two subsets and in one set randomly missing values are provided at any
random positions. Thus, two datasets NOMISS and MISS are formed from a given dataset.
Then the missing values of genes in MISS are imputed by the proposed method using the
genes in NOMISS.

In cluster-based methods, the number of nearest neighbors, K , must be selected. In KNN-
impute, SKNN-impute and IKNN-impute, value of K is set by a value in between 10 and 20
and the best value of K is obtained. Here, we have decided to perform multiple estimation
tests incorporating 5, 10, 15, 20, 25 and 30% missing values in the datasets.

3.2.1 Evaluation criteria

The performance of our missing values imputation algorithm is evaluated by three met-
rics such as ‘Normalized Root Mean Squared Error,’ ‘Conserved Pair Proportions’ and
‘Biomarker List Concordance Index.’

(a) Statistical index
We use the normalized root mean squared error (NRMSE) [39], a statistical index to evaluate
the performance of the proposed and existing missing values estimation techniques, defined
in Eq. (14). Lower the value of the NRMSE, better the method performs.

NRMSE = 1

std_dev (Xknown)

√
∑n

i=1

(
Xpredict − Xknown

)2

X
(14)

where Xknown is the original gene expression value and Xpredict is the estimated value obtained
by the proposed algorithm, std_dev (Xknown) is the standard deviation of original expression
values and X is the total number of missing values. The number X is set randomly as 5, 10,
15, 20, 25 and 30% of total genes, and NRMSE is computed in all methods.

(b) Clustering index
Conserved pairs proportion (CPP) [11] one of the most promising clustering indices is used
to evaluate the stability of the clusters against the missing values present in the genes. Here,
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Missing value estimation for microarray data through cluster analysis 733

the proposed ‘splitting and merging’ clustering algorithm is applied on the original dataset
and the obtained clusters are say, OC = {CO1,CO2, . . .,COk}. Also, the same clustering
algorithm is applied on dataset with generating and estimating the missing values and let the
obtained clusters are, EC = {CE1,CE2, . . .,CEl}. The CPP index computed using Eq. (15)
is used to compute the percentage of genes obtained associated with the clusters in OC and
EC.

CPP =
∑K

i=1

(
max
1≤ j≤l

(∑
x∈COi

∑
y∈CE j

δxy

))

n
(15)

where n is the total number of genes, δxy = 1, if the genes x and y are identical and 0
otherwise. Higher the value of the CPP index, better the method performs.

(c) Differentially expressed genes index
We have used the biologically meaningful metric presented in [42] to express the biological
impact of missing value imputation in gene datasets. Themethod [42] identifies differentially
expressed genes for the original dataset and the imputed dataset. Then the biomarker list
concordance index (BLCI) [29], defined in Eq. (16), is computed to evaluate the performance
of different imputing methods.

BLCI = n (DOD ∩ DID)

n (DOD)
+ n

(
DC
OD ∩ DC

ID

)

n
(
DC
OD

) − 1 (16)

where DOD and DID are the significantly differentially expressed genes in the original dataset
(OD) and the imputed dataset (ID). DC

OD and DC
ID are the complement set of the DOD and

DID, respectively, and n (∗) is the number of genes. A high BLCI value indicates that the list
of the significantly differentially expressed genes of the OD is similar to that of the ID and
the method is of high performance.

3.2.2 Comparative study

The performance ofMVETCA is comparedwith statisticalmethods (such as Zero-impute [1],
Row-average [38], SVD-impute [19] and BPCA-impute [28]), cluster-based methods (such
asKNN-impute [41], SKNN-impute [21], IKNN-impute [3] andHCS-impute [32], bi-BPCA-
impute [27]), and regression-basedmethods (LLS-impute [22], SLLS- impute [46,47], ILLS-
impute [6] and TRIIM [16]).

Fig. 10 NRMSE values for Leukemia1 dataset
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Fig. 11 NRMSE values for Lung cancer dataset

Fig. 12 NRMSE values for Prostate cancer dataset

Fig. 13 NRMSE values for Breast cancer dataset

(a) Statistical methods versus MVETCA
In Figs. 10, 11, 12, 13, 14, 15 and 16, the NRMSE values are plotted for various imputed
datasets obtained by the proposed method MVETCA and well-known statistical methods,
such as Zero-impute, Row-average, SVD and BPCA-impute.

From the figures (Figs. 10, 11, 12, 13, 14, 15, 16), it is observed thatMVETCAgives better
results (i.e., minimum NRMSE) compare to other methods, which confirms the potentiality
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Fig. 14 NRMSE values for DLBCL dataset

Fig. 15 NRMSE values for Colon cancer dataset

Fig. 16 NRMSE values for Leukemia2 dataset

and superiority of the proposed method. Also, two popular biologically significant metrics
such as CPP and BLCI are computed for all the considered datasets, as listed in Table 9. The
result shows that for different percentage of missing values imputation, the proposed method
always outperforms the others.
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Fig. 17 NRMSE values for Leukemia1 dataset

Fig. 18 NRMSE values for Lung cancer dataset

Fig. 19 NRMSE values for Prostate cancer dataset

(b) Cluster-based methods versus MVETCA
In Figs. 17, 18, 19, 20, 21, 22 and 23, the NRMSE values are plotted for various imputed
datasets obtained by the proposed method MVETCA and some cluster-based methods, such
as KNN-impute, SKNN-impute, IKNN-impute, HCS-impute and bi-BPCA.

From the figures (Figs. 17, 18, 19, 20, 21, 22, 23), it is observed thatMVETCAgives better
results (i.e., minimum NRMSE) compare to other methods in most of the cases, which con-
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Fig. 20 NRMSE values for Breast cancer dataset

Fig. 21 NRMSE values for DLBCL dataset

Fig. 22 NRMSE values for Colon cancer dataset

firms the potentiality and superiority of the proposed method. In some cases, like Leukemia1
dataset the IKNN method gives better result for 30% missing values and in Lung cancer
dataset the SKNN and IKNN methods give better result for 15% missing values, but for
rest of the cases the MVETCA gives the best results. The outstanding estimation ability of
MVETCA is due to the accurate grouping of correlated genes, clustering of genes in stable
and optimal way. Also, two popular biologically significant metrics such as CPP and BLCI
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Fig. 23 NRMSE values for Leukemia2 dataset

are computed for all the considered datasets, as listed in Table 10. The result shows that
for different percentage of missing values imputation, the proposed method outperforms the
others in most of the cases.

(c) Regression-based methods versus MVETCA
In Figs. 24, 25, 26, 27, 28, 29 and 30, the NRMSE values are plotted for various imputed
datasets obtained by the proposed method MVETCA and some regression-based methods,
such as LLS-impute, SLLS-impute, ILLS-impute and TRIIM.

From the figures (Figs. 24, 25, 26, 27, 28, 29, 30), it is observed that MVETCA gives
better results (i.e., minimum NRMSE) compare to other methods in most of the cases. Also,
two popular biologically significant metrics such as CPP and BLCI are computed for all the
considered datasets, as listed in Table 11.

Thus in general, the proposed method is evaluated estimating missing values by various
performance evaluation indices and the results obtained by the proposed method outperform
other statistical, cluster-based and regression-based methods, which shows the effectiveness
of the proposed method.

4 Conclusion

Missing values can bring lots of complications in microarray data analysis because most of
the existing methods are designed without any technique for handling them. But missing
value estimation is one of the most significant preprocessing steps to deal with the missing
values for further experiments. The existing cluster-based methods such as PCM, HCS,
KNN, SKNN, IKNN, bi-BPCA and TRIIM estimate more erroneous values compare to the
proposed MVETCA method. The PCM and HCS compute similarity between the missing
gene and all other NOMISS genes and in time of imputation PCM takes information from
only one gene, whereas HCS takes from eight neighbor genes. The KNN, SKNN and IKNN
use different K values and taking best results among them. In time of estimation, all genes
are not participated for all the above methods (except IKNN, bi-BPCA and TRIIM) and
traditional Euclidian distance metric is used for similarity measurement, which is inefficient
in case of high-dimensional datasets.
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Fig. 24 NRMSE values for Leukemia1 dataset

Fig. 25 NRMSE values for Lung cancer dataset

Fig. 26 NRMSE values for Prostate cancer dataset
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Fig. 27 NRMSE values for Breast cancer dataset

Fig. 28 NRMSE values for DLBCL dataset

Fig. 29 NRMSE values for Colon cancer dataset
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Fig. 30 NRMSE values for Leukemia2 dataset

In this circumstance, MVETCA method totally depends on gene expression values and
independent onnumber of genes and all genes are participated to estimating themissingvalues
and use bitwise similarity matching instead of the Euclidian distance metric. To measure the
correlation with respect to expression values between the normal and cancerous samples, the
dataset is split into small subsets, which help to estimate themissing values effectively. In this
paper, the gene dataset is initially divided into a group of correlated genes and then splitting
and merging-based clustering algorithm gives the stable and optimal clusters of gene and
finally the missing value of a gene is estimated by comparing it with the centroids of the final
clusters of genes. The performance of proposed method is analyzed using publicly available
microarray datasets, and the accuracy of the method is compared with some state of the art
methods measuring NRMSE, CPP and BLCI values, which shows the goodness of proposed
method. The proposed method is applicable for any dataset with two or more class labels for
imputing the missing values. So, though the method is not suitable for a time series dataset
of single class, it is equally applicable for multi-class time series microarray datasets.
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