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Abstract Learning middle-level image representations is very important for the computer
vision community, especially for scene classification tasks. Middle-level image representa-
tions currently available are not sparse enough to make training and testing times compatible
with the increasing number of classes that users want to recognize. In this work, we propose
a middle-level image representation based on the pattern that extremely shared among differ-
ent classes to reduce both training and test time. The proposed learning algorithm first finds
some class-specified patterns and then utilizes the lasso regularization to select the most
discriminative patterns shared among different classes. The experimental results on some
widely used scene classification benchmarks (15 Scenes, MIT-indoor 67, SUN 397) show
that the fewest patterns are necessary to achieve very remarkable performance with reduced
computation time.

Keywords Scene classification · Middle-level image representation · Extremely shared
patterns

1 Introduction

Scene classification is a very challenging task in computer vision with applications in robot
navigation, environment computing, Internet image classification, and so on. Typical solu-
tions usually ignore the relevant correlations among the classes, and diversity inside the same
class. For example, a scene image will contain more than one object that is always shared
among the different scenes, which makes them visually similar. At the same time, even in the
same scene, images are diverse and difficult to associate and recognize. Combined with the
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difficulties, (1) the ever increasing size and categories of the data, and (2) requirements of
many real time applications, all inspire us to dig a more compact and discriminative image
representation and apply it for the scene classification problem.

One of the most popular image representation methods is the Bag-of-Features (BoF) [6].
The BoF model usually uses the unsupervised k-means [11] to learn a set of “visual words”
as the codebook during training, then images can be represented by a histogram of these
“visual words”. But the BoF ignores some important information from the spatial layout
of images, which is significant for scene classification. To deal with this problem, spatial
pyramid matching (SPM) was introduced [19], and has greatly improved the performance
of scene classification. However the histogram-based way of representation may lose much
information of images, so some soft assignment methods have been proposed [25,47] to
further boost scene classification performance.

But the unsupervised methods mentioned above to learn image representations ignore the
information in image labels and have been proved not discriminative enough. To find the
more discriminative patterns, many researchers are trying some weakly supervised methods.
Like some part-based models [10,17,34,42,44] which find the objects (e.g., the human) or
components of objects (e.g., the face or body of the human) in images as parts.1 Each image
can be represented by these parts, and usually in each certain class, images are represented by
the parts confined in that class. These methods construct a collection of special parts for each
image class as the learned patterns, which greatly improve the performance of unsupervised
methods to classify scenes. Our method also makes a full use of the information in image
labels during the procedure of pattern initializing and learning, to find themost discriminative
ones that are shared with other classes.

Though many sophisticated methods have been proposed to learn the patterns for scene
classification, they still have some limitations. Firstly, many previous methods use some
handcrafted features like SIFT [28] and HOG [7] as local descriptors to represent patches
in images. Though having achieved some satisfactory results, the codes generated by these
methods are still very noisy to distinguish different patterns accurately. Recently, training a
deep convolutional neural network (CNN) on large and diverse datasets like ImageNet [8]
has achieved a breakthrough for image classification [18]. Meanwhile, training a deep CNN
model on the large scene dataset also performs well for scene classification [53]. But using
the deep CNN models trained on the ImageNet or scene dataset as the off-the-shelf feature
extractor has been confirmedmore feasible [9,14,31,37,41] than acting as classifier for scene
dataset directly. In this work, we also verify that the features generated by deep CNN can be
very efficient to represent and find the discriminative patterns.

Secondly, previous methods [10,17,34,42,44] require a large amount of patterns to con-
struct the middle-level image representation, which results in unnecessary time and space
costs in the procedure of learning patterns and representing images. For example, Singh
et al. [42] and Juneja et al. [17] needs 210 and 50 patterns per class respectively, and even the
most compact representation methodMMDL [50] still requires 11 patterns per class. So they
are unpractical for real applications because of the hardware and time demand. For instance,
when dataset is very large and diverse like SUN 397 [51], which has 397 scene categories
totally, their methods need tens even hundreds of patterns per class by estimation to represent
the images, which is too time and space costly in the following procedure of patterns learning
and image representation. Moreover, there is a trend for the increasingly large and complex
scene datasets to emerge, like the large dataset ImageNet with thousands of object categories
in total. So it is of great significance to propose a method to learn extremely shared middle-

1 The “words”, “parts” and “patterns” are interchangeable and this paper chooses “patterns” to represent them.
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Fig. 1 The “chair” is shared among different classes, and the label of the image is marked on the top left
corner

level image representations without the sacrifice of the discriminative ability, which needs
less than five patterns per class. That would be a big contribution because current methods
have tens even hundreds patterns per class and require too much training and testing time.

The limitations of previous methods originated that they only learn the patterns in each
class separately, as they believe that the most discriminative patterns for a certain class only
exist in that class. In some way it makes sense because if we can find some most special
patterns for a class, it is more likely to distinguish that kind of images well. But in fact, in
some classes we can never find patterns satisfying this requirement when the objects are too
common or special but not exclusive. For example, the common but only objects (computers,
desks, and chairs) in the scene of computer room are also distributed in other scenes like
office and meeting room. Meanwhile, special objects in the scene of closet are not exclusive
and shared with the clothing room. As shown in Fig. 1, the pattern “chair” is shared among
many classes. All these facts inspire us to share some important patterns among different
classes to represent images efficiently. Actually there already exist some research works in
object detection which adopt the strategy of sharing parts [33,46]. The sharing strategy has
the following advantages: (1) The number of self-adjustment parameters accompanies with
that of the learned patterns, whose decline will reduce the chance of over-fitting; (2) it reduces
the demand on the size of available training data; (3) it will reduce the computation time and
storage space in the process of training and testing, which has great convenience when the
dataset is very large. But for the task of scene classification, the problem of how to share
patterns effectively and efficiently is still challenging. Because the target objects in scenes are
more complicated and diverse. To solve this puzzle, we put forward amethod to learn extreme
compact image representation which utilizes the shared patterns among different classes.

Our work is related to the work by Parizi et al. [37], which implemented a jointly learned
method to learn patterns, but they initially labeled a large pool of patterns in an unsupervised
way, and then selected the most discriminative ones. As a consequence, it requires a lot
of time in the process of labeling and selecting, and it is not compact and discriminative
enough to represent the image. Based on their work, we propose a novel method to make
several improvements. Initially, we adopted a weakly supervised strategy to learn a small
number of patterns in each class, thus saving the computing time without the sacrifice of
the discriminative ability of the patterns. Then, we introduced the lasso regularization [45]
to select the most discriminative patterns and urge some of them shared among different
classes, meanwhile maintaining some class-specialized ones. Results show that each class
needs only four patterns on the average to achieve the remarkable performance, which are
comparatively much smaller than referred by Parizi et al., and attest that it is a very compact
way to represent the image through the extremely shared representation.

To summarize, the main contributions of our work are listed as follows.

– We demonstrate that there are many classes that have the same patterns and they are
crucial for scene classification.
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– We propose a novel method that firstly learns some class-specified patterns and then
applies the lasso regularization to urge some patterns shared among different classes,
which can generate a very compact and discriminative way for image representation.
Experimental results show that our method takes the fewest patterns to achieve the excel-
lent performance on three widely used scene benchmarks.

On the average, in each class, only four patterns are sufficient for the final image rep-
resentation. It is a very time- and space-saving way to learn patterns and represent images
for the recognition purpose. Moreover, the learned patterns are more discriminative after our
training procedure, as the classification accuracy is boosted comparing with the classifier
constructed by the initial patterns. In the experiments conducted on the three widely used
scene benchmarks, our results using the fewest patterns are very competitive.

The rest of this paper is organized as follows. In Sect. 2, some related works are presented.
In Sect. 3, the detailed procedure of image representation and learning shared patterns are
unfolded. In Sect. 4, the experimental results and analysis are provided to illustrate the
strength of our method. In Sect. 5, some discussions are given to further explain the proposed
method. Section 6 concludes the paper.

2 Related work

Compared with low-level representations which can only capture some low-level image
information like shape, color, and edge, middle-level image representations have the ability
to find more semantic information like objects or components of objects, which are more
discriminative to distinguish high-level semantic of images, e.g., the categories of image.
Finding important patterns as middle-level image representation is a very popular way to
recognize scene images. The traditional BoFmodel [6] utilizes some unsupervised clustering
methods like k-means to learn patterns in images. But the patterns seem not discriminative
enough, so many strongly supervised methods such as Attributes [13,36,38], Poselets [2],
andObject Bank [20] have been proposed. Thosemethods can achieve better performance but
they learn patterns using both image- and patch-level annotations, which are hard to obtain.

Recently, someweakly supervised strategies have been explored and proven very effective
for image representation. They learn patterns under the supervision of image-level labels
only, which are easier to obtain and it proved to be more discriminative to represent images
than the unsupervised ones. Moreover, these methods are very robust because of avoiding
the inaccuracy in labeling the patches. Thus the strategy to learn patterns via these weakly
supervised methods is quite common. Singh et al. [42] employed linear SVM to distinguish
patches in each class and then selected important ones as learned patterns on some criteria
like purity and discriminativeness.Wang et al. [50] found patterns by introducing themultiple
instance learning constraints to the dictionary learning. Some part-based models [10,17,34,
44] were trying to find a set of class-specialized parts, i.e., the parts frequently appear in
one class but rarely appear in other classes. But these methods learn patterns for each class
separately, ignoring the fact that many discriminative patterns are appearing in more than
one class. So patterns produced by their methods are not discriminative and compact enough.
Our work can also be seen as a weakly supervised strategy, but we do not learn patterns for
each class separately; instead, we share some important patterns among different classes to
construct a compact way to represent the images.

Apart from unsupervised or weakly supervised ways, there are many other methods find
patterns by the knowledge from experts [29,39]. Peraldi et al. [39] created patterns through
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the Abox abduction to interpret multimedia like images. Neumann et al. [29] introduced
description logics as a knowledge representation to interpret scenes. But these methods
require knowledge from experts to develop some rules, which is hard to achieve. Our method
can find some semantic patterns automatically, which is quite different from their methods.

With the powerful deep CNN model applied on image classification [18], we can also
see the outstanding performance of CNN models trained on large diverse image dataset like
ImageNet [8], when they are adopted as the local descriptor extractors to produce highly
informative features for each patterns [9,14,23,24,31,41]. Liu et al. [24] chosen the activa-
tions from the fully connected 6th layer (fc6) of deep CNNmodel as the patch-level features,
with the sparse coding based fisher vector to recognize images. Li et al. [23] also extracted
the fc6 and learned patterns through pattern mining. Gong et al. [14] selected outputs from
the fully connected seventh layer (fc7) to represent patches at multiple scales and then used
VLAD to aggregate these outputs for scene classification and image retrieval. Dixit et al. [9]
computed the activations from the fully connected eigth layer (fc8) and combined them with
the semantic Fisher Vector for scene classification. All of these work selected deep features
as local descriptors. Inspired by these experiences, we choose the activations from fc7 of the
deep CNN model trained on ImageNet in four different scales to represent patches, which
has proven to receive very satisfactory results for scene classification.

Actually the unsupervisedmethods [6,25,47] can also be regarded asmethods to distribute
patterns among different classes, but these patterns seem to be not discriminative enough
to represent images, because the representation is the collection of these patterns which are
shared among all different classes. Someworks also learn shared parts for object detection [33,
46], and adopt the strategy of sharing patterns. Different from them, we faced with a more
complicated puzzle in scene classification that the patterns are more diverse and complicated
in one scene andmore difficult to be shared. There aremany other works trying to learn shared
features. Some researchers learned shared features using the multitask learning [1,15,35,49].
Our method can also be regarded as the multitask learning because we learn patterns in each
scene simultaneously and minimize the classification error during the learning procedure.
But the difference is that we are trying to share the patterns among classes, which are more
informative than the local features shared by their methods. Meanwhile, we introduce the
image classifier during learning procedure aimed at sharing patterns among different scenes
only. Actually we have demonstrated that retraining the final classifier is more effective than
using the classifier during the process of learning patterns.

The most related works of our method were proposed by Lobel et al. [27] and Parizi
et al. [37]. Lobel et al. [27] used hierarchical joint max-margin learning to learn the patterns
and image classifier. But they required the weights of patterns to be positive and used some
handcrafted descriptors, which may restrict the performance. Parizi et al. [37] also learned
patterns and image classifier jointly. They selected the fc7 of deep CNN model trained on
a large dataset for scene categorization [53] as local descriptors, and also learned negative
patterns by allowing negativeweights for them.Actually some patterns are also shared in their
method. Our work follows the path of their work, but we make several improvements. Parizi
et al. first initialize a large pool of patterns (tens of thousands of patterns from a relatively
smaller scene dataset MIT-indoor 67 [40]) using an unsupervised learning method, and then
select the most discriminative ones through jointly learning procedure. Compared with our
extremely shared strategy, this initialization strategy is too costly and may not discriminative
enough when applied in the large scene dataset like SUN 397 [51]. We are working in a
different way, that is, we first employ a weakly supervised strategy to initialize a small
number of class-specified patterns, and then apply the lasso regularization [45] to select the
discriminative patterns and share some ones among different classes, meanwhile maintain
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the class-specialized ones. Moreover, they jointly learn image representation and classifier to
just improve the discriminativeness of patterns, while in our method, we introduce the image
classifier to force some patterns are shared among different classes, and find some most
discriminative patterns at the same time. Though the image-level classifier is constructed
during training, we still retrain it after the patterns are learned to improve the performance.
So we are with quite different objectives. Experimental results have proven that our method
to construct a more compact and discriminative representation than theirs.

3 Learning method

In this section, we propose our novel solution in detail to learn extremely shared patterns,
which can generate a very compact and discriminative middle-level image representation.

3.1 Pattern definition and image representation

Suppose X = {X1, X2, . . . , Xn} are images. For each image Xi , we can densely extract a
set of local descriptors F(Xi ) = {xi1, xi2, . . . , ximi } from different location and scales (i.e.,
different patch size), where xi j = f (Xi , zi j ) ∈ R

d×1 is a d-dimensional feature vector of
a patch at location zi j in Xi , and mi is the number of patches in image Xi . In this paper,
patterns are defined as a cluster of linear filters W = [w1,w2, . . . ,wK ],wk ∈ R

d×1, which
can discover some most semantic patches, e.g., objects. The response of pattern k at location
zi j in Xi can be simply computed using the dot product

si jk = s
(
Xi ,wk, zi j

) = wT
k xi j . (1)

Similar to many previous work [27,37,42,44,50], each patch xi j can be represented by the
concatenation of pattern responses [si j1, si j2, . . . , si j K ]T ∈ R

K×1. In practice, an image is
divided into some grids, i.e., some subregions using SPM [19]. A common way to aggregate
the pattern responses in each grid l ∈ {1, 2, . . . , L} is max-pooling. That is, the representation
of grid l in image Xi is sli = [sli1, sli2, . . . , sli K ]T ∈ R

K×1, where slik = maxzi, j ∈ l si jk is the
maximum response of pattern k in grid l. Then image Xi can be described as the concatenation

of each grid representation si = [s1i T , s2i
T
, . . . , sLi

T ]T ∈ R
K L×1.

3.2 Formulation of shared compact deep discriminative patterns

Inputs to our learning system are n training images X = {X1, X2, . . . , Xn} and their labels
Y = {Y1, Y2, . . . , Yn}, Yi ∈ {1, 2, . . . , M}, where M is the number of image classes. Our
objective is to learn the pattern filters W = [w1,w2, . . . ,wK ] and the final image-level
classifier U = [u1,u2, . . . ,uM ], um ∈ R

K L×1. After encoding the image Xi to si , we can
classify it via Yi = arg maxm∈1,2,...,M uTmsi .

Some work tries to jointly learn the pattern filtersW and image-level classifierU [27,37],
but as referred in Sect. 2, there are some limitations in their methods, which make their
image representation not compact and discriminative enough, and not practical when applied
on large dataset. To improve their work, we learn shared patterns with the lasso regulariza-
tion [45] as in Eq. (2). Experimental results show that image representation constructed by
these patterns is extreme compact and discriminative for final classification task.
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min
W,U

λu

M∑

i=1

‖ui‖1 + λw

2

K∑

i=1

‖wi‖22 + 1

n

n∑

i=1

LXi , (2)

where W,U, si , Yi , M, K , and n are just as the definitions above. λu ∈ R and λw ∈ R are
the regularization coefficients for U and W respectively.

The objective function Eq. (2) can be interpreted as follows. The second term is to avoid
over-fitting. LXi in the third term is the image-level multiclass hinge loss by Crammer and
Singer [5] as in Eq. (3), which minimizes the classification error of image Xi and generates
discriminative patterns.

LXi = max
(
0,

[
1 −

(
uTYi si − uTY , si

)])
(3)

where Y = arg max j∈1,2,...,M, j �=Yi u
T
j si .

Note that Lobel et al. [27] and Parizi et al. [37] choose L2 regularization
∑M

i=1 ‖ui‖22 for
image level classifier but the convex lasso regularization is chosen here. As we all know, the
L2 regularization mainly focuses on avoiding the over-fitting, but the lasso which is a good
approximation to the L0 regularization ‖ui‖0, can yield a sparse solution for matrix U, and
avoid over-fitting in the meantime. Due to the fact that, in each image class, there are only
a few important patterns, while the majority of them is redundant, the lasso can outperform
the L2 regularization, as has been proven by NG [30].

The lasso regularization has the function of selecting the discriminative but shared patterns.

Suppose u j be the j th row of U, i.e., U = [u1,u2, . . . ,uM ] = [u1T ,u2T , . . . ,uK LT ]T , and
the i th column j th row element inU be u j

i . It is obvious that
∑M

i=1 ‖ui‖1 = ∑K L
j=1 ‖u j‖1, so

this regularization is symmetric toward the two dimensions ofU. The term ‖ui‖1 encourages
the sparsity of each column, which according with the phenomenon that only a few patterns
are sufficient to represent the class i , so we adopt ‖ui‖1 to select the most discriminative
ones for class i . Meanwhile, the ‖u j‖1 ensures the sparsity of each row, which encourages
the patterns shared among different classes, and control its number. There are some discrim-
inative patterns shared among different classes, as we referred before, so we choose ‖u j‖1
to select these shared patterns, which can contribute to generate the extremely shared image
representation. Furthermore, this constraint also makes sure that patterns shared among only
a few classes to ensure the information amount. So the lasso rather than L2 regularization
is more suitable to the traits mentioned above to select the most important patterns for each
class.

Note that in a certain class, the Eq. (2) can not only learn the positive patterns but also
negative patterns as the counter-evidence for the classification. For example, one would not
expect to find a tree in the scene such as classroom and closet. We can observe that this goal
is achieved by control the sign of u j

i . That is, when u
j
i > 0, the pattern j should occur in the

image class i ; otherwise, when u j
i < 0, the pattern j should not occur in the image class i ,

and when u j
i = 0, the pattern j is trivial for class i .

3.3 Optimization method

The objective function Eq. (2) is non-convex so it is hard to optimize it directly. Inspired
by the fact that when W is fixed, it descends to a typical convex SVM problem and can be
solved directly (see Sect. 3.3.1); when U is fixed, it can be solved by some sophisticated
methods (see Sect. 3.3.2). Therefore we choose the block coordinate descent [32] to learn
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parameters through alternating between optimizing U when W is fixed, and optimizing W
when U is fixed, as shown in Algorithm 1. When W is fixed, the Eq. (2) can be rewritten
as the Eq. (4). When U is fixed, the Eq. (2) can be rewritten as Eq. (5). More details of the
optimizing process can be seen in the following subsections.

LU = min
U

λu

M∑

i=1

‖ui‖1 + 1

n

n∑

i=1

max
(
0, [1 −

(
uTYi si − uTY si

)
]
)

, (4)

LW = min
W

λw

2

K∑

i=1

‖wi‖22 + 1

n

n∑

i=1

max
(
0, [1 −

(
uTYi si − uTY si

)
]
)

, (5)

Algorithm 1 Learning Extremely Shared Middle-level Image Representation
Input: X ,Y, λu , λw

Output: W
1: Initialize pattern filters W = [w1,w2, . . . ,wK ],wk ∈ R

d×1

2: while not convergence do
3: FixingW, optimizing U = arg min

U
LU in Eq. (4)

4: Fixing U, optimizing W = arg min
W

LW in Eq. (5)

5: end while

3.3.1 Optimizing U

The Eq. (4) is convex and differentiable to U, so the optimizing scheme in the third line of
Algorithm 1 can be the simple stochastic gradient descent (SGD). The partial derivative of
Eq. (4) can be computed as

∂LU

∂um
= λu sign(um) + 1

n

n∑

i=1

∂LXi

∂um
, (6)

where the sign(x) is the sign function which equals to 1 when x > 0 and −1 when x < 0.
The ∂LXi /∂um in the second term can be derived as follows,

∂LXi

∂um
=

⎧
⎪⎨

⎪⎩

−1[uTYi si − uTY si < 1]si if m = Yi
1[uTYi si − uTY si < 1]si if m = Y

0 otherwise,

(7)

where 1[a < b] indicates whether a < b is true and equals to 1 when a is smaller than b
and 0 otherwise. Then given the learning rate η, the um can be optimized using umt+1 ←
umt − η∂LXi /∂umt .

3.3.2 OptimizingW

To make the learning procedure ofW easier to understand, we suppose there is no SPM i.e.
L = 1, so we can rewrite si as [si1, si2, . . . , siK ]. Let sik = s(Xi ,wk, zki ) be the kth element
of si , where zki = arg max

zi j
wT
k xi j is the latent variable indicating the strongest response
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location of pattern k. For Eq. (5), si j is convex in W as it is the maximum value of a linear
function. But if ukYi − ukY > 0, the 1 − (uTYi si − uTY si ) will be non-convex to wk . So the
fourth line in Algorithm 1 refers to the non-convex optimization. Here we choose CCCP
algorithm [52] to learn theW.

As we can see, when ukYi − ukY < 0, the LXi will be convex to wk , so we can optimize wk

directly.Meanwhile,whenukYi −ukY > 0, if the latent variable zki is given, the 1−(uTYi si−uTY si )
is just a linear function to wk , so LXi is also convex to wk . Inspired by this fact, we can
alternately update latent variable zki if u

k
Yi

−ukY > 0 and learn theW, as shown inAlgorithm 2.

After zki is given, learningW becomes a convex optimizing problem. As Eq. (5) is differ-
entiable to W, we can also choose SGD to learn W. The partial derivative of Eq. (5) can be
written as follows,

∂LW

∂wk
= λw wk + 1

n

n∑

i=1

∂LXi

∂wk
, (8)

and the second term is derived as

∂LX imi

∂wk
= 1

[
uTYi si − uTY si < 1

] (
ukY − ukYi

)
xki , (9)

where xki = f (Xi , zki ) is the feature vector at location z
k
i in image Xi . As in Sect. 3.3.1, given

the learning rate η, the wk can be optimized usingwkt+1 ← wkt −η∂LW /∂wkt . The detailed
pseudo-code of updating W is shown in Algorithm 2, where Wold is the pattern filters got
from the later iteration, and T is the number of SGD iterations.

Algorithm 2 UpdatingW using CCCP and SGD

Input: X ,Y, λw,Wold , T, η

Output: W
1: while not convergence do
2: Set W1 = Wold

3: for i ter = 1 TO T do
4: if ukYi − ukY > 0 then

5: zki = arg max
zi j

wold
k

T
xi j

6: else
7: zki = arg max

zi j
wT
kt
xi j

8: end if

9: wkt+1 ← (1 − ηλw)wkt − η
n

n∑

i=1
1[uTYi si − uTY si < 1](ukY − ukYi

)xki

10: end for
11: Wold = W = WT+1
12: end while

Notice that there is only a little difference in the extension from no SPM to multilevel
SPM, so we do not provide more details about the SPM form of learningW. We should also
note that even we getU via minimizing the classification error, we do not choose it as the final
image classifier; instead, we retrain a multiclass linear SVM. The only purpose to introduce
the U is to learn the discriminative and shared patterns to construct our extremely shared
image representations. In the Sect. 4, we will show that the performance of the retrained
SVM classifier is better than that constructed by learned U directly.
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3.3.3 Pattern filters initialization

As described in the first line of Algorithm 1, we should first initialize the pattern filters W.
Here we choose an effective way to achieve this goal. Firstly, we use k-means on images
in each class separately to assign every patch a cluster label. Then, a multiclass SVM by
Crammer and Singer [5] can be trained using the cluster label as the supervised information.
Here the SGD is also used for training the SVM due to its effective and efficient.

As we can see, this initialization strategy can be regarded as the weakly supervised BoF
and can find special patterns in each class through the multiclass SVM.

4 Experiments

To evaluate our proposed method, we conduct some experiments on three well-known scene
classification datasets, including 15 Scenes [19], MIT-indoor 67 [40] and SUN 397 [51].
Images in these datasets are collected from Google and Flickr. Some class-specific keywords
are chosen to retrieve images on the search engine, and the collected images are measured
by the Amazon’s Mechanical Turk. Now all these three datasets are public available.2 As
the 15 scenes are quite a simple dataset, it is just a tentative experiment, then some detailed
experiments are conducted on theMIT-indoor 67, and finally we do the experiment on a large
scene dataset SUN 397.

4.1 Experimental setup

In the beginning of our experiments, we densely sample patches in four different scales from
each image, with scale size {72×72, 96×96, 120×120, 144×144} by every 32 pixels. Deep
CNN features are chosen as the local descriptors.We select activations from the seventh layer
(fc7) of the model trained by Chatfield et al. [3], with the Caffe library [16]. To make the
training process faster andmore tractable, PCA is introduced to reduce the dimension of local
descriptors from the original 4096 to 256, along with the pipeline of whitening and L2-norm.

Apart from the local descriptors, other important experimental settings also deserve to be
mentioned.Asdescribed inSect. 3.1, themax-poolingwith three level SPM (1×1, 2×2, 4×4)
is adopted for image representation. The number of learned patterns is chosen by tested on
MIT-indoor 67 dataset, and other parameters are chosen by cross-validation. In the SGD
procedure, we set the initial learning rate equaling to 1 and after that divide the learning rate by
10 every T iterations. This operation is repeated five times so the final learning rate declined
to 0.00001. In the initializing step, k-means is implemented by the VLFeat [48] library.
Generating the final image classifier through SVM is implemented by the LibLinear [12].
All of the programs are written in MATLAB and running on an Inter(R) Xeon(R) i7-E5 2670
CPU (2.60GHz) 64GB RAM PC.3

4.2 15 Scenes

The 15-scene dataset includes 4485 scene images and 15 different classes in total. There
are about 200–400 images in each class, with average size of 300 × 250. Following the

2 15 Scenes: http://www-cvr.ai.uiuc.edu/ponce_grp/data/scene_categories/. MIT-indoor 67: http://web.mit.
edu/torralba/www/indoor.html. SUN 397: http://vision.princeton.edu/projects/2010/SUN/.
3 The implementation code and trained models are available at https://github.com/hust-tp/ESMIR.
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Table 1 Classification accuracy
for different methods on 15
scenes

Methods Accuracy (%)

Handcrafted features

EMFS [43] 85.70

D-Parts [44] 86.0 ± 0.80

MMDL [50] 86.70 ± 0.40

Deep CNN features

ImageNet fc7 + Linear SVM [53] 84.23 ± 0.37

Places fc7 + Linear SVM [53] 90.19 ± 0.34

Hybrid fc7 + Linear SVM [53] 91.59 ± 0.48

Ours (60 patterns) 92.80 ± 0.37The best results are highlighted in
bold

standard setup [19], we randomly select 100 images per class for training and the rests for
testing. This operation is performed ten times and the average classification accuracy is
reported.

For 15 scenes, the λw, λu are set to 0.1 and 5 × 10−6, respectively, and 60 patterns (i.e.,
average four patterns per class) are learned in all. Results are reported in Table 1. As we can
see, our method can achieve the mean accuracy of 92.80%, which is much higher than other
methods with handcrafted features [43,44,50] or the deep CNN features [53], the latter of
which even utilizes Hybrid deep CNN features trained by the combination of ImageNet and
Places datasets. Notice that our method needs only 60 patterns, which is comparatively quite
a small number.

4.3 MIT-indoor 67

TheMIT-indoor 67 is a very popular scene classification benchmark. It contains 67 categories
of indoor scenes and 15,620 images totally. Following the standard setup [40], the standard
partition that separates 80 images for training and 20 images for testing per category is
adopted in our experiment. T , the number of SGD iterations is set to 10,000, and the λw, λu
are set to 0.1 and 5 × 10−7, respectively, which are all chosen from cross-validation. The
classification accuracy and detailed analyses is reported.

4.3.1 Impact of the number of patterns

The first set of experiments is designed to evaluate the impact of pattern numbers. As the red
line in Fig. 2 shows, it takes only 268 patterns (i.e., average 4 patterns per class) to achieve
74.85% accuracy. However, when double the number of patterns (536 patterns), there is only
0.15% improvement (74.85–75.00%), which is not surprising because our formulation is
trying to share some important patterns among different image classes. Many chosen pat-
terns may be redundant when the number is increased. It demonstrates that simply adding
patterns seems unhelpful to improve the performance, so only 268 patterns are necessary.
To the best of our knowledge, the fewest patterns are required to achieve the excellent per-
formance in the classification accuracy. 268 is a tiny number compared with that in other
methods, such as many part-based models [10,17,44] using thousands even tens of thou-
sands of patterns in total. So we can learn very compact representation after sharing some
patterns.
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Fig. 2 Classification accuracy on MIT-indoor 67 over different number of patterns

4.3.2 Impact of the learning procedure

Then we compare the performance between the initial pattern filters and the final filters
after the learning procedure. The green line in Fig. 2 is the classification accuracy with
different pattern numbers. Actually our initializing strategy can be regarded as a weakly
supervised BoF except that we replace the histogram-based method in BoF [6] with max-
pooling based method. We can observe that the simple method to initialize patterns also has
content performance, and after the learning procedure, we can get +2.16% improvement
in performance (72.69–74.85%) using 268 patterns. So our method can greatly boost the
discrimination level through selecting the discriminative patterns.

4.3.3 Comparing against jointly training

As referred in the last paragraph of Sect. 3, we can also utilize the learned U as the final
image classifier, actually it can be regarded as the strategy of jointly training the pattern
filters and constructing the image-level classifier. But we simply using learned U to sharing
the patterns and retrain the classifier. To illustrate the advantage of our choice, we also
compare our method with the jointly training method, as shown in the blue line in Fig. 2. It is
obvious that our method can achieve higher accuracy than jointly training methods no matter
whether the pattern number is 268 or 536. So we can learn more compact and discriminative
representation after the learning procedure.

4.3.4 Comparison with other methods

To demonstrate the advancement of our method, some comparison experiments are also
performed. We first compare our method with another shared representations method [37],
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Table 2 Classification accuracy
comparing with another shared
representations method on
MIT-indoor 67

Methods Number of patterns Accuracy (%)

Parizi et al. [37] 372 73.30

Parizi et al. [37] 13,400 77.10

Ours 268 74.85

Table 3 Classification accuracy
for different methods on
MIT-indoor 67

Methods Accuracy (%)

Handcrafted features

DPM + Gist-color + SP [34] 43.10

BoP [17] 46.10

miSVM [21] 46.40

EMFS [43] 48.20

Patches + GIST + SP + DPM [42] 49.40

MMDL [50] 50.15

D-Parts [44] 51.40

BoP + IFV [17] 63.10

LASC [22] 63.40

Doersch et al. [10] 64.03

Doersch et al. [10] + IFV 66.87

Deep CNN features

ImageNet fc7 + TF-IDF (268 words) 49.85

ImageNet fc7 + Linear SVM [53] 56.79

Places fc7 + Linear SVM [53] 68.24

Hybrid fc7 + Linear SVM [53] 70.80

ImageNet fc6 + SC [24] 68.20

CL-45C [26] 68.80

OverFeat + SVM [41] 69.00

ImageNet fc7 + VLAD [14] 68.88

MDPM [23] (3350 patterns) 70.46

ImageNet fc8 + FV [9] 72.86

Parizi et al. [37] (372 parts) 73.30

Parizi et al. [37] (13,400 parts) 77.10

ImageNet fc8 + FV + Places fc7 [9] 79.00

Ours (268 patterns) 74.85The best results are highlighted in
bold

as shown in Table 2. We can observe that the method by Parizi et al. [37] outperforms our
methods when they use 13,400 parts, but note that we only need 268 patterns, which aremuch
less than theirs, and they make use of the Place CNN model trained on a large dataset which
is particularly collected for scene classification [53]. Our method achieves higher accuracy
than Parizi et al. [37] when they use 372 patterns (+1.55%). At the same time less patterns
are necessary in our method (about 70% patterns of their method), which can demonstrate
our method has the ability to learn more compact and discriminative representations.

More results of other methods are shown in Table 3. Firstly, our method outperforms
the ones with handcrafted features to a large extent. Meanwhile, we also achieve better
performance than the ones using ImageNet deep CNN features, like activations from the
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Fig. 3 The confusion matrix on MIT-indoor 67

ImageNet CNN convolutional layer with cross-convolutional-layer pooling [26], ImageNet
fc6 with sparse coding [24], ImageNet fc7 with VLAD and Fisher Vector [14], ImageNet fc7
with pattern mining [23], and ImageNet fc8 with sematic Fisher Vector [9]. The result via
concatenating semantic Fisher Vector with ImageNet fc8 and output from Place CNN fc7 is
the best onMIT-indoor 67 [9]. But it also adopts the PlaceCNN features.We also compare our
method with the Term Frequency–Inverse Document Frequency (TF-IDF) method, using the
same number of patterns as our methods. It is obvious our method outperforms the TF-IDF
method by a large margin (74.85 vs. 49.85). These results show that our method achieves
very competitive results comparing with others.

Figure 3 is the confusion matrix of our method. As we can see, the incorrect classification
made in our method (like differentiating bakery and deli in Fig. 4) are even unavoidable for
human eyes.

4.3.5 Time costing for training and testing

The efficiency of our method can be demonstrated that, after the deep CNN features have
been extracted, it only takes about 8 min to initialize four patterns in each class and 3 h
for all of the learning procedure. The consuming time has positive linear correlation with
the pattern number. In addition, if combined with the strategy in [4], which can accelerate
the speed of extracting patches feature, our method could shorten the time costing further.
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Fig. 4 Some pictures in bakery and deli

Table 4 Classification accuracy
for different methods on SUN
397

Methods Accuracy (%)

Handcrafted features

Xiao et al. [51] 38.00

EMFS [43] 40.70

LASC [22] 45.30 ± 0.40

Deep CNN features

ImageNet fc7 + Linear SVM [53] 42.61 ± 0.16

Places fc7 + Linear SVM [53] 54.32 ± 0.14

Hybrid fc7 + Linear SVM [53] 53.89 ± 0.21

ImageNet fc7 + VLAD [14] 51.98

ImageNet fc7 + FV [14] 53.00 ± 0.40

ImageNet fc8 + FV [9] 54.40 ± 0.30

ImageNet fc8 + FV + Places fc7 [9] 61.72 ± 0.13

Ours (1588 patterns) 56.57 ± 0.24The best results are highlighted in
bold

Moreover, for both training and testing, the procedure of generating the image representation
only contains steps of calculating the dot product and taking the maximal value. It takes only
0.1 s to encode one image, which is so small that can even be neglected.

4.4 SUN 397

The SUN 397 is a very large dataset for scene classification. There are 397 different image
classes in the dataset, including outdoor and indoor scenes, like alley, apartment building,
hospital room, throne room, and so on. It totally contains more than 100 K images, and each
class has at least 100 images.We follow the fixed ten different partition of training and testing
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set byXiao et al. [51], i.e., each class has 50 images for training and 50 for testing. The T is set
to 20,000 andλw, λu are set to 0.1 and 5×10−8 respectively according to the cross-validation.
According to the Sect. 4.3.1, we learn average 4 patterns per class (totally 1588 patterns).

The classification results are shown in Table 4. We can arrive at the same conclusion that
ourmethod can generate very compact image representation and achieve the best performance
only using ImageNet deep CNN features. Moreover, our method is also capable of dealing
with large datasets and performs well on these dataset.

5 Discussion

The results in Sect. 4 have shown many inspiring phenomenon. (1) Comparing with other
pattern learning methods, our extremely shared strategy successfully produces very compact

Fig. 5 The top detections in some patterns on the full MIT-indoor 67 training images. Each row represents
patches in a certain pattern and the label of the image is marked on the top left corner. The “initial” means
patterns generated by the initial step in Sect. 3.3.3, and the “learned”means patterns learned by our method. As
we can observe, top detections in “initial” often belong to the images in one or two classes, and in “learned”,
they are shared among diverse images. For example, the pattern 117, with the semantic meaning of goods,
initially concentrates on the grocerystore scene (the fifth row). After training, they are shared among the deli,
grocerystore, pantry, shoeshop, and toystore scenes (the sixth row)
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Fig. 6 The pattern frequencies before (top) and after (bottom) our learning strategy on MIT-indoor 67. The
details of pattern frequencies are described in Sect. 5

representations, that is, only four patterns on the average are necessary for each class, which is
the fewest patterns been used to our best knowledge. (2) The fewest pattern number does not
harm our performance of scene classification. Our method outperforms other methods using
ImageNet deep features, and is comparable with themethods using deep CNNmodels trained
on large scene dataset. (3) Ourmethod also outperforms the sophisticated Fisher Vector based
methods, which achieve many the state-of-the-art performance in many applications. (4) Due
to the very compact representation, our method is capable for dealing with large scene dataset
like SUN 397 [51], which has not been tested by other pattern learning methods. All of them
confirm that our method can generate very compact but discriminative representation for
images.

Figure 5 shows the patches with the highest scores in some semantic patterns on the
MIT-indoor 67 dataset. Previously, the most important patches are disturbed in the same

123



526 P. Tang et al.

class. However, after the learning procedure of the extremely shared strategy, the important
patches are dispersed among different classes, and meanwhile contain some semantic infor-
mation, which demonstrated that ourmethod can share the discriminative patterns to generate
extremely compact image representation. For example, the pattern 117 (the fifth and sixth
rows in Fig. 5) is concentrated in the scene grocerystore before training. After our learning
procedure, it is shared among the deli, grocerystore, pantry, shoeshop and toystore scenes.
At the same time, the learned patterns also convey much semantic information like the head
(pattern 6), the tables (pattern 90), and the goods (pattern 117).

The pattern frequencies before and after our learning strategy on MIT-indoor 67 is shown
in Fig. 6, where the frequencies are computed via dividing the occurrence number of each pat-
tern by the number of patches. A pattern is occurred when the maximum response of a patch
is corresponding to that pattern. We can observe that before learning, all pattern frequencies
are located in the vicinity of a similar value, while after learning, some most discriminative
patterns will be selected with greater frequencies, and what is more, the overall frequency
distribution tends to be sparse. According to the pattern frequencies, we can compute the
statistical significance of our results. Suppose the null hypothesis is that the pattern frequen-
cies will not change after learning, and then the alternative hypothesis will be the pattern
frequencies will change after learning. As a patch belonging to or not belonging to a pattern
is similar to coin tossing with “head” or “tail,” we can employ the Bernoulli distribution to
compute the p value. According to these hypotheses, the p value infinitely close to 0, i.e., the
probability of the null hypothesis being true is almost 0. We can also make a null hypothesis
that the classification accuracy will not be improved by our learning strategy, and then the
alternative hypothesis will be our learning strategy can improve the classification accuracy.
Note that on MIT-indoor 67, as shown in Fig. 2, the accuracies before and after learning are
0.7269 and 0.7485, respectively. We can also use the Bernoulli distribution here, then the
p value will be less than 0.1%, i.e., the probability of the null hypothesis being true is less
than 0.1%. So we can reject these entire two null hypotheses. These statistical significance
analyses show that our learning strategy can select some most discriminative patterns and,
meanwhile, improve the results.

6 Conclusions

In this work, we propose a novel method to learn extremely shared middle-level image
representation. The lasso regularization is adopted to enforce the pattern selection and sharing.
Our extremely shared method can learn several discriminative patterns for different scene
classes simultaneously and force them to be shared among different image classes. After
the patterns are learned, we concatenate the scores of patterns, then use max-pooling to
aggregate these scores into the final extremely compact image representation. Our method
can achieve very remarkable scene classification performance. Only four patterns per class
in average are required to represent images, and the performance of the learned patterns is
very remarkable on the considered scene datasets. The code for reproducing the results is
publicly available. For future work, we would like to explore more powerful methods to
find extremely shared patterns which can generate more compact and discriminative way for
image representation.
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