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Abstract The improvement of data storage and data acquisition techniques has led to huge
accumulated data volumes in a variety of applications. International research enterprises
such as the Human Genome and the Digital Sky Survey Projects are generating massive
volumes of scientific data. A major challenge with these datasets is to glean insights from
them to discover patterns or to originate relationships. The analysis of thesemassive, typically
messy, and inconsistent volumes of data is indeed crucial and challenging inmany application
domains. Hence, the research community has introduced a number of visualizations tools to
guide and help analysts in exploring the data space to extract potentially useful information.
However, whenworkingwith high-dimensional datasets, identifying visualizations that show
interesting variations and trends in data is not trivial: the analyst must manually specify a
large number of visualizations, explore relationships among various attributes, and examine
different subsets of data before discovering visualizations that are interesting or insightful.
Though, exploring all possible visualizations involves complex challenges. It is a costly
and time-consuming process especially when the dimensionality is high. Furthermore, the
rapid growth of databases becomes multifaceted in their channels and dimensionality; thus,
the transition from static analysis to real-time analytics represents a fundamental paradigm
shift in the field of Big Data. Motivated by the above challenges, we propose an efficient
framework called real-time scoring engine (RtSEngine) that assists analysts to limit the
exploration of visualizations for a specified number of visualizations and/or certain execution
time quote to recommend a set of visualizations that meet analysts’ budgets. To achieve
that, RtSEngine incorporates our proposed approaches to prioritize and score attributes that
form all possible visualizations in a dataset based on their statistical properties such as
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selectivity, data distribution, and number of distinct values. Then, RtSEngine recommends
the visualizations created from the top-scored attributes. Moreover, we present visualizations
cost-aware techniques that estimate the retrieval and computation costs of each visualization
so that analysts may discard high-cost visualizations. We show and evaluate the effectiveness
and efficiency of our proposed approaches, and asses the quality of visualizations and the
overhead obtained by applying our techniques on both synthetic and real datasets.

Keywords Query visualization · Aggregate queries · Visual analytics

1 Introduction

Data visualization is one of the most common tools for identifying trends and finding anom-
alies in Big Data. However, with high-dimensional datasets, identifying visualizations that
effectively present interesting variations or patterns in the data is a non-trivial task: analysts
typically build a large number of visualizations optimizing for a range of visualization types,
appealing features, and more before arriving at one that shows something valuable.

For datasets with large number of dimensions, it is extremely exhaustive for analysts to
manually study all the dimensions; hence, interactive data visualization needs to be boosted
with automated visualizations recommendation techniques. Interactive visualization analyt-
ics tools such as Tableau, ShowMe, and Fusion Tables [9,24,31] provide some features for
automatically recommending the best visualization for a dataset. However, these features are
restricted to a set of esthetic rules (e.g., color, fonts, and styles) that guide which visualization
is most appropriate.

Profiler [18] is another visualization tool which explores all data space to detect anomalies
in data and recommends the best binning for the horizontal x-axis of a visualization. It
decides which granularity is appropriate to bin on to depict the most interesting relationships
among data. Profiler [18] maintains a data cube in memory and uses it to support rapid user
interactions. While this approach is possible when the dimensionality and cardinality are
small, it cannot be used with large tables and ad hoc queries with high- dimensional data,
which is the norm of scientific databases.

In the biomedical data analysis domain, INVISQUE [11,34] was proposed as a visual
sense-making system to support information analysis for medical diagnosis. INVISQUE
illustrates the similarity between the information analysis during intelligence analysis and
medical diagnosis based on a sense-making loop and a data-frame model. To overcome the
challenges of exploring high-dimensional patients data, SubVIS [13] was recently proposed
as a visualization tool to interactively explore biomedical data by utilizing subspace analysis
algorithms to cluster data into subclusters and show the relationships that exist among them.

Another example of tools that recommend visualizations is VizDeck [19]. VizDeck rec-
ommends visualizations based on the statistical properties of small datasets and adopts a
card game metaphor to help organize the recommended visualizations into interactive visual
dashboard.

For large-scale datasets, SeeDB [33] was proposed to automatically recommend interest-
ing visualizations based on distancemetrics which compute deviations among the probability
distributions of the visualizations. SeeDB presents different levels of optimizations to
decrease the latency and maintain the quality of visualizations such as sharing computa-
tions and combined query executions.

123



Constrained recommendations for query visualizations 501

Fig. 1 Snippet from theGoCard relational database schemawith a representative sample.Each row represents
one trip with a bus, a ferry, or a train with 12 dimensions describing the details of that trip. The database’s
dimensions are classified into two: dimension attributes andmeasure attributes, in order to generatemeaningful
2-dimensional visualizations, e.g., bar charts

Although these analytic tools present various approaches and measures to asses the inter-
estingness of data, they still have to explore all possible visualizations to recommend a subset
of interesting visualizations. Exploring the entire data space and all visualizations is almost
impossible with the limited time and resources, especially when data are growing in both
the dimensionality and cardinality. As a result, shifting from static analytics to real-time
analytics is essential because of the rapid data accumulation when compared with a constant
human cognitive capacity. Indeed this is a challenging problem. An interactive visualizations
recommendation tool needs to explore the data space intelligently by discounting unneces-
sary visualizations and recommend only the essential ones while preserving the quality of
the results.

The following example illustrates the need for an automatic visualizations technique to
identify interesting visualizations from a real, large, and structured database called GoCard
which represents trips details of the public transportation system of the Brisbane city in
Australia. Figure 1 shows a snippet of the GoCard database schema and a small sample from
the database out of the 4.4 million tuples. Each tuple is a record that represents a trip using
either a bus, a ferry, or a train, with 12 dimensions describing that trip with more details.

Example 1 Consider a transportation analytic team that is undertaking a study for a particular
alighting stop: University of Queensland (UQ). This stop has received a lot of passengers
complaints due to poor performance; hence, it is being investigated by the team. Suppose that
the team uses the GoCard database to generate 2-dimensional visualizations (e.g., bar charts)
which summarize all recorded trips using different dimensions, then search for the ones that
appear to explain the increase in received complaints. To accomplish that, an analyst would
begin by using a program’s GUI or a custom query language to execute the equivalent of the
following SQL query and pull all data from the database for the alighting stop UQ:

Q = SELECT * FROM GoCard

WHERE alighting stop = “University of Queensland”;

Next, the analyst would use an interactiveGUI interface to generate all possible visualizations
of the query result. For instance, the analyst may visualize average trip length grouped
by route, total daily passengers grouped by direction, maximum trip length by boarding
stop, and so on. Hence, the analyst would manually study all these visualizations to find
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Fig. 2 Average trips length in minutes by boarding stop of Q1 and the reference Qr result into high utility
value, i.e., high interestingness. a Sample results of query Q1 and Qr , b 2-D bar chart for query Q1 and Qr

interesting insight or visualizations that might explain the reason behind the increase in
complaints. Indeed, exploring and studying all visualizations is challenging especially for
high-dimensional datasets. Hence, an automatic visualization recommendation technique
should show the analyst the most interesting visualization based on the alighting stop UQ.

Consider the visualization for the average trip length by boarding stop: it is generated by
running an operation equivalent to the following SQL query:

Q1 = SELECT boarding stop, AVG(trip length) FROM GoCard

WHERE alighting stop = “University of Queensland” GROUP

BY boarding stop;

Figure 3 shows the visualization of Q1’s result. Consequently, the visualization in Fig. 3
happened to be themost interesting visualization. The reason is when Q1’s result is compared
with entire data, it depicts long average trip length in some boarding stops which travels
toward UQ that are significantly different from the equivalent average of the trip lengths
(equals 17.6min) in the entire dataset. Specifically, Q1’s result is compared against the
following reference query Qr :

Qr = SELECT boarding stop, AVG(trip length) FROM GoCard

GROUP BY boarding stop;

Figure 2a, b shows a sample results of Q1 and Qr . ��
Example 1 above suggests that visualizations which portray trend deviations from a ref-

erence are potentially remarkable and of high interest.
Here, the average trip length grouped by boarding stops (Fig. 3 ) is considered as the top

interesting visualization, among other visualizations such as total daily passengers grouped
by direction, andmaximum trip length grouped by boarding stop. The reason is it depicts long
average trip length in some boarding stops which travels toward UQ that are significantly
different from the equivalent average of the trip lengths (equals 17.6min) in the entire dataset.
As listed in Fig. 2a, ferry terminals scored longer trips to UQ than bus stops because ferries
often take longer waiting times among stops than buses.

We summarize our contributions as follows:

– Proposing a new problem which address the limitation of current visualizations recom-
mendation tools. Particularly, we include budget constraints to automatically recommend
top-K interesting visualizations according to an input query within the specified budget.
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Fig. 3 2-Dimensional bar chart visualization generated by query Q1. The x-axis represents the boarding stop,
while the y-axis represents the average trip lengths in minutes, toward University of Queensland stop

– Designing an efficient framework called real-time scoring engine (RtSEngine) that
limits the exploration of visualizations by assessing priorities of the recommended views
according to their deviation utilities and costs.

– Proposing efficient algorithms which utilize statistical features of the views such as
number of distinct values, selectivity ratios, and data distribution, to early prioritize the
views.

– Proposing efficient algorithms to approximate the retrieval and computations costs of the
generated visualizations and evaluate their estimated costs against their deviation utilities
to recommend high-accuracy views in the specified budgets.

– Conducting extensive experiments that demonstrate the efficiency and effectiveness of
our proposed algorithms on real and synthetic dataset.

This paper is organized as follows: Sect. 2 describes related works on query visualization.
Then, Sect. 3 provides preliminary details on recommendation of query visualizations and
presents our problem statement. Then, we present our framework RtSEngine in Sect. 4
that contains two main modules: Priority Evaluator and Cost Estimator, which recommend a
set of visualizations efficiently within the specified constraints. Section 5 shows experiment
results for our proposed algorithms on two real datasets.

2 Related work

Interactive data visualization tools have interested the research community over the past few
years, and it has presented a number of interactive data analytics tools such as ShowMe,
Polaris, and Tableau [6,18,19,24]. Similar visualization specification tools have also been
introduced by the database community, including Fusion Tables [9] and the Devise [22]
toolkit. Unlike SeeDB, which recommends visualizations automatically by exploring the
entire views space, these tools place the onus on the analyst to specify the visualization to
be generated. For datasets with a large number of attributes, it is unfeasible for the analyst
to manually study all the attributes; hence, interactive visualization needs to be augmented
with automated visualization techniques.

A few recent systems have attempted to automate some aspects of data analysis and
visualization. Profiler is one such automated tool that allows analysts to detect anomalies
in data [18]. Another related tool is VizDeck [19], in given a dataset, which depicts all
possible 2-D visualizations on a dashboard that the user can control by reordering or pinning
visualizations. Given that VizDeck generates all visualizations however, it is only meant for
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small datasets, and VizDeck does not discuss techniques to speed up the generation of these
visualizations.

To support visual sense making in medical diagnosis, INVISQUE [11,34] is an inter-
active visualization system proposed such as physical index cards on a two- dimensional
workspace. INVISQUE provides some features to support annotating, revisiting, and merg-
ing two clusters. It discusses essential problems in designing medical diagnostic displays
that can improve the review of a patients medical history [11]. A recent work, SubVIS [13]
is a visualization tool which assists the user to analyze and interactively explore computed
subspaces to discover insights into highly dimensional and complex patient’s datasets. Sub-
VIS [13] introduces an analysis workflow to visually explore subspace clusters from various
perspectives, and it tackles some subspace clustering challenges such as difficulty of interpre-
tation patient results, redundancy detection in subspaces and clusters, and multiple clustering
results for different parameter settings.

Statistical analysis and graphing packages such as R, SAS, and MATLAB could also be
used generate visualizations, but they lack the ability to filter and recommend ’interesting’
visualizations.

OLAP: there has been some work on browsing data cubes, allowing analysts to variously
find explanations for why two cube values were different, to find which neighboring cubes
have similar properties to the cube under consideration, or get suggestions onwhat unexplored
data cubes should be looked at next [15,27,28].

Database Visualization Work: Fusion tables [9] allow users to create visualizations
layered on top of Web databases; they do not consider the problem of automatic visu-
alization generation. Devise [10] translated user-manipulated visualizations into database
queries.

Although the aforementioned approaches provide assistance in query visualization, they
lack the ability to automatically recommend interesting visualizations, except SeeDB which
provides different optimization techniques to automatically recommend interesting visual-
izations while avoiding unnecessary visualizations by utilizing two kinds of optimization
techniques as explained next.

Visualizations pruning in SeeDB SeeDB implemented an execution engine to reduce latency
in assessing the collection of aggregate views which it applies two kinds of optimizations:
sharing, where aggregate view queries are combined to share computation as much as pos-
sible, and pruning, where aggregate view queries corresponding to low-utility visualizations
are dropped from consideration without scanning the whole dataset. SeeDB developed a
phased execution framework; each phase operates on a subset of the dataset. Phase i of n
operates on the i th of n equally sized partitions of the dataset. The execution engine begins
with the entire set of aggregate views as follows: during phase i, the SeeDB [33] modifies
partial results for the views still under consideration using the i th fraction of the dataset. The
execution engine applies sharing-based optimizations to minimize scans on this i th fraction
of the dataset. At the end of phase i , the execution engine uses pruning-based optimizations
to determine which aggregate views to discard. The partial results of each aggregate view on
the fractions from 1 through i are used to estimate the quality of each view, and the views
with low utility are discarded.

The execution engine uses pruning optimizations to determine which aggregate views
to discard. Specifically, partial results for each view based on the data processed so far are
used to estimate utility and views with low utility are discarded. SeeDB execution engine
supports two pruning schemes. The first uses confidence-interval techniques to bound utilities
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of views, while the second uses multi-armed bandit allocation strategies to find top utility
views.

– Confidence-interval-based pruning The first pruning scheme uses worst-case statistical
confidence intervals to bound views utilities. This technique is similar to top-k-based
pruning algorithms developed in other contexts [29]. It works as follows: during each
phase, it keeps an estimate of themean utility for every aggregate viewVi and a confidence
interval around that mean. At the end of a phase, it applies the following rule to prune
low-utility views: if the upper bound of the utility of view Vi is less than the lower bound
of the utility of k or more views, then Vi is discarded.

– Multi-armed bandit pruning Second pruning scheme employs amulti-armed bandit strat-
egy (MAB) [2,33]. In MAB, an online algorithm repeatedly chooses from a set of
alternatives over a sequence of trials to maximize reward. This variation is identical
to the problem addressed by SeeDB: the goal is to find the visualizations (arms) with the
highest utility (reward). Specifically, SeeDB adapts the Successive Accepts and Rejects
algorithm from [2] to find arms with the highest mean reward. At the end of every phase,
views that are still under consideration are ranked in order of their utility means. Then,
it computes two differences between the utility means: �1 is the difference between the
highest mean and the k + 1st highest mean, and �n is the difference between the lowest
mean and the kth highest mean. If �1 is greater than �n, the view with the highest mean
is accepted as being part of the top-k (and it no longer participates in pruning compu-
tations). On the other hand, if �n is higher, the view with the lowest mean is discarded
from the set of views in the running. [6] proves that under certain assumptions about
reward distributions, the above technique identifies the top-k arms with high probability.

However, SeeDB pruning schemes experience some limitations, as they assume fixed data
distribution [32,33] for sampling to estimate the utility of views and require large samples
for pruning low-utility views with high guarantees. Moreover, aggregate functions MAX and
MIN are not docile to sampling-based optimizations.

Offline visualizations in SeeDB SeeDB prunes redundant views [33]: for each table, it first
determines the entire space of aggregate views. Next, it prunes all aggregate views containing
attributes with 0 or low variance since corresponding visualizations are unlikely to be inter-
esting. For each remaining view Vi , SeeDB computes the distribution for reference views on
the entire dataset. The resulting distributions are then clustered based on pairwise correla-
tion. From each cluster, SeeDB selects one view to compute as a cluster representative and
store stubs of clustered views for subsequent use. At run time, the view generator accesses
previously generated view stubs, removes redundant views, and passes the remaining stubs
to the execution engine.

3 Preliminaries

In this section, we present background details on visualizations in the context of structural
databases. We start by explaining how a visualization (or a view) is constructed by an SPJ
SQL query. Then, we define our scope of visualizations that our framework is focused on,
and how to measure the interestingness of a visualization based on a model proposed by
[33] and another model that we believe is important. Then, we formally present our problem
statement.
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3.1 Background and scope

A visualization Vi is constructed by an SQL select-project-join query with a group-by clause
over a database D. The attributes in a database table are classified into two sets: dimension
attributes set A = {a1, a2, . . .} and measure attributes set M = {m1,m2, . . .}. The set F =
{ f1, f2, . . .} contains all aggregation functions. Hence, each visualization Vi is represented
as a triple (a,m, f ), where a is a group-by attribute applied to the aggregation function f
on a measure attribute m.

We limit our scope of visualizations on the basic components found onmost 2-dimensional
visualization systems such as bar charts and line charts, as they satisfy a wide range of
applications requirements [17]. For instance, Fig. 2b represents a 2-D bar chart for the table
in Fig. 2a.

As an example, Vi (D) visualizes the results of grouping the data in D by a and then
aggregating the m values using f . This view is called the reference view. Consequently,
Vi (DQ) represents a similar visualization applied to the result set denoted as DQ for a given
user query Q and is called the target view. An example of a target view is shown in Fig. 3
where a is the boarding stops,m is the trip length, and f is the average aggregation function.

Any combination of (a,m, f ) represents a view. Accordingly, we can define the total
number of possible views as follows:

View Space (SP) = 2 × |A| × |M | × |F | (1)

Example 2 Using the GoCard database in Example 1, the dimensions within that database
can be classified as follows: the set of dimension attributes is A = {Operators, Operation date,
Route, Boarding stop, Alighting stop, Direction}, while the set of measure attributes is M =
{trip length, passengers by route, passengers no}, and the set of aggregate functions is F =
{count , sum , avg, max, min}, as shown in Fig. 1. Therefore, the view space of
GoCard database is: 2 × 6 × 3 × 5 = 180.

Though, in the context of Big Data, SP is potentially a very large number. Hence, there is a
need to automatically score all these SP views so that exploring them become efficient and
practical.

3.2 Views utility

Each view is associated with a utility value. The utility of a visualization is measured as its
deviation from a reference dataset DR . For instance, visualizations that show different trends
in the query dataset (i.e., DQ ) compared to a reference dataset DR are supposed to have
high utility. The reference dataset DR may be defined as the entire underlying dataset D, the
complement of DQ(D − DQ) or data selected by any arbitrary query Q′(DQ′).

Given an aggregate view Vi and a probability distribution for a target view P(Vi (DQ)) and
a reference view P(Vi (DR)), the utility of Vi is the distance between these two normalized
probability distributions. The higher the distance between the two distributions, the more
likely the visualization is to be interesting and therefore higher utility value. Formally:

U (Vi ) = S(P(Vi (DQ)), P(Vi (D))) (2)

where S is a distance function (e.g., Euclidean distance and earth mover’s distance). In
addition, S can be the Pearson’s correlation coefficient to capture interesting trends in visu-
alizations.

Hence, the problem of visualizations recommendation is as follows [33]:
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Definition 1 Given a user-specified query Q on a database D, a reference dataset DR , a
utility function U (), and a positive integer K . Find top-K aggregate views V1, V2, . . . , VK

that have the highest utilities among all views while minimizing total computation time.

Now, we are in place to present our problem formulation for visualization recommenda-
tions.

3.3 Problem formulation

Our proposed problem for visualization recommendations incorporates two limits (i.e., input
parameters) to overcome the limitation of exploring all views.

Definition 2 Given a user-specified query Q on a database D, a reference dataset DR , a
utility function U (), a positive integer K , an execution time limit tl or a views number limit
R where K ≤ R ≤ SP . Find top-K aggregate views V ≡ (a,m, f ) which have maximum
utilities U (V ) among all possible views in the specified limits R or tl while maximizing the
accuracy among all top-K views chosen from all SP views.

The limits tl and R inDefinition 2 are added explicitly to overcome the limitation of exploring
all views. The former is a time budget that any algorithm should not exceed, while the latter
is an upper bound on the number of views to be explored. For instance, tl can be set to zero,
and R = SP . That is, no limit on the execution time and no limit on the number of generated
views.

While those limits can be tuned by any valid value, an algorithm should output the same
views as if there were no limits. This requirement makes the problem non-trivial; hence, we
address it by presenting our optimization techniques encapsulated within the RtSEngine
framework.

4 Methodology: RtSEngine framework

The goal of RtSEngine is to recommend a set of aggregate views that are considered
interesting because of their abnormal deviations. To achieve that, RtSEngine utilizes the
following key idea: recommend views that are created from grouping high-ranked dimension
attributes A′ within the set A. The attributes ranks in A′ are computed using our proposed
prioritizing techniques discussed later in the following sections. Essentially, those techniques
evaluate the priorities of all dimension attributes according to their statistical features gathered
from themetadata, e.g., number of selected values, data distribution, and selectivity. Then, by
reordering all dimension attributes according to their priorities, only a subset of high-priority
attributes are passed to the execution engine, hence limiting the number of examined views
and execution time.

Conceptually, RtSEngine1 is designed as a recommendation plug-in that can be applied
to any visualization engine, e.g., Tableau and Spotfire. However, in this work, we built
RtSEngine as a standalone end-to-end system on top of SeeDB which allows users to pose
arbitrary queries over data and obtain recommended visualizations. RtSEngine is comprised
of two main modules (see Fig. 4):

1. PriorityEvaluatorAnunderlyingmodule in front of any recommendation engine.Used to
evaluate the dimension attributes that form visualizations according to a priority function
Pr computed using our proposed techniques.

1 Implementations and data are available at: https://github.com/ibrahimDKE/Cdb_RtsEngine_DKE_UQ.
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Fig. 4 RtSEngine: real-time evaluation architecture for automatic recommendation

2. Cost Estimator This module is supposed to run in parallel with the Priority Evaluator to
estimate the retrieval and computation costs of each visualization using our estimation
approaches. Estimating the visualization costs in real time improves the efficiency by
discounting high-cost and low-priority visualizations. Note that this module is an aware-
ness cost approach which incorporates the estimated costs to assess visualizations based
on their priorities and costs.

Wedefine a notion of benefitsBenefit (Vi ) of a viewVi as the gains fromeach view represented
as the utility of viewU (Vi ), compared with the time spent Cost (Vi ) to compute the view Vi .
Formally:

Benefit(Vi ) = U (Vi )

Cost (Vi )
(3)

Cost estimations of visualizations are discussed later in Sect. 4.2. Both modules (Priority
Evaluator and Cost Estimator) read information by querying metadata to collect information
about dimension attributes, e.g., number of distinct values and cardinality. Next, we describe
the two modules in details.

4.1 Priority evaluator: dimension attributes prioritizing

In this section, we discuss the proposed approaches for prioritizing the dimension attributes
in the both results set DQ and reference set (e.g., the entire dataset D) and suggest a set of
visualizations that are likely to be interesting and score high- deviation utilities in certain
real-time limits such as maximum number of explored visualizations and execution time.
The proposed approaches are based on our observations about the difference between the
number of distinct values in the dimension attributes in the results set DQ and the entire
dataset D affects on the deviation measures. In addition, other statistical features may also
affect such as data distribution and selectivity; such features will be discussed in more detail
in the next subsections. The following example illustrates this observation and describes how
our strategies are agnostic for any recommendation system.

Example 3 Suppose a flights database keeps flights records which contains two-dimension
attributes such as destination airport name and airlines and one metric is arrival delays.
Given the large size of the database (millions of records) contains 100 airports and 20 air-
lines companies, the analyst will study the average delays visualizations grouped by airports
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and airlines using a recommendation tool, e.g., SeeDB, and comparing these views with a
reference set to glean insights about all flights departure from Origin1. These views can be
expressed as SQL queries:

– V1: select AVG (arrival delays), airport from flights where origin= ’Origin1’ group by
airport;

– V2: select AVG (arrival delays), airlines from flights where origin= ’Origin1’ group by
airlines; ��

For instance, both visualizations V1 and V2 in Example 3 have the same number of distinct
values: 10 destinations airports and 10 airlines operators. Eventually, aggregate views V1
and V2 will be compared to the corresponding reference views (i.e., the entire dataset D)
according to a metric. In [33] for instance, it uses a deviation-based metric that calculates
the distance between the normalized distributions between the target and reference views. In
our Example 3, the average arrival delays of 10 destinations airports in view V1 are evaluated
against the average arrival delays of 100 destinations airports in the entire dataset D. Similarly,
the average arrival delays of the 10 airlines operators in view V2 are compared against the
average arrival delays of the all 20 airlines operators in the entire dataset D.

Thus, only 10 distinct values in view V1 will be compared with equivalent values in the
reference view, while the remaining 90 distinct values would have no equivalent values in
the target view. As a result, those remaining 90 distinct values will be compared with zeros.

Furthermore, in view V2 there are only 10 airlines operators that would be compared with
zeros. This illustration arises a question about the impact of the difference in distinct values
of views and their data deviations according to distance-based metrics.

Formally, Dval(Vi (DQ)) is defined as the number of distinct values in a target view Vi .
Consequently, Dval(Vi (D)) is the number of distinct values in the corresponding reference
view Vi . In Example 3, Dval(V1(DQ)) = 10 and Dval(V1(D)) = 100. As mentioned
previously, the deviation of each visualization is captured by a distance-based metric that
computes the distance between two probability distributions of views. That is the deviation
of a visualization Vi is its utility defined in Eq. 2: U (Vi ) = S(P(Vi (DQ)), P(Vi (D))). The
distance metric S() is a distance function such as Euclidean and earth mover’s distance.

We discuss the influence of the difference in distinct values on computing the view utility
U (Vi ) using Euclidean distance (although our experiments are using earth mover’s distance
function as the default deviation measure). As shown in Eq. 4, L2-norm distance evaluates
all aggregated values (points) in both views Vi (DQ) and Vi (D) to find the utility U (Vi ).
Hence, V1’s utility in Example 3 is obtained by computing the L2-norm distance between
the average arrival delays (values) of destination airports (points) in V1(DQ) and all airports
in V1(D) the entire dataset. Formally:

U (Vi ) =
√
√
√
√

n
∑

j=1

(Vi D(y j ) − Vi DQ(x j ))2 (4)

where n > 0 is the maximum number of points among Vi D and Vi DQ. Since the compared
views (i.e., target and reference view) may contain different number of distinct values, we
denote n′ as the number of records in Vi (DQ) and n′′ as the number of records in Vi (D).
Hence, we can rewrite the utility equation of view Vi as follows:

U (Vi ) =

√
√
√
√
√

n′
∑

j=1

(Vi D(y j ) − Vi DQ(x j ))2 +
n′′
∑

j=n′+1

(Vi D(y j ) − 0)2 (5)
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where n′ < n′′, and n = n′ + n′′. Because there are only n′ values in the target view Vi DQ,
then all subsequent points in the reference view Vi D, i.e., n′′ −n′ values, would be compared
with zeros. The higher the difference between distinct values in corresponding views forces
much remaining values to be compared with zeros and increases the distance among views.
In Example 3, the number of records n′ of both target views V1(DQ) and V2(DQ) equals
10. However, the number of records in the reference views, i.e., n′′, is V1(D) = 100 and
V2(D) = 20. V1 is expected to show higher distance (deviation) than V2 when computing
L2 norm distance because 90 airports would be evaluated to zeros in V1 but there are only
10 airlines operators with zero values in view V2. Since every view is an aggregate group-by
query over a dimension attribute as described earlier, then the number of records in each view
equals the number of distinct values in the grouped dimension attribute.

Such observations can be utilized to early asses these (visualizations) views before execut-
ing the underlying queries to avoid computational costs (i.e., retrieval and deviation measure
costs) by evaluating dimension attributes that contribute in creating visualizations. Further-
more, evaluating dimension attributes can also be done using other statistical properties such
as selectivity and data distribution.

Further discussion of utilizing these features in our proposed approaches is presented in
the next sections.

4.1.1 Ranking dimension attributes based on distinct values

Scoring dimensions based on difference of distinct values is the first class of prioritizing
algorithms. This approach is referred to as Di f fDVal, and it is based on the basic observation
about the number of distinct values of the dimension attributes in the results set DQ and the
entire database D. The Di f fDVal algorithm scores the dimension attributes according to
the difference between the normalized distinct values of attributes in the result set DQ
and the entire database D. Algorithm 1 inputs a query Q, a set of dimension attributes A,
maximum views limit R, and/or execution time limit tl. Then, Di f fDVal obtains the number
of distinct values for all dimension attributes in both results sets DQ and reference dataset D
by posing underlying queries to select the count of distinct values. After getting the number of
distinct values, Di f fDVal computes the priority of each dimension attribute as the difference
between each normalized values. Then, Di f fDVal sorts all dimension attributes based on
their priorities. Based on Eq. 1, Di f fDVal computes the required number of dimension
attributes G that creates the limit number of views R, and then, it returns the setH of size G
that contains a group of high-priority attributes.

In case there is an execution time limit tl, Di f fDVal returns anordered set of all dimension
attributes based on their priorities, and then, it passes the time limit tl to the recommendation
visualization engine to limit the executions.

4.1.2 Scoring dimension attributes based on selectivity

In this section, we discuss another variation of scoring the dimension attributes by capturing
the data distribution in terms of query size and selectivity. Selectivity estimation is at the heart
of several important database tasks. It is essential in the accurate estimation of query costs
and allows a query optimizer to characterize good query execution plans from unnecessary
ones. It is also important in data reduction techniques such as in computing approximated
answers to queries [1,8]. Databases have relied on selectivity estimation methods to generate
fast estimates for result sizes [3,5,25,26].
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Algorithm 1: Di f fDVal
Input: Attributes A(a1, a2, . . . , an) , Query Q, Views limit R
Output: Set H: Highest priorities of dimension attributes
C = φ Set of all dimension attributes priorities ;
for i = 1 to n do

DvalD(ai ) ← number of distinct values of ai in D ;
DvalDQ(ai ) ← number of distinct values of ai in DQ ;
Pr(ai ) = |DvalD(ai ) − DvalDQ(ai )|;
C ← Pr(ai );

Sort C;
G = | R

M×F | Calculate the required dimension number;
for i = 1 to G do

H ← C.get (i);
return H;

The selectivity ratio [20] is defined as follows:

Definition 3 The degree to which one value can be differentiated within a wider group of
similar values.

The selectivity ratio also known as the number of distinct unique values in a column divided
by its cardinality [19]. Formally, the selectivity ratio of attribute ai is:

Sel Bai = Number of distinct values of ai in B

Cardinality of ai in B
(6)

where B is either the result set DQ or the reference dataset D, and 0 < Sel Bai ≤ 1.
For the flight database in Example 3, both the result set DQ and the reference set D

have a fixed number of records, which reveals that the selectivity ratio of the airlines column
is usually low because we cannot do much filtering with just the 20 values. In contrast,
the selectivity ratio of the airports column is high since it has a lot of unique values. Our
proposed approach Sela utilizes the number of distinct values in the dimension attributes and
incorporates the query size to identify priorities of these dimensions by calculating a priority
function Pr() for each dimension attribute. Then, Sela reorders the dimension attributes
based on the priority.

Using selectivity ratio and the number of distinct values for assessing visualizations in
D and DQ gives closer insights about the data characteristics such as the size (number of
records) of aggregated views generated fromgroup-by attributes and the uniqueness degree of
data in each dimension attribute. Again, in the flights database Example 3, DQ has 10 distinct
airports out of 100 airports in the airports column. This means any visualization constructed
by grouping airports column in result set DQ contains only 10 aggregated records. Hence,
using the query size assists on quantifying how many records would be aggregated in each
view that formed from grouping a dimension attribute. However, capturing the change of both
number in distinct values and the number of aggregated records in each dimension attribute
in result set DQ and reference set D is essential to identify visualizations that produce high
deviations among all possible visualizations. Thus, we modified the priority function Pr()
in Sela to consider the number of records in each dimension attribute ai and its selectivity
ratio. Formally:

Pr(ai ) = DvalDQ(ai ) ∗ SelDQ
ai +

(
DvalDQ(ai )

DvalD(ai )

)

∗ SelDai (7)
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The attribute priority Pr(ai ) evaluates the number of distinct values for each dimension
attribute in result set DQ multiplied by its selectivity ratio. This identifies the distinct values
variations and the diversity through each dimension attributewhen comparedwith the number
of records. Furthermore, the same number of distinct values is assessed in the corresponding
dimension attribute of the reference set D while considering the number of records.

In Sela, high-priority dimension attributes are assumed to produce aggregate views (i.e.,
target views) that contain many groups (i.e., points) which are aggregated from records in
the result set DQ. Also, the same high-priority dimension attributes are assumed to produce
aggregate views (reference views) by aggregating larger number of records in reference set
D. This has direct effect on the aggregated values and the number of groups in both target
and reference views which is expected to score high-deviation utilities.

Although the Di f f Dval approach prioritizes dimension attributes (aggregate views)
according to the number of distinct values, it is limited since it is incompetent to prioritize
dimension attributes (aggregate views) when the number of distinct values remains stable in
both result set DQ and reference set D. Moreover, Di f f Dval does not consider the data
distribution within the attributes. To overcome this limitation, Sela utilizes the number of
records and the selectivity ratios of dimension attributes in both datasets DQ and D.

The proposed algorithm Sela firstly computes the priority of each dimension attribute
based on Eq. 7. Then, it sorts the dimension attributes based on the assigned priority to
create a set H of the top G dimension attributes. In case of execution time limit tl, Sela
returns an ordered set of attributes with the highest priorities and passes time limit tl to the
recommendation visualization engine to limit the executions.

4.1.3 Prioritizing dimension attributes based on histograms

We proposed Sela and Di f fDVal approaches to automatically recommend views with the
highest deviations based on a priority for each dimension attributes in a star schema database
D. Specifically, the proposed approaches relay on the number of the distinct values and the
selectivity ratio of each dimension attribute in the compared datasets (i.e., DQ and D) to
compute the attributes priorities.

However, the limitation of the proposed approaches is using the selectivity ratio to reflect
the degree of variations of data in the dimension attributes while ignoring the distribution
of data itself. In addition, it is difficult to prioritize dimensions that have the same distinct
values or the same selectivity ratio.

Hence, we propose the DimsHisto approach which attempts to capture data distribution
inside the dimension attributes by creating frequency histograms and directly measur-
ing the distance among corresponding histograms to evaluate these dimension attributes.
DimsHisto firstly generates frequency histograms for all dimension attributes in each
dataset. Then, it computes the deviation in each dimension by calculating the normalized
distances between each corresponding dimension attribute. For any star schema database D,
a dimension attribute ai ∈ A = {a1, a2, . . . , an} can be represented as two frequency his-
tograms: HD(ai ), and HDQ(ai ). Those two histograms are created by executing the following
queries:
HD(ai ): Select count (ai ) from D group by ai ;
HDQ(ai ): Select count (ai ) from DQ group by ai ;
Then, after normalizing these histograms, the priority of each dimension attribute is computed
as the distance between these two histograms:

Pr(ai ) = S(HD(ai ), HDQ(ai )) (8)
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where S() is a distance metric. Eventually, the dimension attributes are sorted according to
their priorities.

A constructed histogram HD(ai ) is equivalent to all aggregate views created by aggregat-
ing any measure attribute (using aggregate function Count) and grouped by the dimension
attribute ai in the dataset D. Such a histogram assists in improving the performance of recom-
mendation engines by avoiding the construction and computation of aggregate views along
all measure attributes.

DimsHisto has to submit 2 × |A| queries to compute the histograms of all dimensions
and the computations of the distance metric. However, this step can be optimized to only
|A| by computing the histograms of all dimensions for the entire database offline. While
DimsHisto can use any distance metric to compute the deviation among the views, we
suggest to use the same metric to unify the metric of the deviations.

All proposed algorithms Di f fDVal, Sela, and DimsHisto have the same number of
queries as the cost of retrieving data. While DimsHisto has additional cost for distance
computations, it shows high accuracy for most of the aggregate functions such as sum, avg,
and count, because these functions are relative to the data frequencies. Though, DimsHisto
is less descriptive to other aggregate functions such asMin andMax, as they are not amenable
for sampling-based optimizations.

4.2 Cost estimator: visualizations cost estimation

The previous approaches rank dimension attributes according to their priorities and rec-
ommend visualizations while being oblivious to the retrieval and computational costs of
those visualizations. However, visualizations created using different dimension and mea-
sures attributes have different retrieval and execution costs according to the query size, type
of the aggregate functions, number of groups in each attribute, and the time used to compute
the deviation among all values in the corresponding visualizations.

This urges the need to only generate visualizations with high deviations and avoid the
computation costs of the low-deviation ones. Besides differences in deviation utilities among
different visualizations, each visualization exhibits different execution and retrieval costs.
Furthermore, some visualizationsmay take long computations and retrieval time to only yield
small deviation distances. The trade-off between gaining high utilities of the visualizations
and their computations and querying costs is challenging because it involves the optimizations
of finding high- utility visualizations while considering their costs.

The cost estimation step is essential to determine the cost of running and computing the
deviations of a visualization to evaluate its costs against the utility obtained by measuring
the deviation among visualizations. To improve the performance of recommendation appli-
cations, it is vital to discard visualizations that are expected to consume much retrieval and
computation time while returning low-deviation distances.

The cost estimation modules approximate CPU and I/O costs to combine them into an
overall metric that is used for comparing alternative plans. The problem of choosing an
appropriate technique to determine CPU and I/O costs requires considerable care. An early
study [23] identified key roles for accurate cost estimation, such as the physical and statistical
properties of data. Cost models take into account relevant aspects of physical design, e.g.,
co-location of data and index pages. However, the ability to do accurate cost estimation and
propagation of statistical information on data remains one of the difficult open issues in query
optimization [4].

We determine the cost of a view Cost (Vi ) as the sum of the following:

– Cost of running view Vi (a,m, f ) on dataset D.
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– Cost of running view Vi (a,m, f ) on dataset DQ.
– Computation cost of the distance function S(Vi DQ, Vi D).

Formally:
Cost (Vi ) = C(Vi DQ) + C(Vi D) + C(S(Vi DQ, Vi D)) (9)

As mentioned previously, the cost of running a view Vi (a,m, f ) on a database is affected
by various factors. For instance, access paths and indices that are used to execute the view
determine the proper execution plan, which reflects the view execution cost.

Running cost of views C(Vi DQ) and C(Vi D) refers to the retrieval cost of the results of
both views Vi DQ and Vi D as discussed earlier.

Computation cost of C(S(Vi DQ, Vi D)) is considered as the time spent on calculating the
distance measure S() for each value in both corresponding views.

The number of points that are compared in the corresponding views Vi DQ and Vi D
is the maximum number of groups (bins) among these two views, and it is denoted as n.
Alternatively, it equals the maximum number of distinct values in Vi DQ and Vi D attribute
dimension.

Note that the cost of distance measures vary according to their computational complexity.
For example, theEuclideandistance is faster than the earthmover’s (EMD)distance function.
This is because EMD has a very high complexity O(n3logn) [16], while the complexity of
the Euclidean distance is O(n).

Since the computation cost depends on n and also depends on the computational com-
plexity of the distance measure, we propose the following view cost equation:

C(S(Vi DQ, Vi D)) = Od(n) × dt (10)

where Od is the complexity of the distance measure and dt is the computation time used to
compute a single point.

4.2.1 Retrieval costs of visualizations

In our context, the execution cost of views can be obtained using two different methods:

– Actual cost actual costs of the views are obtained by executing all queries to get their
exact I/O costs and calculating the deviation among the corresponding views.

– DB estimates reading the estimates of each view directly from the database engine (i.e.,
query optimizers).

However, our proposed cost method is not restricted to a certain cost estimation approach
including methods based on sampling (e.g., [12,21]), histograms (e.g., [14]), and machine
learning (e.g., [7,30]) which can be used to obtain the retrieval cost from independent esti-
mation models.

Our proposed estimation algorithm V iewsEstimate is illustrated in Alg.4.
V iewsEstimate takes dimensions, measures attributes, and the aggregated functions as
input. Then, it estimates I/O and computation time for each view Vi for both datasets and it
returns the estimated costs of each view. The estimated I/O time for each view is obtained
by reading the estimation of queries from the database query optimizer or using an indepen-
dent cost estimation model. Then, V iewsEstimate calculates the computations costs of the
distance measure between the corresponding views according to equation Eq. 10 to find the
total estimated cost. Afterward, V iewsEstimate adds up the computations cost and the I/O
cost for Vi and then stores it into set S.
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Table 1 Experiments parameters and their default values

Parameter Range Default values

Top-K 1–70 10, 20

Views limit R 1–100 70

Dimension attributes |A| – 9, 10

Measure attributes |M | – 3, 10

Aggregate functions |F | count, sum, avg, min, max –

Cost Estimator utilizes the setS by defining a benefit of a dimension attribute Bene f i t (ai )
as the priority of ai divided by the maximum estimated cost of any view created using
dimension attribute ai , formally:

Bene f i t (ai ) = Pr(ai )

Cost (ai )
(11)

where Cost (ai ) is the maximum estimated cost of any view created by grouping by ai .
Finally, DimsEstimate ranks dimension attributes depending upon their benefits as com-

puted by Eq. 11. As shown in Alg.4, V iewsEstimate inputs a set of dimensions and a
visualization number limit R, and then, it iteratively calculates the priority and the cost of
each dimension attribute to compute the benefit of each attribute. V iewsEstimate computes
the number of dimension attributes G that create the limit R and then outputs a set of high
Bene f i t attributes of size G.

5 Experiments setup

Before presenting our results, we describe the details of the conducted experiments including
the used datasets, the proposed algorithms, and the performance metrics which we use to
measure the effectiveness and efficiency. Table 1 shows the parameters used throughout the
experiments.

5.1 Datasets

We used the following real world datasets:

1. Flights database The Flights database contains flights delays in the year 2008. It was
obtained from the USDepartment of Transportation’s Bureau of Transportation Statistics
(BTS).2 The database contains 250k tuples with a total of 20 dimensions: 10 dimension
attributes and 10 measure attributes.

2. GoCard database This is the database we introduced in Example 1. It has 4.4 million
tuples with a total of 13 dimensions.

5.2 Algorithms

We have implemented the following algorithms:

2 http://www.transtats.bts.gov/.
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Algorithm 2: Sela
Input: Attributes A(a1, a2, . . . , an) , Query Q, Views limit R
Output: Set H: Highest priorities of dimension attributes
C = φ Set of all dimension attributes priorities ;
for i = 1 to n do

DvalD(ai ) ← number of distinct values of ai in D ;
DvalDQ(ai ) ← number of distinct values of ai in DQ ;

Pr(ai ) = DvalDQ(ai ) ∗ SelDQ
ai + (

DvalDQ(ai )
DvalD(ai )

) ∗ SelDai ;

C ← Pr(ai );
Sort C;
G = | R

M×F | Calculate the required dimension number;
for i = 1 to G do

H ← C.get (i);
return H;

Algorithm 3: DimsHisto
Input: Attributes A(a1, a2, . . . , an) , Query Q, Views limit R
Output: Set H: Highest priorities of dimension attributes
C = φ Set of all dimension attributes priorities ;
for i = 1 to n do

Compute HD(ai ) and HDQ(ai );
Pr(ai ) = d(HD(ai ), HDQ(ai ));
C ← Pr(ai );

Sort C;
G = | R

M×F | Calculate the required dimension number;
for i = 1 to G do

H ← C.get (i);
return H;

1. SeeDB baseline State-of-the-art algorithm [33] that processes the entire data without
discarding any view. It thus provides an upper bound on latency and accuracy and lower
bound on the error distance.

2. SeeDB Rnd A modified version of SeeDB which returns a random set of K aggregate
views as the result. This strategy gives a lower bound on accuracy and upper bound on
error distance: for any technique to be useful, it must do significantly better than SeeDB
Rnd.

3. DiffDVal It prioritizes dimensions based on the number of distinct values in each dimen-
sion (Algorithm 1).

4. Sela Our proposed algorithm (Algorithm 2).
5. DimsHisto Our proposed algorithm (Algorithm 3).

Note that the Priority Evaluator module in our proposed RtSEngine utilizes DiffDVal,
Sela, and DimsHisto algorithms to prioritize visualizations. On the other hand, the Cost
Estimator module implements the same three algorithms while utilizing the cost estimations
approaches described earlier in Sect. 4.2.

5.3 Performance metrics

We used two metrics for evaluating the results of our proposed approaches. One of these
metrics is used by SeeDB [33] to evaluate the quality of the recommended views. To evaluate
the quality and correctness of the proposed algorithms, we used the following metrics:
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Algorithm 4: V iewsEstimate
Input: Attributes A(a1, a2, . . . , an) , Measures M(m1,m2, . . . ,mo) , Functions F( f1, f2, . . . , fx )
Output: S: set of views estimated costs
for i = 1 to n do

for j = 1 to o do
for p = 1 to x do

C(V DQ) = EstCost DQ(ai ,m j , f p);
C(V D) = EstCost D(ai ,m j , f p);
C(d(V DQ, V D)) Eq.10;
Cost = C(V DQ) + C(V D) + C(d(V DQ, V D)) ;
S.add(Cost, (ai ,m j , f p)) ;

return S;

1. Accuracy If {V S} is the set of aggregate views with the highest utility, and {V T } is the
set of aggregate views returned by the baseline SeeDB, then the accuracy is defined as:

Accuracy = 1

|VT | ∗
∑

x, where

{

x = 1 if V Ti = V Si
x = 0 otherwise

i.e., accuracy is the fraction of true positions in the aggregate views returned by SeeDB.
2. Distance error Since multiple aggregate views can have similar utility values, we use the

utility distance as a measure of how far SeeDB results are from the true top-K aggregate
views. Formally, SeeDB [32] defines distance error as the difference between the average
utility of {V T } and the average utility of {V S}:

Distance error = 1

K
(
∑

i

U (VTi ) −
∑

i

U (V Si ))

All experiments were run on a PC machine with Windows 10, Intel CPU 2.8Ghz, and
8GB of RAM memory. The RtSEngine and the algorithms were coded using the Java pro-
gramming language, and datasets were loaded into a Postgres DBMS. The datasets along
with the implementation are available online as a GitHub repository at https://github.com/
ibrahimDKE/Cdb_RtsEngine_DKE_UQ.

6 Experiments results

Next, we present our results which demonstrates the efficiency and effectiveness of our
proposed algorithms. Firstly, we test the quality of the results produced by our algorithms
on the Flights database in Sect. 6.1. Then, we perform similar experiments on the GoCard
database in Sect. 6.2, to show that the results are consistent. Later, we present our detailed
results on the efficiency of our algorithms in Sect. 6.3. Finally, we show our experiments on
the time limit parameter in Sect. 6.4 and cost estimation in Sect. 6.5.

6.1 Quality evaluation across aggregate functions

In these experiments, we evaluated the quality of the recommended visualizations produced
by our proposed techniques across different aggregate functions, namely count, sum,
avg, min, max. The dataset used is the Flights database with 10 dimension attributes and
10 measure attributes. We run these experiments to assess the quality of the recommended
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(a) (b) (c)

Fig. 5 Accuracy on varying view space R and K = 20. a Sum, b avg, c count

(a) (b) (c)

Fig. 6 Distance error on varying view space R and K = 20. a sum, b avg, c count

views over each aggregate function separatelywith a view space size SP = 1×10×10 = 100
possible views. A utility of a view is measured using the earth mover’s distance (EMD).

We report the accuracy and distance error of views produced by our proposed algorithms
by varying the limited number of views R while K = 20. In these experiments, we use the
following query as our target view:

Q : SELECT * FROM Flights WHERE uniquecarrier

=’American Airlines Inc.’

In summary, Sela and DimsHisto algorithms both produce results with accuracy > %80
for all aggregate functions, especially when R = 60, as shown in Fig. 5a–c. Moreover,
they produce results with %100 accuracy when R > 60. Sela does slightly better than
DimsHisto in terms of accuracy, as Sela evaluates the recommended views by capturing
the change of the selectivity ratios of dimension attributes that create views in both result
set and reference set. However, DimsHisto scores %100 accuracy in Fig. 5c for aggregate
function count because the generated histograms from this algorithm are similar to the
views created by counting dimension attribute values across different measure attributes.
Algorithm Di f fDVal has the lowest accuracy and the highest distance error among the
other algorithms specially for aggregate functions max, min as shown in Fig. 7a, b as it
assess recommended views based on the difference of the distinct values only (Fig. 6).

As shown in Fig. 6a–c, the proposed algorithms produce results near-zero distance error for
all aggregate functions compared with lower baseline strategy SeeDBRnd which produce
views with low quality; however, the quality of the recommended views produced by the
proposed algorithms is almost near to the same utilities of views output by the top baseline
SeeDBbaseline. The distance error of results in the first view limits=20 and 30 views as
shown in Fig. 8a, b is high specially for the aggregate function min because functions such
as min, max are not docile for sampling, but the proposed algorithms still score very low
distance error.
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(a) (b)

Fig. 7 Accuracy on varying view space R and K = 20. a max, b min

(a) (b)

Fig. 8 Distance error on varying view space R and K = 20. a max, b min

The proposed techniques recommend high-quality views in different views limits. Fur-
thermore, the accuracy is increasing without fluctuating along various views limits R, and
similarly, the distance error is declining while increasing the number of explored views R.
In the worst cases, the accuracy and the distance error remain constant while increasing the
number of explored views R.

In the following experiments, we vary K and fix the number of explored visualizations
as R = 70 and measure the accuracy, and error distance for each of our strategies along
different aggregate functions. We pay special attention to K = 10 and K = 20 because
empirically these K values are used most commonly. Figures 9a–c and 11a, b show that
Sela and DimsHisto algorithms both produce results with accuracy %100 and zero dis-
tance error when K = 10 and K = 20 for all aggregate functions. Moreover, Di f fDVal
algorithm scored accuracy %100 in the first number of recommended views K = 10.
Although Di f fDVal obtains the same accuracy as SeeDBRnd for all aggregate functions,
the Di f fDVal scores much better distance error than SeeDBRnd , as shown in Figs. 10a–c
and 12a, b. As discussed in the previous experiment, the DimsHisto algorithm scores accu-
racy%100 specificallywhen the aggregate function iscount. It also succeeds to recommend
views with %100 accuracy and zero distance error for aggregate functions count, sum,
avg as shown in Fig. 9a–c. In addition, we found that Sela and DimsHisto algorithms
produce high-quality views with %100 accuracy and zero distance error for max aggregate
function. Also, they obtain > %75 and < 0.2 distance error for min aggregate function
when K = 70 as shown in Fig. 12a, b, respectively.

Figures 10a–c and 12a, b show that the Di f fDVal approach scores the same accuracy
produced by SeeDBRnd and obtains very low distance error along all aggregate functions
when compared with SeeDBRnd . Hence, our proposed approaches boost the accuracy of
the recommended views for the mostly common used K values. Moreover, the Sela and
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(a) (b) (c)

Fig. 9 Accuracy while varying K and R = 70. a sum, b avg, c count

(a) (b) (c)

Fig. 10 Distance error on varying K and R = 70. a sum, b avg, c count

(a) (b)

Fig. 11 Accuracy on varying K and R = 70. a max, b min

DimsHisto algorithms achieve better quality results than Di f fDVal because they capture
the data distribution in the dimension attributes by using selectivity ratios and frequency
histograms.

6.2 Accuracy evaluation

We present now our results on the GoCard database for all aggregate functions count,
sum, avg, min, max. Hence, the view space SP = 5 × 9 × 3 = 135 views. Similar
to the previous experiments, we used earth mover’s distance (EMD) as the deviation metric
for computing the utility of a view. Also, we use the following query as our target view:

Q : SELECT * FROM GoCard WHERE alightingstop

=’University of Queensland’;

Figure 13a shows the accuracy of the results produced by algorithms Sela, Di f f DVal,
DimHisto, and SeeDBRnd to find top 25 views comparing with different view space R
values. As shown, the proposed algorithms Sela and Di f f DVal scored the same accuracy
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(a) (b)

Fig. 12 Distance error on varying K and R = 70. a max, b min

(a) (b)

Fig. 13 Results quality while varying view space R and K = 25. a Accuracy, b distance error

in the first 30 explored views. However, DimsHisto shows lower accuracy than Sela and
Di f f DVal when the number of explored views is 45. The reason is DimHisto evaluates
dimension attributes according to their frequencies; hence, it is less descriptive to some
aggregate functions such as max, min. Note that the accuracy of the proposed algorithms
increases with R, as shown in Fig. 13. Finally, SeeDBRnd obtains the lowest accuracy while
varying R, except when it considers almost all the views, i.e., when R approaches SP .

Figure 13b reports the distance error produced by algorithms Sela, Di f f DVal, and
DimsHisto to find top 25 (K = 25) views across different values of R. As shown, our
proposed algorithms succeed to minimize the distance error as quickly as SeeDBBaseline,
especially when expanding the space size R. Although algorithm DimsHisto obtains lower
accuracy than Sela and Di f f DVal as shown in Fig. 13a when R = 45, the distance error at
the same view space is low. This is because DimsHisto recommends different views with
high utility values to minimize the distance error. SeeDBRnd shows high distance error even
when the space size is large, i.e., R = 90.

To sumup, the proposed algorithms evaluate the dimension attributes according to different
priorities methods. Then, by recommending a set of views which increases the quality of the
view space limit R in terms of minimizing the distance error and enhancing the accuracy, as
explained earlier by Fig. 13a, b.

Figure 14a shows the accuracy of the compared algorithms in a fixed space size R =
90 while varying K . As shown, all algorithms score %100 accuracy in the first top 45
views, which form half of the explored views. We observe that the accuracy declines while
increasing K in a fixed space limit R. This is because when one-dimension attribute is
incorrectly prioritized, it will consequently affects all recommended views that are created
from that dimension attribute. However, the accuracy is above %50 when K = 90 (i.e., the
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(a) (b)

Fig. 14 Results quality while varying K and R = 90. a Accuracy, b distance error

(a) (b)

Fig. 15 Algorithms performance while varying R. a Execution time while varying R, b average overhead

entire view space limit) as shown in Fig. 14a. Furthermore, analysts are usually interested in
recommending a small number of visualizations, i.e., K = 25.

In Fig. 14b, the distance error of the compared algorithms is shown while varying K and
R is fixed to 90 views. All algorithms produce small distance error for K = 60; however,
Di f f DVal shows the smallest distance error across different K values. Both Sela and
DimHisto report growing distance error with respect to top-K required by the analyst in
certain view space R = 90.

While the discussed algorithms show high accuracy and low distance errors along dif-
ferent R and K values, as demonstrated above, these algorithms differentiate on the quality
measures. For instance, Sela and Di f f DVal obtain higher accuracy when compared with
DimHisto as shown in Figs. 13a and 14a, but Di f f DVal obtains the lowest distance error,
as shown in Figs. 13b and 14b.

6.3 Efficiency evaluation

In this section, we evaluated the efficiency of our prioritizing algorithms in terms of the
overhead added to the automatic recommendation engine RtSEngine.We report the overhead
as the execution time averaged over 5 runs. Similar to previous experiments, we vary K and
R and compare with the actual execution of SeeDB engine as a baseline.

As shown in Fig. 15a, the total execution time of the algorithms is compared with the
original SeeDB baseline. As shown, the improvements in the performance by using the
proposed algorithms are significant when compared with the baseline. Furthermore, the
execution time of our proposed algorithms increases linearly with R.
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(a) (b)

Fig. 16 Algorithms performance on varying K . a Total execution time while varying K and R = 90, b
average overhead while varying K and R = 90

The execution time shown in Fig. 15b is the extra overhead needed by our proposed
algorithms. As shown, the average overhead is almost stable along different R values. This
is because our algorithms evaluate a fixed set of dimension attributes every time, regardless
of the value of R. The high cost of DimsHisto is due to its nature: it processes a number of
queries to create histograms for computing the distance among them.

The following experiments discuss the efficiency of the proposed algorithms along dif-
ferent K values. As shown in Fig. 16a, the proposed algorithms show improvements in the
execution.More than%40when comparedwith theSeeDBbaseline execution time.As shown
above, DimsHisto shows the highest cost among the algorithms Sela and Di f f DVal.

Figure 16b shows the average overhead of the algorithms while varying K . The overhead
is almost constant while increasing K . This is because the space limit R is constant too.

6.4 Time limit (t l)

In these experiments, we evaluated the quality of the recommended visualizations produced
by our proposed techniques across different aggregate functions, namely count, sum,
avg, min, max. The dataset used is the Flights database with 10 dimension attributes and
10 measure attributes. We run these experiments to assess the quality of the recommended
views over each aggregate function separatelywith a view space size SP = 5×10×10 = 500
possible views. A utility of a view is measured using the earth mover’s distance (EMD).

We report the accuracy, distance error, and efficiency of views produced by our proposed
algorithms by varying the time limits tl, number of views R and K . In these experiments,
we use the following query:

Q : SELECT * FROM Flights WHERE dimmonth IN

(’APR’,’MAY’,’JUN’);

The query Q represents the second quarter of the database, so that we can compare with
the entire database to find different K views while varying the time limit tl. In addition, we
evaluated the quality of the top-K views produced by each algorithm with those produced
by SeeDB baseline, i.e., without any time limits or optimizations used. We implemented
SeeDBT imelimit algorithm which processes the entire data and views in a specified exe-
cution time limit and then recommends top views that are processed in that time limit. This
strategy represents a lower bound on accuracy and an upper bound on distance error.
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(a) (b) (c)

Fig. 17 Performance of Sela , Di f f DVal, DimHisto, and SeeDBT imelimit on different time limits
while K = 100. a Accuracy, b distance error, c average overhead

(a) (b) (c)

Fig. 18 Performance ofSela , Di f f DVal, DimHisto, and SeeDBT imelimit on varying K and tl = 18s.
a Accuracy, b distance error, c average overhead

In Fig. 17a, b, the accuracy and distance error of the results produced by algorithms Sela,
Di f f DVal, DimHisto, and SeeDBT imelimit to find a top 100 (K = 100) views are
compared with SeeDB baseline on different execution time limit tl. These algorithms output
an ordered set of dimension attributes based on their priorities and submit the ordered set to
the execution engine. Then, it processes all views generated according to the ordered set that
produced by algorithms. As shown, SeeDBT imelimit shows high distance error and very
low accuracy as well while the algorithms Sela and Di f f DVal score higher accuracy than
DimHisto. Although the proposed algorithms show a growing accuracy while extending
the time limit, they achieved %100 accuracy for tl > 18000 ms. For a big database as the
one used here (i.e., 500 different views), 18 seconds is considered reasonable.

The algorithms boosted the performance by more than %30 and preserved the quality of
views. On the other side, Fig. 17c describes the execution costs referred to as the overhead
time of the proposed algorithms on the same experiment. DimHisto algorithm execution
time is about 1200ms,while the algorithms Sela and N−N ′ have almost the similar execution
time, about 825ms. This shows that Sela and Di f f DVal algorithms are faster by %66 than
DimHisto. As discussed previously, the additional histograms distance computations are
the cause of the extra overhead in algorithm DimHisto.

To show the effects of varying K with time limits, Fig. 18a, b show the accuracy of the
algorithms Sela , N − N ′, DimHisto, and SeeDBT imelimit in a certain time limit tl =
18000ms. As shown, all algorithms score %100 accuracy in the first top 100 views. However,
the accuracy declines with increasing K while tl is fixed, but the proposed algorithms score
very small distance error for large values of K , while SeeDBT imelimit shows very low
accuracy and huge distance error. As illustrated in Fig. 17c, the overhead costs of the proposed
algorithms remain stable on different time limits. In short, the proposed algorithms improve
the quality of the results, thanks to the evaluation metrics that are used along different K , R,
and time limits tl values. Moreover, the algorithms overhead is comparatively small with the
total execution time of baseline SeeDB.
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6.5 Cost estimation evaluation

In the next experiments, we evaluate our proposed cost estimation methods discussed previ-
ously in Section 4.2 on the GoCard database with SP = 5×9×3 = 135. Similar to previous
experiments, we include the aggregate functions count, sum, avg, min, max and
use the earth mover’s distance (EMD) as our deviation metric for computing the utility. We
use the following query for the next experiments:

Q : SELECT * FROM GoCard WHERE alightingstop

=’University of Queensland’;

Weare interested in evaluating the results of the cost estimationmethods based on the classical
effectiveness and efficiency. For effectiveness, we asses the quality of views outputed by the
proposed prioritizing algorithms Di f f DVal, Sela, and DimsHisto along different cost
estimation methods (i.e., DB estimate and actual costs) comparing with SeeDB baseline.
We implemented two baseline strategies: SeeDB baseline which processes the entire data
and evaluates all views without any cost considerations. Thus, it provides upper bounds on
latency and accuracy and a lower bound on distance error. The other baseline strategy we
implemented is actual costs that computes the actual execution time of all views and also the
actual computational time for computing the utility of views.

We measure the quality of results based on the accuracy and distance error. However,
the efficiency of estimating methods is captured by showing the execution time across the
proposed prioritizing algorithms Di f f DVal, Sela, and DimsHisto.

The first experiment evaluates the results of the top 25 views using the DB estimates
(reading the costs from thedatabase optimizer) alongdifferent space limits Rwhile comparing
the estimated costs of the recommended views with the baseline. Figure 19a shows that the
accuracy of the results produced by Sela, Di f f DVal, and DimHisto while reading the
costs of the recommended views from the database optimizer to find a top 25 views while
varying R is almost %100 starting from R = 60.

While Sela algorithm has the highest accuracy and the lowest error distance among all
proposed algorithms as shown in Fig. 19b, the accuracy of Di f f DVal is very low when
R ≤ 60 because it evaluates views according to the difference of distinct values only and
does not consider the query size, while Sela does.

Consequently, the error distance is higher than Sela and DimsHisto.
The following experiment illustrates the average overhead of using different cost estima-

tionmethods alongour prioritizing algorithms added to the actual SeeDBbaseline. InFig. 19c,
the average overhead of implementing the algorithms Sela, Di f f DVal, and DimsHisto
and reading the costs from database optimizer is shown on the y-axis. As shown, computing

(a) (b) (c)

Fig. 19 Results quality and average overhead using DB Estimation. a Accuracy, b distance error, c average
overhead
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actual costs is much expensive than running SeeDB itself. This is because SeeDB does not
execute all aggregate queries. For example, the average functionavg of a view is computed by
dividing the total (sum aggregate function) on their frequency (count aggregate function).
Moreover, SeeDB combines the aggregate queries of the datasets D and DQ. All algorithms
have a stable performance on different space limits R because the algorithms evaluate the
same set of dimension attributes A and outputs a subset A′ of top-scored dimension attributes.
As shown, DimsHisto shows a considerable time cost since it create and assess histograms;
however, both algorithms Sela and Di f f DVal have nearly equal execution costs.

7 Conclusion

Finding top interesting visualizations by exploring a specified number of visualizations or an
execution time budget, while persevering the quality and the accuracy of the recommended
views is a challenging and emerging problem. In this paper, we addressed this problem and
proposed an efficient framework called real-time scoring engine (RtSEngine) that assist data
analysts in the exploration of visualizations generated from structured databases.

Specifically, RtSEngine supports analysts by efficiently recommending visualizations
while meeting analysts budgets: certain number of visualizations or execution time quote.
RtSEngine accomplishes this by incorporating inventive approaches to prioritize and score
attributes that form all possible visualizations in database based on their statistical proprieties
such as selectivity ratio, data distribution, and number of distinct values. Then, RtSEngine
recommends the views created from top-scored attributes.

In addition, we presented visualizations cost-aware techniques that estimate the retrieval
and computation costs of all visualizations. Those estimated costs are then fed toRtSEngine to
recommend views while considering their costs to guarantee the efficiency and effectiveness
of the recommendation process.

Finally, we conducted comparative experiments and demonstrated the quality of visual-
izations and the overhead obtained by applying our techniques on both synthetic and real
datasets. The experiments showed superior effectiveness and efficiency of our proposed
approaches on different time and space limits.
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