
Knowl Inf Syst (2017) 51:1043–1066
DOI 10.1007/s10115-016-1000-6

REGULAR PAPER

Parallel construction of wavelet trees on multicore
architectures

José Fuentes-Sepúlveda1 · Erick Elejalde1 ·
Leo Ferres2 · Diego Seco1

Received: 16 September 2015 / Revised: 20 July 2016 / Accepted: 26 September 2016 /
Published online: 5 October 2016
© Springer-Verlag London 2016

Abstract Thewavelet tree has become a very useful data structure to efficiently represent and
query large volumes of data in many different domains, from bioinformatics to geographic
information systems. One problem with wavelet trees is their construction time. In this
paper, we introduce two algorithms that reduce the time complexity of a wavelet tree’s
construction by taking advantage of nowadays ubiquitous multicore machines. Our first
algorithm constructs all the levels of the wavelet in parallel with O(n) time and O(n lg σ +
σ lg n) bits of working space, where n is the size of the input sequence and σ is the size of
the alphabet. Our second algorithm constructs the wavelet tree in a domain decomposition
fashion, using our first algorithm in each segment, reaching O(lg n) time and O(n lg σ +
pσ lg n/ lg σ) bits of extra space, where p is the number of available cores. Both algorithms
are practical and report good speedup for large real datasets.

Keywords Succinct data structure · Wavelet tree construction · Multicore ·
Parallel algorithm

A previous version of this paper appeared in the 13th International Symposium on Experimental Algorithms
(SEA 2014) [15].

B José Fuentes-Sepúlveda
jfuentess@udec.cl

B Leo Ferres
lferres@udd.cl

Erick Elejalde
eelejalde@udec.cl

Diego Seco
dseco@udec.cl

1 Department of Computer Science, Universidad de Concepción, Concepción, Chile

2 Faculty of Engineering, Universidad del Desarrollo, Santiago, Chile

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-016-1000-6&domain=pdf

1044 J. Fuentes-Sepúlveda et al.

1 Introduction and motivation

After their introduction in the mid-2000s, multicore computers—computers with more than
one processing unit (called cores) and shared memory—have become pervasive. In fact,
nowadays it is difficult to find a single-processor desktop, let alone a high-end server. The
argument in favor of multicore systems is simple: Thermodynamic and material consid-
erations prevent chip manufacturers from ever-increasing clock rates. Since 2005, clock
frequencies have stagnated at around 3.75GHz for commodity computers, and even in 2015,
4GHz computers are still high end (the Intel Core i7-4790K is a prime example). Thus, the
next step in performance is to take advantage of the processing power of multicore comput-
ers. In order to do this, algorithms and data structures will have to be modified to make them
behave well in these parallel architectures.

At the same time, the amount of data to be processed has become large enough that the
ability to maintain it close to the processor is vital. This, in turn, has generated a keen interest
in succinct data structures, which besides reducing storage requirements may also reduce
the number of memory transfers, the energy consumption, and can be used in low-capacity
devices such as smartphones. One such structure that has benefited from thorough research is
the wavelet tree [18], henceforth wtree. Although the wtree was originally devised as a data
structure for encoding a reordering of the elements of a sequence [14,18], it has now been
successfully used in many critical applications such as indexing documents [33], processing
grids [25] and sets of rectangles [4], to name but a few. Two excellent surveys have been
written about this data structure [22,24], andwe refer the readers to them formore application
examples and details.

These succinct data structures, however, are generally quite expensive (in time) to build,
particularly as the size of the alphabet and the size of the input increase, as is the case nowa-
days with the so-called big data revolution. We believe parallel computing is a good tool
for speeding up the processing of succinct data structures. Unfortunately, (practical) parallel
computing suffers from several drawbacks that make these high-performance algorithms dif-
ficult to come by:maintaing thread independencewhile communicating results, keeping clear
of “thrashing” the memory hierarchy are two such problems. Thus, a sizeable contribution to
the state of the art would involve designing algorithms with good theoretical running times
that are also practical in modern commodity architectures with more than one core, which
would also help speed up processing of the target data structures in distributed systems: If
one node is faster, the whole cluster would be faster as well.

Motivating example Perhaps one of the prominent areas of research in the last few years has
been the analysis of genomic data [26,28,30]. In combination with the Burrows–Wheeler
transform [5], the wtree has been used to construct compressed full-text indexes (the FM-
index [12,13]) over DNA sequences. The structure supports efficient algorithms for important
problems in bioinformatics such as the identification of patterns (like the mutations that are
known to cause some diseases) or the alignment of short DNA sequences, known as reads
(which is a fundamental step to reconstruct a genome), all this without decompressing the
data. The cost of DNA sequencing has plummeted in the last few years thanks to next-
generation sequencing technologies [34]. In addition, these technologies are alsomuch faster.
For example, in 2005, a single sequencing run could generate at most one gigabase of data.
Meanwhile, in 2014, a single sequencing run could generate up to 1.8 terabases of data [20].
These two factors have drastically increased the amount of genomic data to be processed.
Therefore, full-text indexes based on wtrees need to be updated periodically. These updates

123

Parallel construction of wavelet trees on multicore… 1045

do not modify the already indexed data but add new sequences. This process is not trivial
because the Burrows–Wheeler transform is a reorganization of the whole sequence in order
to make it more compressible. In order to support these updates, there are two options: the
use of fully dynamic wtrees or the periodic reconstruction of the wtree (a solution used in
other domains such as Web search engines). Dynamic versions of wtrees are quite slow in
both update and rank/select operations (see Sect. 3.2 of [22]). The other option is the usage
of a static wtree and a buffer (which stores the updates since the last reconstruction of the
static index). To support queries, both the static wtree and the buffer are used. When the
buffer is full, the static wtree is reconstructed considering the symbols on the buffer, which
is emptied after that. Thus, improving the construction time of static wtrees becomes critical,
for example, to provide solutions in this kind of dynamic domain in which queries are much
more frequent than updates.

In this paper, we propose two parallel algorithms for the most expensive operation on
wtrees: its construction. The first algorithm, pwt, has O(n) time complexity and uses
O(n lg σ + σ lg n) bits of space,1 including the space of the final wtree and excluding the
input, where σ is the size of the alphabet. The second algorithm, dd, is an improved version
of the dd algorithm presented on [15]. This new version has O(lg n) time complexity and
uses O(n lg σ + pσ lg n/ lg σ) bits of space, using p threads (see Sect. 3). The pwt algo-
rithm improves the O(n) memory consumption in [29]. Meanwhile, the new dd algorithm
improves the O(n) time complexity of our previous work [15] and the time complexity of
[29] by a factor of O(lg σ). We report experiments that demonstrate the algorithms to be
not only theoretically good, but also practical for large datasets on commodity architectures,
achieving good speedup (Sect. 4). As far as we can tell, we use the largest datasets to date,
and our algorithms are faster for most use cases than the state of the art [29].

2 Background and related work

2.1 Dynamic multithreading model

Dynamic multithreading (DYM) [10, Chapter 27] is amodel of parallel computation, which is
faithful to several industry standards such as Intel’s CilkPlus (cilkplus.org), OpenMP Tasks
(openmp.org/wp), and Threading Building Blocks (threadingbuildingblocks.org). Besides
its mathematical rigor, it is precisely this adoption by many high-end compiler vendors that
make the model so appealing for practical parallel algorithms.

In theDynamic multithreadingmodel, amultithreaded computation is defined as a directed
acyclic graph (DAG) G = (V, E), where the set of vertices V are instructions and (u, v) ∈ E
are dependencies between the instructions,whereby in this case,u must be executed before v.2

In order to signal parallel execution, we augment sequential pseudocodewith three keywords,
spawn, sync and parfor. The spawn keyword signals that the procedure call that it precedes
may be executed in parallelwith the next instruction in the instance that executes the spawn. In
turn, the sync keyword signals that all spawned proceduresmust finish before proceedingwith
the next instruction in the stream. Finally, parfor is simply “syntactic sugar” for spawn’ing
and sync’ing ranges of a loop iteration. If a stream of instructions does not contain one
of the above keywords, or a return (which implicitly sync’s) from a procedure, we group

1 We use lg x = log2 x .
2 Notice that the RAM model is a subset of the DYM model where the outdegree of every vertex v ∈ V is
≤1.

123

1046 J. Fuentes-Sepúlveda et al.

Fig. 1 Example of a multithreaded computation on the dynamic multithreading model. It corresponds to the
directed acyclic graph representation of Algorithm 1. Vertices represent strands and edges represent depen-
dences

these instructions into a single strand. The parfor keyword, which we use repeatedly here,
is implemented by halving the range of loop iterations, spawn’ing one half and using the
current procedure to process the other half recursively until reaching one iteration per range.
After that, the iterations are executed in parallel. This implementation adds an overhead to
the parallel algorithm bounded above by the logarithm of the number of loop iterations. For
example, Algorithm 1 represents a parallel algorithm using parfor, and Fig. 1 shows its
multithreaded computation. In the figure, each circle represents one strand and each rounded
rectangle represents strands that belong to the same procedure call. The algorithm starts on the
initial procedure call with the entire range [0, 7]. The first half of the range is spawned (black
circle in the initial call) and the second half is processed by the same procedure (gray circle of
the initial call). This divide-and-conquer strategy is repeated until reaching strands with one
iteration of the loop (black circles on the bottom of the figure). Once an iteration is finished,
the corresponding strand syncs to its calling procedure (white circles), until reaching the final
strand (white circle of the initial call). For more examples of the usage of the DYMmodel, see
[10, Chapter 27]. Strands are scheduled onto cores using a work-stealing scheduler, which
does the load balancing of the computations. Work-stealing schedulers have been proved to
be a factor of 2 away from optimal performance [3].

A : array of 8 numbers
parfor i = 0 to 7 do

A[i] = 0
return

Algorithm 1: Example of a parallel algorithm using the parfor keyword. In parallel, the
algorithm initializes all the elements of the array A with 0.

To measure the efficiency of our parallel wavelet tree algorithms, we use three metrics:
the work, the span and speedup. In accordance with the parallel literature, we will subscript
running times by p, so Tp is the running time of an algorithm on p cores. The work is the
total running time taken by all strands when executing on a single core (i.e., T1), while the
span, denoted as T∞, is the critical path (the longest path) of G. In Fig. 1, assuming that
each strand takes unit time, the work is 29 time units and the span is 8 time units (this is
represented in the figure with thicker edges). In this paper, we are interested in speeding

123

Parallel construction of wavelet trees on multicore… 1047

up wavelet tree manipulation and improving the lower bounds of this speedup. To measure
this, we will define speedup as T1/TP = O(p), where linear speedup T1/Tp = �(p) is
the goal and the theoretical upper bound. We also define parallelism as the ratio T1/T∞, the
theoretical maximum number of cores for which it is possible to achieve linear speedup.

2.2 Wavelet trees

A wavelet tree (wtree) is a data structure that maintains a sequence of n symbols S =
s1, s2, . . . , sn over an alphabet Σ = [1..σ] under the following operations: access(S, i),
which returns the symbol at position i in S; rankc(S, i), which counts the times symbol c
appears up to position i in S; and selectc(S, j), which returns the position in S of the j-
th appearance of symbol c. Storage space of wtrees can be bounded by different measures
of the entropy of the underlying data, thus enabling compression. In addition, they can be
implemented efficiently [7] and perform well in practice.

The wtree is a balanced binary tree. We identify the two children of a node as left and
right. Each node represents a range R ⊆ [1, σ] of the alphabet Σ , its left child represents a
subset Rl , which corresponds with the first half of R, and its right child a subset Rr , which
corresponds with the second half. Every node virtually represents a subsequence S′ of S
composed of symbols whose value lies in R. This subsequence is stored as a bitmap in which
a 0 bit means that position i belongs to Rl and a 1 bit means that it belongs to Rr .

At its simplest, a wtree requires n�lg σ� + o(n lg σ) bits for the data, plus O(σ lg n) bits
to store the topology of the tree (considering one pointer per node), and supports aforemen-
tioned queries in O(lg σ) time by traversing the tree using O(1)-time rank/select operations
on bitmaps [27]. A simple recursive construction algorithm takes O(n lg σ) time. As men-
tioned before, the space required by the structure can be reduced: The data can be compressed
and stored in space bounded by its entropy (via compressed encodings of bitmaps and mod-
ifications on the shape of the tree), and the O(σ lg n) bits of the topology can be removed,
effectively using one pointer per level of the tree [7], which is important for large alphabets.
We focus on construction using a pointer per level because, even though it adds some run-
ning time costs, it is more suitable for big data. This notwithstanding, it is trivial to apply
the technique to the one-pointer-per-node construction case, and our results can be readily
extended to other encodings and tree shapes.

Figure 2 shows an example of two wtree representations for the sequence S =
“once upon a time a PhD student.” Figure 2a shows the one-pointer-per-node representa-
tion, while Fig. 2b shows the one-pointer-per-level representation. In our algorithms, we
implemented the one-pointer-per-level representation; however, for clarity, we use the one-
pointer-per-node representation to exemplify. In both representations, we highlighted the
traversal performed by the operation access(S, 24). To answer it, a top-down traversal of the
wtree is performed: If a bit 0 is found, we visit the left branch; if a 1, the right branch is cho-
sen. In the first representation, the query works as follows: Let curr be the root, Bcurr be the
bitmap of the current node, i = 24 be the index of interest, R be the range [0, σ −1] = [0, 15]
and rankc(Bcurr, i) be the number of c-bits up to position i in Bcurr . At the beginning, we
inspect the bit Bcurr[i]. Since the bit is 1, we recompute i = rank1(Bcurr, i)−1 = 7, change
curr to be the right child of curr and halve R = [8, 15]. Then, we repeat the process. Since
Bcurr[i] = 0, i = rank0(Bcurr, i) − 1 = 4, curr is updated to be the left child of curr and
R = [8, 11]. Now, Bcurr[i] = 0, i = rank0(Bcurr, i) − 1 = 2, curr is changed to be the left
child of curr and R = [8, 9]. Finally, in the last level, Bcurr[i] = 0, so the range R = [8, 8]
and the answer for access(S, 24) is Σ[8] = ‘t′. rankc(S, i) and selectc(S, i) perform similar
traversals to access(S, i). For a more detailed explanation of wtree operations, see [24]. For

123

1048 J. Fuentes-Sepúlveda et al.

(a)

(b)

Fig. 2 A wtree for the sequence S = “once upon a time a PhD student” and the contiguous
alphabet Σ = {o,n,c,e,”,u,p,a,t,i,m,P,h,D,s,d}. We draw spaces using stars. a Representation of
a wtree using one pointer per node and its associated bitmap. The subsequences of S in the nodes (gray font)
and the subsets of Σ in the edges are drawn for illustration purposes. b Representation of a wtree using one
pointer per level and its associated n-bit bitmap. It can simulate the navigation on the tree by using the rank
operation over the bitmaps

the one-pointer-per-level representation, the procedure is similar, with the exception that the
traversal of the tree must be simulated with rank operations over the bitmaps [7].

Practical implementations of wtrees can be found in Libcds [6] and Sdsl [16]. Libcds
implements a recursive construction algorithm that works by halvingΣ into binary sub-trees
whose left children are all 0s and right children are all 1s, until 1s and 0smean only one symbol
inΣ .Sdsl implements an algorithmbased on the idea of counting sort that ismore efficient in
memory. The algorithm counts the number of bits that will be placed in each node of thewtree,
computing the position of each symbol in each level of the wtree, which avoids maintaining
a permutation of the input. Both libraries are the best current sequential implementations
available, without considering space-efficient construction algorithms [9,31].

As of late, some work has been done in parallel processing of wtrees. In [1], the authors
explore the use of wavelet trees in Web search engines. They assume a distributed memory
model and propose partition techniques to balance the workload of processing wtrees. Note
that our work is complementary to theirs, as each node in their distributed system can be
assumed to be a multicore computer that can benefit from our algorithms. In [21], the authors
explore the use of SIMD instructions to improve the performance of wtrees and other string
algorithms [11]. This set of instructions can be considered as low-level parallelism, since
they use instructions in modern processors that work by joining registers for some integer
computation, dealing with 128-bit integers at a time. We can also benefit from their work as
it may improve the performance of the sequential parts of our algorithms. However, we leave
this optimization for future work.

In [15], we introduced the first two parallel algorithms for wtree construction: pwt and
dd, both with O(n) time complexity. The details of pwt and an improvement in dd are
given in Sects. 3.1 and 3.2, respectively. Based on [15], Shun [29] introduces two new par-

123

Parallel construction of wavelet trees on multicore… 1049

allel algorithms. The first algorithm, called levelWT, constructs the wtree level by level. In
each of the �lg σ� levels, the algorithm uses a parallel prefix sum algorithm to compute the
position of the bits, constructing the nodes and their bitmaps in parallel with O(n) work and
O(lg n) span, which results in O(n lg σ) work and O(lg n lg σ) span. The second algorithm,
called sortWT, constructs all levels in parallel, similar to our original pwt, instead of one by
one. For a level l, the sortWT algorithm applies a parallel stable integer sorting using the l
most significant bits of each symbol as the key. With the sorted input sequence, the algorithm
fills the corresponding bitarrays in parallel, using parallel prefix sum and filter algorithms to
compute the position of the bits. The total work of the sortWT algorithm is O(Wsort lg σ),
where Wsort is the work incurred by sorting, and O(Ssort + lg n) is the span, and where, in
turn, Ssort corresponds to the span of the sorting algorithm and the lg n component is the span
of the prefix sum and filter algorithms. The author also discusses a variation of the sortWT
algorithm, reaching O(n lg σ) work and O(lg n lg σ) span. In practice, the levelWT algo-
rithm shows better performance. Compared to our previous algorithms, the levelWT and
sortWT algorithms can scale beyond O(lg σ) cores. However, both also need to duplicate
andmodify the input sequence, resulting in an increase in memory usage, requiring O(n lg n)

bits of extra space.

2.3 Problem statement

The wtree is a versatile data structure that uses n lg σ + o(n lg σ) bits of space and supports
several queries (such as access, rank and select) in O(lg σ) time, for a sequence of n symbols
over an alphabet Σ of size σ . The wtree can be constructed in O(n lg σ) time, which may
be prohibitive for large sequences. Therefore, in this work, we reduce the time complexity
of the most time-consuming operation of wtree, its construction, on multicore architectures.
Given amulticoremachinewith p available cores, we propose the design and implementation
of parallel algorithms to the construction of wtree. The proposed algorithms scale with p,
achieving good practical speedups and extra memory usage.

3 Multicore wavelet tree

We focus on binary wavelet trees where the symbols inΣ are contiguous in [1, σ]. If they are
not contiguous, a bitmap is used to remap the sequence to a contiguous alphabet [7]. Under
these restrictions, thewtree is a balancedbinary treewith �lg σ� levels. In this section,webuild
the representation of wtrees that removes the O(σ lg n) bits of the topology. Hence, when
we refer to a node, this is a conceptual node that does not exist in the actual implementation
of the data structure.

In what follows, two iterative construction algorithms are introduced that capitalize on
the idea that any level of the wtree can be built independently from the others. Unlike in
classical wtree construction, when building a level we cannot assume that any previous step
is providing us with the correct permutation of the elements of S. Instead, we compute the
node at level i for each symbol of the original sequence. More formally,

Proposition 1 Given a symbol s ∈ S and a level i , 0 ≤ i < l = �lg σ�, of a wtree, the node
at which s is represented at level i can be computed as s 	 l − i .

In other words, if the symbols of Σ are contiguous, then the i most significant bits of the
symbol s give us its corresponding node at level i . In the word-RAM model with word size

123

1050 J. Fuentes-Sepúlveda et al.

Input : S, n, σ
Output: A wavelet tree representation W T of S

1 W T is a new wavelet tree with �lg σ� levels
2 parfor i = 0 to �lg σ� − 1 do
3 B is a bitarray of size n

4 C is an integer array of size 2i

5 for j = 0 to n − 1 do
6 increment(C[S[j]/2�lg σ�−i])
7 parPrefixSum(C)
8 for j = 0 to n − 1 do
9 if (S[j] & 2�lg σ�−i−1) == 1 then

10 bitmapSetBit(B, C[S[j]/2�lg σ�−i], 1)
11 else
12 bitmapSetBit(B, C[S[j]/2�lg σ�−i], 0)
13 increment(C[S[j]/2�lg σ�−i])
14 W T [i] = createRankSelect(B)
15 return W T

Algorithm 2: Per-level parallel algorithm (pwt)

Ω(lg n), this computation takes O(1) time. Since the word-RAM model is a subset of the
DYM model2, the following corollary holds:

Corollary 1 The node at which a symbol s is represented at level i can be computed in O(1)
time.

3.1 Per-level parallel algorithm

Our first algorithm, called pwt, is shown in Algorithm 2 (the sequential version can be
obtained by replacing parfor instructions with sequential for instructions). The algorithm
takes as input a sequence of symbols S, the length n of S, and the length of the alphabet, σ
(see Sect. 2.2). The output is a wtree W T that represents S. We denote the i th level of W T
as W T [i], ∀i, 0 ≤ i < �lg σ�.

The outer loop (line 2) iterates in parallel over �lg σ� levels. Lines 3 to 14 scan each level
performing the following tasks: The first step (lines 3 and 4) initializes the bitmap B of the
i th level and initializes an array of integers C . The array C will be used to count the number
of bits in each node of the wtree at level i , using counting sort. The second step (lines 5 and
6) computes the size of each node in the i th level performing a linear-time sweep over S.
For each symbol in S, the algorithm computes the corresponding node for alphabet range at
the current level. The expression S[j]/2�lg σ�−i in line 6 shows an equivalent representation
of the idea in Proposition 1. The third step performs a parallel prefix sum algorithm [19]
over the array C , obtaining the offset of each node. Once the offset of the nodes is known,
the algorithm constructs the corresponding bitarray B, sequentially scanning S (lines 8 to
13). For each symbol in S, the algorithm computes the corresponding node and whether
the symbol belongs to either the first or second half of Σ for that node. The corresponding
bit is set using bitmapSetBit at position C[S[j]/2�lg σ�−i]. Line 14 creates the rank/select
structures of the bitmap B of the i th level.

Figure 3 shows an snapshot of the execution of the pwt for the input sequence of Fig. 2:
The levels of the wtree can be constructed in different threads asynchronously.

Thework T1 of this algorithm takes O(n lg σ) time. Thismatches the time for construction
found in the literature. Each of the lg σ tasks that create the pwt algorithm has a complexity
of O(n + σ/p + lg p), due to the scans over the input sequence and the parallel prefix sum

123

Parallel construction of wavelet trees on multicore… 1051

Fig. 3 Snapshot of an execution of the algorithm pwt for the sequence introduced in Fig. 2. In the snapshot,
thread t1 is writing the first bit of the symbol S[10] = ‘a’ at level 0, thread t2 is writing the second bit of
S[15] = ‘e’ at level 1, thread t3 is writing the third bit of S[19] = ‘P’ at level 2 and thread t4 is writing the
fourth bit of S[26] = ‘d’ at level 3. Black areas represent bits associated with unprocessed symbols

over the array C . The work of pwt is still T1 = O(n lg σ). Since all tasks have the same
complexity, assuming constant access to any position in memory, the critical path is given by
the construction of one level of the wtree. That is, for p = ∞, T∞ = O(n + lg σ) = O(n).
In the same vein, parallelism will be T1/T∞ = O(lg σ). It follows that having p ≤ lg σ

the algorithm will obtain optimal speedup. The overhead added for the parfor, O(lg lg σ)

is negligible. With respect to the working space, the algorithm pwt needs the space of the
wtree and the extra space for the array C , that is, a working space of O(n lg σ + σ lg n) bits.

The main drawback of the pwt algorithm is that it only scales linearly until the number of
cores equals the number of levels in thewavelet tree. So, even if we havemore cores available,
the algorithm will only use efficiently up to lg σ cores. Nevertheless, this algorithm is simple
to implement and suitable in domains where there is not possible to use all available resources
to the construction of wtrees.

3.2 Domain decomposition parallel algorithm

The second algorithm that we propose makes efficient use of all available cores. The main
idea of the algorithm is to divide the input sequence S in k = O(p/ lg(σ)) segments of size
O(n/k) and then apply the pwt algorithm on each segment, generating O(lg σ) tasks per
segment and creating k partial wtrees. After that, the algorithm merges all the partial wtrees
into a single one that represents the entire input text. We call this algorithm dd because of
its domain decomposition nature. This algorithm improves the O(n) time complexity of the
one introduced previously in [15].

Thedd algorithm is shown inAlgorithm 3. It takes the same input aspwtwith the addition
of the number of segments, k. The output is a wtree W T , which represents the input data S.

The first step of dd (lines 1–4) allocates memory for the output wtree, its bitarrays, B,
the bitarrays of the partial wtrees, pB, and two 3-dimensional arrays of numbers, L and G,
where the third dimension changes according to the number of nodes in each level. Arrays
L and G store local and global offsets, respectively. The local offsets store the offsets of all
the nodes of the partial wtrees with respect to the partial wtree containing them. Similarly, G
stores the offsets of all the nodes of the partial wtrees with respect to the final wtree. In other
words, each entry L[a][b][c] stores the position of node c at level b whose parent is partial
wtree a. Each entry G[a][b][c] stores the position of node c at level b in the partial wtree a

123

1052 J. Fuentes-Sepúlveda et al.

Input : S, n, σ , k
Output: A wavelet tree representation W T of S

1 W T is a new tree with �lg σ� levels
2 B is an array of �lg σ� bitarrays of size n
3 pB is a bidimensional array of bitarrays of dimensions k × �lg σ�
4 G, L are tridimensional arrays of integers of dimensions k × �lg σ� × 2level

5 parfor i = 0 to k − 1 do
6 pB[i] = createPartialBA(S,σ ,i,n/k)
7 parfor i = 0 to �lg σ� − 1 do
8 parPrefixSum(i,k)
9 B = mergeBA(n,σ ,k,pB)

10 parfor i = 0 to �lg σ� − 1 do
11 W T [i] = createRankSelect(B[i])
12 return W T

Algorithm 3: Domain decomposition parallel algorithm (dd)

Input : S, σ , k′, n
Output: A bitarray representation B of the k′th segment of S

1 B is an array of �lg σ� bitarrays of size n
2 parfor i = 0 to �lg σ� − 1 do
3 for j = n × k′ to n × (k′ + 1) − 1 do
4 increment(G[k′][i][S[j]/2�lg σ�−i])
5 prefixSum(G,L)
6 for j = n × k′ to n × (k′ + 1) − 1 do
7 if (S[j] & 2�lg σ�−i−1) == 1 then
8 bitmapSetBit(B, G[k′][i][S[j]/2�lg σ�−i], 1)
9 else

10 bitmapSetBit(B, G[k′][i][S[j]/2�lg σ�−i], 0)
11 increment(G[k′][i][S[j]/2�lg σ�−i])
12 return B

Function createPartialBA

Input : n, σ , k, pB
Output: A bitarray representation B of the input sequence S

1 B is an array of �lg σ� bitarrays of size n
2 parfor i = 0 to �lg σ� − 1 do
3 parfor j = 0 to k − 1 do
4 parfor m = j × 2i to (j + 1) × 2i do
5 dst = B[i] // Destination of the bits to be copied
6 src = pB[m mod k][i] // Source of the bits to be copied
7 go = G[m mod k][i][m/k] // Offset in dst
8 lo = L[m mod k][i][m/k] // Offset in src
9 nb = L[m mod k][i][m/k + 1] − L[m mod k][i][m/k] // Number of bits

10 parallelBitarrayConcat(dest,src,go,lo,nb)
11 return B

Function mergeBA

inside the final wtree. We will treat the arrays L and G as global variables to simplify the
pseudocode.

The second step (lines 5 and 6) computes the partial wtrees of the k segments in parallel.
For each segment, createPartialBA is called to create the partialwtree. This function is similar
to the one in the pwt algorithm, performing a prefix sum (line 5 in Function createPartialBA)
to compute the local offsets and store them both in G and L . We reuse the array G to save

123

Parallel construction of wavelet trees on multicore… 1053

(a)

(b)

Fig. 4 Snapshot of an execution of the algorithm dd. Figure 4a, b represents snapshots of Functions cre-
atePartialBA and mergeBA, respectively. The result of this example is the wtree of Fig. 2a. a Snapshot of
Function createPartialBA. The figure shows the construction of the partial wtrees after the split of the input
sequence introduced in Fig. 2 into three subsequences. To create each partial wtree, the algorithm uses the
pwt algorithm. These partial wtrees are the input of Function mergeBA. b Snapshot of the Function mergeBA.
White, light gray and dark gray bitarrays represent the bitarrays of first, second and third partialwtrees, respec-
tively. The positions of the partial wtrees bitarrays are computed in advance; therefore, such bitarrays can be
copied to the final wtree in parallel. Black areas represent uncopied bits

memory in the next step. Notice that the output of the function is a partial wtree composed
of �lg σ� bitarrays, without rank/select structures over such bitarrays.

The third step of the dd algorithm uses the local offsets stored in L to compute the global
ones (lines 7 and 8). To do that, at each level i , the algorithm applies a parallel prefix sum
algorithm using the k local offsets of that level. The prefix sum algorithm uses the implicit
total order within the local offsets. Since each level in the offsets is independent of the others,
we can apply the �lg σ� calls of the parallel prefix sum algorithm in parallel.

Once we have the global offsets computed, the fourth step merges all partial wtrees, in
parallel. Function mergeBA creates one parallel task for each node in the partial wtrees. In
each parallel task (lines 5 to 10) the function concatenates the bitarray of the node m/k of the
i th level of the m mod k partial wtree into the corresponding bitarray, B[i], of the final wtree.
Using the local and the global offsets, the function parallelBitarrayConcat copies
the nb of pB[i], starting at position L[m mod k][i][m/k] into the bitarray B[i] at position
G[m mod k][i][m/k]. The functionparallelBitarrayConcat is thread safe: The first
and last machine words that compose each bitarray are copied using atomic operations. Thus,
the concatenated bitarrays are correct regardless of multiple concurrent concatenations. The
last step, lines 10–11, creates the rank/select structures for each level of the final wtree.

123

1054 J. Fuentes-Sepúlveda et al.

For an example of the algorithm, see Fig. 4. Figure 4a shows a snapshot of the function
createPartialBA, and Fig. 4b shows a snapshot of mergeBA

Thedd algorithm has the same asymptotic complexity aspwt, withwork T1 = O(n lg σ).
When running on p cores and dividing S in k = O(p/ lg σ) segments, the construction of
the partial wtrees takes O(n lg σ/p) time. The prefix sum takes O(σ/ lg σ + lg p) time [19].
Merge takes O(n lg σ/pw), where w is the word size of that architecture. The overhead of
the parfors is O(lg p + lg σ lg lg σ). For p = ∞, the span of the construction of the partial
wtrees is O(1), O(lg(kσ)) for the prefix sum section and O(1) for the merge function. In the
case of the merge function, the offsets of the bitarrays have been previously computed and
each bit can be copied in parallel. Thus, considering w as a constant and k = O(p/ lg σ),
the span is T∞ = O(lg n) in all cases.

The working space needed by dd is limited by the space needed for the wtree, the partial
wtrees, and local and global offsets, totaling O(n lg σ + kσ lg n) bits. By manipulating the
value of k, however, we can reduce the needed space or improve the performance of dd
algorithm. If k = 1, then space is reduced to O(n lg σ +σ lg n) bits, but this limits scalability
to p < lg σ . If k = p, we improve the time complexity, at the cost of O(n lg σ + pσ lg n) bits.

4 Experimental evaluation

We tested the implementation of our parallel wavelet tree construction algorithms consid-
ering one pointer per level and without considering the construction time of rank/select
structures. We compared our algorithms against Libcds,3 Sdsl and the fastest algorithm
in [29]. Both libraries were compiled with their default options and the -O2 optimiza-
tion flag. With regard to the bitarray implementation, we use the 5%-extra space structure
presented in [17] (as Libcds does). For Sdsl, we use the bit_vector implemen-
tation with settings rank_support_scan<1>, select_support_scan<1> and
select_support_scan<0> to skip construction time of rank/select structures. In our
experiments, shun is the fastest of the three algorithms introduced in [29], compiled also
with the -O2 optimization flag. Our dd algorithm was tested with k = p privileging time
performance over memory.

4.1 Experimental setup

All algorithms were implemented in the C programming language and compiled with GCC
4.9 (Cilk branch) using the -O2 optimization flag. The experiments were carried out on a
4-chip (8 NUMA nodes) AMD OpteronTM 6278 machine with 8 physical cores per NUMA
node, clocking at 2.4GHz each, with one 64KB L1 instruction cache shared by two cores,
one 16KB L1 data cache per core, a 2MB L2 cache shared between two cores, and a 6MB
of L3 shared between 8 cores per NUMA node. The machine had 192GB of DDR3 RAM,
clocking at 1333MHz, with 24GB per NUMA node. Algorithms were compared in terms
of running times using the usual high-resolution (nanosecond) C functions in <time.h>.
Memory usage was measured using the tools provided by malloc_count [2].

The experimental trials consisted in running the algorithms on datasets of different alpha-
bet sizes, input sizes n and number of cores. The datasets are listed in Table 1. We distinguish
between two types of datasets: those in which symbols are encoded using 1 byte, and those

3 We also tested a new version of Libcds called Libcds2; however, the former had better running times for
the construction of wtrees.

123

Parallel construction of wavelet trees on multicore… 1055

Table 1 Datasets used in the experiments

Dataset n σ

1 rna.512MB 536,870,912 4

2 rna.1GB 1, 073, 741, 824 4

3 rna.2GB 2,147,483, 648 4

4 rna.3GB 3,221,225,472 4

5 rna.4GB 4,294,967,296 4

6 rna.5GB 5,368,709,120 4

7 rna.6GB 6,442,450,944 4

8 rna.13GB 14,570,010,837 4

9 prot 1,184,051,855 27

10 src.200MB 210,866,607 230

11 src.98MB 25,910,717 2,446,383

12 src.512MB 134,217,728 2,446,383

13 src.1GB 268,435,455 2,446,383

14 src.2GB 536,870,911 2,446,383

15 en.x.27 134,217,728 2x

16 en.x.28 268,435,456 2x

17 en.x.29 536,870,912 2x

18 en.x.30 1,073,741,824 2x

In the datasets 15–18, x can take values in {4, 6, 8, 10, 12, 14}

in which symbols are encoded using 4 bytes. Datasets 1–10 in Table 1 with σ ≤ 256 were
encoded using 1 byte. Datasets 11–14 were encoded using 4 bytes. Datasets 15–18, that have
σ = 2x , were encoded as follows: For x = {4, 6, 8}, symbolswere encodedwith a single byte.
For x = {10, 12, 14}, symbols were encoded in four bytes. The dataset rna.13GB is the
GenBank mRNAs of the University of California, Santa Cruz.4 The rest of the rna datasets
were generated by splitting the previous one. We also tested datasets of protein sequences,
prot5 and source code, src.200MB.6 We also built a version of the source code dataset
using words as symbols, src.98MB. The rest of the src datasets were generated by con-
catenating the previous one up to a maximum of 2GB. To measure the impact of varying
the alphabet size, we took the English corpus of the Pizza & Chili website7 as a sequence of
words and filtered the number of different symbols in the dataset. The dataset had an initial
alphabet Σ of σ = 633,816 symbols. For experimentation, we generated an alphabet Σ ′ of
size 2x , taking the top 2x most frequent words in the original Σ and then assigning a random
index to each symbol using aMarsenne Twister [23], with x ∈ {4, 6, 8, 10, 12, 14}. To create
an input sequence S of n symbols for the English dataset (en), we searched for each symbol
in Σ ′ in the original English text and, when found, appended it to S until it reached the
maximum possible size given σ ′ (∼1.5GB, in the case of σ ′ = 218), maintaining the order
of the original English text. We then either split S until we reached the target size n = 227 or

4 http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/xenoMrna.fa.gz (April, 2015).
5 http://pizzachili.dcc.uchile.cl/texts/protein/proteins.gz (April, 2015).
6 http://pizzachili.dcc.uchile.cl/texts/code/sources.gz (April, 2015).
7 http://pizzachili.dcc.uchile.cl/texts/nlang/english.1024MB.gz (March, 2013).

123

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/xenoMrna.fa.gz
http://pizzachili.dcc.uchile.cl/texts/protein/proteins.gz
http://pizzachili.dcc.uchile.cl/texts/code/sources.gz
http://pizzachili.dcc.uchile.cl/texts/nlang/english.1024MB.gz

1056 J. Fuentes-Sepúlveda et al.

concatenated S with initial subsequences of itself to reach the larger sizes 228, 229 and 230.
We repeated each trial five times and recorded the median time [32].8

4.2 Running times and speedup

Table 2 shows the running times of all tested algorithms.9 Libcds and shun work just for
n < 232, so we cannot report running times of these algorithms for the datasets rna.4GB,
rna.5GB, rna.6GB and rna.13GB.

For each dataset, we underline the best sequential running times. We use those values to
compute speedups. The best parallel times for p = 64 are identified using a bold typeface.
Although libcds and sdsl are the state of the art in sequential implementations of wtrees,
the best sequential running times were obtained from the parallel implementations running
on one thread. The main reason for this is that Sdsl implements a semi-external algorithm
for wtree construction, involving heavy disk access, while Libcds uses a recursive algorithm,
with known memory and executions costs.

Figure 5 shows speedups for rna.3GB, prot, src.200MB, en.4.30, src.2GB,
en.14.30 datasets, with the largest n. As expected, the pwt algorithm is competitive until
p < lg σ . Thus, for small σ the pwt algorithm is not the best alternative as shown in Fig. 5a,
b, d. If the algorithm recruits more threads than levels, the overhead of handling these threads
increases, generating some “noise” in the times obtained. The performance of pwt will be
dominated also by the thread that builds more levels. For instance, in Fig. 5f we created a
wtree with 14 levels. In the case of one thread, that thread has to build the 14 levels. In the
case of 4 threads, each has to build three levels. For 8 and 12 threads, some threads will build
two levels, so those threads dominate the running time. Finally, for the case of 16 threads,
each thread has to build at most one level. This explains the “staircase” effect seen for pwt
in Fig. 5f.

In all datasets shown in Fig. 5, except for Fig. 5e, the dd algorithm has a better speedup
than both pwt and shun, especially for datasets with small alphabets, such as rna, prot
and en.4. In the case of Fig. 5e, shun has a better speedup, because our algorithms have
worse data locality, we come back to the impact of locality of reference. It is important to
remember that although shun has a better speedup, its memory consumption is larger than
in our algorithms, as can be seen in Sect. 4.3.

4.3 Memory consumption

Figure 6 shows the amount of memory allocated with malloc and released with free. For all
algorithms, we report the peak of memory allocation and only considered memory allocated
during construction, not memory allocated to store the input text. The datasets are ordered
incrementally by n. In the case of the dd algorithm, the figure shows memory consumption
for k = 1. Libcds and shun use more memory during construction time. In fact, pwt uses
up to 33 and 25 times less memory than Libcds and shun, respectively. Memory usage in
libcds is dominated by its recursive nature, while shun copies the input sequence S, of
O(n lg n) bits, to preserve it and to maintain permutations of it in each iteration. Additionally,
shun uses an array of size O(σ lg n) bits to maintain some values associated with the nodes

8 In order to be less sensitive to outliers, we use the median time instead of other statistics. In our experiments,
the pwt algorithm showed a larger deviation with respect to the number of threads than the other algorithms.
However, the differences were not statistically significant.
9 A complete report of running times and everything needed to replicate these results is available at www.inf.
udec.cl/~josefuentes/wavelettree.

123

www.inf.udec.cl/~josefuentes/wavelettree
www.inf.udec.cl/~josefuentes/wavelettree

Parallel construction of wavelet trees on multicore… 1057

Table 2 Running times, in seconds, of the sequential algorithms and parallel algorithms with 1 and 64 threads

Datasets libcds sdsl pwt dd shun

1 64 1 64 1 64

rna.512MB 23.42 32.41 11.83 7.00 12.65 0.40 12.63 0.67

rna.1GB 47.38 65.30 23.89 16.19 25.30 0.62 25.36 1.32

rna.2GB 100.13 131.86 46.98 27.62 50.80 1.20 50.89 2.64

rna.3GB 142.90 220.11 71.09 41.00 75.37 2.17 66.35 3.79

rna.4GB − 198.10 94.39 55.04 101.44 2.84 − −
rna.5GB − 329.27 117.13 68.24 126.66 3.57 − −
rna.6GB − 389.25 141.59 81.80 152.57 4.35 − −
rna.13GB − 881.41 314.86 330.44 333.14 10.75 − −
prot 104.40 142.67 58.54 21.81 68.19 2.17 64.06 3.54

src.200MB 24.81 31.41 14.68 2.67 17.70 0.52 16.73 1.06

src.98MB 7.92 9.52 5.28 0.77 5.73 3.94 5.07 0.75

src.512MB 37.77 49.21 28.94 5.07 28.98 5.36 25.52 3.07

src.1GB 75.48 99.95 57.99 8.87 55.36 9.60 49.52 6.17

src.2GB 150.67 205.41 112.78 25.30 110.83 15.11 98.11 11.77

en.4.27 8.78 14.24 5.75 1.82 6.50 0.28 6.98 0.38

en.4.28 15.82 28.53 11.44 3.67 12.88 0.40 12.34 0.77

en.4.29 35.43 57.11 23.01 7.22 25.51 0.84 24.68 1.57

en.4.30 70.00 113.88 46.10 14.40 51.06 1.63 55.56 3.06

en.6.27 12.44 19.10 7.98 1.78 9.58 0.36 10.46 0.61

en.6.28 22.65 38.37 15.92 3.33 19.35 0.52 18.38 1.17

en.6.29 50.28 76.91 31.78 7.08 37.90 1.18 41.86 2.36

en.6.30 99.66 153.72 63.62 15.90 76.59 2.20 83.29 4.68

en.8.27 15.87 26.00 11.48 1.87 13.15 0.46 14.10 0.88

en.8.28 29.06 52.15 22.86 3.71 26.52 0.78 28.28 1.58

en.8.29 64.84 105.01 45.79 7.57 52.53 1.56 56.68 3.14

en.8.30 128.65 209.54 91.83 14.65 105.00 3.13 113.13 6.26

en.10.27 21.32 33.25 14.61 2.26 13.94 1.66 17.26 1.39

en.10.28 43.55 68.00 30.32 6.43 29.05 2.18 33.15 2.78

en.10.29 89.96 136.67 60.69 9.25 58.55 4.59 67.16 5.67

en.10.30 183.57 281.53 123.88 17.70 119.14 8.93 214.2 10.77

en.12.27 24.38 39.09 17.97 2.52 17.33 2.61 20.33 1.64

en.12.28 50.17 80.22 37.66 7.62 36.36 2.66 38.97 3.25

en.12.29 103.39 161.96 75.09 10.41 72.46 5.73 128.35 6.71

en.12.30 211.66 333.32 150.02 20.33 145.04 9.66 259.21 12.99

en.14.27 27.44 43.61 21.92 3.10 21.39 2.43 22.51 1.84

en.14.28 56.44 90.05 45.85 6.11 44.70 2.94 44.53 3.67

en.14.29 116.15 182.46 90.41 12.50 88.37 6.97 91.53 7.79

en.14.30 238.36 377.77 184.83 22.31 178.58 10.50 302.14 15.98

The best sequential times are underlined, and the best parallel times are shown using bold typeface. A “–” is
shown for implementations that just work for n < 232

123

1058 J. Fuentes-Sepúlveda et al.

Sp
ee

du
p

dd
pwt
shun

Sp
ee

du
p

dd
pwt
shun

Sp
ee

du
p

dd
pwt
shun

Sp
ee

du
p

dd
pwt
shun

Number of threads

Sp
ee

du
p

dd
pwt
shun

Sp
ee

du
p

0
2

4
6

8
12

16
20

24
28

32

0
2

4
6

8
10

14
18

22
26

0
2

4
6

8
10

14
18

22
26

0
2

4
6

8
10

14
18

22
26

30

1 8 12 20 28 36 44 52 60

Number of threads
1 8 12 20 28 36 44 52 60

Number of threads
1 8 12 20 28 36 44 52 60

Number of threads
1 8 12 20 28 36 44 52 60

Number of threads
1 8 12 20 28 36 44 52 60

Number of threads
1 8 12 20 28 36 44 52 60

2
4

6
8

0
2

4
6

8
10

12
14

16
1 8

dd
pwt
shun

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Speedup with respect to the best sequential time. The caption of each figure indicates the name of the
dataset, the input size n and the alphabet size σ . a rna.3GB, n ≈ 232, σ = 4. b prot, n ≈ 230, σ = 27. c
src. 200MB, n ≈ 228, σ = 230. d en.4.30, n = 230, σ = 16. e src.2GB, n ≈ 229, σ ≈ 221. f en.14.30,
n = 230, σ = 214

123

Parallel construction of wavelet trees on multicore… 1059

src.200MB src.2GB en.4.30 en.14.30 prot rna.3GB
Datasets

Pe
ak

(G
B

)
libcds
sdsl
pwt
dd
shun

0
2

4
6

8
10

14
18

22

Fig. 6 Memory consumption sorted by n

of thewtree, such as number of bits, the range of the alphabet, and the offset. In our algorithms
and in sdsl, memory consumption is dominated by the arrays which store offset values, not
by the input sequence.

The main drawback of ddwith respect to our own pwt is its memory consumption, since
the latter increases with the alphabet size and the number of threads. For small alphabets, the
working space of dd is almost constant. For instance, memory consumption for rna.2GB is
1GB, plus a small overhead for each new thread. For larger alphabets, such assrc.2GBwith
σ ≈ 222, the working space increases linearly with the number of threads, using 1.46GBwith
1 thread and 2.5GB with 12 threads. Fortunately, most of the sequences used in real-world
applications have an alphabet size smaller than 217. Such is the case of DNA sequences, the
human genome, natural language alphabets (Unicode standard), etc.10

4.4 Other experiments

In order to have a better understanding of our algorithms, we performed the following
experiments:

Limited resources When memory is limited, algorithms such as Libcds and shun suffer
a decrement in their performance. This is evident in Fig. 7, where we tested the parallel
algorithms with datasets prot and src.1GB11 on a 12-core computer with 6GB of DDR3
RAM.12 In this new set of experiments, the speedup of our algorithms exceeded the speedup
shown by shun, both for datasets where we previously showed the better performance (see
Fig. 5b) and for datasets where previously shun showed better performance (see Fig. 5e;
Table 2).

10 The Unicode Consortium: http://www.unicode.org/.
11 The construction times of shun with the src.2GB dataset exceeds 1h. To make the algorithms in the
figures comparable, we report the running times for the dataset src.1GB.
12 The computer tested is a dual-processor Intel� Xeon� CPU (E5645) with six cores per processor, for
a total of 12 physical cores running at 2.50GHz. Hyperthreading was disabled. The computer runs Linux
3.5.0-17-generic, in 64-bit mode. This machine has per-core L1 and L2 caches of sizes 32KB and 256KB,
respectively, and 1 per-processor shared L3 cache of 12MB, with a 5,958MB (∼ 6GB) DDR3 RAM.

123

http://www.unicode.org/

1060 J. Fuentes-Sepúlveda et al.

Fig. 7 Running experiments in a
machine with limited resources

Number of threads
S

pe
ed

up

1 2 4 6 8 10 12

1
2

3
4

5
6

7
8

9
11 dd_prot

pwt_prot
shun_prot
dd_src.1GB
pwt_src.1GB
shun_src.1GB

Fig. 8 Speedup of the dataset
en.4.30 encoding each symbol
with 4 bytes

Number of threads

S
pe

ed
up

1 8 12 20 28 36 44 52 60

2
4

6
8

10
12

dd
pwt
shun

Encoding We observed that the encoding of the symbols of the original sequence has a great
impact in the speedups of the construction algorithms. Figure 5a–d shows speedups greater
than 27x, while there is a noticeable performance degradation in Fig. 5e, f. This is due to an
encoding subtlety: The datasets used in the experiments resulting in Fig. 5a–d are encoded
using one byte, while the other used four bytes. To prove the impact of the encoding in the
performance of the construction algorithms, we repeated the experiments using a dataset that
used four bytes per symbol for σ ≤ 28. Figures 5d and 8 show the influence of encoding.
As expected, the greater the memory used for encoding, the worse the performance. On
multicore architectures, some levels of the memory hierarchy are shared by different cores.
This increases the rate of memory evictions. Hence, it is crucial to reduce the number of
memory transfers. Besides, in NUMA architectures, where each NUMA node has a local
RAM and the transfers between local RAMs is expensive, the reduction in memory transfers
is critical. In the case of one byte per symbol, each memory transfer carries four times
more symbols than in the case of four bytes per symbol, effectively helping reduce memory
transfers.

123

Parallel construction of wavelet trees on multicore… 1061

Fig. 9 Time over n with
σ = 214, 64 threads and en.14
datasets

Size of sequence (n)
Ti

m
e(

se
cs

)

227 228 229 230

1
3

5
7

9
12

15
18

21

dd
pwt
shun

Influence of the size of sequence Figure 9 shows that for theen.14 dataset, fixing the number
of threads to 64 and σ to 214, for larger n the domain decomposition algorithm behaves better
in running time than the pwt algorithm and Shun’s algorithm. In other words, with more
cores and enough work for each parallel task, the dd algorithm should scale appropriately.

Influence of the locality of reference Theoretically, fixing n and varying σ with p = lg σ

threads, the pwt algorithm should show a constant-time behavior, no matter the value of σ .
However, in practice, the running times of pwt increase with the alphabet size. The reason
for this difference in theoretical and practical results is that levels closer to the leaves in the
wtree exhibit a weaker locality of reference. In other words, locality of reference of the pwt
algorithm is inversely proportional to σ . Additionally, the dynamic multithreading model
assumes that the cost of access to any position in the memory is constant, but that assumption
is not true in a NUMAarchitecture. In order to visualize the impact of the locality of reference
over running times, we generate two artificial datasets with n = 230, Σ = {1 . . . 2y}, with
y ∈ {4, 6, 8, 10, 12, 14} and encoding each symbol with four bytes. The first dataset, cont,
was created writing n/σ times each symbol of Σ and then sorting the symbols according to
their position in the alphabet. The second dataset, rand, was created in a similar fashion, but
writing symbols at random positions. The objective of the cont dataset is to force the best
case of the pwt algorithm, where the locality of reference is higher. In contrast, the rand
dataset forces the average case, with a low locality of reference. In these experiments, we used
the optimal number of threads of pwt, that is, p = lg σ . Besides, we allocated evenly the
memory over theNUMAnodes to ensure constant access cost to anyposition in thememory.13

The results are shown in Fig. 10. In its average case, dashed lines, the performance of the pwt
algorithm is degraded for larger alphabets because locality of reference is low, increasing
the amount of cache misses, and thus degrading the overall performance. In the best case,
solid lines, the pwt shows a practical behavior similar to the theoretical one. Since the dd
algorithm implements the pwt algorithm to build each partial wtree, the locality of reference
impacts also on its performance. However, because the construction of the partial wtrees

13 To ensure the constant access cost, we use the numactl command with “interleave = all” option. The
command allocates the memory using round robin on the NUMA nodes.

123

1062 J. Fuentes-Sepúlveda et al.

Fig. 10 Time over σ for the best
and average cases with n = 230

and p = lg σ threads

Size of alphabet (σ)
Ti

m
e(

se
cs

)

24 26 28 210 212 214

0
10

20
30

40
50

60 dd_cont
dd_rand
pwt _cont
pwt_rand
shun_cont
shun_rand

involves sequences of size O(n/p), the impact is less than in the pwt algorithm. Finally,
Shun’s algorithm is insensitive to the distribution of the symbols in the sequence.

The study of the impact of the architecture on the construction of wtrees and other suc-
cinct data structures, and the improvement in the locality of reference of our algorithms are
interesting lines for future research.

4.5 Discussion

In most cases, the domain decomposition algorithm, dd, showed the best speedup. Addi-
tionally, dd can be adjusted in favor of either running time or memory consumption. pwt
showed good scalability, but up to p < lg σ . This limitation may be overcome by using pwt
as part of dd, dividing the input sequence in an adequate number of subsequences.

With respect to working space, pwtwas the algorithm with lowest memory consumption.
This is important because an algorithm with low memory consumption can be executed in
machines with limited resources, can reduce cachemisses due to invalidations (false sharing)
and can therefore reduce energy consumption. Even though memory consumption of the
dd algorithm increases with the number of subsequences, it can be controlled manipulating
the number of segments. In the case of shun, its memory consumption is too large to be
competitive in machines with limited memory.

The encoding and the distribution of the symbols of the input sequence impact the perfor-
mance of the algorithms. All the parallel algorithms introduced here show a better speedup
for encodings that use less bits because there are less memory transfers. Our algorithms are
also sensitive to the distribution of the symbols. When the symbols are randomly distributed,
the locality of reference is worse in comparison with more uniform distributions. This gives
us a hint to improve the performance of our algorithms in the future.

To sum up, in general, the dd algorithm is the best alternative for the construction of
wtrees on multicore architectures, considering both running time and memory consumption.
For domains with limited resources, pwt, which is a building block of dd, arises as a good
alternative on its own.

123

Parallel construction of wavelet trees on multicore… 1063

5 Conclusions and future work

Despite the vast amount of research on wavelet trees, very little has been done to optimize
them for current ubiquitous multicore architectures. We have shown that it is possible to have
practical multicore implementations of wavelet tree construction by exploiting information
related to the levels of thewtree, achieving O(lg n)-time construction and gooduse ofmemory
resources.

In this paper, we introduced two multicore algorithms for parallel construction of wtrees.
Our domain decomposition algorithm, dd, may be used in any domain, but in those contexts
where it is not possible to use all available resources, our per-level algorithm, pwt, may
be more suitable. We have focused on the most general representation of a wtree, but some
of our results may apply to other variants. For example, it would be interesting to study
how to extend our results to compressed wavelet trees (e.g., Huffman-shaped wtrees) and
to generalized wavelet trees (i.e., multiary wavelet trees where the fan out of each node is
increased from 2 to O(polylog(n))). Also, it is interesting to explore the extension of our
results to the Wavelet Matrix [8] (a different level-wise approach to avoid the O(σ lg n)

space overhead for the structure of the tree, which turns out to be simpler and faster than
the wavelet tree without pointers). Future work also involves dynamization, whereby the
wtree is being modified concurrently by many processes as it is queried, through dynamic
succinct data structures, even sequential ones is still an open area of research. A further line
of work involves the design of cache-aware algorithms to construct wtrees, obtaining more
efficient implementations, both in time and in memory resources. In our previous work [15],
we studied the parallelization of some queries on wtrees. The parallelization of other queries
is yet another interesting future work.

For all our construction algorithms, we assume that the input sequence S fits in memory.
However, we can extend our results to the construction of wtrees where the input sequence
S and the wtree do not fit. Following some implementation ideas of Sdsl [16], we can read
the input sequence in buffers to construct partial wtrees for each buffer and finally merge all
of them to obtain the final wtree. In more detail, we can extend our algorithms as follows:

1. Read the input sequence S using a buffer of size b. We can use the portion of main
memory that will not be used by the wtree as the buffer.

2. Create a partial wtree without rank/select structures taking the buffer as input. The partial
wtree can be constructed in parallel using our dd algorithm with O(b lg σ/p) time and
O(1) span. (We could also use the pwt if the available memory is scarce.) The starting
position of each node in the partial wtree is stored in a bidimensional array L .

3. Repeat steps 1 and 2 until the complete input sequence is read.
4. After the complete input sequence is read, we compute the final position of the nodes of

all the partial wtrees. These positions are computed performing a parallel prefix sum[19]
over the values of the arrays L’s, similar to the dd algorithm. It takes O(bσ/p + lg p)

time and O(lg(bσ)) span.
5. The final wtree is constructed using Function mergeBA with O(n lg σ/pw) and O(1)

span, where w is the word size of the architecture.

The extension takes O(n lg σ/p + bσ/p + lg p) time and O(n/b + lg(bσ)) span. Notice
that this idea is similar to the dd algorithm, and it can be applied on multiple levels. For
example, it can be used on distributed architectures, where the buffers are processed by
different machines, and one machine merges all the partial wtrees. Additionally, observe that
we can use the entire main memory as the buffer, storing the partial wtrees and the L arrays

123

1064 J. Fuentes-Sepúlveda et al.

on disk each time we finish the processing of a buffer. We leave the implementation and
empirical evaluation of these ideas as future work.

It has becomeevident that architecture has become relevant again. It is nowadaysdifficult to
find single-core computers. Therefore, it seems like a waste of resources to stick to sequential
algorithms.We believe one natural way to improve performance of important data structures,
such as wavelet trees, is to squeeze every drop of parallelism of modern multicore machines.

Acknowledgements This work was supported in part by the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 690941 and the doctoral
scholarships of CONICYT Nos. 21120974 and 63130228 (first and second authors, respectively). We also
would like to thank Roberto Asín for making his multicore computers, Mastropiero and Günther Frager,
available to us.

References

1. Arroyuelo D, Costa VG, González S, Marín M, Oyarzún M (2012) Distributed search based on self-
indexed compressed text. Inf Process Manag 48(5):819–827. doi:10.1016/j.ipm.2011.01.008

2. Bingmann T (2015) malloc_count—tools for runtime memory usage analysis and profiling. http://
panthema.net/2013/malloc_count/ (2013). Last accessed: 17 Jan 2015

3. Blumofe RD, Leiserson CE (1999) Scheduling multithreaded computations by work stealing. J ACM
46(5):720–748. doi:10.1145/324133.324234

4. Brisaboa NR, LuacesMR, Navarro G, Seco D (2013) Space-efficient representations of rectangle datasets
supporting orthogonal range querying. Inf Syst 38(5):635–655. doi:10.1016/j.is.2013.01.005

5. Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression algorithm. Tech. rep., Digital
Equipment Corporation

6. Claude F (2011) A compressed data structure library. https://github.com/fclaude/libcds. Last accessed:
13 August 2015

7. Claude F, Navarro G (2009) Practical rank/select queries over arbitrary sequences. In: SPIRE. Springer,
Berlin, pp 176–187. doi:10.1007/978-3-540-89097-3_18

8. Claude F, Navarro G (2012) The wavelet matrix. In: SPIRE, vol 7608. Springer, Berlin, pp 167–179.
doi:10.1007/978-3-642-34109-0_18

9. Claude F, Nicholson PK, Seco D (2011) Space efficient wavelet tree construction. In: SPIRE, vol 7024.
Springer, Berlin, pp 185–196

10. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn., chap. Multi-
threaded algorithms. The MIT Press, Cambridge, pp 772–812

11. Faro S, Külekci MO (2012) Fast multiple string matching using streaming SIMD extensions technology.
In: SPIRE. Springer, Berlin, pp 217–228. doi:10.1007/978-3-642-34109-0_23

12. Ferragina P,Manzini G (2000) Opportunistic data structures with applications. In: Proceedings of the 41st
annual symposium on foundations of computer science, FOCS ’00. IEEE Computer Society, Washington,
DC, USA, p 390. http://dl.acm.org/citation.cfm?id=795666.796543

13. Ferragina P, Manzini G, Mäkinen V, Navarro G (2004) String processing and information retrieval: 11th
international conference, SPIRE 2004, Padova, Italy, 5–8 October 2004. Proceedings, chap. An Alphabet-
Friendly FM-Index. Springer, Berlin, pp 150–160. doi:10.1007/978-3-540-30213-1_23

14. Ferragina P, Manzini G, Mäkinen V, Navarro G (2007) Compressed representations of sequences and
full-text indexes. ACM Trans Algorithms 3(2):20. doi:10.1145/1240233.1240243

15. Fuentes-Sepúlveda J, Elejalde E, Ferres L, Seco D (2014) Efficient wavelet tree construction and querying
for multicore architectures. In: Gudmundsson J, Katajainen J (eds) Experimental algorithms, Lecture
Notes in Computer Science, vol 8504. Springer, Berlin, pp 150–161. doi:10.1007/978-3-319-07959-2_
13

16. Gog S (2015) Succinct data structure library 2.0. https://github.com/simongog/sdsl-lite (2012). Last
accessed: 17 Jan 2015

17. González R, Grabowski S, Mäkinen V, Navarro G (2005) Practical implementation of rank and select
queries. In: WEA. CTI Press, Greece, pp 27–38. Poster

18. Grossi R, Gupta A, Vitter JS (2003) High-order entropy-compressed text indexes. In: SODA. Soc. Ind.
Appl. Math., Philadelphia, pp 841–850

19. Helman DR, JáJá J (2001) Prefix computations on symmetric multiprocessors. J Parallel Distrib Comput
61(2):265–278. doi:10.1006/jpdc.2000.1678

123

http://dx.doi.org/10.1016/j.ipm.2011.01.008
http://panthema.net/2013/malloc_count/
http://panthema.net/2013/malloc_count/
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1016/j.is.2013.01.005
https://github.com/fclaude/libcds
http://dx.doi.org/10.1007/978-3-540-89097-3_18
http://dx.doi.org/10.1007/978-3-642-34109-0_18
http://dx.doi.org/10.1007/978-3-642-34109-0_23
http://dl.acm.org/citation.cfm?id=795666.796543
http://dx.doi.org/10.1007/978-3-540-30213-1_23
http://dx.doi.org/10.1145/1240233.1240243
http://dx.doi.org/10.1007/978-3-319-07959-2_13
http://dx.doi.org/10.1007/978-3-319-07959-2_13
https://github.com/simongog/sdsl-lite
http://dx.doi.org/10.1006/jpdc.2000.1678

Parallel construction of wavelet trees on multicore… 1065

20. Illumina, Inc. (2016) An introduction to next-generation sequencing technology. http://www.illumina.
com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf

21. Ladra S, Pedreira O, Duato J, Brisaboa NR (2012) Exploiting SIMD instructions in current processors to
improve classical string algorithms. In: ADBIS. Springer, Berlin, pp 254–267. doi:10.1007/978-3-642-
33074-2_19

22. Makris C (2012) Wavelet trees: a survey. Comput Sci Inf Syst 9(2):585–625
23. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform

pseudo-random number generator. ACM Trans Model Comput Simul 8(1):3–30. doi:10.1145/272991.
272995

24. Navarro G (2012) Wavelet trees for all. In: CPM. Springer, Berlin, pp 2–26. doi:10.1007/978-3-642-
31265-6_2

25. Navarro G, Nekrich Y, Russo LMS (2013) Space-efficient data-analysis queries on grids. Theor Comput
Sci 482:60–72. doi:10.1016/j.tcs.2012.11.031

26. Pantaleoni J, Subtil N (2016) Nvbio library. http://nvlabs.github.io/nvbio/index.html. Accessed 12 April
2016

27. Raman R, Raman V, Satti SR (2007) Succinct indexable dictionaries with applications to encoding k-ary
trees, prefix sums and multisets. ACM Trans Algorithms 3(4):43. doi:10.1145/1290672.1290680

28. Schnattinger T, Ohlebusch E, Gog S (2012) Bidirectional search in a string with wavelet trees and
bidirectional matching statistics. Inf Comput 213:13–22. doi:10.1016/j.ic.2011.03.007. http://www.
sciencedirect.com/science/article/pii/S0890540112000235. Special Issue: Combinatorial Pattern Match-
ing (CPM 2010)

29. Shun J (2015) Parallelwavelet tree construction. In: Proceedings of the IEEEdata compression conference,
Utah, USA, pp 63–72. doi:10.1109/DCC.2015.7

30. Singer J (2012) A wavelet tree based fm-index for biological sequences in SeqAn. Master’s thesis, Freie
Universität Berlin. http://www.mi.fu-berlin.de/wiki/pub/ABI/FMIndexThesis/FMIndex.pdf

31. Tischler G (2011) On wavelet tree construction. In: CPM. Springer, Berlin, pp 208–218
32. Touati SAA, Worms J, Briais S (2013) The Speedup-Test: a statistical methodology for program speedup

analysis and computation. Concurr Comput Pract Exp 25(10):1410–1426. doi:10.1002/cpe.2939. https://
hal.inria.fr/hal-00764454. Article first published online: 15 Oct 2012

33. Välimäki N, Mäkinen V (2007) Space-efficient algorithms for document retrieval. In: CPM, LNCS, vol.
4580. Springer, Berlin, pp 205–215. doi:10.1007/978-3-540-73437-6_22

34. Wetterstrand KA (2016) DNA sequencing costs: data from the NHGRI genome sequencing program
(GSP). http://www.genome.gov/sequencingcosts. Accessed 12 April 2016

José Fuentes-Sepúlveda received his degree of Doctor in Com-
puter Science from the Universidad de Concepción (Chile) in 2016.
He is currently a postdoctoral researcher at the Universidad de Chile
(Chile) under the supervision of Gonzalo Navarro. His research inter-
ests include multicore algorithms, construction of space-efficient data
structures and practical parallel models.

123

http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://dx.doi.org/10.1007/978-3-642-33074-2_19
http://dx.doi.org/10.1007/978-3-642-33074-2_19
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1007/978-3-642-31265-6_2
http://dx.doi.org/10.1007/978-3-642-31265-6_2
http://dx.doi.org/10.1016/j.tcs.2012.11.031
http://nvlabs.github.io/nvbio/index.html
http://dx.doi.org/10.1145/1290672.1290680
http://dx.doi.org/10.1016/j.ic.2011.03.007
http://www.sciencedirect.com/science/article/pii/S0890540112000235
http://www.sciencedirect.com/science/article/pii/S0890540112000235
http://dx.doi.org/10.1109/DCC.2015.7
http://www.mi.fu-berlin.de/wiki/pub/ABI/FMIndexThesis/FMIndex.pdf
http://dx.doi.org/10.1002/cpe.2939
https://hal.inria.fr/hal-00764454
https://hal.inria.fr/hal-00764454
http://dx.doi.org/10.1007/978-3-540-73437-6_22
http://www.genome.gov/sequencingcosts

1066 J. Fuentes-Sepúlveda et al.

Erick Elejalde received his M.S. degree in Computer Science from
the Universidad de Concepción (Chile) in 2013. He is currently a Ph.D.
student at the Department of Informatics Engineering and Computer
Science, Faculty of Engineering, University of Concepción (Chile). His
research interests include concurrent data structures, multicore algo-
rithms, and big data analysis.

Leo Ferres received his Ph.D. from Carleton University in Ottawa,
Canada. He is a Research Professor in the Data Science Institute,
Faculty of Engineering at Universidad del Desarrollo in Santiago de
Chile. He is also a Fellow of the Telefónica Research & Development
Group. His interest include high-performance computing, multicore
algorithms, and handling big, heterogeneous and mostly textual data.
He collects old 1980s computers.

Diego Seco received his M.S. degree in Computer Science from the
University of A Coruña (Spain) in 2006 and a Ph.D. in Computer Sci-
ence from the same university in 2009. His research interests include
algorithms and data structures, geographic information retrieval, geo-
graphic information systems, and space-efficient data structures for tex-
tual and geographic data. Nowadays, he is an associate professor at the
Department of Informatics Engineering and Computer Science, Faculty
of Engineering, University of Concepción (Chile).

123

	Parallel construction of wavelet trees on multicore architectures
	Abstract
	1 Introduction and motivation
	2 Background and related work
	2.1 Dynamic multithreading model
	2.2 Wavelet trees
	2.3 Problem statement

	3 Multicore wavelet tree
	3.1 Per-level parallel algorithm
	3.2 Domain decomposition parallel algorithm

	4 Experimental evaluation
	4.1 Experimental setup
	4.2 Running times and speedup
	4.3 Memory consumption
	4.4 Other experiments
	4.5 Discussion

	5 Conclusions and future work
	Acknowledgements
	References

