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Abstract Change points are abrupt variations in time series data. Such abrupt changes may
represent transitions that occur between states. Detection of change points is useful in mod-
elling and prediction of time series and is found in application areas such asmedical condition
monitoring, climate change detection, speech and image analysis, and human activity analy-
sis. This survey article enumerates, categorizes, and compares many of the methods that have
been proposed to detect change points in time series. The methods examined include both
supervised and unsupervised algorithms that have been introduced and evaluated. We intro-
duce several criteria to compare the algorithms. Finally, we present some grand challenges
for the community to consider.

Keywords Change point detection · Time series data · Segmentation · Machine learning ·
Data mining

1 Introduction

Time series analysis has become increasingly important in diverse fields including medicine,
aerospace, finance, business, meteorology, and entertainment. Time series data are sequences
of measurements over time describing the behavior of systems. These behaviors can change
over time due to external events and/or internal systematic changes in dynamics/distribution
[44]. Change point detection (CPD) is the problem of finding abrupt changes in data when a
property of the time series changes [34]. Segmentation, edge detection, event detection, and
anomaly detection are similar conceptswhich are occasionally applied aswell as change point
detection. Change point detection is closely related to the well-known problem of change
point estimation or change point mining [11,31,55]. Unlike CPD, however, change point
estimation tries to model and interpret known changes in time series rather than identifying
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that a change has occurred. The focus of change point estimates is to describe the nature and
degree of the known change.

In this paper, we survey the topic of change point detection and examine recent research
in this area. CPD has been studied over the last several decades in the fields of data mining,
statistics, and computer science. This problem covers a broad range of real-world problems.
Here are some motivating examples.

Medical condition monitoring

Continuous monitoring of patient health involves trend detection in physiological variables
such as heart rate, electroencephalogram (EEG), and electrocardiogram (ECG) in order to
performautomated, real-timemonitoring.Research studies investigate change point detection
for specific medical issues such as sleep problems, epilepsy, magnetic resonance imaging
(MRI) interpretation, and understanding of brain activities [12,43,58,64].

Climate change detection

Climate analysis, monitoring, and predictionmethods that utilize change point detection have
become increasingly important over the last few decades due to the possible occurrence of
climate change and the increase in greenhouse gases in the atmosphere [24,32,51].

Speech recognition

Speech recognition represents the process of converting spoken speech utterances to words or
text. Change point detectionmethods are applied here for audio segmentation and recognizing
boundaries between silence, sentences, words, and noise [19,53].

Image analysis

Researchers and practitioners collect image data over time, or video data, for video-based
surveillance. The detection of abrupt events, such as security breaches, can be formulated as
a change point problem. Here, the observation at each time point is the digital encoding of
an image [47].

Human activity analysis

Detecting activity breakpoints or transitions based on characteristics of observed sensor data
from smart homes or mobile devices can be formulated as change point detection. These
change points are useful for segmenting activities, interacting with humans while minimiz-
ing interruptions, providing activity-aware services, and detecting changes in behavior that
provide insights into health status [13–20].

In this survey we will explain the problem of change point detection and explore how
different supervised and unsupervisedmethodologies can be used for detecting change points
in time series data. We will compare and contrast investigated techniques based on their
cost, limitations, and performance. Finally, we discuss the gaps in the research, summarize
challenges that arise for change point applications, and provide suggestions for continuing
investigation.
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Change points
States

Fig. 1 Sample time series and change points (horizontal lines indicate separate states)

2 Background

Figure 1 graphs an example time series that contains several change points. The data illustrate
long-termmean annual temperature trends of Spitsbergen for the period 1899–2010 [46]. The
data can be used for climate change detection. This plot highlights the observation that the
climate of Spitsbergen went through six different regimes in this period. We refer to these
portions of the time series as states of the time series, or periods of time when the parameters
governing the process do not change. Two consecutive distinct states are distinguished by a
change point. The objective of change point detection is to identify these state borders by
discovering the change points.

2.1 Definitions and problem formulation

We begin by presenting definitions of key terms that we use throughout this survey.

Definition 1 A time series data stream is an infinite sequence of elements

S = {x1, . . . , xi , . . .}
where xi is a d-dimensional data vector arriving at time stamp i [60].

Definition 2 A stationary time series is a finite variance process whose statistical properties
are all constant over time [57]. This definition assumes that

• The mean value function μt = E (xt ) is constant and does not depend on time t .
• The auto covariance function γ (s, t) = cov (xs, xt ) = E [(xs − μs) (xt − μt )] depends

on time stamps s and t only through their time difference, or |s − t |.
Definition 3 Independent and identically distributed (i.i.d.) variables are mutually indepen-
dent of each other and are identically distributed in the sense that they are drawn from the
same probability distribution. An i.i.d. time series is a special case of a stationary time series.

Definition 4 Given a time series T of fixed length m (a subset of a time series data stream)
and xt as a series sample at time t , a matrix WM of all possible subsequences of length
k can be built by moving a sliding window of size k across T and placing subsequence
X p = {

xp, xp+1, . . . , xp+k
}
(Fig. 2) in the pth row ofWM . The size of the resulting matrix

WM is (m − k + 1) × n [37,61].
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Fig. 2 An illustrative example of time series notations

Definition 5 In a time series, using sliding window Xt as a sample instead of xt , an inter-
val X t with Hankel matrix {Xt , Xt+1, . . . , Xt+n−1} as shown in Fig. 2 will be a set of n
retrospective subsequence samples starting at time t [25,34,42].

Definition 6 A change point represents a transition between different states in a process that
generates the time series data.

Definition 7 Let {xm, xm + 1, . . . , xn} be a sequence of time series variables. Change point
detection (CPD) can be defined as the problem of hypothesis testing between two alternatives,
the null hypothesis H0: “No change occurs” and the alternative hypothesis HA: “A change
occurs” [16,28]

1) H0 : PXm = · · · = PXk = · · · = PXn .
2) HA : There exists m < k∗ < n such that PXm = · · · = PXk∗ �= PXk∗+1 = · · · = PXn .

where PXi is the probability density function of the sliding window start at point xi and k∗
is a change point.

2.2 Criteria

In the previous section we provide a formal introduction to the traditional change point
detection. However, practical application of change point detection introduces a number of
new challenges that need to be addressed. Here we introduce and describe some of these
challenges.

2.2.1 Online detection

Change point detection algorithms are traditionally classified as “online” or “offline.” Offline
algorithms consider the entire data set at once, and look back in time to recognize where the
change occurred. The goal of this scenario is generally to identify all of a sequence’s change
points in batch mode. In contrast, online, or real-time, algorithms run concurrently with the
process they are monitoring, processing each data point as it becomes available, with a goal
of detecting a change point as soon as possible after it occurs, ideally before the next data
point arrives [23].

In practice, no change point detection algorithm operates in perfect real time because it
must inspect new data before determining if a change point occurred between the old and
new data points. However, different online algorithms require different amounts of new data
before change point detection can occur. Based on this observation, we will define a new term
to use throughout this paper. We will denote as an ε-real-time algorithm an online algorithm
which needs at least ε data samples in the new batch of data to be able to find change points.
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An offline algorithm can then be viewed as ∞-real time and the completely online algorithm
is 1-real time because for every data point, it can predict whether or not a change point occurs
before the new data point. Smaller ε values may lead to stronger, more responsive change
point detection algorithms.

2.2.2 Scalability

Real-world time series data from sources such as human activities and remote sensing satel-
lites are becoming ever larger in both number of data points and number of dimensions.
Change detection methods need to be designed in a computationally efficient manner so
that they can scale to massive data sizes [15]. Hence we compare the computational cost
of alternative CPD algorithms to determine which one can reach an optimal (or a good
enough) solution as fast as possible. One way to compare the computational cost of the
algorithms is finding the algorithm is parametric or nonparametric. Distinguishing between
parametric and nonparametric approaches is important because nonparametric approaches
have demonstrated greater success for massively large datasets. Also, the computational cost
of parametric methods is higher than nonparametric approaches and does not scale as well
with the size of the dataset [16].

A parametric approach specifies a particular functional form to be learned by the model
and then estimates the unknown parameters based on labeled training data. Once the model
has been trained, the training examples can be discarded. In contrast, nonparametric methods
do not make any assumptions about the form of the underlying function. The corresponding
price to be paid is that all the available data has to be retained while making the inference
[49].

A successful algorithmmust trade off decision quality for deliberation cost. One promising
approach is to use anytime algorithms [56] which allow the execution to be interrupted
at any time and output the best possible solution obtained so far. A similar method is a
contract algorithm which also trades off computation time for solution quality but is given
the allowable run time in advance as a type of contract agreement. In contrast to an anytime
algorithm, a contract algorithm receives its allowable execution time as a specified parameter.
If a contract algorithm is interrupted before the allocated time is completed, it might not yield
any useful results. An interruptible algorithm (such as an anytime algorithm) is one whose
execution time is not given in advance and thus must be prepared to be interrupted at any
moment, but it uses available time to continually improve the quality of its solution. In
general, every interruptible algorithm is trivially a contract algorithm, but the converse is not
true [70].

2.2.3 Algorithm constraints

Approaches to CPD can also be distinguished based on the requirements that are imposed on
the input data and the algorithm. These constraints are important in selecting an appropriate
technique for detecting change points in a specific data sequence. Constraints related to the
nature of the time series datamay emanate from the stationarity [45], i.i.d. [1], dimensionality,
or continuity of the data [48].

Some of the algorithms require information about the data, such as the number of change
points in the data, the number of states in the system, and the features of the system states
[50,67]. Another important issue in parametric methods is the degree to which the algorithm
is sensitive to the choice of initial parameter values.
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Table 1 Example confusion matrix

Classified as change point Classified as non-change point

True change point TP FN

True non-change point FP TN

In this example, a change point can be considered the “positive” class while no change point can be considered
the “negative” class

2.3 Performance evaluation

In order to compare alternative CPD algorithms and estimate the expected resulting per-
formance, measures of performance are needed. Many performance metrics have been
introduced to evaluate change point detection algorithms based on the type of decisions
they make [21]. The output of CPD algorithms can contain the following:

• Change point yes/no decisions (the algorithm is a binary classifier)
• Change point identification with varying levels of precision (i.e., the change point occurs

within x time units. This type of algorithm utilizes amulti-class classifier or unsupervised
learning methods).

• The time of the next change point (or the times of all change points in the series)

In case of the first two types of output, standard methods for evaluating supervised learning
algorithms can be utilized to evaluate the performance of the change point detector. A first
step at evaluating the performance of a supervised change point learner is to generate a
confusion matrix which summarizes the actual and predicted classes. Table 1 illustrates a
confusion matrix for a binary change point classifier.

Some of the useful performance metrics that we can employ to evaluate CPD algorithms
are summarized below. While these are described in the context of binary classification,
they can each be extended to classification of a greater number of classes by providing the
measures for each class independently or in combination.

• Accuracy, calculated as the ratio of correctly classified data points to total data points. This
measure provides a high-level idea about the algorithm’s performance. The companion
to accuracy is error rate, which is computed as 1—accuracy. Accuracy and error rate do
not provide insights into the source of the error or the distribution of error among the
different classes. In addition, they are ineffective for evaluating performance in a class-
imbalanced dataset, which is typical for change point detection, because they consider
different types of classification errors as equally important. Sensitivity and G-mean are
useful metrics to utilize in this case.

Accuracy = TP + TN

TP + FP + FN + TN

• Sensitivity, also referred to as recall or the true positive rate (TP Rate). This refers to the
portion of a class of interest (change points) that was recognized correctly.

Sensitivity = Recall = TP Rate = TP

TP + FN

• G-mean. Change point detection typically results in a learning problem with an imbal-
anced class distribution because the ratio of changes to total data is small. As a result,
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G-mean is commonly used as an indicator of CPD performance. This utilizes both sensi-
tivity and specificity measures to assess the performance of the algorithm both in terms of
the ratio of positive accuracy (sensitivity) and the ratio of negative accuracy (specificity).

G-mean = √
Sensitivity × Specificity =

√
TP

TP + FN
× TN

FP + TN

• Precision. This is calculated as the ratio of true positive data points (change points) to
total points classified as change points.

Precision = TP

TP + FP

• F-measure (also referred to as f -score or f 1 score). This measure provides a way to
combine precision and recall as ameasure of the overall effectiveness of aCPDalgorithm.
F-measure is calculated as a ratio of the weighted importance of precision and recall.

F-measure = (1 + β)2 × Recall × Precision

β2 × Recall + Precision
=

(1 + β)2 × TP
TP+FN × TP

TP+FP
β2 × TP

TP+FN + TP
TP+FP

• Receiver operating characteristics curve (ROC). ROC-based assessment facilitates
explicit analysis of the trade-off between true positive and false positive rates. This
is done by plotting a two-dimensional graph with the false positive rate on the x axis and
the true positive rates on the y axis. A CPD algorithm produces a (TP_Rate, FP_Rate)
pair that corresponds to a single point in the ROC space. One algorithm can generally be
considered as superior to another if its point is closer to the (0, 1) coordinate (the upper
left corner) than the other. To assess the overall performance of an algorithm, we can
look at the area under the ROC curve, or AUC. In general, we want the false positive rate
to be low and the true positive rate to be high. This means that the closer to 1 the AUC
value is, the stronger is the algorithm. Another useful measure that can be derived from
the ROC curve is the equal error rate (EER), which is the point where the false positive
rate and the false negative rate are equal. This point is kept small by a strong algorithm.

• Precision–recall curve (PR Curve). A PRC can also be generated and used to compare
alternative CPD algorithms. The PR curve plots precision rate as a function of recall rate.
While optimal algorithm performance for an ROC curve is indicated by points in the
upper left of the space, optimal performance in the PR space is near the upper right. As
with the ROC, the area under a PRC can be computed to compare two algorithms and
attempt to optimize CPD performance. The PR curve in particular provides insightful
analysis when the class distribution is highly skewed.

If the difference in time between the detected change point (CP) and the actual CP represents
the measure of performance (utilizing supervised or unsupervised CPD methods), then the
above metrics are not appropriate choices. Evaluating the performance of these algorithms is
not as straightforward as for the previous case, because there is no single label against which
the performance of the algorithm can be measured. However, a number of useful metrics
exist for this case, including:

• Mean absolute error (MAE). This directly measures how close the predicted CP is to the
actual CP. The absolute value of the difference between the predicted and actual CP time
is summed and normalized over each of the CP points.

MAE =
∑#CP

i=1 |Predicted (CP) − Actual (CP)|
#CP
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• Mean-squared error (MSE) is a well-known alternative to MAE. In this case, because
the errors are squared, the resulting measure will be very large if a few dramatic outliers
exist in the classified data.

MSE =
∑#CP

i=1 (Predicted (CP) − Actual (CP))2

#CP

• Mean signed difference (MSD). In addition to calculating the difference between the
predicted and actual CP, this measure considers the direction of the error (predicting
before or after the actual CP time).

MSD =
∑#CP

i=1 (Predicted (CP) − Actual (CP))

#CP

• Root-mean-squared error (RMSE). This aggregates the difference between predicted
and actual error and squares each difference to remove the sign factor. The square root
is computed of the final estimate to offset the scaling factor of squaring the individual
differences.

RMSE =
√∑#CP

i=1 (Predicted (CP) − Actual (CP))2

#CP

• Normalized root-mean-squared error (NRMSE). This measure removes the sensitivity
of the values to the unit size of the predicted value. NRMSE facilitates more direct
comparison of error between different datasets and aids in interpreting the errormeasures.
Two common methods are to normalize the error to the range of the observed CPs or
normalize to the mean of the observed CPs.

NRSMSE = RMSE

MaxLength (Actual CP) − MinLength (Actual CP)

NRMSE = RMSE

mean (Actual CP)

3 Review

Many machine learning algorithms have been designed, enhanced, and adapted for change
point detection. Here, we provide an overview of the basic algorithms that are commonly
applied to the CPD problem. These techniques include both supervised and unsupervised
methods, chosen based on the desired outcome of the algorithm.

3.1 Supervised methods

Supervised learning algorithms are machine learning algorithms that learn a mapping from
input data to a target attribute of the data, which is usually a class label [21]. Figure 3 provides
an overview of supervised methods used in change point detection. When a supervised
approach is employed for change point detection, machine learning algorithms can be trained
as binary or multi-class classifiers. If the number of states is specified, the change point
detection algorithm is trained tofind each state boundary.A slidingwindowmoves through the
data, considering each possible division between two data points as a possible change point.
While this approach has a simpler training phase, a sufficient amount and diversity of training
data need to be provided to represent all of the classes. On the other hand, detecting each class
separately provides enough information to find both the nature and the amount of detected
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Fig. 3 Supervised methods for change point detection

change. A variety of classifiers can be used for this learning problem. Examples include
decision tree [50,67–69], Naïve Bayes [50], Bayesian net [67], support vector machine [50,
67], nearest neighbor [50,61], hidden Markov model [20,27,50], conditional random field
[67], and Gaussian mixture model (GMM) [20,27].

An alternative is to treat change point detection as a binary class problem, where all of
the possible state transition (change point) sequences represents one class and all of the
within-state sequences represents a second class. While only two classes need to be learned
in this case, this is a much more complex learning problem if the number of possible types of
transitions is large [21]. As with the previous type of supervised approaches, in this learning
approach each feature in the input vector indicates a source of possible change. Therefore,
any supervised learning algorithm that generates an interpretable model (such as a decision
tree or a rule learner) will not only identify a change but also describe the nature of the
change. Support vector machines [22,25], Naïve Bayes [25], and logistic regression [25]
have been tested using this approach. This type of problem will also suffer from extreme
class imbalance as there are typically many more within-state sequences than change point
sequences.

Another supervised approach is to use a virtual classifier [31]. This method goes beyond
just detecting changes to actually interpreting a change that occurs between two consecutive
windows. The virtual classifier attaches a hypothetical label (+1) to each sample from the
first window and (−1) to each sample from the second window, then trains a virtual classifier
(VC) using any supervised method based on the labeled data points. If there is a change
point between two windows, they should be correctly classified by the classifier and the
classification accuracy p should be significantly higher than random noise prand = 0.5. In
order to test the significance of a change score, the inverse survival function of a binomial
distribution is used to determine a critical value, pcritical, at whichBernoulli trials are expected
to exceed prand with α confidence level. Finally, if p > pcritical, a significant change exists
between the two windows. Once the change point is detected, the classifier is retrained using
all of the samples in the two neighboring windows. If some features play a dominant role in
the classifier, then they are the ones that characterize the difference.

123



348 S. Aminikhanghahi, D. J. Cook

Fig. 4 Unsupervised methods for change point detection

3.2 Unsupervised methods

Unsupervised learning algorithms are typically used to discover patterns in unlabeled data. In
the context of change point detection, such algorithms can be used to segment time series data,
thus finding change points based on statistical features of the data.Unsupervised segmentation
is attractive because it may handle a variety of different situations without requiring prior
training for each situation. Figure 4 provides an overview of unsupervised methods that have
been used for change point detection. Early reported methods utilize likelihood ratio based
on the observation that the probability density of two consecutive intervals are the same if
they belong to the same state. Another traditional solution is subspace modelling, which
represents a time series using state spaces and thus detects change points by predicting the
state space parameters. Probabilistic methods estimate probability distributions of the new
interval based on the data that has been observed since the previous candidate change point.
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In contrast, kernel-based methods map observations onto a higher-dimensional feature space
and detect change points by comparing the homogeneity of each subsequence. The graph-
based technique is a newly introduced method which represents time series observations
as a graph and applies statistical tests to detect change points based on this representation.
Finally, clusteringmethods group time series data into their respective states and find changes
by identifying differences between features of the states.

3.2.1 Likelihood ratio methods

A typical statistical formulation of change point detection is to analyze the probability dis-
tributions of data before and after a candidate change point, and identify the candidate as
a change point if the two distributions are significantly different. In these approaches, the
logarithm of the likelihood ratio between two consecutive intervals in time series data is
monitored for detecting change points [34].

This strategy requires two steps. First, the probability density of two consecutive intervals
is calculated separately. Second, the ratio of these probability densities is computed. The
most familiar change point algorithm is cumulative sum [7,10,18,33], which accumulates
deviations relative to a specified target of incomingmeasurements and indicates that a change
point exists when the cumulative sum exceeds a specified threshold.

Change Finder [34,42,63] is another commonly used method which reduces the problem
of change point detection into time series-based outlier detection. This method fits an auto
regression (AR)model onto the data to represent the statistical behavior of the time series and
updates its parameter estimates incrementally so that the effect of past examples is gradually
discounted. Considering time series xt , we can model the time series using an AR mode of
the kth order by:

xt = ωxt−1
t−k + ε

where xt−1
t−k = (xt−1, xt−2, . . . , xt−k) are previous observations, ω = (ω1, . . . , ωk) ∈ R

k are
constants, and ε is a normal random variable generated according to a Gaussian distribution
like white noise. By updating model parameters the probability density function at time t
is calculated and we have a sequence of probability densities {pt : t = 1, 2, . . .}. Next, an
auxiliary time series yt is generated by giving a score to each data point. This score function
is defined as the average of the log-likelihood, Score (yt ) = − log pt−1 (yt ), or statistical
deviation, Score (yt ) = d (pt−1, pt ), where d (∗, ∗) is provided by any of a number of
distance functions including variation distance, Hellinger distance, or quadratic distance.
The new time series data represents the difference between each pair of consecutive time
series intervals. In order to detect change points, we need to know if there are abrupt changes
between two consecutive differences. To do this, one more AR model is fit to the difference-
based time series and a new sequence of probability density functions {qt : t = 1, 2, . . .} is
constructed. The change point score is defined using aforementioned score function. A higher
score indicates a higher possibility of being a change point.

Since these methods rely on pre-designed parametric models and they are less flexible
in real-world change point detection scenarios, some recent studies introduce more flexible
nonparametric variations by estimating the ratio of probability densities directly without
needing to perform density estimation. The rationale of this density ratio estimation idea is
that knowing the two densities implies knowing the density ratio. However, the inverse is not
true: Knowing the ratio does not necessarily imply knowing the two densities because such
decomposition is not unique. Thus, direct density ratio estimation is substantially simpler
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than density estimation. Following this idea, methods of direct density ratio estimation have
been developed [34,42]. These methods model the density ratio between two consequent
intervals X and X ′ by a nonparametric Gaussian kernel model as follows:

g (X ) = p (X )

p′ (X ′)
=

n∑

l=1

θl K (X, Xl)

K
(
X, X ′) = exp

(
−||X − X ′||2

2σ 2

)

where p (X ) is the probability distribution of interval X , θ = (θ1, . . . , θn)
T are parameters

to be learned from data samples, X is a sliding window, and σ > 0 is the kernel parameter.
In the training phase, the parameters θ are determined so that the dissimilarity measure
is minimized. Given a density ratio estimator g (X ), an approximator of the dissimilarity
measure between two samples Xt and Xt+n is calculated in the test phase. The higher the
dissimilarity measure is, the more likely the point is a change point [34,42].

A popular choice for the dissimilarity measure is Kullback–Leibler (KL) divergence:

KL
[
p (x) ||p′(x)

] = −
∫

p′(x) log p(x)

p′(x)
dx

The Kullback–Leibler importance estimation procedure (KLIEP) estimates the density ratio
using KL divergence. This problem is a convex optimization problem, so the unique global
optimal solution θ can be simply obtained, for example, by a gradient projection method.
Projected gradient descent moves in the direction of the negative gradient at each step and
projects onto the feasible parameter. The resulting approximation of KL divergence is given
in the following equation [34,42].

K̂L = 1

n

n∑

i=1

log ĝ (Yi )

Another direct density ratio estimator is unconstrained least-squares importance fitting
(uLSIF) which uses Pearson (PE) divergence as a dissimilarity measure, shown as:

PE
[
p (x) ||p′(x)

] = −
∫

p′(x)
(

p(x)

p′(x)
− 1

)2

dx

As part of the uLSIF training criterion, the density ratio model is fitted to the true density
ratio under the squared loss. An approximator of the PE divergence is as follows [42]:

P̂E = − 1

2n

n∑

j=1

ĝ
(
Y ′
j

)2 + 1

n

n∑

i=1

ĝ (Yi ) − 1

2

Depending on the condition of the second interval density p′(x), the density ratio value can
be unbounded. To overcome this problem, α-relative PE divergence for 0 ≤ α < 1 is used
as a dissimilarity measure in an approach known as relative uLSIF (RuLSIF). The RuLSIF
measure is:

PEα

[
p(x)||p′(x)

] = PE
(
p(x)||αp(x) + (1 − α)p′(x)

)

The α-relative density ratio is reduced to a plain density ratio if α = 0, and it tends to
be“smoother” as α gets larger. The novelty of RuLSIF is that it is always bounded above by
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1
α
, and it has been shown that the convergence rate for estimating the relative density ratio is

faster than that of the uLSIF [42,62].
Recently, a semi-parametric log-likelihood change detector (SPLL) [2,38,39] was pro-

posed as a semi-parametric change detector based on Kullback–Leibler statistics. Suppose
that the data before the change point (window W1) come from a Gaussian mixture, p1 (x).
The change detection criterion is derived using an upper bound of the log-likelihood of the
data in the second window, W2 using the index of the component with the smallest squared
Mahalanobis distance between x and its center. IfW2 does not come from the same distribu-
tion ofW1, then the mean of the distances will deviate from n (where n is the dimensionality
of the feature space). A value of SPLL that is larger or smaller than a specified range will
indicate a change. It is important to note that the accuracy of all of these estimation methods
is degraded by data noise [62].

3.2.2 Subspace model methods

Another line of research bases change point detection on an analysis of subspaces in which
time series sequences are constrained. This approach has a strong connection with a system
identification method, which has been thoroughly studied in the area of control theory [34].

One such subspace model method is called subspace identification (SI) [35,42]. SI is
based on a state space model of the system which also explicitly considers a noise factor.

x (t + 1) = Ax (t) + Ke (t)

y (t) = Cx (t) + e (t)

Here C and A are system matrices, e (t) represents system noise and K is the stationary
Kalman gain. We are using different notation in subspace methods. Since in these methods
x represents model states, we use y as time series.

In system identification, an extended observability matrix is a measure for how well
internal states (x (t)) of a system can be inferred by knowledge of its external outputs,
(y (t)). Here we use the extended observability matrix as a representation of a subspace in
which time series data are constrained.

An extended observability matrix is defined as:

Ok =
[
CT (CA)T · · ·

(
CAk−1

)T ]

For each interval as described in Sect. 2.1, SI estimates the observability matrix using LQ
factorization and singular value decomposition (SVD) of the normalized conditional covari-
ance. LQ factorization is the orthogonal decomposition of a matrix into lower trapezoidal
matrices. The SVD of a matrix A is the factorization of A into the product of three matrices
A = UDVT where the columns of U and V are orthonormal and the matrix D is diago-
nal with positive real entries. In the next step, the gap between subspaces is calculated and
utilized as a measure of the change in the time series sequence. This measure of change,
D, can be compared to a specified threshold to determine if the current point is a change
point.

D = X TX − X TUUTX

Here X represents the Hankel matrix of the new interval and U is calculated by the SVD of
the estimated extended observability matrix for the previous interval.
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The next subspace model method we will discuss is called a singular spectrum transfor-
mation (SST) [32,42,45], which is also based on a state space model. Unlike the SI model,
however, it does not consider the system noise. SST will define a trajectory matrix based on
an explained Hankel matrix for each window as shown in the following equation:

X =

⎛

⎜
⎜
⎜
⎝

y1 y2 . . . yK
y2 y3 · · · yK+1
...

...
. . .

...

yL yL+1 . . . yN

⎞

⎟
⎟
⎟
⎠

where L is the window length and K is the number of windows. The trajectory matrix can
be decomposed into submatrices using SVD. These submatrices consist of singular value
empirical orthogonal functions, or EOF functions, and principal components. Distance-based
change point scores are defined by a comparison between singular spectrums of two trajectory
matrices for consecutive intervals.

Although both of these subspace model methods are based on a predefined model, SST
does not consider the effect of noise on the system. As a result, it is more sensitive than
SI to choices of parameter values and has demonstrated lower accuracies for some datasets
[35,42].

3.2.3 Probabilistic methods

Early Bayesian approaches to change point detection were offline (∞-real time) and were
based on retrospective segmentation [9,17]. One of the first approaches to online Bayesian
change point detection (BCPD) was introduced under the assumption that a sequence of
observations may be divided into non-overlapping states partitions and the data within each
state ρ in time series are i.i.d. from some probability distribution P(xt |ηρ) [1].

Compared to the previous methods which only consider pairs of consecutive samples,
BCPD compares new sliding window features with the estimation based on all previous
intervals from the same state. BCPD estimates the posterior distribution by defining an
auxiliary variable run length (rt ) which represents the time that elapsed since the last change
point. Given the run length at a time instant t , the run length at the next time point can either
reset back to 0 (if a change point occurs at this time) or increase by 1 (if the current state
continues for one more time unit). The run length distribution based on Bayes’ theorem can
be denoted as:

P (rt |x1:t ) =
∑

rt−1
P (rt |rt−1) P

(
xt |rt−1, x

(r)
t

)
P (rt−1, x1:t−1)

∑
rt P (rt , x1:t )

where x (r)
t indicates the set of observations associated with the run rt and P (rt |rt−1),

P
(
xt |rt−1, x

(r)
t

)
, and P (rt−1, x1:t−1) are prior, likelihood, and recursive components of the

equation. The conditional prior is nonzero at only two outcomes (rt = 0 or rt = rt−1 + 1)
and simplifies the equation.

P (rt |rt−1) =
⎧
⎨

⎩

H (rt−1 + 1) if rt = 0
1 − H (rt−1 + 1) if rt = rt−1 + 1
0 otherwise

In this equation, H (τ ) = P(τ )∑∞
t=τ P(t)

is a hazard function which is defined as the ratio of

probability density over the run to the total value of probability densities [1,41,59]. The
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likelihood term represents the probability that the most recent datum belongs to current run.
This is themost challenging term to calculate and it tends to bemost computationally efficient
when a conjugate exponential model is used [1].

After calculating the run length distribution and updating the corresponding statistics,
change point prediction is performed by comparing probability values. If rt has the highest
probability in the distribution, then a change point has occurred and the run length is reset to
rt = 0. If not, the run length is incremented by one, rt = rt−1 + 1 [1,41].

Thismethodwas later extended to the general case of non-i.i.d time series by incorporating
the likelihood of different subsequences of data in the equations. In addition, a simplification
was introduced that reduces the algorithm complexity from n2 to n using a simple approxi-
mation. The key idea is to compute the joint probability weights for only a fixed number of
nodes, instead of computing these weights at all n(n−1)

2 nodes [43].
A Gaussian process (GP) represents another probabilistic method for stationary time

series analysis and prediction [54]. A GP is a generalization of a Gaussian distribution and is
defined as a collection of random variables, any finite number of which have a joint Gaussian
distribution [13,14]. In this method, time series observations {xt } are defined as a noisy
version of Gaussian distribution function values f (t).

xt = f (t) + εt

In this Gaussian distribution function, εt is a noise term, usually assumed to be a Gaussian
noise termN (

0, σ 2
n

)
and f (t) = GP (0, K ) is a GP distribution function specified by mean

zero and covariance function K . Typically, a covariance function is specified using a set of
hyper-parameters. A widely used covariance function is:

K (t1, t2) = σ 2exp

(

− (t1 − t2)2

2l2

)

Given a time series, the GP function can be used to make a normal distribution prediction at
time t . The GP change algorithm uses a Gaussian process to estimate the predictive distribu-
tion at time t using observations available through time (t − 1). The algorithm then computes
the p value for the actual observation yt under the reference distribution,N

(
ŷt , σ̂ 2

t

)
. A thresh-

old α ∈ (0, 1) is used to determine when the actual observation does not follow the predictive
distribution, which is indicative of a possible state change (and thus a change point) [14].
Using observations available through time t − 1 to detect change points instead of using
only observations from the last state makes the GP method more complicated and yet more
accurate than BCPD.

3.2.4 Kernel-based methods

Although kernel-based methods are typically utilized as supervised learning techniques,
some studies use an unsupervised kernel-based test statistic to test the homogeneity of data
in time series past and present sliding windows. These methods map the observations in a
reproducing kernel Hilbert space (RKHS)H associated with a reproducing kernel k (., .) and
a feature map (X) = k (X, .) [29]. They then use a test statistic based upon the kernel
Fisher discriminant ratio as a measure of homogeneity between windows.
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Considering two windows of observations, the empirical mean elements and covariance
operators for sample X with length n are calculated as:

μ̂ = 1

n

n∑

l=1

k (Xl , .)

�̂ = 1

n

n∑

l=1

{
k (Xl , .) − μ̂

} ⊗ {
k (Xl , .) − μ̂

}

where the tensor product operator u ⊗ v for all function f ∈ H is defined as (u ⊗ v) f =
〈v, f 〉Hu. Now the kernel Fisher discriminant ratio (KFDR) between two samples is defined
as [28,29]:

KFDR
(
X length n1
1 , X length n2

2

)
= n1n2

n1 + n2

〈
μ̂2 − μ̂1,

(
�̂w + γ I

)−1 (
μ̂2 − μ̂1

)
H

〉

where γ is a regularization parameter and

�̂w = n1
n1 + n2

�̂1 + n2
n1 + n2

�̂2.

The easiest way to determine whether a change point exists between two windows is com-
paring the KFDR ratio with a threshold value [29]. The other method known as running
maximum partition strategy [28] calculates the KFDR ratio between all consequent windows
in each interval. Then the maximum ratio will be compared to threshold to detect change
point.

A common drawback for kernel-based methods is that they rely heavily on the choice of
the kernel function and its parameters, and the problem becomes more severe when the data
are in moderate- to high-dimensional spaces [16].

3.2.5 Graph-based methods

Several recent studies showed time series can be investigated using graph theory tools. The
graph is usually derived from a distance or a generalized dissimilarity on the sample space,
with time series observations as nodes and edges connecting observations based on their
distance. This graph can be defined based on a minimum spanning tree [26], minimum
distance pairing [52], nearest neighbor graph [26,52], or visibility graph [40,66].

A graph-based framework for change point detection is a nonparametric approach that
applies a two sample test on an equivalent graph to findwhether there is a change point within
the observations or not. In this method graph G is constructed for each sequence of data.
Each possible value of τ as change point time divides the observations into two windows:
observations that come before τ and observations that come after τ . The number of edges in
the graph G (RG) that connects observations from these two windows is used as an indicator
of a change point, so that smaller edges increase the possibility of change point. Since the
value of RG depends on time t , the standardized function (ZG) is defined as:

ZG (t) = − RG (t) − E [RG (t)]√
VAR [RG (t)]

where E [·] and VAR [·] are Expectation and Variance, respectively. The maximum value of
ZG among all data points in the graph is identified as a candidate change point. The change
point is accepted if the maxima is greater than a specified threshold [16]. This method is
powerful for high-dimensional data with fewer parameter assumptions. However, it does not
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utilize much information from the time series observations themselves, instead relying on
defining an appropriate graph structure.

3.2.6 Clustering methods

From a different perspective, the problem of change point detection can be considered as
a clustering problem with a known or unknown number of clusters, such that observations
within clusters are identically distributed, and observations between adjacent clusters are not.
If a data point at time stamp t belongs to a different cluster than the data point at time stamp
t + 1, then a change point occurs between the two observations.

One clustering approach used for change point detection combines sliding window and
bottom-up methods into an algorithm called sliding window and bottom-up (SWAB) [36].
The original bottom-up approach first treats each data point as a separate subsequence, then
merges subsequences with an associate merge cost until the stopping criteria is met. In
contrast, SWABmaintains a buffer of size w to store enough data for 5–6 subsequences. The
bottom-up method is applied to the data in the buffer and the leftmost resulting subsequence
is reported. The data corresponding to the reported subsequence are removed from the buffer
and replaced with the next data in the series.

A second clustering approach groups subsequences based on Minimum Description
Length [48]. The description length DL of a time series T of length m is the total num-
ber of bits that are required to represent the series, or:

DL (T ) = m∗H (T )

where H (T ) is the entropy of the time series.
MDL-based change point detection is a bottom-up greedy search over the space of clusters

which can include subsequences of different lengths and does not require the number of clus-
ters to be specified. This method clusters enumerated motifs instead of all the subsequences.

After finding time series motifs, three search operators are applied: create (create a new
cluster), add (add a subsequence to an existing cluster), and merge (merge two clusters). The
value of bitsave represents the total number of bits that are saved by applying one of these
operators to the time series.

bitsave = DL (Before) − DL (After)

The bitsave for each operator is defined as the following:

1. Creating a new cluster C from subsequences A and B

bitsave = DL (A) + DL (B) − DLC (C)

DLC (C) is the number of bits needed to represent all subsequences in cluster C .

2. Adding a subsequence A to an existing cluster C

bitsave = DL (A) + DLC (C) − DLC
(
C ′)

C ′ is the cluster C after including subsequence A.
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3. Merging cluster C1 and C2 to a new cluster C

bitsave = DLC (C1) + DLC (C2) − DLC (C)

The first step creates a new cluster from the motifs and the number of bits saved using
this step is calculated. In the next stage of the algorithm, there are two operators available:
create or add. The new subsequence can be added to one of the existing clusters or it can
be assigned as the only member of a newly created cluster. To add a subsequence into an
existing cluster, the distance between the subsequence and each cluster is calculated to find the
cluster nearest to the subsequence. After the search, the nearest cluster is updated to include
the subsequence, the number of bits saved is calculated, and the clusters are recorded. After
each step, any pair of clusters is allowed to merge if it maximally decreases the description
length (increases bitsave). Since the MDL technique requires discrete data, this method is
applicable to discretized time series values.

Another way to cluster time series data as a way to find change points using a Shapelet
method [65]. An unsupervised-shapelet, or u-shapelet S, is a small pattern in a time series T
for which the distance between S and part of time series is much smaller than the distance
between S and the rest of the time series. Shapelet-based clustering, which attempts to cluster
the data based on the shape of the entire time series, searches for a u-shapelet which can
separate and remove a time series subsequence from the rest of the dataset. The algorithm
iteratively repeats this search among the remaining data until no data remains to be separated.
A greedy search algorithm which attempts to maximize the separation gap between two
subsets of data is used to extract u-shapelets. Then any clustering algorithm such as k-means
with a Euclidian distance function can be used to cluster the time series and find change
points.

Yet another time series clustering approach is Model fitting, in which a change can be
considered to occur when a new data item or block of data items do not fit into any of the
existing clusters [60]. Assuming a data stream {x1, . . . , xi , . . .}, change point is occurred
after data point xi , if the following logical expression is true.

change =
∧ j=1

K

[
d
(
xi+1, center

(
C j

))
> radius

(
C j

)]

where d
(
xi+1, center

(
C j

))
is the Euclidian distance between a newly incoming data point

xi+1 and the center of cluster C j , radius
(
C j

)
is the radius of cluster j , K is the number of

clusters, and ∧ is the logical and symbol. The radius of cluster C with n data point and mean
value of μ is:

radius (C) =
√∑n

i=1 (xi − μ)2

n

4 Discussion and comparison

The previous sections present an overview of change point detection algorithms that are
commonly used in the literature. Choosing themost appropriate algorithm a particular dataset
depends on which criterion is most important for the application. Here, we compare CPD
methods based on several frequently used criteria.
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4.1 Online versus offline

One important criteria for change point detection is the ability to identify the change point in
real time or near-real time. The complete offline algorithms are applicable when processing
an entire time series at once, and ε-real-time algorithms need to look at least ε data points
ahead of the candidate change point. The value of ε depends on the nature of the algorithm
and amount of input data that is required for each step. Online algorithms process data within
a sliding windowwith size n. For these approaches, n should be large enough to store the data
that is necessary to represent the time series state yet small enough to still meet the epsilon
requirement.

Supervised methods Once they process enough training data, these methods will predict if
there is a CP in the current window. Therefore we can state that supervised techniques are
n-real time.

Likelihood ratio methods These methods are based on comparing probability densities
between two consequent intervals. When a new retrospective subsequence comes the new
calculation will return the result so we can say these methods are n + k-real time.

Subspace model New intervals in these techniques are calculated in the same manner as for
likelihood methods. As a result, these methods are also n + k-real time.

Probabilistic methods These methods rely only upon a single sliding window for detecting
CP, so they are n-real time.

Kernel-based methods Unsupervised kernel methods are based on sliding windows. How-
ever, as with the likelihood ratio methods these need a retrospective subsequence of data, so
they are n + k-real time.

Clustering The SWAB technique is a combination of sliding window and bottom-up. SWAB
maintains a buffer of size w. Bottom-up is applied to the data in the buffer and the left-
most subsequence is reported. As a result, SWAB is w-real time. MDL-based methods and
Shapelet-based methods need to access the entire time series at once, so they are offline or
infinity-real time. The model fitting technique depends on a single window and therefore is
n-real time.

Graph-based method This technique derives a graph from a single window. A change point
is reported if it exists within the current window, thus the method is n-real time.

Figure 5 visualizes the relationship between the alternative CPD approaches and their
point on the continuum between complete offline and online processing.

4.2 Scalability

A second important criteria is the computational cost of change point detection algorithms.
The computational cost of the algorithmswe survey,where available, are compared inTable 2.
Where authors do not provide this information, the comparison has been performed qual-
itatively based on algorithmic descriptions. In general, as the dimension of the time series
increases the nonparametricmethods gain power in computational cost andwill be less expen-
sive than parametric methods. It is very hard to characterize the cost of supervised methods
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Fig. 5 Offline versus online CPD algorithm comparison

Table 2 Comparison of CPD algorithm scalability based on sliding window size n

Category Method Parametric/nonparametric Computational cost

Probability density ratio CUSUM Parametric O(n2)∗

AR Parametric O(n3)∗
KLIEP Nonparametric KLIEP< CUSUM; KLIEP < AR

uLSIF Nonparametric uLSIF < KLIEP

RuLSIF Nonparametric RuLSIF < uLSIF

SPLL Semi-parametric O(n2)∗
Subspace models SI Parametric SI > KLIEP

SST Parametric SST > KLIEP

Probabilistic method Bayesian Parametric O(n)

GP Nonparametric O(n2)

Kernel-based methods KcpA Nonparametric O(n3)

Clustering SWAB O(Ln)

MDL

Shapelet

Model fitting

Graph-based methods Nonparametric

Multi-class classifier Nearest neighbor Nonparametric =Cost (training + CP detection)

HMM Parametric

GMM Parametric

Binary class classifier SVM Parametric

Naïve Bayes Parametric

Logistic regression Parametric

* Estimate based on algorithm

because there are two complexities involved. These are at the run time of the training stage
and the run time of the CP detection stage.

To the best of our knowledge no existing CPD algorithm provides an interruptible or
contract anytime option. This can be considered an avenue for future research.

4.3 Learning constraint

Most of the likelihood ratio methods (except SPLL) and all of the subspace model tech-
niques originally were designed for one-dimensional time series. Thus in the case of a
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d-dimensional time series, these methods merge all of the dimensions together and gen-
erate a one-dimensional series with a d-size value vector. Although there is no constraint
on time series dimensionality for the other algorithms, increasing the number of dimensions
will increase the algorithm’s computational cost.

All of the algorithms accept both discrete and continuous time series input. One exception
is the MDL-based method, which work only with discrete input values.

The supervised learning approaches to CPD operate under the assumption that a transition
period can be detected independent of the current time series state. In contrast, the unsuper-
vised learning algorithmoperates under the assumption that the distribution of time series data
changes before and after each change point [25].While the supervised data frequently outper-
form unsupervised methods in detecting change points, they depend on sufficient quality and
quantity of training data, which is not always accessible for real-world data. The multi-class
supervised algorithms are the only group that needs to know the number of possible time
series states.

In general, nonparametric CPD methods are more robust than parametric ones because
the parametric methods rely heavily on the choice of parameters. In addition, the CPD prob-
lem becomes more complex for parametric methods when the data has moderate to high
dimensionality.

Most unsupervised CPD algorithms operate on limited types of time series data. Some of
them are only work for stationary or i.i.d. datasets and others offer parametric versions for
non-stationary time series datasets. The corresponding parametric versions use a forgetting
factor to remove the effects of older observations. Table 3 summarizes these limitations for
the methods that we survey.

4.4 Performance evaluation

Several artificial and real-world datasets have been used to measure the performance of CPD
algorithms. It is important to notice that an objective comparison of the performance of
different CPD methods is very difficult due to the use of these different datasets. Here we
try to describe some popular benchmark real-world time series datasets and to compare the
reported performance of different CPD methods on these datasets.

Amajority of the studies do not provide any comparisons, or in some cases, evenmeasures
of performance. For example, there are no available results for the SPLL and clustering
methods. Similarly, experimental results for graph-based CPD are available only for different
graph structures, to demonstrate the fact that accuracy highly depends on the structure of the
graph [16]. Studies that include performance analyses tend to calculate the distance between
actual and detectedCPs and use discretemetrics like accuracy, precision, and recall to evaluate
the algorithms. Table 4 summarizes reported performance from previous studies using the
following data sets:

Dataset 1: Speech recognition This is the IPSJ SIG-SLP Corpora and Environments for
Noisy Speech Recognition (CENSREC) dataset provided by the National Institute of
Informatics (NII) [3]. This dataset records a human voice in a noisy environment. The
task is to extract speech sections from recorded signals.
Dataset 2: ECG This is a respiration dataset found in the UCR Time Series Data Mining
Archive [6]. This dataset records patients’ respiration measured by thorax extension as
they wake up. The series is manually segmented by a medical expert.
Dataset 3: Speech recognition This dataset represents soundtracks from popular French
1980s entertainment TV shows (“Le Grand ’Echiquier”). The dataset comprises roughly
three hours of sound track data.
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Table 3 Comparison of CPD algorithm limitations

Category Method Time series limitation

Probability density ratio CUSUM No limitation

AR No limitation

KLIEP The parametric version should be used
in case of non-stationary time series

uLSIF The parametric version should be used
in case of non-stationary time series

RuLSIF The parametric version should be used
in case of non-stationary time series

SPLL Time series should be i.i.d.

Subspace models SI The parametric version should be used
in case of non-stationary time series

SST Time series should be stationary

Probabilistic method Bayesian The original method works only for
i.i.d. time series Extended version
works for non-i.i.d time series

GP Time series should be stationary

Kernel-based methods KcpA Time series should be i.i.d.

Clustering SWAB No limitation

MDL No limitation

Shapelet No limitation

Model fitting No limitation

Graph-based methods Time series should be i.i.d.

Multi-class classifier Nearest neighbor No limitation

HMM No limitation

GMM No limitation

Binary class classifier SVM No limitation

Naïve Bayes No limitation

Logistic regression No limitation

Dataset 4: Brain–Computer Interface Data Signals acquired during these brain–
computer interface (BCI) trial experiments naturally exhibit temporal structure. The
corresponding dataset formed the basis of the BCI competition III. Data are acquired
during four non-feedback sessions on three normal subjects where each subject was
asked to perform different tasks, where time when the subject switches from one task to
another are random.
Dataset 5: Iowa Crop Biomass NDVI Data The NDVI time series data was available as
a data product for years 2001–2006. In this dataset, observations were made for every
sixteen days.
Dataset 6: Smart Home Data These data represent sensor readings collected in a smart
apartment located on the on WSU campus [5]. The apartment is equipped with infrared
motion/ambient light sensors, door/ambient temperature sensors, light switch sensors,
and power usage sensors. The data are labeled with corresponding human activities and
changes naturally occur between the activities.
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Dataset 7: Human activity dataset. This is a subset of the Human Activity Sensing
Consortium [4] challenge 2011, which provides human activity information collected by
portable three-axis accelerometers. The task of change point detection is to segment the
time series data according to the six behaviors: “stay”, “walk”, “jog”, “skip”, “stair up”,
and “stair down”.

In summary, we note that supervised methods tend to be more accurate than unsupervised
methods if enough training data exist and the series is stationary. If these conditions are not
met, the unsupervised methods are more useful. There is no comprehensive performance
comparison among unsupervised methods, but it can be seen from experimental results that
RulSIF consistently yields strong accuracy. Because kernel-basedmethods, subspacemodels,
CUSUM, AR, and clustering methods rely upon parameters to model time series dynamics,
they do not exhibit good performance for noisy data, or highly dynamic systems.

Most unsupervised algorithms place constraints on the types of time series methods that
can be processed. One notable exception to this is the AR method. In addition, some of these
methods have parametric versions for non-stationary data, which makes them sensitive to the
choice of parameters. For high-dimension time series data, the likelihood ratio and subspace
models are not the best choices, because they cannot directly handle multi-dimensional data.
In this case, graph-based or probabilistic methods are more promising.

5 Conclusions and challenges for future work

In this survey, we presented the state of the art in change point detection methods, analyzed
their advantages and disadvantages, and summarized challenges that arise for change point
detection. Both supervised and supervised method were used in literature to detect changes
in time series. Although CPD algorithms have progressed significantly in the last decade,
there are still many open challenges.

One important issue for CPD algorithms relates to the need for online algorithms and the
detection delay formany existing approaches. Inmany real-world applications, change points
are used selecting and executing timely actions, thus finding the change points as soon as
possible is crucial. Anytime algorithms can potentially be used to compensate for algorithm
delays and adjust the computational time in balance with the quality of the detected change
points. Another alternative is to employ methods that need smaller window sizes to calculate
change point scores, such as Bayesian methods.

Another open problem is algorithm robustness. Although some discussion does exist about
this point and generally nonparametricmethods aremore robust than parametric ones, there is
no formal analysis of robustness found in the literature. Finally, for almost all of the methods
change detection depends on the window size. Although small windows would detect more
local changes compared to large windows, it cannot look ahead of data and will increase cost.
Incorporating variable window sizes may provide a good solution to using the best window
length for each subsequence.

In many real-world data analysis problems, however, the problem of change detection
by itself is not of particular interest. For example, a climate change researcher may be
interested in finding the amount of change in temperature instead of just detecting that a
change occurred. Here, the main interest is the detailed information about the amount and
source of change. Some of the existing techniques we surveyed provide information about
the amount or source of change, but further work is needed to develop more accurate change
analysis or change estimation algorithms. Calculating dissimilarity measures for each feature
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whenever a change occurs represents one possible solution for finding the change source and
the total dissimilarity measure can then be used to conduct a change estimation.

Evaluating the significance of the detected change point is another important open issue
for unsupervised methods. Currently, most existing methods compare detect change scores
with a threshold value to determine whether change occurs or not. Selecting the optimal
threshold value is difficult. These values may be application dependent and they may change
over time. Developing statistical method to find significant change point based on previous
values may offer greater autonomy and reliability.

Finally, an ongoing challenge for CPD is to handle non-stationary time series. Literature
does exist for detecting concept drift, which can be utilized to help with this issue [8,30].
Blending change point detection with concept drift detection is a challenging but important
problem, because many real-world datasets are non-stationary and multi-dimensional.
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