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Abstract In order to enable interoperability between ontology-based systems, ontology
matching techniques have been proposed. However, when the generated mappings lead to
undesired logical consequences, their usefulnessmay be diminished. In this paper, we present
an approach to detect and minimize the violations of the so-called conservativity principle
where novel subsumption entailments between named concepts in one of the input ontologies
are considered as unwanted. The practical applicability of the proposed approach is experi-
mentally demonstrated on the datasets from the Ontology Alignment Evaluation Initiative.

Keywords Ontology alignment · Ontology matching · Ontology alignment debugging ·
Mapping repair

1 Introduction

Ontologies play a key role in the development of the SemanticWeb and are being used inmany
diverse application domains, ranging from biomedicine to energy industry. An application
domain may have been modelled with different points of view and purposes. This situation
usually leads to the development of different ontologies that intuitively overlap, but they use
different naming and modelling conventions.

The problem of (semi-)automatically computing mappings between independently devel-
oped ontologies is usually referred to as the ontology matching problem. A number of
sophisticated ontologymatching systemshavebeendeveloped in the last years [14,71].Ontol-
ogy matching systems, however, rely on lexical and structural heuristics, and the integration
of the input ontologies and the mappings may lead to many undesired logical consequences.
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In [36], three principles were proposed to minimize the number of potentially unintended
consequences, namely (i) consistency principle: themappings should not lead to unsatisfiable
concepts in the integrated ontology; (ii) conservativity principle: the mappings should not
introduce new semantic relationships between concepts from one of the input ontologies; and
(iii) locality principle: the mappings should link entities that have similar neighbourhoods.

These alignment principles have been actively investigated in the last years (e.g.,
[32,33,36,54,56,57,66]). Violations to these principles are frequent, even in the reference
mapping sets and the alignments generated by the best-performing matchers of the Ontol-
ogy Alignment Evaluation Initiative1 (OAEI). Also manually curated alignments, such as
the UMLS Metathesaurus [5] (UMLS),2 a comprehensive effort for integrating biomedical
knowledge bases, suffer from these violations [36]. The occurrence of these violations may
hinder the usefulness of ontology mappings. The practical effect of these violations is clearly
evident when ontology alignments are involved in complex tasks such as query answering
[54,78]. The undesired logical consequences caused by violations can either prevent query
answering or cause incorrect results. In order to reduce existing violations, alignment repair
methods typically remove a subset of the alignment, given that input ontologies are considered
as immutable, a common setting in ontology alignment repair scenarios.

However, the different nature of the alignment principles should be noted. Violations of the
consistency principle, unlike violations of the conservativity and locality principles, always
lead to an undesired logical consequence (i.e., unsatisfiability of a concept) and they should
always be avoided. Conservativity and locality violations may also lead to undesired logical
consequences; however, they may also represent false positives and reveal incompleteness
in one of the input ontologies. In Sect. 8, we discuss alternative approaches that suggest to
fix the input ontologies instead of repairing the alignment (e.g., [48,62]).

In this paper, we focus on the conservativity violations and we follow a “better safe than
sorry” approach (i.e., we treat violations as undesired consequences led by the mappings).
Conservativity violations are presented in two flavours, namely subsumption violations
and equivalence violations. The (potential) challenging number of conservativity violations
requires to exploit the intrinsic characteristics of these two flavours that result in the devel-
opment of different approaches for their repair. The detection and correction of subsumption
violations relies on the assumption of disjointness [67] and it is reduced to a consistency
principle violation problem, while equivalence violations are addressed using a combination
of graph theory and logic programming. These two methods are combined into a multi-
strategy approach addressing both types of violations. Our extensive evaluation supports the
effectiveness of the individual and combined approaches in the detection and correction of
conservativity violations.

The present paper extends [74,75] under the following aspects: all the experimental
evaluations provided here cover both reference alignments and alignments computed by
participating systems of the OAEI 2012–2014 campaigns, where previous papers covered
only the reference alignments of theOAEI . Compared to [75], the present article fully details
the proposed method, including a correctness proof of the technique for adding disjointness
clauses to Horn propositional formulas, on which our technique heavily relies. Furthermore,
[75] only dealt with the subsumption violations flavour, while in this paper we also cover
in detail the equivalence violations flavour. Concerning [74],3 all the technical details and
proofs are now provided. In addition, the results of the evaluation of the two possible variants

1 http://oaei.ontologymatching.org/.
2 Alignments from UMLS are extracted according to the method defined in [36].
3 This paper was presented in a workshop without formal proceedings.
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of our combined repair approach are now analysed, as well as the results for the independent
techniques in isolation, that can be used as baseline results. Finally, an empirical assessment
of the impact of our repair methods on the alignment quality (in terms of precision, recall,
and f-measure) is now provided.

The remainder of the paper is organized as follows. Section 2 summarizes the basic con-
cepts and definitions we will rely on along the paper. In Sect. 3, we introduce our motivating
scenario. Section 4 formally states the problem of computing repairs for equivalence viola-
tions and presents an algorithm to solve such violations. Section 5 describes the method and
algorithm to solve subsumption violations. Section 6 details additional properties of the pro-
posed methods. In Sect. 7, we present the conducted evaluation. A comparison with relevant
related work is provided in Sect. 8. Finally, Sect. 9 gives some conclusions and future work
lines.

2 Preliminaries

In this section, we provide the necessary definitions and notions that will be used in the subse-
quent sections. Section 2.1 briefly introducesOWL 2 and themain elements in an ontology. In
Sect. 2.2, we give a formal definition of ontology mapping and ontology alignment (adapted
from [15]) with their semantics. In Sect. 2.3, we precisely define the semantic consequences
imposed by ontology alignments and we formalize the consistency and conservativity prin-
ciples. Finally, Sect. 2.4 covers the necessary preliminaries about graph theory.

2.1 Ontologies and OWL 2

Ontologies play a key role in the development of the Semantic Web and are being used in
many diverse application domains, ranging from biomedicine to energy industry. The most
widely used ontologymodelling language is the OWL2WebOntology Language [27], which
is a World Wide Web Consortium (W3C) recommendation [84]. Description Logics (DL)
are the formal underpinning of OWL 2 [3,30].

An OWL 2 ontology O is equipped with a signature Sig(O) that is a vocabulary of legal
names for the entities appearing in the ontology. Sig(O) is composed by the disjoint union
of four finite sets: (i) NC , a set of unary symbols called named concepts; (ii) NR , a set of
binary symbols called named object properties; (iii) ND , a set of binary symbols called data
properties; and (iv) NI , a set of constant symbols called named individuals.

OWL 2 ontologies can be seen as a set of axioms that are conformant to the syntactic rules
and constraints imposed by their underlying DL language [30] and built using the elements
of the signature. The classification of O, denoted as Cl(O), corresponds to the result of
the computation, performed using an OWL 2 reasoner, of the full subsumption/subconcept
relation between its named concepts (i.e., elements of NC ). Classification is therefore the
subset of the logical closure of an ontology O s.t. each axiom is of the form A � B, where
A, B ∈ NC (O) and O |� A � B.

2.2 Ontology mappings and alignments

Ontology mappings In Definition 2.1, we provide the definition of ontology mapping (also
called match or correspondence).
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Definition 2.1 Consider two input ontologiesO1,O2 and their respective signature Sig(O1)

and Sig(O2). A mapping between entities of O1,O2 is a 4-tuple 〈e, e′, r, c〉 such that e ∈
Sig(O1) and e′ ∈ Sig(O2), r ∈ {�,�,≡}4 is a semantic relation, and c is a confidence value.
Usually, the real number unit interval (0 . . . 1] is employed for representing confidence values.
Mapping confidence intuitively reflects how reliable a mapping is (i.e., 1 = very reliable, 0 =
not reliable).

Ontology alignment Definition 2.2 introduces the notion of alignment.

Definition 2.2 An alignment M between two ontologies, namely O1,O2, is a set of map-
pings between O1 and O2.

The main format to represent mappings has been proposed in the context of the Alignment
API , and it is called RDFAlignment [9]. This format is the standard for thewell-knownOAEI
campaign. In addition, mappings are also represented as standard subclass and equivalence
DL axioms. When mappings are expressed through OWL 2 axioms, confidence values are
represented as OWL 2 axiom annotations [35]. The representation through standard OWL 2
axioms enables the reuse of the extensive range of OWL 2 reasoning infrastructure that is
currently available. We adopt this representation, and in the remainder of the paper, we
consider alignments as set of OWL 2 axioms.

Definition 2.3 introduces the notion of aligned ontology, resulting from the integration of
two input ontologies, through an alignment between them.

Definition 2.3 Let O1, O2 be two (input) ontologies, and let M be an alignment between
them. The ontology OM

O1,O2
= O1 ∪ O2 ∪ M is called the aligned ontology w.r.t. O1, O2,

and M.

OM
O1,O2

is simply called the aligned ontology when no confusion arises. Note that we
assume that the signature of the aligned ontology is always the union of the signatures of
the input ontologies. When the input ontologies are clear from the context, we employ the
abbreviated notation OM.

Given that each mapping is translated into an OWL 2 axiom, the aligned ontology is again
an OWL 2 ontology. Note that alternative formal semantics for ontology mappings have
been proposed in the literature, such as those proposed by Zimmermann et al. in [87] and the
semantics associated with the so-called bridge rules, in the context of distributed description
logics [6,55].

2.3 Semantics of the integration and principles for ontology alignments

This section introduces the semantics of the integration and provides a formal characterization
of the consistency and conservativity principles in ontology alignment.

Semantic consequences of the integration The ontology resulting from the integration of two
ontologiesO1 andO2 via an alignmentMmay entail axioms that do not follow fromO1,O2,
or M alone. These new semantic consequences can be captured by the notion of deductive
difference [46,47].

Intuitively, the deductive difference between O and O′, w.r.t. a signature �, is the set
of entailments constructed over � that do not hold in O, but do hold in O′. The notion of

4 We exclude disjointness from the semantic relations given that most of the available systems do not compute
this relation. Negative constraints are typically harder to identify and assess than positive ones [18].
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deductive difference, however, has several drawbacks in practice. First, there is no algorithm
available for computing it for DLs more expressive than EL, for which the problem is already
EXPTIME-complete [52]. In addition, the problem is undecidable for DLs as expressive as
ALCQIO5 [51]. Second, the huge (possibly infinite) number of entailments in the difference
is likely to overwhelm users.

In order to avoid the drawbacks of the deductive difference, we rely on the approximation
of the deductive difference, specified in Definition 2.4.

Definition 2.4 Let A, B be named concepts (including�,⊥),� be a signature,O andO′ be
two ontologies. We define the approximation of the �-deductive difference between O and
O′ (denoted diff≈�(O,O′)) as the set of axioms of the form A � B satisfying: (i) A, B ∈ �,
(ii) O �|� A � B, and (iii) O′ |� A � B.

The proposed approximation only requires to compare the classification hierarchies of
ontologies O and O′ (i.e., Cl(O) and Cl(O′)). In this paper, we rely on this approximation,
which has successfully been used in the past in the context of ontology integration to help
users understanding the semantic consequences of this operation [35].

Consistency principle violations Consistency violations evidence either a problem in the
mappings or an incompatibility between the input ontologies, because they always result in
incoherent and/or inconsistent (aligned) ontologies (i.e., an ontology containing unsatisfiable
concepts). The consistency principle is the most widely investigated in the literature, where
tools for detecting and automatically repair mappings leading to logical inconsistencies in the
aligned ontology have been proposed (e.g., [33,54]). Violations of the consistency principle
are (typically) easy to detect with standard reasoning services. However, repairing such vio-
lations through standard reasoning services leads to intractability for medium size ontologies
and alignments [34,76,77].

The consistency principle requires all the (named) concepts of the aligned ontology
OM

O1,O2
to be satisfiable, assuming the union of the input ontologies O∅

O1,O2
= O1 ∪ O2

(without the alignment M) does not contain unsatisfiable concepts. In Definition 2.5, we
formally define (violations of) the consistency principle.

Definition 2.5 An alignment M violates the consistency principle (i.e., it is incoherent)
w.r.t. O1 and O2 if diff≈�(O∅

O1,O2
,OM

O1,O2
) contains axioms of the form A � ⊥, for all

A ∈ � = Sig(O1)∪ Sig(O2). Violations of the consistency principle result in an incoherent
aligned ontology OM

O1,O2
.

Conservativity principle violations The conservativity principle in ontology alignment aims
at capturing the differences in the ontology classification between the input ontologies and
the aligned ontology [36] (i.e., new subsumptions and/or new equivalences among concepts).
The conservativity principle despite considering only ontology classification, and not the
unrestricted problem addressed by conservative extensions [51], is of high interest because
classification is one of the most used features in semantic-enabled applications [25,49].

Conservativity violations may evidence, like consistency violations, erroneous mappings
or disagreements in the input ontologies; however, they may also reveal incompleteness in
one of the ontologies. Although in the literature there are other approaches that consider
these violations as false positives and suggest to fix the input ontologies (see Sect. 8), in this
paper we treat them as undesired consequences led by the mappings.

5 This DL is less expressive than SROIQ, the underlying DL of OWL 2.
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The conservativity principle (general notion) states that the aligned ontology OM
O1,O2

should not induce any change in the concept hierarchies of the input ontologies O1 and O2.
That is, the sets diff≈�1

(O1,OM
O1,O2

) and diff≈�2
(O2,OM

O1,O2
) must be empty for signatures

�1 = Sig(O1) and �2 = Sig(O2), respectively.
In this paper, we present two less restrictive variants of this principle: subsumption and

equivalence conservativity violations. The subsumption variant of the conservativity princi-
ple requiresOM

O1,O2
not to introduce new subsumption relationships between concepts from

one of the input ontologies, unless they were already involved in a subsumption relationship
or they shared a common descendant. In addition, we also define violations between con-
cepts that may have been already involved in a subsumption relationship (i.e., resulting in
an equivalence between them), denoted as equivalence conservativity principle violations or
simply equivalence violations. Both variants are formally introduced in Definition 2.6.

Definition 2.6 LetOi be one of the input ontologies and � = Sig(Oi )\{⊥,�} be its signa-
ture, letM be a coherent alignment betweenO1 andO2,OM

O1,O2
be the integrated ontology,6

and let A, B be concepts in �. We define two sets of violations of OM
O1,O2

w.r.t. Oi :

– subsumption violations, denoted as subViol(Oi ,OM
O1,O2

), as the set of A � B axioms

satisfying: (i) A � B ∈ diff≈�(Oi ,OM
O1,O2

), (ii) Oi �|� B � A, and (iii) there is no C in
� such that Oi |� C � A, and Oi |� C � B;

– equivalence violations, denoted as eqViol(Oi ,OM
O1,O2

), as the set of A ≡ B axioms

satisfying: (i) OM
O1,O2

|� A ≡ B, (ii) A � B ∈ diff≈�(Oi ,OM
O1,O2

) and/or B � A ∈
diff≈�(Oi ,OM

O1,O2
).

Thus, in our setting, an alignment M violates the conservativity principle if the sets
subViol(Oi ,OM

O1,O2
) or eqViol(Oi ,OM

O1,O2
) are not empty. Example 2.1 provides an exam-

ple of mappings leading to subsumption and equivalence conservativity violations.

Example 2.1 Consider the alignment M = {m1,m2,m3,m4} provided in Fig. 1. We distin-
guish the following cases depending on the semantic relation of the mappings:

(i) Both types of violation. If both m1 and m2 are equivalence mappings (i.e., ≡), then m1

and m2 lead to two subsumption violations and one equivalence violation since they
will make Joint2 and Set_of _Joints2 to become equivalent, which did not hold any
relationship in the original ontology.

(ii) Only subsumption violation. In the case,m1 is an equivalence mapping (i.e., ≡), butm2

is a subsumption mapping (i.e., Joint_Structure1 � Set_of _Joints2), m1 and m2

only lead to a subsumption violation (i.e., Joint2 � Set_of _Joints2).
(iii) Only equivalence violation. If both m3 and m4 are equivalence mappings (i.e., ≡),

then these mappings lead to the equivalence of Anatomical_Structure1 and
Musculoskeletal_System_Struct1, which represents an equivalence violation; how-
ever, it does not represent a subsumption violation, according to condition (iii) in
Definition 2.6, since Joint_Structure1 is a common descendant of the concepts
involved in the novel subsumptions.

(iv) No violations. If m3 is a equivalence mapping (i.e., ≡) but m4 is a subsump-
tion mapping (i.e., �), then m3 and m4 will only lead to the novel subsumption
Musculoskeletal_System_Struct1 � Anatomical_Structure1, which does not rep-
resent a subsumption violation for the same reason as described in the previous case.

6 We assume that diff≈�(Oi ,O∅
O1,O2

) = ∅.
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Body Structure1

Anatomical Structure1 Musculoskeletal System Struct1

Joint Structure1

Material Anatomical Entity2

Anatomical Structure2 Anatomical Set2

Joint2 Set of Joints2

�
�

�
�

�
�

� �

m1

m2

m3

m4

Fig. 1 Example of mappings leading to subsumption and equivalence conservativity violations. The ontology
in the left-hand side represents a fragment of the SNOMED CT [69] ontology, while the one in the right-hand
side represents a fragment of FMA [65] ontology

The (potential) complexity of detecting and solving conservativity violations requires to
exploit the intrinsic characteristics of the above twoflavours thatwill result in the development
of different methods for their repair. For example, the notion of subsumption violations relies
on the assumption of disjointness [67] and it can be reduced to a consistency principle
problem (see Sect. 5). Equivalence violations, however, rely on the notion of (unsafe) cycle
in the ontology graph and require a different treatment based on graph theory (Sect. 4).

Alignment repair An alignment M that violates the consistency and/or the conservativity
principles can be fixed by removing correspondences from M.7 This process is referred to
as mapping repair (or repair for short) and is formally introduced in Definitions 2.7 and 2.8.

Definition 2.7 Let M be an incoherent alignment (i.e., violates the consistency principle)
w.r.t.O1 andO2. A set ofmappingsR ⊆ M is amapping repair for the consistency violations
for M w.r.t. O1 and O2 iff M\R is coherent w.r.t. O1 and O2, that is, OM\R

O1,O2
�|� A � ⊥,

for all A ∈ Sig(O1) ∪ Sig(O2).

The definition of violation of the conservativity principle, as in Definition 2.6, assumes
that the alignment M does not violate the consistency principle w.r.t. the input ontologies
O1 and O2. The main reason for requiring as input a coherent alignment is that unsatisfiable
concepts would be subsumed by any other concept, thus leading to a very large number of
(misleading) violations of the conservativity principle.

Definition 2.8 LetM be a coherent alignment that violates the conservativity principle w.r.t.
O1 and O2. A set of mappingsR ⊆ M is a mapping repair for the conservativity violations
forM w.r.t. O1 andO2 iff for all i ∈ {1, 2} subViol(Oi ,OM\R

O1,O2
) and eqViol(Oi ,OM\R

O1,O2
)

are empty.

The repair of an alignment usually has several alternatives. Nevertheless, the objective is to
remove as fewmappings as possible. The notion of minimal repairs, originally introduced by

7 Note that in this paper, we only target themappings in the repair process andwe consider the input ontologies
as immutable. Other approaches like Pesquita et al. [62] question the automatic generation of repairs and
suggest to update the ontologies, when necessary, to avoid violations.
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Reiter [63] under the name of diagnoses, has been introduced to the field of ontology debug-
ging in [68]. In the ontology debugging literature, they are typically referred to as mapping
diagnoses [54]. A repair or diagnosis for an alignment can be computed by extracting the
justifications for the unsatisfiable concepts (e.g., [29,42,67,80]) and selecting a hitting set of
mappings to be removed, following a minimality criteria (e.g., the number of removed map-
pings, or their combined confidence). However, justification-based techniques do not scale
when the number of unsatisfiabilities is large (a typical scenario in mapping repair problems
[34,76,77]). To address this scalability issue, mapping repair systems usually compute an
approximated repair using incomplete reasoning techniques (e.g., [33,54,66]). An approxi-
mated repairR≈ does not guarantee thatM\R≈ does not lead to violations of the consistency
and conservativity principle, but it will (in general) significantly reduce the number of vio-
lations caused by the original set of mappings M.

2.4 Graph theory notation

This section provides the necessary preliminaries about graph theory, given that graphs will
be used to provide a convenient representation of ontologies for reasoning about the detection
and repair of conservativity violations.

Graph notions A directed graph (digraph) G is a set of vertices V together with a relation A
on V .8 Aweighted digraph G is a digraphwhere each arc has a third component, calledweight
of the arc, assuming values in an appropriate structure (e.g., N,R). Given an arc a = (u, v,

c), we denote its weight as w(a) = c. The function w, when applied to a set of arcs, returns
the sum of the weights of the single arcs. An arc-labelled digraph G = (V, A, L) is a digraph
with an additional component L called the set of labels. Given an arc a = (u, v, l), l is called
the label of a, where l ∈ L .

If not differently stated, in the remainder we always refer to weighted digraphs, and the
placeholder “_” might replace any of the components of an arc, representing an unspecified
legal value that the considered component can assume.

Given a digraph G = (V, A), a subgraph G ′ = (V ′, A′) of G is a digraph such that
V ′ ⊆ V , and A′ ⊆ A, and for all arc a = (u, v, _) ∈ A′, we have that u, v ∈ V ′. A subgraph
of G is said to be induced by V ′ and denoted as G|V ′ , if, for all pair of vertices u, v ∈ V ′,
(u, v, _) ∈ A′ iff (u, v, _) ∈ A.

Paths and cycles We now formally introduce the notion of path and cycles that will be used
to model subsumption and equivalence between concepts.

Given a digraph G, a (directed) path π = [v1, . . . , vn] of G, with n > 1, is a sequence
of vertices where each pair of vertices vi and vi+1, with i ∈ 1 . . . n − 1, is connected by an
arc (vi , vi+1, _) ∈ A. The length of such a path π is n − 1. Given two vertices u, v ∈ V , v is
reachable from u iff a path π of length m − 1 exists such that, for some m > 2, v1 = u and
vm = v.

Given a digraph G and a directed path π = [v1, . . . , vn] of G, we define π as a directed
cyclic path (cycle in what follows) iff the first and last vertices coincide, i.e., v1 = vn . We
say that a cycle κ is broken by the removal of any of its arcs (resp. vertices). We also say that
a set of arcs (resp. vertices) breaks a set of cycles iff any of the cycles contains at least one
element of the set. Note that we do not consider self-arcs, and therefore, cycles with length
equal to 1 are not allowed. Given a digraph G and two cycles κ1 and κ2 of G, we define κ1
and κ2 as distinct cycles if they are not a cyclic permutation one of the other.

8 In our setting, A is required to be antireflexive as we disallow self-arcs.
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Using the notion of cycle, we introduce the notion of directed acyclic graph (DAG).
Given an arc a = (u, v, _), we refer to V(a) = {u, v} as the set containing its source

and target vertices. V naturally extends to sets (resp. sequences) of arcs, as the union of its
application on each element of the set (resp. sequence).

Given a path π = [v1 . . . vn], we refer to A(π) = {(vi , vi+1, _) | i ∈ [1 . . . n − 1]} as
the set containing all of the arcs of π . Similarly, given a set of vertices V ′ and a digraph
G = (V, A) such that V ′ ⊆ V , we refer to A(V ′) = {(u, v, _) ∈ A | u, v ∈ V ′} as the set
containing all the arcs of G between vertices of V ′.
Graph Connectivity.Given that paths and cycles are used to encode subsumption and equiva-
lence relations between concepts, graph connectivity represents a natural option for reasoning
about transitivity of such relations. The notion of strongly connected component (SCC), for
instance, splits the graph into equivalence concepts, thus identifying sets of equivalent con-
cepts.

More formally, given a digraph G = (V, A), a SCC of G is a maximal set of vertices
C ⊆ V such that for all u, v ∈ C , both u is reachable from v and vice versa. Notice that at
least a cycle containing all the elements of the SCC exists, so cycle detection in a digraph
G can be reduced to the identification of the SCCs of G. The set of SCCs of a digraph
G = (V, A) is denoted as SCC(G). If SCC(G) = {V }, then G is a strongly connected
digraph.

Tarjan’s Algorithm [81] (Tarjan) finds the SCCs of a digraph G = (V, A) using a single
depth-first search with a time complexity in O(|V | + |A|).

Given a digraph G = (V, A), the Feedback Edge Set (FES) problem aims at selecting a
subset of A, called feedback (edge) set, with minimum cardinality, whose removal makes G
acyclic. This problem is known to be NP-hard [16], as well as its weighted variant,Weighted
Feedback Edge Set (WFES). WFES differs from FES for what concerns the minimization
objective for the feedback set that is required to be minimal w.r.t. the sum of the weights of
its elements. FES is also equivalent to the Feedback Vertex Set (FVS) problem [16], where a
subset of V that makes G acyclic is sought.

3 Motivating example

In this section, we show the problems caused by the violation of the conservativity principle
when integrating ontologies via mappings in a real-world scenario. To this end, we consider,
as motivating example, a use case based on the Optique project application domain [22,
44].9 Optique aims at facilitating scalable end-user access to big data in the oil and gas
industry. The project is focused around two demanding use cases provided by Siemens [45]
and Statoil [44]. Optique advocates for an Ontology-Based Data Access (OBDA) approach
so that end users formulate queries using the vocabulary of a domain ontology instead of
composing queries directly against the database. Ontology-based queries (e.g., SPARQL
queries) are then automatically rewritten to SQL and executed over the database (e.g., [64]).
Ontology entities are linked to the database throughontology-to-schemamappings.Ontology-
to-schema mappings are, however, out of the scope of the present study, and we therefore
only focus on ontology-to-ontology mappings or simply mappings (see Sect. 2.2).

Table 1 shows two simplified fragments of ontologies that are currently being used in the
context ofOptique. The ontologyO1 has been directly bootstrapped froma relational database
(e.g., [38]), and it is linked to the data through (direct) ontology-to-schema mappings. The

9 http://www.optique-project.eu.
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Table 1 Simplified fragments of two ontologies in the oil and gas domain

OntologyO1 OntologyO2

α1 WellBore � ∃belongsT o.Well β1 Exploration_well � Well

α2 WellBore � ∃hasOperator .Operator β2 Explor_borehole � Borehole

α3 WellBore � ∃located In.Field β3 Appraisal_exp_borehole � Explor_borehole

α4 AppraisalWell Bore � WellBore β4 Appraisal_well � Well

α5 ExplorationWell Bore � WellBore β5 Field � ∃hasFieldOperator .Field_operator

α6 Operator � Owner β6 Field_operator � Owner � Field_owner

α7 Operator � Company β7 Company � Field_operator

α8 Field � ∃hasOperator .Company β8 Field_owner � Owner

α9 Field � ∃hasOwner .Owner β9 Borehole � Continuant � Occurrent

Fig. 2 Ontology alignment in an OBDA scenario

ontology O2, instead, is a domain ontology based on the Norwegian Petroleum Directorate
(NPD) FactPages10 [72], preferred by the Optique end users to feed the Optique’s visual
query formulation interface [79].11

The integration via ontology alignment ofO1 andO2 is required since the vocabulary inO2

is used to formulate queries (i.e., QF-Ontology), but only the vocabulary of O1 is connected
to the database (i.e., DB-Ontology), as depicted in Fig. 2. Consider the set of mappings M
in Table 2 between O1 and O2 generated by an off-the-shelf ontology alignment system.
Mappings are represented as 4-tuples (see Definition 2.1); for example, the mapping m2

suggests an equivalence relationship between the entities O1:Well Bore and O2:Borehole
with confidence 0.7.

The integrated ontology OM
O1,O2

= O1 ∪ O2 ∪ M, however, violates the conservativity
principle (see Table 3). According to Definition 2.6, entailments σ1-σ3, σ6 and σ7 repre-
sent subsumption violations, while entailments σ4 and σ5 are equivalence violations. Note
that σ4 and σ5 do not belong to the set of subsumption violations since O1:Company and
O1:Operator (resp.O2:Field_operator andO2:Company) are involved in a subsumption
relationship in O1 (resp. O2).

In Fig. 3, the portion of the graph representation of OM
O1,O2

involved in conservativity
violations is shown.Dashed arcs represent inferred axioms, while bold arcs are those involved
in equivalence violations. Each non-inferred arc is labelled with its confidence value.

Example 3.1 provides an instance of query over the vocabulary of O2.

10 http://factpages.npd.no/factpages/.
11 Optique uses OWL 2 QL ontologies for query rewriting, while the query formulation may be based on
much richer OWL 2 ontologies. The axioms that fall outside the OWL 2 QL profile are either approximated
or not considered for the rewriting.
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Table 2 Ontology mappings for the vocabulary in O1 andO2

e1 e2 n ρ

Mappings M
m1 O1:Well O2:Well 0.9 ≡
m2 O1:WellBore O2:Borehole 0.7 ≡
m3 O1:ExplorationWell Bore O2:Exploration_well 0.6 �
m4 O1:ExplorationWell Bore O2:Explor_borehole 0.8 ≡
m5 O1:AppraisalWell Bore O2:Appraisal_exp_borehole 0.7 ≡
m6 O1:Field O2:Field 0.9 ≡
m7 O1:Operator O2:Field_operator 0.7 �
m8 O1:Company O2:Company 0.9 ≡
m9 O1:hasOperator O2:hasFieldOperator 0.6 ≡
m10 O1:Owner O2:Owner 0.9 ≡

Table 3 Example of conservativity violations

σ Entailment: follows from: subViol? eqViol?

σ1 O2:Explor_borehole � O2:Exploration_well m3,m4 Yes No

σ2 O1:AppraisalWell Bore � O1:ExplorationWell Bore β3,m4,m5 Yes No

σ3 O2:Field_operator � O2:Field_owner α6, β6,m7,m10 Yes No

σ4 O1:Company ≡ O1:Operator α7, β7,m7,m8 No Yes

σ5 O2:Field_operator ≡ O2:Company

σ6 O1:Company � O1:Owner σ4, α6 Yes No

σ7 O2:Company � O2:Field_owner σ3, σ5 Yes No

Company1

Operator1

Owner1

Company2 Field operator2

Field owner2

Owner2

0.9

0.9

m8 1
β7

m10

0.9

0.7

m7 σ3

1

β8

1
α7

1

α6

0.9

Fig. 3 Graph representation of the fragment of the aligned ontology involved in conservativity violations

Example 3.1 Consider the following simple conjunctive query expressed in datalog nota-
tion, CQ(x) ← O2:Well(x). The query asks for wells and has been formulated using the
vocabulary of O2. The query is rewritten, according to the ontology axioms and mappings
β1, β4,m1,m3,m4 in OM

O1,O2
, into the following union of conjunctive queries:

123



786 A. Solimando et. al

UCQ(x) ← O2:Well(x) ∪ O1:Well(x) ∪ O2:Exploration_well(x)∪
O2:Appraisal_well(x) ∪ O1:ExplorationWell Bore(x)∪
O2:Explor_borehole(x)

Since only the vocabulary ofO1 is linked to the data, the union of conjunctive queries could
be simplified asUCQ(x) ← Well(x)∪ExplorationWell Bore(x), which will clearly lead
to non desired results. The original query was only asking for wells, while the rewritten query
will also return data about exploration wellbores.

Example 3.1 shows that the quality of the mappings in terms of conservativity violations
may directly affect the quality of the query results in an OBDA context. Therefore, the detec-
tion and repair of these violations arise as an important quality assessment step in Optique.
Conservativity violations, however, may represent false positives, that is, entailments that
bring new and valid knowledge. In these cases, the detection and (suggested) repair of con-
servativity violations can be seen as an input of a subsequent manual revision where the
bootstrapped and the domain ontologies may be updated with novel subsumption and/or
equivalence axioms. Note that changes in the bootstrapped ontology will necessarily imply
a revision of the ontology-to-schema mappings. Conservativity violations, however, must
always be avoided in the case the bootstrapped and the domain ontologies are considered as
immutable by Optique end users.

4 Detecting and repairing equivalence violations

This section introduces the relevant properties of our aligned ontology graph representation as
well as the formal definition and analysis of the problem of computing a minimal diagnosis
to repair equivalence violations. Finally, we present our repair algorithm EqRepair which
relies on logic programming.

As stated in Definitions 2.6 and 2.8, we expect as input an alignment M that is coherent
w.r.t. the input ontologies O1 and O2.

4.1 Aligned ontology and graph representation

Definition 4.1 formalizes a variant of the aligned ontology given in Definition 2.3. This
variant enables a more efficient detection phase for equivalence violations. Differently from
Definition 2.3, here we perform a classification step on the input ontologies before computing
the aligned ontology, in order to obtain a graph representation that allows the detection of
equivalence violations by simply analysing the graph, without further use of an OWL 2
reasoner.

Definition 4.1 Given two (input) ontologies, namelyO1,O2, and an alignmentM between
them, consider an ontology OM

O1,O2
such that Sig(OM

O1,O2
) = Sig(O1) ∪ Sig(O2), and

OM
O1,O2

= Cl(O1)∪Cl(O2)∪M, where Cl represents the classification of the given ontology
as introduced in Sect. 2.1. We define OM

O1,O2
as the aligned ontology w.r.t. O1, O2, and M,

or simply the aligned ontology, when no confusion arises.

Note that we do not compute the closure ofO1∪O2∪M since this will prevent our repair
algorithm to isolate the axioms (i.e., mappings) causing an equivalence violation.

An example of aligned ontology is shown in Example 4.1.
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Table 4 Ontologies and alignment for Example 4.1

Cl(O1) Cl(O2) M

Laptop � PC
Ultrabook � Laptop � LightObject

Ultrabook � Laptop∗
Ultrabook � LightObject∗

Ultrabook � PC∗

Ultrabook � Notebook
Notebook � Computer

Ultrabook � Computer∗
〈Laptop1, Notebook2, �, 0.7〉

〈Ultrabook1,Ultrabook2, ≡, 1〉
〈PC1,Computer2, �, 0.9〉

Inferred axioms are marked with an asterisk

Example 4.1 Let O1 and O2 be two input ontologies and M be an alignment between
them. Table 4 shows the classification of the input ontologies (inferred axioms are marked
with an asterisk) and the mappings. The aligned ontology OM

O1,O2
is therefore equal to

{Laptop1 � PC1, Ultrabook1 � Laptop1 � LightObject1, Ultrabook1 � Laptop1,
Ultrabook1 � LightObject1, Ultrabook1 � PC1, Ultrabook2 � Notebook2,
Notebook2 � Computer2, Ultrabook2 � Computer2, Notebook2 � Laptop1,
Ultrabook1 ≡ Ultrabook2, PC1 � Computer2}. Note that subscripts are only used to
emphasize the “provenance” of named concepts.

Note that our repair algorithm does not directly compute a diagnosis using the aligned
ontology, and it rather works on a graph representation12 of this ontology, presented in
Definition 4.2.

Definition 4.2 Given an ontology O, its graph representation, denoted as G(O) = (V, A),
is a digraph characterized by the following properties:

– each concept C ∈ NC (O) has an associated vertex vC ∈ V ,
– each axiom of the form D � E ∈ O (resp. D � E), with D, E ∈ NC (O) distinct

concepts, has an associated arc (vD, vE , c) (resp. (vE , vD, c)) in A,
– each axiom of the form D ≡ E ∈ O, with D, E ∈ NC (O) distinct concepts, has an

associated pair of arcs {(vD, vE , c), (vE , vD, c)} in A.

The third component of each arc (denoted as c above) is always equal to 1 if O is not an
aligned ontology; otherwise, it is equal to 1 for the axioms of the input ontologies, while it
is equal to the confidence of the considered mapping for the corresponding arcs.

When no confusion arises, we interchangeably refer to an ontological concept and its
associated vertex and to an ontology and its associated graph representation. Note that sub-
sumption/equivalence axioms between a concept and itself are not allowed in the graph
representation, because the set of arcs is defined using an antireflexive relation. Similarly,
we will interchangeably refer to axioms/mappings and their corresponding elements in the
graph representation.

An example of graph representation, associated with the aligned ontology of Example 4.1,
is shown in Fig. 4.

4.2 Paths and cycles

Given the semantics of the arcs in the graph representation, a path from a vertex u to a
vertex v implies thatO entails that the concept associated with u is subsumed by the concept

12 Although several proposals for graph formalisms for representing DL ontologies exist in the literature (e.g.,
[58]), we provided a simplified variant specifically tailored to capture equivalence violations.
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PC1

Laptop1

Ultrabook1

LightObject1

Computer2

Notebook2

Ultrabook2

0.9

1

1

1

1

1

1

1

1

1

0.7

Fig. 4 Graph representation for the aligned ontology of Example 4.1

associated with v, as expressed by Proposition 4.1. Analogously, Proposition 4.2 states that
a cycle in the graph representation implies that O entails that all the concepts associated
with the vertices of the cycle are equivalent. Note that the other direction of the following
propositions holds only if the graph representation is built on top of an ontology closed
w.r.t. classification, but this is not the case for our technique. Therefore, we do not require
that the graph representation of the aligned ontology reflects all its subsumption entailments
(equivalently, it suffices that testing subsumption on the graph representation is sound, even
if not complete).

Proposition 4.1 Let O be an ontology and let G(O) = (V, A) be its graph representation.
If a path π = [vA1 , . . . , vAn ] with n > 1 exists in G(O), then O |� A1 � An, with A1, An

distinct concepts.

Proof The proof directly follows from the semantics of the arcs in the graph representation
and by transitivity of the subsumption relation. ��
Proposition 4.2 Let O be an ontology and let G(O) = (V, A) be its graph representation.
If a cycle κ = [vA1 , . . . , vAn , vA1 ] with n ≥ 1 exists in G(O), then O |� Ai ≡ A j , with
i, j ∈ [1 . . . n] and Ai , A j distinct concepts.

Proof Given a pair of vertices vAi , vA j , we define two paths πi j = [vAi , . . . , vA j ] and
π j i = [vA j , . . . , vAi ] such that vertices vAp , vAq are consecutive in πi j , π j i , only if the same
holds in κ , with i, j, p, q ∈ [1 . . . n]. Given that all the πi j and π j i are paths, we can apply
Proposition 4.1. ��

Safe cycles InDefinition 4.3, safe cycles are introduced, that is, cycles of the aligned ontology
that do not violate the conservativity principle. This notion is key to discriminate between
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cycles representing or not an equivalence violation, and it is also at the basis of the encoding
of equivalence violations in terms of our graph representation. Intuitively, a cycle is safe if the
projection on each of the two input ontologies is either a single vertex, or a cycle traversing
all the vertices of such projection exists. A special case of safe cycles is represented by
cycles already existing in the input ontologies. The different kinds of safe cycles stem from
the combination of the following conditions on the two projections of the cycle over the
input ontologies: a projection is empty (condition (i)), a projection consists of a single vertex
(condition (ii)), a cycle traversing all the vertices of a projection exists (condition (iii)). For
instance, a (safe) cycle is local to the input ontology Oi if its projection on Oi satisfies
condition (iii), while the other projection is empty (condition (i) holds). This implies an
equivalence entailment (involving all the concepts of the cycle) already in the input ontology
Oi that clearly prevents the existence of an equivalence violation among such concepts.

Definition 4.3 Let κ = [u1, . . . , un, u1] be one of the cycles of a graph representation
G(OM

O1,O2
), with n > 1. We define κ as a safe cycle iff for some i ∈ {1, 2} we have that:

either (i) |V(κ) ∩ VOi | = 0, or (ii) |V(κ) ∩ VOi | = 1, or (iii) a cycle κ ′
i in G(OM

O1,O2
)|VOi

exists, such that V(κ) ∩ VOi ⊆ V(κ ′
i ). We further differentiate between local ((i) and (iii)

hold), trivial (only (ii) holds), partially trivial ((ii) and (iii) hold) and nontrivial safe cycles
(only (iii) holds). We generically refer to safe cycles, except local safe cycles, as global safe
cycles. A cycle that is not safe is defined as an unsafe cycle.

In Example 4.2, an example is provided for each different kinds of cycles.

Example 4.2 Consider the graph representation of Fig. 5. We first present the (differ-
ent kind of) safe cycles. [Food2,Nourishment2,Cooking2,Food2] is a local safe cycle,
[Food1,Food2,Nourishment2,Food1] is partially trivial, and [Food1,Food2,Food1] is
trivial. Instead, [Food2,Nourishment2,Pet Food1,Food1,Food2] is an unsafe cycle, but
adding the axiom Food1 � Pet Food1 to O1 would turn it into a nontrivial safe cycle.

Starting from the results of Proposition 4.2, we can characterize a restricted version of
the conservativity principle using graph-theoretical concepts only, applied on the graph rep-
resentation, without the need to refer to the aligned ontology. Despite the aforementioned
approximations, our repair technique for equivalence violations is effective in practice, as
experimentally verified in Sect. 7.2.

Theorem 4.1 Let O1,O2 be two (input) ontologies, and let M be an alignment between
them. Let also G(OM

O1,O2
) = (V, A), G(O1) = (VO1 , AO1) and G(O2) = (VO2 , AO2) be

the graph representations associated with OM
O1,O2

, O1 and O2, respectively. If there exists

an unsafe cycle κu in G(OM
O1,O2

) and the vertices associated with concepts C, D (namely
VC , VD) belong to κu, then a violation of the conservativity principle w.r.t. equivalence,
involving concepts C and D, exists in OM

O1,O2
.

Fig. 5 A graph representation
including both safe and unsafe
cycles

PetFood1

Food1 Food2 Cooking2

Nourishment2

0.9

0.9

1
1

0.5

0.4

1

1
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Proof For all the vC , vD ∈ c, if we have an (unsafe) cycle κu in G(OM
O1,O2

), thenOM
O1,O2

|�
C ≡ D holds. For all i ∈ {1, 2}, if an unsafe cycle κu exists, then no cycle κ ′ exists in
G(Oi ) such that V(κu) ∩ VOi ⊆ V(κ ′). This requires that at least one vertex vE ∈ κu exists
such that it does not belong to κ ′, which corresponds to having that, for all i ∈ {1, 2} and
for some E, F ∈ NC (Oi ), Oi �|� E ≡ F and OM

O1,O2
|� E ≡ F . This represents an

equivalence violation, thus proving the soundness of the detected violations using the graph
representation. ��

Proposition 4.2 relates cycles in the graph representation to equivalence axioms in the
aligned ontology. We have only soundness guarantee, given that without classifying the
aligned ontology equivalences that are not reflected in the graph representation may exist.

Theorem 4.1 guarantees that a method detecting and correcting all the unsafe cycles on the
graph representation is soundw.r.t. violations of the conservativity principlew.r.t. equivalence
in the aligned ontology. This is proved by verifying that detected unsafe cycles effectively
encode equivalence violations.

We remark also that, once the graph representation is built, we do not need the support of
a standard reasoner. This feature is at the basis of the scalability of our approach.

4.3 Diagnoses for equivalence conservativity violations

The goal of our repair algorithm is, starting from an aligned ontology, to detect violations to
the conservativity principle w.r.t. equivalence and to compute a diagnosis. In order to obey
to the well-known principle of minimal change , the diagnosis is required to have a minimal
weight, w.r.t. a metric capturing the amount of lost information. In our context, a standard
minimality criterion for defining diagnosis weight (the quantity tominimize) is the sum of the
weights of the arcs associated with the (removed) mappings. In Definition 4.4, we formalize
a diagnosis as the set of arcs of the graph representation of an aligned ontology that, once
removed, breaks all the unsafe cycles.

Definition 4.4 LetM be an alignment such thatG(OM) has unsafe cycles {κu
1 , . . . , κu

n }. Let
also	 ⊆ M be an alignment.	 is a diagnosis forM iff for all i ∈ [1 . . . n],	∩A(κu

i ) �= ∅,
that is, the graph representation G(OM\	) has no unsafe cycles.

Alternatively, we refer to a diagnosis forM as the diagnosis for the aligned ontologyOM
or its graph representation G(OM). In Definition 4.5, we formalize diagnosis minimality
(required by the principle of minimal change), where given a diagnosis 	 = {a0, . . . , an},
its weight, denoted as w(	), is equal to

∑n
i=1 w(ai ).

Definition 4.5 Let 	 be a diagnosis for an alignment M. 	 is a minimal diagnosis for M
iff there is no diagnosis 	′ for M such that w(	′) < w(	).

Before introducing the notion of problematic SCC in Definition 4.6, key for the definition
of an efficient detection method for unsafe cycles, we need to define the projection of a
SCC S ∈ SCC(G(OM

O1,O2
)) on an input ontologyOi , denoted as
Oi (S), as S∩VOi , where

GOi = (VOi , AOi ) is the graph representation ofOi . We denote with SCClocal(G(OM
O1,O2

))

the set of SCCs of G(O∅
O1,O2

).

Definition 4.6 A SCC S ∈ SCC(G(OM
O1,O2

)) is problematic iff 
O1(S) /∈ SCClocal

(G(OM
O1,O2

)) ∨ 
O2(S) /∈ SCClocal(G(OM
O1,O2

)). The set of problematic SCCs of

G(OM
O1,O2

) is denoted as pSCC(G(OM
O1,O2

)).
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Fig. 6 Example of cycle defined
by the UMLS 2012 alignment
between FMA and NCI
ontologies. The equivalence of
the three vertices is entailed by
the aligned ontology

Interleukin 31 Interleukin-32

Hematopoietic Growth Factor2

1

1
1

1

1

Example 4.3 Consider the graph represented in Fig. 6. It is a subgraph of the aligned ontology
OUMLS representing the UMLS 2012 alignment, namely UMLS, between ontologies O1,
O2, corresponding to the FMA [65] and NCI [24]. The graph represents a problematic SCC
because its projection onO2 does not belong to the local SCCs ofO2 since no cycle between
its two vertices exists. It cannot traverse another SCC, because otherwise the two SCCswould
be a single one.

Example 4.4 Consider two input ontologies O1 = {MolarT ooth1 � Tooth1} and
O2 = {Tooth192 � MolarT ooth2} and their obvious associated signatures. Consider
also the alignment {〈MolarT ooth1, MolarT ooth2,≡, 1〉, 〈Tooth1, Tooth192,≡, 0.7〉}.
The resulting digraph contains a SCC including all the four vertices, but none of the two pro-
jections on the input ontologies are SCCs. As a consequence, all these vertices are equivalent
in the aligned ontology. From the domain knowledge, however, we know that Tooth1 �
MolarT ooth1 and Tooth2 � Tooth192 do not hold.

The set of problematic mappings is the set of mappings between vertices of a problematic
SCC, the only arcs that can appear in diagnoses.

The notion of problematic SCCs enables an alternative diagnosis definition. Using the
notion of problematic SCC, Definitions 4.7 and 4.8 propose an alternative definition for
diagnosis, w.r.t. that given in Definition 4.4.

Definition 4.7 Let 	 be an alignment such that 	 ⊆ M, and let G(OM\	) = (V, A′)
be a graph representation such that A′ = A\	. 	 is a diagnosis for M w.r.t. G(OM) iff
pSCC(G(OM\	)) = ∅.

Definition 4.8 Let 	 be a diagnosis for M, let S ∈ pSCC(G(OM)) be a problematic
SCC, and let 	′ be a nonempty subset of 	. 	′ is a diagnosis for a SCC S iff for all Si in
SCC(G(OM\	′

)) such that Si ⊆ S, we have that Si /∈ pSCC(G(OM\	′
)).

Clearly, the reformulation does not affect any of the properties of diagnosis illustrated in this
section. Example 4.5 shows a minimal diagnosis for a problematic SCC.

Example 4.5 Consider the scenario of Example 4.3 and the subgraph of Fig. 6, representing a
problematic SCC. A minimal diagnosis for the problematic SCC is
{(I nterleukin_31, Hematopoietic_Growth_Factor2, 1)}.
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4.4 Problem statement for diagnosis computation

This section introduces theMAP-WFES problems as an extension of the well-knownWFES
problem, which removes unsafe cycles only for solving the equivalence violations, while pre-
serving local cycles. The computational complexity of theMAP-WFES problem is analysed
in “Diagnosis computation complexity” in section “Appendix”.
MAP-WFESDefinition.LetG = (V, A)be a digraph such thatV = V1∪V2,withV1∩V2 = ∅.
We denoteM, the set ofmappings, the subset of A whose arcs are of the form (u, v, _), such
that for all i, j ∈ {1, 2} and i �= j we have that u ∈ Vi , v ∈ Vj .

MAP-WFES aims at computing, given as input the digraphG, aminimumweight feedback
edge set 	 ⊆ M such that no unsafe cycles exist in G ′ = (V, A\	).

Proposition 4.3 relates diagnosis computation to the MAP-WFES problem introduced
in this section. Specifically, it states that computing a diagnosis for a graph representation
reduces to solving MAP-WFES on it.

Proposition 4.3 Computing a minimal diagnosis for an aligned ontology OM
O1,O2

, that is,
solving all the violations to the conservativity principle w.r.t. equivalence, can be reduced to
solving an instance of MAP-WFES.

Proof From Theorem 4.1 we know that all the violations of the conservativity principle
w.r.t. equivalence in the aligned ontology result in unsafe cycles in its graph representation.
Therefore breaking all unsafe cycles is equivalent to computing a diagnosis. From the def-
inition of MAP-WFES, we have that no unsafe cycles can exist in the graph resulting from
the application of the computed diagnosis. Given that, with the exception of computing a
minimal diagnosis, MAP-WFES has no other constraints, it computes such a diagnosis, and
this concludes the proof. ��

SinceMAP-WFES is a NP-hard problem (as shown in “Diagnosis computation complex-
ity” in section “Appendix”), and given the average size of an aligned ontology, computing
a diagnosis would be, in practice, intractable. For this reason, our approach decomposes
the problem into independent subproblems (i.e., computing a local diagnosis for each prob-
lematic SCC), following a divide et impera strategy. A (minimal) global diagnosis is then
computed from the (minimal) local diagnoses of the single problematic SCCs. The optimality
and correctness of this decomposition are investigated in “Decomposability of equivalence
violations diagnosis computation” in section “Appendix”.

4.5 Solving equivalence violations using logic programming

This section introduces the method for computing minimal diagnoses using logic program-
ming and a detailed description of the EqRepair algorithm.
Minimal Diagnosis Using ASP. We now describe how a minimal diagnosis can be computed
using Answer Set Programming (ASP) programs.13,14 The facts input to the ASP problems
are of the following kinds: (i) Vertices are represented using a binary predicate vt x(X, O),
where X is a string representing the vertex label and O ∈ {1, 2} encodes the index of the
input ontology the represented concept belongs to, (ii) arcs are represented using a quaternary

13 We use the syntax of Lparse 1.0, a parser for logic programs used as a front-end by different logic pro-
gramming solvers, more details at http://www.tcs.hut.fi/Software/smodels/.
14 Although alternative frameworks could have been employed (e.g., Constraint Logic Programming), we
have adopted ASP as it is known to be well suited for graph-related problems and to produce compact and
easy-to-understand solutions [10].

123

http://www.tcs.hut.fi/Software/smodels/


Minimizing conservativity violations in ontology alignments… 793

Listing 1 ASP facts encoding the problematic SCC of Fig. 3.

vtx(Company1,1) . vtx(Operator1 ,1) . vtx(Company2,2) . vtx(Field_operator2 ,2) .
edge(Company1,Company2,90 ,1) . edge(Company2,Company1,90 ,1) .
edge(Company2, Field_operator2 ,100,0) . edge(Field_operator2 ,Operator1,70 ,1) .

Listing 2 ASP program computing a minimal diagnosis for the MAP-WFES problem.

r0 : #domain vtx(X,O) . #domain vtx(Y,P) . #domain vtx(Z,Q) .
r1 : reaches(X,Y) :− edge(X,Y,C,M) , not_removed(edge(X,Y,C,M) ) , X!=Y.
r2 : reaches(X,Z) :− reaches(X,Y) , edge(Y,Z,C,M) , not_removed(edge(Y,Z,C,M) ) , X!=Y, Y!=Z, X!=Z.
r3 : reachesSafe(X,Y) :− edge(X,Y,C,0) , O=P, X!=Y.
r4 : reachesSafe(X,Z) :− reachesSafe(X,Y) , edge(Y,Z,C,0) , O=P, X!=Y, Y!=Z, X!=Z.
r5 : not_removed(edge(X,Y,C,M) ) | removed(edge(X,Y,C,M) ) :− edge(X,Y,C,M) , X!=Y .
r6 : not_removed(edge(X,Y,C,0) ) :− edge(X,Y,C,0) , X!=Y, O=P.
r7 : unsafeCycle(Y) :− not reachesSafe(Y,X) , reaches(Y,X) , reaches(X,Y) , O=P, X!=Y.
r8 : :− unsafeCycle(Y) .
r9 : #minimize [ removed(edge(X,Y,C,1) ) = C ] .
r10 : #hide . #show removed/1.

predicate edge(X, Y,C, M), where X , Y are vertices (that is, for some O, P ∈ {1, 2},
vt x(X, O) and vt x(Y, P) hold),C is an integer encoding the arcweight in a range [0 . . . 100],
while M is a Boolean flag for differentiating arcs that correspond to axioms (M = 0) from
those corresponding to mappings (M = 1).

When we refer to the execution of an ASP program on a graph representation (resp. an
aligned ontology), we always implicitly refer to its execution on a set of facts encoding the
graph representation (resp. aligned ontology).

Example 4.6 In the following, we provide an example of encoding of a graph into a set of
facts that can be used in conjunction with the ASP programs for solving the MAP-WFES
problems. To this end, we rely on our motivating example presented in Sect. 3. The encoding
of the problematic SCC of Fig. 3 corresponds to the set of facts presented in Listing 1. The
execution of the ASP program of Listing 2, in conjunction with the aforementioned facts, is
equal to the mapping m7 from Table 2 (i.e., the candidate mapping(s) to be removed to solve
the violation(s)).

A minimal diagnosis can be computed using the ASP program shown in Listing 2.
Rule r0 “types” variables X , Y or Z as vertex id (into the vt x predicate they appear).

Rules r1 states that if an unremoved arc (X, Y, _) exists, then vertex X reaches vertex Y ,
rule r2 states that reaches is a transitive predicate. Similarly, rule r3 states that if an arc (X,

Y, _) exists, that is neither a mapping nor removed, then vertex X reachesSa f e vertex Y ,
and rule r4 makes reachesSa f e a transitive predicate.

In order to obtain a valid solution, each arc has to be either removed or not removed (rule
r5), and only mappings can be removed (rule r6). Additionally, rule r8 forbids the existence
of unsafe cycles, identified by rule r7 (if a vertex unsafely reaches itself, then we have at least
an unsafe cycle). Among the valid solutions, rule r9 minimizes diagnosis weight, and the
output model is restricted to removed predicate only by means of rule r10 that corresponds
to the computed diagnosis.
EqRepair Algorithm. The EqRepair algorithm15 (Algorithm 1) takes as input two ontologies
O1 andO2, and a (coherent) alignmentM between them. The graph representation G of the

15 In [73], this algorithm is referred to as CycleBreaker.
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Algorithm 1 EqRepair Algorithm for equivalence conservativity violations
Input: O1, O2: input ontologies; M: input (coherent) mappings
Output: 	: diagnosis
1: G ← createDigraph(O1,O2,M)

2: SCCSi ← tarjan(G,Oi )
3: globalSCCs ← tarjan(G)

4: mappings ← ∅ � Map of SCCs’ mappings
5: 	 ← ∅ � Diagnosis forM
6: for each S in globalSCCs do
7: if ¬ ∧2

i=1 
Oi
(S) ∈ SCCsi then

8: mappings(S) ← extractMappings(S)

9: 	 ← 	 ∪ solver(S)

10: end if
11: end for
12: return 	

aligned ontology w.r.t.O1,O2 andM, is built bymeans of createDigraph function (line 1 of
Algorithm 1). The function builds a digraph G representing the aligned ontology associated
with the input ontologies O1, O2 and alignment M. In accordance with Definition 4.2, the
vertices of this graph are the named concepts of the two ontologies, and its arcs are the
axioms/mappings involving them.16

After the creation of the digraph, the SCCs of the input ontologies (line 2) and that of the
aligned ontology (line 3) are computed by means of the Tarjan’s algorithm (introduced in
Sect. 2.4). The algorithm then detects which SCCs of the aligned ontology are problematic.
By Definition 4.6, it suffices to test whether at least one of the two projections on the input
ontologies of each considered SCC is not a local SCC (line 7).

The minimal diagnosis for the current SCC, namely S, is computed by the solver function
that runs an ASP solver over a program representing an instance of the MAP-WFES prob-
lem associated with S (line 9 of Algorithm 1). The diagnosis for S is then obtained, using
a translation, from the solution of the aforementioned problem. Theorem 4.1 and Proposi-
tion 4.3 detail, respectively, the correctness of the detection and the solution computation, as
described above.

The global diagnosis results from the union of the local diagnoses, that is, the diagnoses
of the single SCCs (the correctness proof is given in Proposition 10.5, “Decomposability of
equivalence violations diagnosis computation” in section “Appendix”).

5 Detecting and repairing Subsumption violations

Our technique for copingwith subsumption violations is based on the reduction of the conser-
vativity principle repair problem to a consistency principle repair problem (i.e., a mapping
incoherence repair problem) through the assumption of disjointness [67]. Currently, our
method reuses and adapts the structural indexing and reasoning techniques implemented in
LogMap (an ontology matching and mapping repair system [33,37,39]). However, alternative
mapping repair systems could be used, such as ALCOMO [54] or AML [17]. Note that, to the
best of our knowledge, these mapping repair systems have only focused on solving violations
of the consistency principle.

Algorithm 2 shows SubRepair algorithm, the proposed method for detecting and correct-
ing subsumption violations. SubRepair algorithm expects as input an alignment M that is

16 For sake of space, the algorithm, which directly follows from Definition 4.2, is omitted. The interested
reader can find it in [73], Algorithm 12.
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Algorithm 2 SubRepair algorithm for subsumption conservativity violations
Input: O1, O2: input ontologies; M: input (coherent) mappings
Output: R≈: approximate repair; dis j : number of disjointness rules
1: 〈P1,P2〉 ← propositionalEncoding(O1,O2)
2: SI1 ← structuralIndex(O1)
3: SI2 ← structuralIndex(O2)

4: OM
O1,O2

← O1 ∪ O2 ∪ M � The aligned ontology is computed

5: SIU ← structuralIndex(O1 ∪ O2 ∪ M)

6: 〈Pd
1 , dis j1〉 ← disjointAxiomsExtension(P1, SI1, SIU ,OM

O1,O2
) � See Algorithm 3

7: 〈Pd
2 , dis j2〉 ← disjointAxiomsExtension(P2, SI2, SIU ,OM

O1,O2
)

8: 〈M′,R≈〉 ← mappingRepair(Pd
1 ,Pd

2 ,M) � See Algorithm 2 in [39]
9: dis j ← dis j1 + dis j2
10: return 〈R≈, dis j〉

coherent w.r.t. the input ontologies O1 and O2, according to Definitions 2.6 and 2.8. Sub-
Repair algorithm outputs the number of added disjointness during the process dis j and an
(approximate) repair R≈. The following paragraphs describe the techniques used at each
step.
Propositional Horn Encoding. The ontologies O1 and O2 are encoded as the Horn propo-
sitional formulas, P1 and P2 (line 1 in Algorithm 2). For example, the concept hierarchy
provided by an OWL 2 reasoner (e.g., [23,43]) is encoded as A → B rules, while the explicit
disjointness relationships between concepts are represented as Ai ∧ A j → ⊥. Note that the
input mappings M can already be seen as propositional implications. This encoding is key
to the mapping repair process.

Example 5.1 Consider the ontologies and mappings in Tables 1 and 2. The axiom β6 is
encoded as Field_operator∧Owner → Field_owner , while themappingm2 is translated
into rules O1:Well Bore → O2:Borehole, and O2:Borehole → O1:Well Bore.

Structural indexing Given that queries over the structural relationships of ontologies are
heavily employed in our approach, we rely on the optimized structural index of LogMap [33,
39], based on the interval labelling schema techniques presented in [1].

Specifically, the structural index exploits an optimized data structure for storing directed
acyclic graphs (DAGs), and it allows us to answer many entailment queries over the concept
hierarchy as an index lookup operation and hence without the need of an OWL 2 reasoner
(after the initial classification of the ontology). This kind of index has demonstrated to signif-
icantly reduce the cost of answering taxonomic queries [7,59] and disjointness relationships
queries [33,37]. A formal definition of the structural index is provided in [73], Definition
6.4, Section 6.3.2.

Hence, the concept hierarchies provided by an OWL 2 reasoner and the explicit disjoint-
ness axioms of O1 and O2 are efficiently indexed into the structural index (lines 2 and 3 in
Algorithm 2).

Disjointness addition In order to reduce the conservativity problem to amapping incoherence
repair problem, following the notion of assumption of disjointness, we need to automatically
add sufficient disjointness axioms into each ontologyOi . However, the insertion of additional
disjointness axioms δ may lead to unsatisfiable concepts inOi ∪{δ}, as shown in Example 5.2.

Example 5.2 Consider the axiom β9 from Table 1. Following the assumption of disjointness,
a very naïve algorithm would add disjointness axioms between Borehole, Continuant and
Occurrent , which would make Borehole unsatisfiable.
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Algorithm 3 disjointAxiomsExtension function for disjointness axioms extension
Input: P : propositional theory; SI : structural index; SIU : structural index of the aligned ontology
Output: Pd : extended propositional theory; dis j : number of disjointness rules
1: dis j ← 0
2: Pd ← P
3: for each A → B in subsumptionViolations(SI, SIU ) do � As in Definition 2.6
4: if not (SI.areDisj(A, B)) then
5: Pd ← Pd ∪ {A ∧ B → false}
6: SI ← SI.updateIndex(A � B → ⊥)

7: dis j ← dis j + 1
8: end if
9: end for
10: return 〈Pd , dis j〉

In order to detect whether each candidate disjointness axiom leads to an unsatisfiability,
a non-naive algorithm requires to make an extensive use of an OWL 2 reasoner to check
whether there are new unsatisfiable concepts in Oi ∪ {δ}. In large ontologies, however, this
approach can be prohibitive.

Our method, instead, exploits the propositional encoding and structural indexing of the
input ontologies. Thus, checkingwhetherOi ∪{δ} contains unsatisfiable concepts is restricted
to the Horn propositional case. The safety conditions for disjointness clauses in addition to
a (satisfiable) Horn propositional formula are given in Proposition 5.1, while the proof can
be found in [73], Proposition 6.2, Section 6.3.2. These conditions can easily be tested with
the structural index.

Proposition 5.1 Given a satisfiable Horn propositional formula P , the addition of a (j-th)
disjointness clause A ∧ B → ⊥ will not cause any (potential) unsatisfiability of the propo-
sitions in P iff: (i) neither P |� A → B nor P |� B → A holds, (ii) no proposition C exists
such that P |� C → A and P |� C → B.

Algorithm 2 extends the propositional formulas P1 and P2 with disjointness rules of
the form A ∧ B → ⊥ (lines 6–7). The disjointness addition follows Proposition 5.1 and
guarantees that, for every proposition A in the extended propositional formula Pd

i (with
i ∈ {1, 2}), the formula Pd

i ∪ {� → A} is satisfiable. This does not necessarily hold if the
disjointness axioms are added to the OWL 2 ontologies O1 and O2, as discussed above.

Note that the addition of all possible disjointness rules may be prohibitive for large ontolo-
gies and unnecessary (see [75]). Thus, one should only add disjointness where a subsumption
violation occurs, i.e., adding a disjointness axiom between each pair of concepts A, B ∈ Oi

(with i ∈ {1, 2}) such that A � B ∈ subViol(Oi ,OM
O1,O2

), as in Definition 2.6. Algorithm 3
implements this idea for the Horn propositional case and extensively exploits the structural
index to identify the subsumption violations (line 3 of Algorithm 3). This algorithm requires
as input the structural index of the integrated ontology and thus its classification with an
OWL 2 reasoner (line 5 in Algorithm 2). The classification time of the integrated ontology
is known to be typically much higher than that of the input ontologies individually [34].
However, this was not a bottleneck in our experiments, as shown in Sect. 7.2.

Mapping repair The step 8 of Algorithm 2 uses the mapping (incoherence) repair algorithm
of LogMap, for the extended Horn propositional formulasPd

1 andPd
2 , and the input mappings

M. The mapping repair process exploits the Dowling–Gallier (D&G) algorithm [11,21] for
propositional Horn satisfiability (refer to [73], Section 6.3, for more details) and checks,
for every proposition A of a given formula P , the satisfiability of the propositional formula
PA = P ∪ {� → A}. Satisfiability of PA is checked in worst-case linear time in the size
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of PA, and the number of D&G calls is also linear in the number of propositions in P . In
case of unsatisfiability, the variant of the algorithm implemented in LogMap also allows us to
record conflictingmappings involved in the unsatisfiability, which will be considered for the
subsequent repair process.17

The repair is performed by removing some of the identified conflicting mappings. To this
aim, the algorithm selects an approximation of the minimal hitting set (w.r.t. total mapping
confidence) between the set of conflictingmappings, for the different unsatisfiabilities that are
detected. In case of multiple options, the mapping confidence will be used as a differentiating
factor.18 Example 5.3 provides an example of mapping repair for solving a subsumption
violation.

Example 5.3 Consider the propositional encoding P1 and P2 of the axioms of Table 1 and
the mappings M in Table 2, seen as propositional rules. Pd

1 and Pd
2 have been created by

adding disjointness rules to P1 and P2, according to Algorithm 3. For example, Pd
2 includes

the ruleψ = O2:Well∧O2:Borehole → false. Themapping repair algorithm identifies the
propositional theory Pd

1 ∪Pd
2 ∪M∪{true → O1:ExplorationWellbore} as unsatisfiable.

This is due to the combination of the mappings m3 and m4, the propositional projection of
axioms β1 and β2, and the rule ψ . The mapping repair algorithm also identifies m3 and m4

as the cause of the unsatisfiability and discards m3, since its confidence is smaller than that
of m4 (see Table 2).

6 Properties of the repair methods and combined approach

We have presented two methods for the detection and correction of violations of the conserv-
ativity principle. The repair of subsumption conservativity violations (which are reduced to a
consistency violations) is based on theDowling–Gallier algorithm for propositional Horn sat-
isfiability, whereas equivalence conservativity violations are addressed using a combination
of graph theory and logic programming.
Soundness and (In)completeness.Bothmethods are sound (the violations that are detected are
indeed violations if considering the full expressiveness of the input ontologies), but incom-
plete, since the used approximate projections of the input ontologies (i.e., Horn propositional
and graph encodings) may lead to some violations being missed.

Algorithm 2 computes a repairR≈ such thatM′ = M\R≈ is coherent with respect toPd
1

andPd
2 (according to the propositional case of Definition 2.5). Furthermore, the propositional

theory P1 ∪P2 ∪M′ does not contain any subsumption violation with respect to P1 and P2

(according to the propositional case of Definition 2.6). However, our encoding is incomplete,
and we cannot guarantee thatO1∪O2∪M′ does not contain any subsumption conservativity
violations w.r.t. O1 and O2.

Analogously, Algorithm 1 computes a diagnosis (i.e., minimal mapping repair) 	 such
thatM′ = M\	 does not lead to equivalence violations with respect to the graph encoding
of the aligned ontology presented in Definition 4.1. However, the considered encoding is
incomplete since only the classification of the input ontologies in isolation is considered.

17 Note that, as for the case of EqRepair, we do not compute the classification of O1 ∪ O2 ∪ M since this
will prevent our extension of D&G to identify and record the mappings involved in an unsatisfiability (i.e., a
subsumption violation).
18 In scenarios where the confidence of themapping ismissing (e.g., in reference ormanually createdmapping
sets) or unreliable, our mapping repair technique computes fresh confidence values based on the locality
principle [36].
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Algorithm 4 ConsRepair, a multi-strategy approach to repair conservativity violations
Input: O1, O2: input ontologies; M: input (coherent) mappings; rs: repair strategy;
Output: R≈: approximate repair; dis j : number of disjointness rules
1: dis j ← 0
2: switch rs do
3: case equivalence repair
4: R≈ ← EqRepair(O1,O2,M) � Algorithm 1
5: case subsumption repair
6: 〈R≈, dis j〉 ← SubRepair(O1,O2,M) � Algorithm 2
7: case equivalence and subsumption repair
8: R≈

1 ← EqRepair(O1,O2,M)

9: 〈R≈
2 , dis j〉 ← SubRepair(O1,O2,M\R≈

1 )

10: R≈ ← R≈
1 ∪ R≈

2
11: case subsumption and equivalence repair
12: 〈R≈

1 , dis j〉 ← SubRepair(O1,O2,M)

13: R≈
2 ← EqRepair(O1,O2,M\R≈

1 )

14: R≈ ← R≈
1 ∪ R≈

2
15: return 〈R≈, dis j〉

Thus, as for the subsumption violations, we cannot guarantee that O1 ∪ O2 ∪ M′ does not
contain any equivalence violation.

Nevertheless, incompleteness is mitigated thanks to the classification of the input ontolo-
gies using full reasoning (see Definition 4.1 and the propositional encoding in Sect. 5).
Furthermore, our evaluation suggests that the number of remaining violations after repair is
typically small (see Sect. 7.2).
Combined Algorithm. Despite the differences between subsumption and equivalence viola-
tions, a mutual influence between them exists. An example is given in Table 3 of Sect. 3,
where subsumption violations are caused by the existence of equivalence violations in the
same aligned ontology. Nonetheless, subsumption violations can also be responsible for the
existence of equivalence violations.

It is evident, from the aforementioned example, that the application of a repair step tar-
geting a particular violation kind can solve as a side effect violations of other kinds.

In Algorithm 4, we provide a multi-strategy algorithm to repair conservativity violations.
The algorithm allows combining the approaches targeting subsumption and equivalence
violations.We expect that the combination of the repair strategieswill impact the performance
in terms of required time and number of solved violations. Furthermore, we also expect the
order of the strategies will influence the results.

Algorithm 4, as SubRepair and EqRepair algorithms, expects as input two ontologies O1

andO2, and a coherent alignmentM. Additionally, it also expects the required repair strategy
rs (e.g., subsumption repair first and then equivalence repair). As output, the algorithm
provides the (approximate) repair R≈ and the number of added disjointness dis j in the
SubRepair algorithm. When SubRepair is not executed, dis j = 0. In the case of using a
combined strategy, the repaired mappings by the SubRepair (resp. EqRepair) algorithm will
be given as input of the EqRepair (resp. SubRepair) algorithm; see lines 12 and 13 (resp. 8
and 9) in Algorithm 4.
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7 Experimental evaluation

In this section,we evaluate the feasibility of using our combined approach to correct conserva-
tivity violations in practice.19,20 To this end, we have conducted the evaluation inAlgorithm5
over the ontologies andmapping sets (i.e., reference alignments and alignments computed by
participating systems) of the 2012–2014 campaigns of the Ontology Alignment Evaluation
Initiative (OAEI):

(i) Anatomy the Anatomy dataset involves the Adult Mouse Anatomy (MO) ontology and
a fragment of the NCI ontology describing human anatomy. The reference alignment
has been manually curated [86]. From 2012 to 2014, we have gathered 47 different
alignments computed by participating systems.

(ii) Conference this dataset uses a collection of 16 ontologies from the domain of academic
conferences [83]. Currently, there are 21manually createdmapping sets among 7 of the
ontologies. From2012 to 2014,we have gathered 1, 104 different alignments computed
by participating systems.

(iii) LargeBio this dataset includes the biomedical ontologies FMA, NCI and (a fragment
of) SNOMED CT , and three reference mapping sets based on the UMLS [5]. From
2012 to 2014, we have gathered 122 alignments computed by participating systems.

(iv) Library this OAEI dataset includes the real-world thesauri STW and TheSoz from the
social sciences. The reference mappings have been manually validated. From 2012 to
2014, we have gathered 32 alignments computed by participating systems.

We have run the evaluation algorithm for (i) each of theOAEI tasks (i.e., pair of ontologies)
described above and (ii) each of the reference and computed alignments available in each
OAEI task, which resulted in 1, 331 executions and 5, 324 calls (1, 331 x 4 repair strategies)
to the repair method (line 9 in Algorithm 5).

In the conducted evaluation, we have used the OWL 2 reasoner HermiT [23] to classify the
input and aligned ontologies. In a few cases, HermiT failed in classifying the aligned ontology
and we used the OWL 2 EL reasoner ELK [43] in order to provide an approximation of the
classification. The use of this approximation had a minor impact in the overall results.

Section 7.1 briefly comments on the steps followed byAlgorithm5. In Sect. 7.2,we present
and discuss the results of our repair methods in terms of computation times, computed repairs
and corrected violations. Note that we have grouped the results according to the origin of
the alignments: reference and computed by participating systems. Section 7.3 analyses and
compares the impact of the conservativity repair strategies on the alignment quality in terms
of precision, recall, and f-measure.

7.1 Evaluation algorithm steps

Algorithm 5 expects as input two ontologies O1 and O2, a (not necessarily coherent) align-
ment M, and the set of supported repair strategies RS (as in Algorithm 4). Note that the
evaluation algorithm includes two pre-processing steps of the input mappings and ontologies
(lines 1 and 2 of Algorithm 5).

19 The complete source code of the proposed algorithms and the performed experiments is available at https://
github.com/asolimando/logmap-conservativity/.
20 The test environment consisted of a desktop computer equipped with 32GB DDR 3 RAM at 1333MHz,
and an AMD Fusion FX 4350 (quad-core, each running at 4.2GHz) as CPU. The dataset is stored on a 128GB
SSD, where the operating system Ubuntu (12.04, 64-bit version) is also installed. Our prototype can run with
less than 8GB for the majority of the considered tests; we, however, allocate 26GB of RAM for the JVM in
order to minimize the influence of the garbage collector on the recorded temporal measurements.
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Algorithm 5 Conducted evaluation
Input: O1, O2: input ontologies; M: alignment between O1 andO2; RS: repair strategies;

Pre-processing steps:
1: 〈O1,O2〉 ← ModuleExtraction(O1,O2,M)

2: M ← ConsistencyRepair(O1,O2,M)

Create aligned ontology:
3: OM ← O1 ∪ O2 ∪ M � Definition 2.3

Keep problem size:
4: Store |Sig(O1)|, |Sig(O2)|, and |M|

Compute number of initial violations:
5: subVioli ← |subViol(O1,OM)| + |subViol(O2,OM)| � Subsumption violations, Definition 2.6
6: eqVioli ← |eqViol(O1,OM)| + |eqViol(O2,OM)| � Equivalence violations, Definition 2.6
7: diff≈i ← |diff≈Sig(O1)

(O1,OM)| + |diff≈Sig(O2)
(O2,OM)| � General notion, Definition 2.4

8: for each rs in RS do � Repair strategies as in Algorithm 4
Compute repair (Algorithm 4):

9: 〈R≈, dis j〉 ← ConsRepair(O1,O2,M, rs) � Keep times to compute repair tr and disjointness rules td
Create new (repaired) aligned ontology:

10: M′ ← M\R≈
11: OM′ ← O1 ∪ O2 ∪ M′

Compute number of remaining violations:

12: subViolr ← |subViol(O1,OM′
)| + |subViol(O2,OM′

)|
13: eqViolr ← |eqViol(O1,OM′

)| + |eqViol(O2,OM′
)|

14: diff≈r ← |diff≈Sig(O1)
(O1,OM′

)| + |diff≈Sig(O2)
(O2,OM′

)|
15: end for

Module extraction Modules are a general technique for ensuring scalability of ontology-
based algorithms. The main intuition is that a (logic-based) module for a given ontology O
w.r.t. a seed signature � is a subset of O that preserves the entailment relation over axioms
expressed using�. In our approach, in order to reduce the size of the problem,we (optionally)
extract two modules [8,26], one for each input ontology, using the entities involved in the
input mappings M as seed signatures. When no confusion arises, we directly refer to these
modules as the input ontologies.

Consistency repair As already mentioned, our (combined) approach expects to work on
coherent alignments. In order tomeet this requirement, we perform a preliminary consistency
repair as a two-step process. First, the consistency repair facility of LogMap [39] is used to
repair the aligned ontology. Then, any unsolved incoherence is detected through an OWL 2
reasoner and solved by computing a single justification [28] and removing the mapping with
least confidence appearing in it. This last step is iteratively applied until nomore incoherences
are present in the aligned ontology. This consistency repair process is sound and complete,
but it does not guarantee the optimal minimization of the total confidence of the removed
mappings. However, for the purposes of our evaluation, this two-step process is sufficient.

Problem characteristics Line 4 keeps the size of the problem (i.e., number of entities of the
input ontologies and size of the inputmapping). The number of initial violations prior repair is
also stored: subsumption violations (line 5), equivalence violations (line 6) and conservativity
violations following the general notion (line 7), which fully relies on the approximation of
the deductive difference (Definition 2.4).

Conservativity repair Algorithm 5 computes a repair for each of the four supported strategies
keeping the times to compute the repair (tr ) and to add the disjointness rules (td ) in the relevant
cases (line 9). Once the repair has been computed, it also calculates the violations that have
been missed (lines 10-14). Although our approach is incomplete, the number of remaining
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violations is typically negligible compared to the initial number of violations reported in
lines 5-7.

7.2 Evaluation on computed and reference alignments

The result of applying the evaluation algorithm to the ontologies and reference alignments
of the OAEI campaign is presented in Table 5.21 Table 6 reports the same evaluation over the
computed alignments by participating systems in the OAEI 2012–2014 campaigns. Tables 5a
and 6a show the characteristics of the problem (i.e., average size of input ontologies andmap-
pings, and number of violations prior repair). The last column (#M) represents the number
of matching tasks in each of the tracks. For example, there are 122 different alignments in the
largebio track computed by participating systems with an average size of 11, 789 mappings
per alignment. The results compiling the output of several repairs (i.e., over several align-
ments) are presented in the tables with the format mean (standard deviation). For example,
for the conference track (Table 5a), since #M=21 (i.e., there are 21 alignments), we report
the average size of (initial) subsumption violations (2.19) and the standard deviation of their
size (3.5).

Next,wefirst analyse the results of the twobasic repair strategies in isolation (i.e., EqRepair
and SubRepair), and then, we compare with the results of the combined approaches (i.e.,
EqRepair first and then SubRepair, and vice versa).

Equivalence The experimental results considering EqRepair algorithm can be summarized
as follows:

(i) The sumof the detection and repair time of EqRepair is very low due to the linear cost of
the detection technique and the efficient parallelization of the diagnosis computation.

(ii) The computed repairs are typically of limited size (less than 10%), but can reach
a significant portion of the the original alignment. For example, in the library track
(Table 6b), it removes on average 22% of the mappings. This is due to the large number
of violations led by the alignments computed by participating systems.

(iii) The equivalence violations are completely removed for anatomy and library tracks
and practically removed for largebio and conference compared to the initial number
of equivalence violations (see Tables 5b and 6b).

(iv) The removal of equivalence violations, as expected, has also an important impact
w.r.t. the remaining subsumption violations, specially when dealing with mapping sets
computed by participating systems in the OAEI’s library track (see Table 6b).

This set of experiments confirms the effectiveness and efficiency of the detection and
repair algorithms for equivalence violations.

Subsumption The experimental results on the behaviour of SubRepair algorithm can be sum-
marized as follows:

(i) Despite the large number of subsumption violations, the required time td to detect
violations and add disjointness rules (i.e., cost ofAlgorithm3) is very low (seeTables 5c
and 6c). The results also show that td is directly influenced by the size of the input
ontologies, more than by the number of violations.

(ii) Repair times tr are typically small and they do not represent a bottleneck in spite of the
large number of added disjointness rules. An exception is represented by the library

21 Note that the reference mappings of the OAEI campaign are already coherent w.r.t. the test case ontologies,
and thus, the consistency repair step was not necessary.
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track (Table 6c), where an average repair time of 33min is required. However, the
runtime is reasonable considering the impressive average number of violations (i.e.,
5M).

(iii) The computed repairsR≈ can be aggressive and the average mapping removal ranges
from 3% (conference track, Table 5c) up to 45% of the original alignment (library
track, Table 6c). From Tables 5c and 6c, the expected positive correlation between the
repair size and the number of detected violations (i.e., added disjointness rules #disj)
clearly emerges.

(iv) Subsumption violations are completely removed in the anatomy and library cases and
almost completely removed in the conference and largebio tracks, with less than 0.1%
(on average) of unsolved violations. As a side effect, equivalence violations are also
reduced to a minimum. For example, for one of the computed alignments between
iasted and sigkdd ontologies in the conference track, we fail to detect and repair the
conservativity violation iasted:Hotel_ f ee � iasted:Reg_ f ee. The justifications of
this violation reveal that an inverse property axiom and an existential restriction are
behind this novel entailment. TheseOWL 2constructors, however, fall outside theHorn
propositional and graph projections of the input ontologies currently implemented in
our techniques.

(v) The number of missed violations is only slightly higher when considering the general
notion of the conservativity principle (see diff≈r columns in Tables 5c and 6c), which
suggests that our (approximate) variant based on the assumption of disjointness is
suitable in practice. Furthermore, the number of unsolved violations using this notion
is negligible (<0.25 % on average).

This set of experiments basically confirms the effectiveness and efficiency of the detection
and repair algorithms for subsumption violations. This evaluation also shows that the violation
detection algorithm is more heavily influenced by the size of the involved ontologies and
alignments, while the time required by the repair algorithm is strongly correlated with the
number of violations to repair.

Combined The experimental results on the behaviour of the different flavours of our com-
bined approaches can be summarized as follows:

(i) In Tables 5d, e, and 6d, e, we can see that the number of unsolved violations, as
expected, is lowered w.r.t. applying one of the repair methods in isolation. In anatomy
and conference, the results are slightly better when applying SubRepair algorithm
first, while in largebio and library, the unsolved violations are smaller when applying
EqRepair algorithm first; nevertheless, the differences are negligible.

(ii) The detection and disjointness addition time td are comparable in both combined vari-
ants, and it is not therefore influenced by the repair application order. However, the
number of required disjointness rules #disj is significantly reduced when applying
EqRepair algorithm first.

(iii) Total repair times tr when applying SubRepair first are basically the same as the times
when applying SubRepair in isolation. However, the repair times when applying EqRe-
pair first for the largebio and library tracks are significantly reduced, specially for the
case of library. This is due to the fact that the SubRepair algorithm, in the presence of
SCCs, generates a large number of almost equivalent repair plans that pose a problem
to the plan selection method. The solution presented in EqRepair is more efficient in
these cases since it focuses on the problematic SCCs.
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(iv) The computed repairs R≈ are of comparable size, on average smaller when equiva-
lence repair is applied first. An exception is, however, represented by the alignments
computed by participating systems in the library track.

This set of experiments confirms the increased effectiveness,with a small loss in efficiency,
of the combined repair approaches, w.r.t. the single repair methods.

7.3 Repair effects on alignment quality

Figures 7, 8, 9 and 10 show the average impact (in terms of precision, recall and f-measure)
of applying a conservativity repair over the computed alignments by participating systems
in the OAEI 2012–2014 campaigns. The results are grouped by track.

The impact of alignment repair is computed as the percentual of gain (resp. loss for negative
values) for each measure computed for a repaired alignment, compared to the same measure
computed for the original alignment. The measures are computed w.r.t. the OAEI reference
alignments. Additionally, we filter any alignment without conservativity violations, because
the empty repair always implies a void gain.

Such impact of the conservativity repair is presented in Figures 7, 8, 9 and 10 for each
flavour of our repair algorithm, where results over individual alignments are grouped by
track. The boxplots presented in such figures are characterized by a “box” (i.e., the range in
between the first and third percentile), the “median” for the results, and the “whiskers” which
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Fig. 7 Repair impact for anatomy track. a Subsumption, b equivalence, c Sub.→Eq, d Eq.→Sub
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Fig. 8 Repair impact for conference track. a Subsumption, b equivalence, c Sub.→Eq, d Eq.→Sub
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Fig. 9 Repair impact for largebio track. a Subsumption, b equivalence, c Sub.→Eq, d Eq.→Sub
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Fig. 10 Repair impact for library track. a Subsumption, b equivalence, c Sub.→Eq, d Eq.→Sub

allows to identify outliers (depicted as red crosses). Consider, for instance, Fig. 8a, where the
box ranges approximately from 6 to 42%, having a median value of 21% and lower (resp.
upper) whisker at approximately −9% (resp. 89%).

Figures 7, 8, 9 and 10 confirm the general effects of a repair algorithm (i.e., an increase of
precision and a decrease of recall). The results achieved by the two versions of the combined
repair algorithm are totally comparable. The gain in precision results in an increase of the
resulting f-measure for conference track and a slight decrease for anatomy track. However,
for largebio and library tracks, the loss in f-measure is higher and lies in the range [0, 10]%.

From the results, it is evident that the effect of the combined repair algorithm is in line
with that of the repair algorithm addressing exclusively subsumption violations, in terms
of performance w.r.t. a reference alignment. The correlation between the repair size and its
impact is again evident.

We also remind that the measures are computed against unrepaired reference alignments,
while a more appropriate comparison would be against reference alignments where all the
true positive conservativity violations are repaired. For instance, having the highest gain in
f-measure for the anatomy and conference tracks seems to confirm our hypothesis because,
in these cases, the reduced size of the input ontologies and reference alignments allows for a
more effective revision, which also limits the conservativity violations (consider the reduced
number of violations in Table 6a for the conference track) that are more frequent in the other
tracks (considering of course also the difference in the size of the alignments). Finally, it
is not surprising that the worst result in terms of the effect on the f-measure is obtained
for the library track, for which the extremely high number of conservativity violations (see
Table 6a) suggests the need for a more accurate revision of the reference alignment and input
ontologies.

8 Related work

This section provides a general overview of the state of the art on ontology and ontology
alignments debugging techniques, the related work on the Weighted Feedback Edge Set
problem, and the notion of assumption of disjointness.

Conservativity principle, ontology vs alignment repair Once a violation of the conservativity
principle is detected, there are different approaches to correct it by modifying the aligned
ontology (i.e., targeting the input ontologies or the alignment).

The first approach is to consider as problematic all the violations and to correct them using
classic ontology repair strategies on the aligned ontology, i.e., to compute a hitting set over
all the justifications, as discussed at the end of Sect. 2.3. The repair computed in this waymay
remove elements either from the ontologies, or from the alignment, or a mixture of the two.
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The second one is a family of approaches from Lambrix et al. [48,50], which targets
violations that can be considered as false positives, forwhich the problem source is considered
to stem from the incompleteness of the input ontologies. The correction strategy aims at
adding to the input ontologies a minimal set of axioms, so that the input ontologies (in
isolation) can entail the novel axiom (solving, in this way, the violation).

Lambrix et al. also propose a unified approach [31,49]. For each detected violation, differ-
ent repair plans are generated, and they are ranked w.r.t. their informativity (i.e., considering
the number of solved depending violations) and minimality (based on the number of insert-
ed/deleted axioms). The user can classify the violations as false or true positives and can
in this way influence the plan ranking. Our heuristic could be conceived as an alternative
and additional plan in this multistrategy approach that supports both automatic and assisted
repair.

The approaches in [31,49,50] refer to the same (simplified) context addressed here for
equivalence violations, namely taxonomical projection of expressive DLs, claiming that this
is one of the most used features in semantic-enabled applications.

Our proposal is orthogonal to the others discussed in this section and could be an alternative
inside a multistrategy approach. However, there are settings for which the only repair target
is the alignment, such as Multi-Agent Systems, where the private knowledge of each agent
is encoded as a OWL ontology and cannot be modified in order to agree on a common
alignment [40,41,53,60,61]. In a more general ontology matching setting, it may also be
the case that one (or both) of the input ontologies should not be modified. For example,
the LUCADA ontology—a medium-sized OWL ontology that describes the domain of lung
cancer according to the specifications of the National Health Service (NHS) [70]—was
integrated with SNOMED CT in order to facilitate interoperability with other applications
within the NHS. In this use case, SNOMED CT was considered as immutable (during the
matching process) since it is the reference ontology across NHS’s information systems.

State-of-the-art ontology alignment repair systems, such as ALCOMO [54], AML [66],
ASMOV [32], Lily [85], LogMap [33], and YAM++ [12], typically consider the input ontologies
as immutable, and their repair techniques focus on the mappings.22 Nevertheless, Pesquita
et al. [62] question the automatic generation of repairs and suggest to update the ontologies
when required.

Equivalence and SubsumptionviolationsOntology alignment violations are discussed in [4],
where sanity checks for ontology mappings are proposed, together with general recommen-
dations about best practices in producing ontology mappings (e.g., use of URI for identifying
ontologies and matched elements). Sanity checks 6 and 7 are particularly meaningful for our
analysis. Check 6 forbids the entailment of novel equivalences, among entities of the same
input ontology, caused by the presence of multiple mappings sharing a common entity. This
check is analysed in the context of an exclusive use of “≡” semantic relation for an alignment
between an ontology of mouse anatomy and the corresponding one related to human beings
(NCI ontology23). In none of the 39 detected cases, the target entities were stated equivalent
in the input ontology. In a later release of such ontology, 15 entities were merged, while 18
were judged as not equivalent by domain experts (NCI ontology curators). This suggests that
it is not possible to exclude that (new) correct equivalences may be derived using ontology
matching. However, it does not seem to be the only case. Although discovering new relations
between entities of the same input ontology could be very useful, their indiscriminate use,

22 The interested reader please refer to Section 4.6.4 in [73] for an overview of these approaches.
23 http://www.cancer.gov/cancertopics/cancerlibrary/terminologyresources.
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in the absence of a manual exploratory phase, is only advisable for contexts in which cor-
rectness is not mandatory (e.g., information retrieval), while for data integration and query
answering tasks, a conservative approach seems more appropriate [78]. Check 7, instead,
refers to subsumption violations, for which similar considerations apply.

Another relevant approach is the one proposed by Arnold et al. [2]. Despite not being
directly linked to the conservativity principle and to ontology debugging in general, the pro-
posed algorithm could mitigate the presence of violations by refining the alignment produced
by ontology matchers. The proposed method takes as input the alignment and optional back-
groundknowledge, andusing a voting algorithmbetweendifferent linguistic-based heuristics,
it aims at refining “≡” semantic relations to “�”/“�” ones (and never the other way round).

(Weighted) feedback edge set problem To the best of our knowledge, no suitable heuristics
have been proposed for approximating theWFES problem. An heuristic based on Simulated
Annealing has been proposed by Galinier et al. [20] for solving the FVS and FES problems.
Unfortunately, their approach cannot be trivially extended toWFES, due to their local search
mechanism. On the contrary, exact and optimal approximations to the problem have been
proposed [16].

Assumption of disjointness The assumption of disjointness has been originally introduced
by Schlobach [67] to enhance the repair of ontologies that were underspecified in terms of
disjointness axioms. In [56], a similar assumption is followed in the context of ontology
mappings repair, where the authors restricted the number of disjointness axioms by using
learning techniques [19,82]. These techniques, however, typically require a manually created
training set. In [18], the authors present an interactive system to guide the users in the manual
enrichment of the ontologies with negative constraints, including disjointness axioms.

Our proposal, as [18,19,56,82], aims at adding a small set of disjointness axioms, since
adding all possible disjointness may be unfeasible for large ontologies. However, our method
does not require manual intervention. Furthermore, to address the scalability problem when
dealing with large ontologies and mapping sets, our method relies on the propositional pro-
jection of the input ontologies.

9 Conclusions

In this paper, we have presented a fully automatic multi-strategy method to detect and correct
conservativity violations in practice. We have extended the detection and repair algorithm for
subsumption violations [75] with a repair algorithm expressed by means of an ASP program,
tailored for equivalence violations. The conducted evaluation, significantly extending that of
[74], supports the practical effectiveness of our approximate methods.

Our method is sound (the violations that are detected are indeed violations if considering
the full expressiveness of the input ontologies), but incomplete, since the used approximate
projections of the input ontologies (i.e., Horn propositional and graph encodings) may lead
to some violations being missed. In order to mitigate incompleteness, we plan to study
extensions of our techniques to more expressive logical fragments, while keeping the current
scalability properties.We also aim at adapting our techniques to copewith scenarios involving
more than two input ontologies where new (repair) challenges arise [13].

The proposed algorithms follow a “better safe than sorry” approach, suitable for scenarios
where the input ontologies are not modifiable. Nevertheless, we plan to explore alternative
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methods to address the conservativity violations. For example, domain experts could be
involved in the assessment of the additional disjointness [18,35], and to suggest extensions
to the input ontologies [31] for violations recognized as false positives.

Our techniques have been already deployed in Siemens [45] and Statoil [44] as part of
BootOX [38], one of the components the “Ontology and mapping management module”
provided by the Optique’s platform [22]. We consider, however, that the proposed methods
have also potential in scenarios others than Optique. For instance, our approach has also been
successfully employed in the context of multi-agent system (MAS) [40,41] for assessing and
favouring the compatibility among agents equipped with OWL 2 ontologies. The approach
presented in [40,41] is based on the novel inquiry dialogue (i.e., a dialogue between two
entities with the aim of solving a goal through knowledge exchange) introduced in [60,61].
The dialogue aims at reusing existingmappings related to a domain of interest, with aminimal
disclosure of private knowledge.24 In this context, on the one hand, the ontology of the
other agent(s) cannot be altered, on the other hand, modifying the local ontology after any
dialogue could pose some risks. For example, consider the effect of a malicious agent forging
ad hoc mappings with the aim of altering the local ontology of the interlocutor. Different
policies could be conceived in the dialogue. The family of approaches from Lambrix et
al. [48,50] could be referred to as optimistic, while forbidding alterations to the local ontology
as sceptical. Of course mixed approaches could be conceived as well. A sceptical approach,
as the one followed in [40,41], could further exploit the techniques to detect violations of the
consistency and conservativity principles in order to also estimate, under a game-theoretic
point of view, the convenience of dealing with a particular agent, given the risk represented
by these violations. In case of too many violations, the agent could simply decide to refuse
to communicate and seek for another (hopefully more compatible) agent.

Another approach, described in [53], also applies ontology matching in a MAS scenario
in order to allow the exchange and extension of ontology-based action plans among agents.
In such a context, violations of the conservativity principle should be taken into account and
highly critical tasks should not be performed if such violations are detected.
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10 Appendix

This section investigates the computational complexity of diagnosis computation (“Diagnosis
Computation Complexity” in section “Appendix”) and its decomposability into subproblems
(“Decomposability of equivalence violations diagnosis computation” in section “Appendix”).

10.1 Diagnosis computation complexity

With the aim of proving thatMAP-WFES is NP-hard, Proposition 10.1 introduces a polyno-
mial reduction from WFES to MAP-WFES, denoted as WFES � MAP-WFES. The intuitive
idea behind the reduction is the following. Each arc (t, v, c) of the original graph is “split”

24 Each agent is equipped with a local (private) OWL 2 ontology.
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Fig. 11 Input graph G for WFES (left) reduced to a corresponding graph G′, input for MAP-WFES (right).
In graph G′, all the round-shaped vertices belong to V ′

1, while square-shaped vertices belong to V ′
2. a Graph

G (reduction input) b Graph G′ (reduction output)

into two arcs (t, u, c) and (u, v, c), with u a fresh node. All the nodes t, v are associated with
one of the input ontology, while the fresh nodes are associated with the other. In this way,
all the arcs are mappings (i.e., all of them are potentially removable, exactly as the original
arcs). It is easy to see that the reduction preserves the solution weight and that a 1–1 corre-
spondence exists between cycles in the two graphs. In addition, we remark thatMAP-WFES
does not break cycles traversing only vertices of one of the input ontologies. No such cycles
can exist because all the arcs are mappings, as discussed above. A reduction example is given
in Example 10.1, followed by the definition of the reduction in Proposition 10.1.

Example 10.1 In Fig. 11, graphs G (left) and G ′ (right) are shown. WFES � MAP-WFES
coincides with G ′. The solution to G ′ is equal to 	 = {(c, cd, 1), (b, bg, 0.1), (g f, f,
0.4), (a, a f, 0.2)}, with a total weight of 1.7. D = {(b, g, 0.1), (g, f, 0.4), (a, f, 0.2), (c, d,

1)} is the corresponding solution to the instance of theWFES problem represented by G and
can be easily verified that is both minimal (having weight 1.7) and correct.
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Proposition 10.1 WFES � MAP-WFES. A polynomial reduction from the WFES problem
to the MAP-WFES problem exists. Let G = (V, A) be a digraph. The reduction consists
in constructing a digraph G ′ = (V ′, A′) such that a subset of edges, namely 	 ⊆ A, is a
solution to MAP-WFES iff the corresponding set of arcs, namely D, is a solution to WFES
on G. The reduction is as follows:

1. for each (x, y, c) ∈ A, we create a fresh vertex vxy , we add it to V ′
2, and we create a pair

of arcs (x, vxy, c), (vxy, y, c) that are added to A′ and M,
2. V ′

1 = V and V ′ = V ′
1 ∪ V ′

2.

A set of arcs, namely 	 ⊆ A′, is a solution to the MAP-WFES problem on digraph G ′ iff the
corresponding feedback edge set D is a solution to the WFES G, where G ′ is computed from
G, and for each arc of the form (x, vxy, c) or (vxy, y, c) in 	, we have a corresponding arc
(x, y, c) in D.

Proof In order to prove the correctness of the reduction, we need to show that, if G � G ′,
with G an instance of theWFES problem and G ′ an instance of theMAP-WFES problem, a
set of arcs 	 is a (minimal) solution to G ′ iff the corresponding set of arcs D is a (minimal)
solution to G. As discussed in [16], the proposed reduction is polynomial and it preserves
graph connectivity and the weight of the solutions, by preserving a 1–1 correspondence
between cycles of G and those of G ′, due to the 1–1 correspondency between the arcs of A
and those of A′.

⇒: If D is a solution toWFES on G, 	 is a solution toMAP-WFES on G ′. Suppose that
	 is not a solution. This requires that either at least a cycle κ ′ exists in digraph (V ′, A′\	)

or that a diagnosis 	′ exists such that w(	′) < w(	). For the first case, given the 1–1
correspondence between cycles of G and G ′, this implies that a corresponding cycle in G
exists as well, thus contradicting that D is a solution to the instance of the WFES problem
represented by G. For the latter case, given the 1–1 correspondence between arcs of G and
G ′, this implies that a solution D′ corresponding to 	′ exists. By the weight preservation
property of the reduction,w(D′) < w(D) holds, contradicting that D is a (minimal) solution
to the instance of theWFES problem represented by G.

⇐: If 	 is a solution toMAP-WFES on G ′, D is a solution toWFES on G. Suppose that
D is not. This requires that either a cycle κ of G exists in digraph (V, A\D) or that a solution
D′ exists such that w(D′) < w(D). The first case requires the existence of a cycle κ ′ of G ′
(corresponding to κ) that is left unbroken. In turn, this either violates that 	 is a solution, or
that, for some i ∈ {1, 2}, κ ′ exclusively traverses elements of V ′

i . This situation is excluded
by construction of G ′, because no arcs between vertices of the same subset V ′

i of V ′ exist.
For the latter case, this implies that a diagnosis 	′ corresponding to the (minimal) solution
D′ does not exist. This requires that at least an element of D′ cannot belong to a diagnosis
(i.e., it cannot be removed). By construction of G ′, we have that M = A′. Given that only
elements of A′\M cannot belong to a diagnosis for theMAP-WFES problem, this results in
a contradiction, thus proving the correctness of the reduction. ��
From the results of Proposition 10.1, it follows that MAP-WFES is NP-hard, as detailed in
Proposition 10.2.

Proposition 10.2 MAP-WFES is NP-hard.

Proof The proof follows from the polynomial reduction from the WFES problem, that is
NP-hard [16], to MAP-WFES. ��
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10.2 Decomposability of equivalence violations diagnosis computation

Proposition 10.3 relates unsafe cycles and problematic SCCs, showing that each unsafe cycle
results in a problematic SCC.

Proposition 10.3 A SCC is problematic iff it (totally) contains at least one unsafe cycle.

Proof ⇒: Consider a problematic SCC S,with projections
1 and
2 on the input ontologies.
From problematic SCC definition (Definition 4.6), at least one of the projections of S, say

1, is not a local SCC.We therefore also know that
1 is not a SCC; otherwise, it would also
be a local SCC. Suppose that 
1 is a subset of a SCC 
′. This implies that all the elements
of 
′ belongs to S as well, and therefore, 
′ and 
1 are identical, but this contradicts the
assumption that 
1 is not a SCC.

⇐: from the definition of cycle and SCC, each cycle κ is contained in a SCC S (i.e.,
κ ⊆ S). Let κ be an unsafe cycle, and let also κ1 (resp. κ2) be the subset of vertices of κ

belonging to an input ontologyO1 (resp.O2). By definition of unsafe cycle (Definition 4.3),
at least one of this subsets, say κ1, is not contained in any local SCC. But given that κ ⊆ S,
κ1 ⊆ 
O1(S) holds. Therefore, 
O1(S) is not contained in any local SCC either and, by
Definition 4.6, S is a problematic SCC. ��

Proposition 10.3 guarantees completeness for a detection technique for violations to the
conservativity principle on a graph representation of an aligned ontology, based on problem-
atic SCCs. Given that all the violations result in unsafe cycles and that they totally belong to
a single problematic SCC, completeness for a repair technique breaking all the unsafe cycles
follows.

Notice also that a (unsafe) cycle always belongs to one and only one (problematic) SCC
(as expressed by Proposition 10.4), while a problematic SCC may contain more than one
cycle. Therefore, a technique detecting problematic SCCs may be more efficient than one
directly addressing unsafe cycles.

Proposition 10.4 Safe cycle never traverse multiple SCCs of the same input ontology.

Proof By Definition 4.3, all the vertices belonging to a projection 
 of a safe cycle κs need
to be traversed by a cycle κ ′ in the input ontology these vertices belong to. The claim is that
cycle κ ′ identifies either a SCC of the aligned ontology or a subset of a SCC. Assume that
vertices of 
 belong to at least two SCCs S1, S2, that is, 
∩ S1 �= ∅ and 
∩ S2 �= ∅. Being
traversed by a cycle, all the vertices of 
 are mutually reachable. Then, from transitivity of
reachability, it follows that all the vertices in S1∪ S2 are mutually reachable. This contradicts
the hypothesis that S1 and S2 are two distinct SCCs, thus proving the proposition. Such
argument be can straightforwardly generalized to more than two SCCs. ��

Proposition 10.5 proves the correctness of our approach and the optimality of the computed
(global) diagnosis.

Proposition 10.5 Computing a (global) diagnosis for a graph G, representing an aligned
ontology, can be reduced to computing the (local) diagnoses for the problematic SCCs of G.
The (minimal) global diagnosis is the union of the (minimal) local diagnoses.

Proof From Proposition 10.3, it follows that: (i) all and only problematic SCCs contain
unsafe cycles, (ii) an unsafe cycle does not traverse vertices of more than one SCC (i.e.,
the unsafe cycles of distinct SCCs are totally disjoint). From (i), completeness follows (it is

123



Minimizing conservativity violations in ontology alignments… 815

sufficient to compute a diagnosis for each problematic SCCs to remove all the unsafe cycles in
the aligned ontology). (ii) ensures the independence of SCCs, and this guarantees minimality
and correctness for local diagnoses computed in isolation. Finally, it is immediate to see that
the minimality property is preserved by the union of local diagnoses, and this concludes the
proposition. ��

Proposition 10.5 thus guarantees that the global diagnosis computed as the union of the
diagnoses of the problematic SCCs is both minimal and correct (that is, it breaks all the
unsafe cycles).
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