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Abstract The “Bullwhip Effect” is a well-known example of supply chain inefficiencies and
refers to demand amplification asmoving up toward upstreamechelons in a supply chain. This
paper concentrates on representing a robust token-based ordering policy to facilitate informa-
tion sharing in supply chains in order to manage the bullwhip effect. Takagi–Sugeno–Kang
and hybrid multiple-input single-output fuzzy models are proposed to model the mechanism
of token ordering in the token-based ordering policy. The main advantage of proposed fuzzy
models is that they eliminate the exogenous and constant variables from the procedure of
obtaining the optimal amount of tokens which should be ordered in every period. These fuzzy
approaches model the mentioned mechanism through a push–pull policy. A four-echelon SC
with fuzzy lead time and unlimited production capacity and inventory is considered to sur-
vey the outcomes. Numerical experiments confirm the effectiveness of proposed policies in
alleviating BWE, inventory costs and variations.

Keywords Supply chain management · Bullwhip effect · Fuzzy lead time · Token-based
ordering policy · Information sharing

1 Introduction

Supply chains (SCs) are usually considered as networks of semi-independent firms who pool
their capabilities and resources in order to deliver value to the end consumer. Costs, delays,
quality, and reliability are relevant criteria in a SC [3,11].

Supply chain management (SCM) is often considered as a distributed system involving
several individual firms or participants such asmanufacturers, suppliers, customers, etc. Each
of these actors is faced with some economic constraints besides its own strategic preferences.
Therefore, it is obvious that SC overall effectiveness may suffer, if SC members pursue their
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own individual preferences without considering the effect of their decisions on other partners.
Such inefficiencies often creep in when rational members decide to optimize individually
instead of coordinating their efforts [11]. Therefore, global optimality in the context of a
supply networkwould be purely theoretical and inefficiencymay arise due to the decentralized
decision-making based upon local interests [3,38].

A simple serial SC consists of suppliers, manufacturers, distributors, retailers and cus-
tomers which are connected by flows of information and product in two opposite directions.
In a linear SC, information flow from downstream echelons toward upstream echelons and
product flows in opposite direction (from upstream echelons toward downstream echelons).
Information and product flows (in both directions) are aligned and balanced in a healthy
and efficient supply network [9]. However, because of the competitive nature of real-world
markets, complete information flowoccurs less frequently in SCs. These incomplete informa-
tion flows lead to inaccessibility to real amounts of market demand. Therefore, replenishment
demands which are received from downstream echelons will be considered as the basis of
decision-making for upstream echelons [11,27]. In other words, SC echelons tend to place
orders based upon the gap between their target inventory level and their current on-hand
stock, while giving insufficient weight to the supply line of unfilled orders (the stock of
orders placed but not yet received) [10]. This procedure leads to increasing the variability of
replenishment orders when moving up from downstream echelons of SC toward its upstream
echelons, as a rational remedy for confronting with inventory shortage risks. This tendency of
replenishment orders to increase in variability while moving up the SC (from retailer echelon
toward the manufacturer), is named the “Bullwhip Effect” (BWE) [11,28].

BWEaffects the efficiency of SCs by imposing unnecessary inventory costs to SC echelons
and intervening the production plans. Many real SCs, in particular in the automotive industry,
have met serious economic problems because of inventory shortages or excessive inventories
[3]. Therefore, the control of inventory and production variations throughmanaging the BWE
can be considered as a great challenge for SCs.

This paper focuses onmanagingBWEand inventory variations in a four-echelon serial SC.
Several approaches are proposed in the literature on taming theBWEinSCs.However, sharing
of relevant information among SC echelons is considered as the most effective approach for
BWE management and control of its bad effects on the SC efficiency through decreasing
inventory costs by the means of improving the ordering decisions [21]. We concentrate on
facilitating the demand information sharing among SC echelons through a proper ordering
policy, in this paper. Token-based ordering policy (TB) is selected as our main approach
in order to simultaneously control the inventory levels and demand amplifications in a SC.
The main strategy of token-based ordering policy is to differentiate between real market
demand and replenishment orders which reflect the inventory control strategies of each SC
echelon. The BWE concept can be reflected by the amounts of tokens that are ordered by
each echelon to its upstream layer in every period, in this ordering policy. Therefore, a proper
token-ordering procedure has a significant role in controlling the BWE and inventory levels
through the use of TB ordering policy in the supply system.

After a survey on the relevant literature [9], it was concluded that there is a lack of an
appropriate mechanism for token-ordering procedure in TB ordering policy. Therefore, the
main contribution of the present paper is to propose a novel robust mechanism for token-
ordering procedure in token-based ordering policy with the aim of controlling the BWE
and inventory costs in a SC simultaneously. The main idea is to model the token-ordering
mechanism based upon the imprecise and vague real decision-making process in hybrid
push–pull systems using fuzzy modeling approaches.
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For this purpose, two fuzzy approaches will be proposed in this paper to determine about
the amount of tokens that each echelon should order to its upstream echelon (in order to
manage its inventory level and coping with the risk of inventory shortages). Takagi–Sugeno–
Kang (TSK) fuzzy approach which models token-ordering policy through a linear function
of the system’s endogenous variables in each SC echelon and hybrid multiple-input single-
output (MISO) fuzzy approach whichmodels the token-ordering policy through an imprecise
inference on the system’s endogenous variables in each SC echelon.

The rest of the paper is as following: A short literature review on BWE, its causes and
remedies and token-based ordering policy are presented in the next section. After preparation
a proper background for the current study, the previous token-ordering policy (that had been
proposed in the literature) will be analyzed and we will discuss about its main deficiencies.
TSK andMISO fuzzymodels are presented to improve the efficiency of token-based ordering
policy and remove the discussed shortcomings, in section three. This section will also present
some numerical experiments to confirm the effectiveness of the proposed approaches in
diminishing BWE, inventory costs and variations. Finally, some complementary numerical
experiments with a discussion on the results and main characteristics of the proposed fuzzy
approaches and conclusion will be presented respectively in the fourth and fifth sections.

2 Background

2.1 The bullwhip effect

The first formal description of the bullwhip effect (BWE) was presented by Forrester in 1958.
He surveyed all the orders that were placed by different echelons of supply chain to their
upstream echelons and observed that the variability of these orders is much bigger than the
variation of real customer’s demand. He also discovered that these demand variations tend
to increase while orders moving up the SC from downstream echelons to the upstream. He
called this phenomenon “Demand Amplification” [14]. The BWE is a shorthand term for
this dynamic phenomenon, and the appellation is how the severity of a lash can be increased
during its movement along a whip.

Further in 1989, Sterman simulated the BWE through introducing the well-known MIT
beer game [33]. He pointed out that the players tend to have a common mental model, which
ismaking orders only according to the current inventoryminus unfilled orders, without taking
into account the orders on the way. He discussed that the players failed to recognize the beer
SC as a system with interconnected parties, which is confronted with complex information
feedbacks and delay. He believed that system-thinking trainings can help to decrease these
irrationalities in decision-making [33,39].

Briefly, the BWE refers to the tendency of the variability of order rates to increase while
they are passing through the lower echelons of a SC toward the producer and raw material
suppliers [11]. Figure 1 demonstrates the stream of orders in a three-echelon SC and shows
how the variability of demands increases while moving to upstream echelons. The standard
deviation σ of orders is the main indicator to measure the BWE [25].

The BWE leads to unstable production schedules which impose a considerable range of
unnecessary costs to SCs. What happens in practice is that companies invest in extra capacity
to meet the highly variable demand and this extra capacity remain underutilized when the
demand drops [9,29]. Therefore, the direct consequence of the BWE in SCs is inventory
backlog. This backlog may lead to high losses to the company due to the fact that it is
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Fig. 1 Amplification of order variability in a three-layer SC [25]

resulted from information distortion rather than real demand variation [39]. Therefore, BWE
management is a necessary task to upgrade the overall efficiency of supply networks, the
customer satisfaction level and managing inventory costs.

2.1.1 Causes of the bullwhip effect

Asmentioned above, the BWE is a prominent example for the negative impact of information
asymmetry in supply networks [19]. Previous research attributed theBWE to both operational
and behavioral causes. Operational causes are structural characteristics that lead rational
agents to amplify demand variation. Lee et al. recounted five possible operational sources for
BWE, including demand forecast updating, price fluctuation, rationing and shortage gaming,
order batching and nonzero lead time [19,20]. The techniques to eliminate these operational
causes of BWE are now an important part of the tool kit for SCM.

Behavioral causes, in contrast, emphasize on the bounded rationality of decision makers,
particularly the failure to adequate accounting for feedback effects and time delays. Corson
et al. surveyed the behavioral causes of the BWE in the absence of operational causes in
[10]. They examined how individuals perform when all operational causes of the BWE are
eliminated in a SC. They found that order oscillation and amplification persists even in this
simplified environment and a large majority of participants continue to underweight the
supply line of unfilled orders, and this refers to the existence of coordinating risks in the
system; in fact, they concluded that “the BWE can be mitigated by operational issues but
its behavioral causes appear robust” [10]. Therefore, BWE will exist still in modern SCM
systems with (almost) real-time, fully automatic data and information handling. Because,
however, these modern systems can cover lack of information and technical causes of the
BWE, they cannot eliminate its behavioral causes.

Some important possible causes of the BWE are as following: lead time and neglecting
time delays, ordering policies, inventory control policies, number of SC echelons, price fluc-
tuations, fear of empty stock, local optimization, multiplier effect and Lack of transparency
[27].

2.1.2 Remedies for bullwhip effect

Studies on BWE were conducted in four broad classes of Behavioral, Analytical, Indus-
trial and Dynamic approaches in the literature [30]. Behavioral studies deal with capacity
adjustment studies and keeping inventory level unchanged, considering an uneven customer
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demand [2]. Logistic cost minimization techniques are discussed to control the BWE in
analytical approaches, while quantitative and dynamic presences of the BWE are surveyed
in industrial and dynamic approaches, respectively [1]. A perfect model should be able to
survey the BWE in at least two of these viewpoints; in this work, we want to propose such a
model.

TheBWEcan be diminished by reduction of demand uncertainty through additional (more
accurate and relevant) information [23]. Sharing relevant information across various stages
of the SC has found to be efficient in BWE reduction and controlling its negative effects
on SC performance [1,8,9,19]. Lee et al. discussed that information sharing (IS) can cause
making better ordering decisions and lead to reducing each echelon’s inventory level and
overall system’s costs [21]. However, it has been proved that some amount of BWE will
always occurs in SCs even after sharing both inter- as well as intra-echelon information [1].
IS has been confronted with a variety of range of research in the SCM domain, for example,
some of them have dealt with the effect of information technology in the coordination cost
reduction [31]. The interested reader can pursue a comprehensive research about IS benefits
on BWE if refers to [7].

The information which can be shared among SC echelons include inventory levels, sales
data, demand forecasts, the status of orders, product planning, logistics and production
schedules and can be grouped into three main types: product information, customer demand
information and inventory information [17]. There are several researches in BWE domain
that are concentrated on collaborative forecasting methods or vendor managed inventory as
effective tools for BWE reduction; the works of Stubbings et al. and Sadeghi et al. can be
referred as recent works in these area [29,34].

However, our main objective in the present paper is facilitating IS among SC echelons
via modeling a proper ordering policy. Ordering policy refers to the mechanism that SC
echelons adopt to put their orders to the upstream echelon based upon their own preferences.
Different ordering policies are presented and surveyed in the context of SCM. Among them,
Lot-for-Lot ordering policy is the solution which is often suggested to reduce the BWE
based upon demand information sharing [19,20,32]. It is known to eliminate the BWE and
propagate themarket consumption in theSC. Inventory variations in this policy often results in
backorders. Therefore, Lot-for-Lot ordering policy eliminates the BWE but does not manage
the inventory levels. This is why it is proposed to distinguish between real market demand
from extra orders which are required for inventory stabilization [13,24]. To achieve that,
Porteus and Moyaux had proposed an approach based upon using tokens in ordering policy
[13,24,26]. A summarized introduction to the token-based ordering policy is presented as
following.

2.2 Token-based ordering policy

Since the advent of Kanban, pull systems have been widely studied and used in practice.
Push and Pull are two different systems that are discussed in the context of production
control systems. A push system schedules the release of works based on demands, while a
pull system authorizes it based on the system status. An important feature of pull systems is
the use of tokens. Tokens usually consist of cards that authorize certain production tasks to be
performed. It can be used in various manners to control the production and can be combined
with several other mechanisms [15,16].

The combination of pull and push systems is called push–pull inventory control system
that combines the best of both the push and pull strategies, and its goal is to stabilize the SC
and reduce the product shortages. Several researches have confirmed that the hybrid push–
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Fig. 2 Transition of order streams between SC echelons

pull system is more effficient and robust to cope with SC uncertainties. We will try to close
token-based ordering policy to push–pull approach in order to improve its efficiency, in this
work.

The token strategy is dividing orders into two streams to control demand and inventory at
the same time; the first stream is the actual value of customer demand, whereas the second
stream is the required adjustments to manage fluctuations and keep a stable inventory for SC
echelons. Therefore, every order of a downstream echelon i to its immediate upstream i + 1,
in period t is: Oi (t) = (X (t), Yi (t)) where X (t), Yi (t) are first and second streams of order,
respectively [9,13,25].

The amount of tokens (Yi (t)) can be used to stabilize the inventory of an echelon i (Ii (t)).
The main condition for ordering tokens in this ordering policy is that an increase change
should be occurred in the customer’s demand (means X (t) > X (t − 1)) [9,25].

Figure 2 demonstrates how streams of token and product orders are transferred between
different echelons of a four-layer serial SC.

Unsatisfied demands will be backlogged in the cases of insufficient inventory (except for
retailer echelon, which confronts with lost-sale). Therefore, backlogged demands composed
from two different streams based upon the incoming orders: actual demand backlogs (or
product backlogs) and token backlogs.

The product backlog refers to the amount of product demands (X: real demand) which
could not be met and were backlogged due to the inventory shortages. The token backlog
also refers to the amount of token demands (Y : token demand) which could not be met and
were backlogged due to the inventory shortages.

The token-based ordering strategy (TB) suggests to differentiate between these types of
backlogs by prioritizing the demand fulfillment procedure. This means while the inventory
is positive the first priority of fulfillment is for product backlog, the second is for incoming
product demand and the third and fourth priorities are, respectively, for token backlogs and
current incoming token demand. Figure 3 depicts the demand fulfillment procedure clearly.
Nomenclature of the model variables is also presented in Table 1.

After demand fulfillment in each period, both of the backlogs and on-hand inventory will
be updated. If the amount of on-hand inventory Ii (t)was less than the value that is determined
in accordancewith inventorymanagement policies, a desired amount of Yi (t)will be ordered,
otherwise Yi (t) = 0.

Costantino et al. have proposed the following two different token-ordering policies [Eqs.
(1) and (2)].

Yi (t) =
{
Yi−1 (t)+αi (X (t)−X (t−1)) if X (t)> X (t−1) AND Ii (t)<mean (X)

0 else
(1)
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Order Oj(t): 
{X(t),Yj(t)}

Echelon j 

Ij(t) > 0

Fulfill Bj-1(t-1)
 (either completely or par�ally):

IF Ij(t) > Bj-1(t-1) THEN Ij(t)= Ij(t)-Bj-1(t-1), Bj-1(t-1)=0 
ELSE 
Bj-1(t-1)=Bj-1(t-1)-Ij(t), Ij(t)=0,
 Bj-1(t)=Bj-1(t-1)+X(t), YBj-1(t)=YBj-1(t-1)+Yj-1(t)

Update Inventory:
Ij(t)= Ij(t-1)+New Shipment 

Fulfill X(t)
 (either completely or par�ally):

IF Ij(t) > X(t) THEN Ij(t)= Ij(t)-X(t), Bj-1(t)=0
ELSE
Bj-1(t)=X(t)-Ij(t), Ij(t)=0, YBj-1(t)=YBj-1(t-1)+Yj-1(t)

Fulfill YBj-1(t-1) 
(either completely or par�ally):

IF Ij(t) > YBj-1(t-1) THEN Ij(t)= Ij(t)-YBj-1(t-1), YBj-1(t-1)=0
ELSE
YBj-1(t-1)=YBj-1(t-1)-Ij(t), Ij(t)=0, YBj-1(t)=YBj-1(t-1)+Yj-1(t)

Fulfill Yj-1(t)
(either completely or par�ally):

IF Ij(t) > Yj-1(t) THEN Ij(t)= Ij(t)-Yj-1(t), Yj-1(t)=0
ELSE 
Yj-1(t)=Yj-1(t)-Ij(t), Ij(t)=0, YBj-1(t)=YBj-1(t)+Yj-1(t)

Set Oj(t): {X(t), Yj(t)}
And send for echelon j+1 Ij(t) > 0

Ij(t) > 0

YES

YES

YES

NO

NO

NO

Echelon j-1 

Echelon j+1 

Ij(t) > 0
YES

NO

Order Oj-1(t): 
{X(t),Yj-1(t)}

Figure 2- Demand fulfillment procedure

Fig. 3 Demand fulfillment procedure

and

Yi (t) =
{
Yi−1 (t)+αi (X (t)−X (t−1)) if X (t)> X (t−1) AND Bi−1(t)<mean(X)

0 else
(2)

They represented a simulation model for a four-echelon SC with unlimited production and
inventory capacities and deterministic lead times. They tried to make an estimation for α

vector based upon the amount of expected backlogs, which is shown in Eq. (3) [9].

4∑
i=1

αi ≥ Expected Backlog/ (X (t) − X (t − 1)) , i = 1, 2, 3, 4 (3)

Considering a step function for customer demand and equal elements for the α vector, they
concluded Eq. (4) as an estimator of α;

αi ≥ 48/4 (X (t) − X (t − 1)) (4)
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Table 1 Nomenclature

Nomenclature

Oi (t) The order of echelon i to its immediate upstream i + 1, in period t;
Oi (t) = (X (t), Yi (t))

X (t) The actual amount of end customer demand in period t

μ(t) The known mean of customer demand until period t

MU The mean of demand vector

Ii (t) The inventory of echelon i in period t

D (t) The increase of customer demand in period t compared to the previous period
(given that X (t) > X (t − 1))

Yi (t) The amount of token that echelon i orders to its upstream echelon in period t

Bi−1(t) The amount of downstream echelon’s backlogged product demand in period t
which is remained unmet in echelon i

Y Bi−1(t) The amount of downstream echelon’s backlogged token demand in period t
which is remained unmet in echelon i

They then compared the results of both proposed token-ordering policies [Eqs. (1) and (2)]
with two different α vectors (α = [0.5, 1, 2, 3] and α′ = [0.5, 1.5, 2.5, 3.5]). Based upon
their investigations, the inventory recovery period of the first ordering policy (Eq. 1) was
considerably lower in comparison with the second policy (Eq. 2). They have reported that the
main difference between these ordering policies is that the first one tends to keep a positive
inventory at a higher level, while the second one tends to keep a positive inventory at a lower
level but requires more time to recover the SC stability. Therefore, they believe that the best
policy can be identified only through a trade-off between costs and benefits for any SC system
[9]. However, themost important common feature of these two approaches is that the α vector
has a significant role in determining the amount of replenishment orders.

As discussed before, first stream of orders in the TB ordering policy is the exact amount of
customer’s demand and SC echelons pursue their inventory control policies through ordering
tokens. This means that the concept of the BWE is reflected by the token-ordering procedures
in the TB ordering policy. Therefore, the α vector [in Eqs. (1) and (2)] is a critical exogenous
factor in the proposed token-ordering strategies and has a significant role on the amounts of
inventory variation and the BWE in the supply system. Thus, representing a proper estimation
for α seems to be an effective step for increasing the efficiency of TB ordering policy. Next
section provides a more detailed discussion on this important issue.

2.2.1 A discussion on previous token-ordering policies

Asmentioned above, Costantino et al. have estimated the α vector considering these essential
assumptions: 1—Step function for customer demand, 2—Equal components for α vector and
3—Deterministic lead time.

Assuming a step function customer demand leads to have a constant value for
(X (t) − X (t − 1)) that besides the second assumption leads to obtain a simple estima-
tor for α (the reader can refer to [9] for more details). However, the model’s generality can
be affected by assuming a step function as customer’s demand function because it may occur
rarely in the real market.

The second assumption also cannot be a strong hypothesis because the elements ofα vector
should reflect the inventory control policies of each SC echelon. In other words, considering
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the difference between the inventory capacity and incoming orders of upstream echelons
with downstream SC echelons, it is not realistic to assume equal elements for α vector. Fazel
Zarandi et al. [13] reported somenumerical results that can approve this claim.They simulated
a four-echelon serial SCwith Costantino et al.’s initial assumptions and surveyed the numeri-
cal results for α = [3, 3, 3, 3]; the simulated model calculated the BWE as 952.8710 which is
very large for a SC model with a step function for customer demand. Fazel Zarandi et al. also
suggested some reformations to improve the efficiency of the TB ordering policy. They have
suggested to apply fuzzy lead time to themodel and determine the α vector through a dynamic
procedure. However, their attempt was to somewhat successful but is not sufficient, because
their proposed token-ordering policies also depend seriously on the amount of α vector.

This work deals with the eradication of the dependence between the performance of token-
based ordering policy with the values of exogenous variable α and the way of its estimation.

We have performed multiple sensitivity analyses on the all model parameters and sur-
veyed their effects on the amount of BWE and inventory levels of each SC echelon.
We found that all of following variables can affect the overall outcome of the model:
μ(t), Ii (t), D (t) , Yi (t), Y Bi−1(t) and Bi−1(t).

Some of the mentioned variables have common effects on the system outputs or com-
plete each other’s effects, but D (t) , Y Bi−1(t) and Bi−1(t) have most unique effects on the
outcomes of the model.

If we define Yi (t) as Yi (t) = αi D(t)+Yi−1(t), we used Yi−1(t) in Yi (t)modeling which
propagates the perception of the BWE along the SC instead of using Y Bi−1(t) and Bi−1(t)
which reflect the current situation of backlogs. Therefore, Eqs. (1) and (2) cannot provide
a proper function to determine about the amount of tokens that should be ordered in each
period. Considering this, we determined to change the equation of Yi (t) as a function of
before mentioned variables. In other words, our purpose is to obtain a prominent function
“ f ” which can be able to satisfy Yi (t) = f (D(t), Y Bi−1(t), Bi−1(t)).

If we can model Yi (t) as f (D(t), Y Bi−1(t), Bi−1(t)), the system can be considered as a
push–pull system because the orders and production schedules will be set based upon both
real customer demands and the system status in each period using this approach.

It is necessary to take the following notes into account:

• All demands are rounded to the nearest integer; therefore, all input and output variables
of the model are considered as integer.

• Lead times are often fuzzy in real-world SCs, and considering deterministic lead time
for a SC model will decrease its generality.1

Regarding the mentioned notes, we are confronted with a non-deterministic model with crisp
input and outputs. Therefore, it seems that a TSK fuzzy modeling may help us to model Yi (t)
as a linear function of selected input variables in each echelon.

Next section provides a short introduction about TSK fuzzy modeling, then the proposed
TSK token-ordering policy is presented. Somenumerical experiments have been conducted to
investigate the efficiency of the proposed TSK token-ordering policy, which will be presented
at the end of the section.

1 Lead times are endogenous variables in supply networks and can be affected mainly by information or
transportation delays. Therefore, all delays in providing rawmaterials, production line, goods delivery, receiv-
ing demand information, etc. will be reflected in lead times; these delays may occur because of technical
(systematic) issues or just by accident. Thus, lead times are imprecise and unknown in SCs. Fuzzy sets are
successful in modeling vague and imprecise variables, so considering fuzzy lead times in supply networks
leads to increasing the generality of the supply model [35,40].
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3 Proposed fuzzy models for improving token-based ordering policy

3.1 TSK fuzzy modeling

Fuzzy inference is the mathematical procedure to deduce model output from a given set of
fuzzy rules. Mamdani and Assilian have studied one of the first real-life applications of fuzzy
rule base structure on control systems [4,22]. They used a fuzzy rule base in order to control
a cement pilot plant. Today, there are many different applications of fuzzy inference systems
(FIS) including financial, health care, robotics, web data mining and many more [4,36,37].

Takagi–Sugeno–Kang (TSK) type fuzzy inference system structure is one of the most
commonly implemented and investigated FISs which is proposed by Takagi, Sugeno and
Kang [4,36,37].

A typical fuzzy rule in TSK model has the following form:
If u isr A and v isr B then w = f (u, v)

Where A and B are fuzzy sets in the antecedent and w = f (u, v) is a crisp function in the
consequent part of the rule. f (u, v), is usually a polynomial function of the input variable u
and v; thus, this approach works when inputs are given as singleton values. The final output
of the rule set is a weighted mean of fired consequents of all rules of the rule set. For example,
in a rule set with two rules, if z1 is the fired consequent of the first rule and z2 is the fired
consequent of the second rule, then the output of TSK for this rule set (ZTSK) will be as
following (Eq. 5):

ZTSK = w1z1 + w2z2/w1 + w2 (5)

where w1 and w2 are weights attributed to the consequent of each rule, in the rule set.

3.1.1 Proposed TSK fuzzy approach for token ordering

As mentioned before, variables such as D(t), Y Bi−1(t) and Bi−1(t) affect the outputs of the
system. Based upon our SC model assumptions, crisp amounts of all of these variables are
available after inventory updating in each period when the crisp amount of Yi (t) should be
determined. Therefore, we want to model Yi (t) as a linear function of these variables using
TSK fuzzy modeling approach.

TSK determines the value of a crisp output based upon a polynomial function of crisp
inputs in each rule of the rule set; therefore, the following equation (Eq. 6) can be considered
as an estimator for the Yi (t).

Yi (t) = a0 + a1 D(t) + a2 Bi−1(t) + a3 Y Bi−1(t) i = 2, 3, 4 (6)

We refused to bring μ(t) directly in the model, so a0 is defined as a multiplier of μ(t) (in
other words a0 = a00∗μ (t) , 0 ≤ a00 ≤ 1).

It should be noticed that the retailer receives the customer’s demand (actual market
demand) in each period, so it is confronted with lost-sales (L(t)) in the case of inventory
shortages instead of backlogs. Therefore, Eq. (6) is not suitable for the retailer echelon and
should be modified to the following equation [Eq. (7)] for the retailer echelon:

Y1(t) = b0 + b1 D(t) + b2 L(t) (7)

Here b0 is a multiplier of μ(t) similar to a0 in Eq. 6.
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Input factors should be defined as fuzzy variables in order for using the TSK model; an
imprecise (“fuzzy”) property (x) (such as low, fast, hot, etc.) is described by its membership
function (MF (x)), in fuzzy logic. A MF associated with a given fuzzy set maps an input
value to its appropriate membership value between 0 and 1; this function describes to what
degree the real number (x) satisfies the desired property [5,18,41]. In principle, MFs can
be of different shapes, but in most practical applications, trapezoidal membership functions
work well and are simple to implement and fast for computation [5].

Trapezoidal MF depends on four scalar parameters; a, b, c and d . Equation 8 represents
the main function of this MF.

MF(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 x < a
(x − a) / (b − a) a ≥ x < b
1 b ≥ x < c
(d − x) / (d − c) c ≥ x ≤ d
0 x > d

(8)

Considering the following issues, trapezoidal MF is selected for mapping model’s fuzzy
concepts into mathematical modeling;

– All inputs and outputs of the model are integer.
– The domain expert believes that this MF is able to map the decision-making factors into

appropriate mathematical function.
– Considering the simplicity of calculations and the complexity of the model.

Therefore, each of D(t), Y Bi−1(t), Bi−1(t) and L(t) are considered as trapezoidal fuzzy
numbers in three linguistic levels of “Low,” “Medium” and “High.” The parameters of these
trapezoidal membership functions (MF) are defined based upon the mean of demand vector.2

Sample Bi−1(t) MFs is depicted in Fig. 4 (for MU = 6).
Note that Bi−1(t) is the backlogged amount of downstream’s X part demand in each

echelon. We have assumed that each echelon orders exactly X (t) in the first part of its
demand vector in each period (Oi (t) = (X (t), Yi (t)), so MF parameters of Bi−1(t) can be
considered the same in echelons 2, 3, 4.

But it is important to notice that each echelon orders tokens with the aim of inventory
stabilization and coping with inventory shortage risks. Therefore, all replenishment policies
are reflected by Yi (t) through the SC; in fact, it is the BWE causative factor and increase as
moving up toward upstream echelons.

In addition, the Y Bi−1(t) is the amount of backlogged downstream token demands which
are remained unmet because of the inventory shortages. Thus, the amount of Y Bi−1(t) may
increase as moving up to upstream echelons in SC, similar to the Yi (t) and this means that
the domain of its values may differ in different echelons. Therefore, the same fuzzy MF
parameters (for defining different fuzzy levels of Y Bi−1(t)) cannot be considered for all
echelons (at least for the “High” level).

Regarding abovementioned points, we defined different MF parameters for the “High”
level of Y Bi−1(t) in each echelon of the SC. In other words, if the “High” level of Y B1(t) is
considered as a trapezoidal fuzzy number with parameters [a1, b1, c1, d1] and the parameters
for Y B2(t), Y B3(t) respectively be [a2, b2, c2, d2] and [a3, b3, c3, d3], then it is observed
that a1 < a2 < a3, b1 < b2 < b3, c1 < c2 < c3 and d1 < d2 < d3.

2 If there is an estimator for MU, based upon the past data in the system (for example seasonal data of the past
year, or previous data in automated supply systems), MFs will be driven based on it. Otherwise, the MFs will
be calculated based upon the known mean of demand (μ(t)); therefore, according to the fact that μ(t) is more
sensitive on demand changes than the MU, using MU in MFs has a controlling effect on the supply system.
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Fig. 4 Sample trapezoidal fuzzy membership functions for Bi−1(t)

As Fazel et al. mentioned in [13], a good ordering system should have the ability to
change flexibly based upon different situations which are caused by changing time horizons.
The SC under consideration is a four-echelon SC with fuzzy lead time of �̃. Therefore, as
the time period becomes closer to [[4�̃]] ([[]] indicates the bracket of 4�̃), the possibility of
receiving big orders will decrease. Considering this, we add the time counter variable to our
model, as well. This factor is considered in two linguistic levels; “Beginning of Period” and
“End of Period” which are also considered as trapezoidal fuzzy numbers. The parameters of
time counter trapezoidal MF are specified based upon their closeness to [[4�̃]], as mentioned
before.

Considering three linguistic levels for D(t), Y Bi−1(t), Bi−1(t) and L(t) and two linguistic
levels for the time factor, 54 rules will be obtained for determining Yi (t) (for i = 2, 3, 4) in
the wholesaler, distributer and manufacturer echelons, also 18 rules for determining Y1(t) in
the retailer echelon.

General form of the j th rule of the proposed TSK model for Yi (t) determination in the
manufacturer, distributer and wholesaler echelons is as following:

RULE j : IF D(t) isr U1 j AND Bi−1(t) isr U2 j AND Y Bi−1(t) isr U3 j AND t isr U4 j

THEN

Yi j (t) = a0 j + a1 j D(t) + a2 j Bi−1(t) + a3 j Y Bi−1(t) fori = 2, 3, 4and j = 1, . . . , 54

In which U1,U2,U3 are trapezoidal linguistic terms “Low,” “Medium” and “High” and U4

refers to trapezoidal linguistic terms “Beginning of Period” and “End of Period.”
Following statement shows a general form of the j th rule of the proposed TSK model for

Y1(t) determination, in the retailer echelon:
RULE j : IF D(t) isr V1 j AND L(t) isr V2 j AND t isr V3 j THEN

Y1 j (t) = b0 j + b1j D(t) + b2 j L(t) for j = 1, . . . , 18

where V1, V2 are trapezoidal linguistic terms “Low,” “Medium” and “High” and V3 refers to
trapezoidal linguistic terms “Beginning of Period” and “End of Period.”
Y1(t) rule base of the proposed TSK model is shown in Fig. 5 as an example, presentation
of Yi (t) rule base is skipped due to the lack of the space.
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Fig. 5 Y1(t) TSK rule base

Fig. 6 a, b Graphical representation of a sample rule of proposed TSK model. a Graphical representation of
a sample rule of proposed TSK model for Y1(t), bGraphical representation of a sample rule of proposed TSK
model for Yi (t)

A sample rule of the proposed TSK model for both Y1(t) and Yi (t) is presented in Fig. 6
in order to have a graphical view of the proposed TSK model rules.

Asmentioned above, TSKapproach determines outputs of themodel as a linear function of
inputs. Therefore, we should obtain the coefficient matrix of the linear function which is used
in fuzzy rule base (ai j s and bi j s). The proposed TSKmodel for obtaining Yi (t) had 54 rules
and 4 input variables so its coefficient matrix has 54 rows and 5 columns, and the proposed
TSK model for obtaining Y1(t) had 18 rules and 3 input variables so its coefficient matrix
has 18 rows and 4 columns. These coefficient matrixes should be determined before using
TSK fuzzy modeling approach; we have selected neighborhood search method for obtaining
them. A start point for the search is developed by random normal generation command of
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Fig. 7 Pseudocode of neighborhood search algorithm for obtaining coefficient matrix of proposed TSK
models

MATLAB, and the overall amount of BWE was selected as the objective function. If we call
the target matrix with C , then the new matrix will be obtained as following in each iteration
of the search:

Cnew = C + Z .∂

in which Z is a random normal distributed number which is generated in MATLAB and the
∂ is a multiplier of C. The search algorithm is encoded in MATLAB, and the pseudocode is
represented in Fig. 7:

After parameter tuning, we will investigate the performance of proposed TSK models in
determination of Yi (t) and Y1(t) in next section via some numerical examples.

3.1.2 Simulation model assumptions

In order to survey some comparisons on mitigating the BWE in SCM and the effects of the
discussed ordering policies on it, we have considered a four-echelon SC and modeled its
dynamics using MATLAB.

Model initial assumptions have been tried to be similar to the main assumptions of the
“Beer Game” and the work of Costantino et al. in order to providing better comparisons.

The SC has four echelons including manufacturer, distributer, wholesaler and retailer with
unlimited production and inventory capacities, similar to the well-known MIT beer game.
Unlimited production capacity refers to the possibility of production incensement based upon
demand changes, considering the lead times. Initial inventory of 12 and initial shipment of
MU (MU is the mean of the customer’s demand vector) are assumed. Lost-sale is assumed
just for the retailer echelon in the case of inventory shortage and other echelons can backlog
their unsatisfied demands. Inventory costs increase as moving down to the retailer echelon.

It is assumed that all echelons observe any conditions of each ordering strategy that is
implemented to the SC. We supposed that customer demand follows the normal distribution
with mean of MU and standard deviation of σ . The generated values for demand vector
rounded to the nearest integer; thus, all the variables of the model assumed to be integer.

The SC model and all its related ordering strategies are encoded in MATLAB R2012a
over a timeline of 52 weeks (T = 52). We have considered the product delivery lead time as
a triangular fuzzy number of (0, 3, 5).

In order to have sufficient numerical basis for comparison, we also ran both of the
Costantino et al.’s token-based ordering policy (TB) and the fuzzy lead time token-based
ordering policy (FTB) which Fazel Zarandi et al. have suggested to modify the Francesco et
al.’s proposed policy in [13], besides the proposed approaches.

3.1.3 Performance measures

As mentioned before, demand amplification imposes vast inventory variations and costs to
SCs; thus, we evaluated the numerical experiments based upon these performance measures:
The amount of BWE, costs and inventory variation in each echelon and overall SC.
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Table 2 Comparison of numerical results of TB, FTB and the proposed TSK fuzzy token-based ordering
policy (TSK-FTB) for two random demand vectors

Experiment no. Retailer Wholesaler Distributer Manufacturer SUM

(1)

TB

BWE 1.250983 1.81211398 5.14345873 10.35955924 18.56611

Cost 136.8 198.22 353.25 448.5 1136.77

Inventory variation 36.5641 70.1851433 147.283183 144.8578431 1155.336

FTB

BWE 1.133282 1.4623105 2.75540427 6.197080292 11.54808

Cost 121.8 164.78 224.75 422.7 934.03

Inventory variation 29.73869 51.5395928 56.2484917 128.8337104 266.3605

TSK-FTB

BWE 1.23105 1.72283829 2.40398652 3.206836047 8.564711

Cost 125.4 184.58 191.75 222 723.73

Inventory variation 26.64367 79.2560332 69.6813725 62.65158371 238.2327

(2)

TB

BWE 1.291315 2.41277272 5.63696397 12.17111093 21.51216

Cost 125 229.9 262.5 474.3 1091.7

Inventory variation 21.82315 81.265083 79.4524887 147.8925339 330.4333

FTB

BWE 1.211318 1.65602274 3.38468612 7.670567583 13.92259

Cost 108.2 150.26 230 422.7 911.16

Inventory variation 18.08861 33.4913273 59.0799397 115.0690045 225.7289

TSK-FTB

BWE 1.327677 1.56039455 1.93764106 2.449134832 7.274847

Cost 138 115.28 128.5 179.4 561.18

Inventory variation 20.98492 33.3273002 42.4177979 37.98039216 134.7104

The costs refer to the sum of the lost-sale and inventory costs in each period for the retailer
and the sum of the inventory costs in each period for other echelons.

Equations (9) and (10) which are custom in literature are used to quantify the BWE and
comparison of results [9].

BWEi = Var (Oi (t))/Var (X (t)) (9)

Overall BWE =
∑4

i=1
BWEi (10)

where “Var” is the short term of variance and i = 1, 2, 3, 4 refers to the retailer, wholesaler,
distributer and manufacturer echelons respectively.

3.1.4 Numerical results for the proposed TSK fuzzy approach

Numerical results of TB, FTB and our proposed TSK fuzzy token-based ordering policy
(TSK-FTB) for two random demand vectors are shown in Table 2.
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Chart of the Cost and Inventory Variation in Experiments 1 and 2
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Fig. 8 Graphical view of Table 2. a Chart of BWE amounts for TB, FTB and TSK-FTB token-ordering
policies in numerical experiments 1, 2. b Chart of cost and inventory variation amounts for TB, FTB and
TSK-FTB token-ordering policies in numerical experiments 1, 2

Figure 8 has prepared a good summarized graphical view of Table 2.
Inventory graphs related to the first and second numerical experiments are presented in

Figs. 9 and 10, respectively.
As shown in Table 2, the TSK-FTB ordering policy presented lower amounts of BWE,

cost and inventory variation compared to the TB and FTB ordering policies.
Figures 9 and 10 confirm that the TSK-FTB ordering policy can decrease the inventory gap

between echelons and diminish the inventory variation of echelons considerably, especially
for the manufacturer stage.

As seen before, using TSK model in determination of Yi (t) resulted in better outcomes
compared to the ordering policies which were already proposed in the literature. However, in
order to achieve Yi (t) as a linear function of input variables the values of ai s and bi s should
be determined in each rule; the way of obtaining these coefficients can affect the performance
of TSK approach. It should be noted that obtaining the optimal matrix may lead to increase
in the complexity of the system, in cases with large coefficient matrix.

In fact, in TSK method the output is characterized based upon some certain coefficients
in each rule, whereas the decision-making process in real world is not so exact and bounded.
When a person wants to minimize the future costs and shortages by making a near-optimal
ordering decision, he/she decides based upon some inexact experiences and forecasts consid-
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Fig. 9 Graph of inventory status for all SC echelons related to the TB, FTB and TSK-FTB ordering policies
in the first numerical experiment
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Fig. 10 Graph of inventory status for all SC echelons related to the TB, FTB and TSK-FTB ordering policies
in the second numerical experiment

ering available information. A part of these experiences and rule of thumb policies that are
used in an approximate decision-making process can be transferred to the knowledge base of
a MISO system as a fuzzy rule base. The fuzzy inference mechanism of MISO models can
mimic the complex procedure of approximate decision-makings well, using this rule set. In a
fuzzy MISO model, the system tries to make a near-optimal decision for the output variable
based upon its rule set and fuzzy inputs. Therefore, we determine to examine the performance
of MISO fuzzy modeling in token-ordering policy as well.
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Next section represents a short introduction about MISO fuzzy systems. Then, the pro-
posedMISO token-ordering policy and some numerical examples are presented, in following.

3.2 MISO fuzzy modeling

A knowledge base of a system is often represented by the form of “fuzzy rule base.” The
fuzzy rule base consists of several fuzzy if-then rules. In many cases, the fuzzy reasoning on
the fuzzy rule base is based on one-level forward data-driven inference (GNP: generalized
modus ponens). The rule base sometimes has the form of aMISO system as following [6,12].

R = [R1
MISO, R2

MISO, . . . , Rn
MISO] where R j

MISO represents the following rule:
IF X isr A j AND Y isr B j THEN Z isr C j

In which X and Y are input variables and Z is the output variable of the system. A j and
Bj indicate fuzzy sets that define input variables in antecedent part of the j th rule and C j is
also the fuzzy set which defines output variable in the consequent part of j th rule in the rule
set.

The fuzzy inference approach which is selected in this paper is a combination ofMamdani
and Logical modeling systems (it is named also unified or hybrid approach) with standard
form of all operators.

General forms of j th linguistic fuzzy if-then rules for Mamdani and Logical linguistic
fuzzy modeling approaches are as following [6,12]:

Mamdani approach: IF X1 isrU1 j AND… Xi isrUi j THENY isr Vj (i = 1, 2, . . . , n)
Logical approach: IF X1 isr Ū1 j AND… Xi isr Ūi j THEN Y isr Vj (i = 1, 2, . . . , n)

where Xi indicates input variables of the system (for i = 1, 2, . . . , n inwhich, n is the number
of input variables) and Y is the consequent variable of the system. Ui j and Vj are linguistic
terms (fuzzy sets) which define input and output variables in antecedent and consequent parts
of j th rule, respectively. Ū i j is also the complement fuzzy set of the Ui j fuzzy sets. Final
result is calculated based upon a specific set of fuzzy operations on the all fired consequents
in each approach (see [4] for more detailed information).

The final output of the Hybrid inference approach (Yager Unified approach) is a linear
combination of the final results of bothMamdani and Logical methods as displayed in Eq. 11
[6,12]:

ResultUnified = β.ResultLogical + (1 − β). ResultMamdani (11)

where β is determined by the system analyst depending on to what extent he/she prefers to
use Mamdani or Logical approaches. If β = 1, the system uses only Logical approach and if
β = 0, the Mamdani approach is used for the system’s inference.

3.2.1 Proposed hybrid MISO fuzzy approach for token ordering

Here Y1(t) and Yi (t) (i = 2, 3, 4), respectively, will be modeled, respectively, by D(t),
L(t),μ(t) and D(t), Y Bi−1(t), Bi−1(t),μ(t) and also time factor using MISO fuzzy mod-
eling according to the descriptions mentioned in previous section. In MISO approach, inputs
should be fuzzified to obtain a fuzzy value for Yi (t) using MISO rule base. Then, this fuzzy
outcome will be defuzzified by the system in order to achieve a crisp intelligible output.

Similar to what was discussed in the previous section, three linguistic levels for
D(t), Y Bi−1(t), Bi−1(t) and L (t) and two linguistic levels for time factor are considered.
Thus, there are 54 rules for determining Yi (t) in the manufacturer, distributer and wholesaler
echelons, and 18 rules for determining Y1(t) in the retailer echelon.
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All MFs are determined as trapezoidal, and its MF parameters have been specified based
upon the mean of demand vector (MU). MF parameters for Y Bi−1(t) in “High” level are
considered different for different echelons, too (as discussed before for the proposed TSK
model).

In this approach, the output is obtained from a pre-specified area of the weighted mean
of inputs instead of the polynomial function which was used by TSK model. In other words,
the consequent (then part) of rules is defined as one of the following seven statements:

“Much more than W”, “More than W”, “Slightly more than W”, “Around W”, “Slightly
less thanW”, “Less thanW”, “Much less thanW”, in whichW is the weighted mean of input
variables.

Therefore, an instance of the j th rule of MISO rule set for obtaining Yi (t) (i = 2, 3, 4)
can be written as following:

RULE j: IF D(t) isr U1 j AND Bi−1(t) isr U2 j AND Y Bi−1(t) isr U3 j AND t isr U4 j

THEN
Yi (t) isr Vj for j = 1 : 54
Vj is one of the seven statements related to W which have mentioned above.
Also, an instance of the j th rule of MISO rule set for obtaining Y1(t) can be consdered as

following:
RULE j: IF D(t) isrU1 j AND L(t) isrU2 j AND t isrU3 j THENY1(t) isr Vj for j = 1 : 18
The MISO rule set of Y1(t) is shown in Fig. 11 as an example, and we skipped the

presentation of the Yi (t) MISO rule set due to the lack of space.
A sample rule of the proposed hybrid MISO model for both Y1(t) and Yi (t) are presented

in Fig. 12 in order to have a graphical view of proposed hybrid MISO model rules.

3.2.2 Numerical results for the proposed hybrid MISO fuzzy approach

The same experiments which were mentioned in previous section were repeated for this
policy again in order to enable us to compare the results of the MISO fuzzy token-based
(MISO-FTB) policy with TB, FTB and TSK-FTB policies.

Table 3 shows the numerical results of MISO-FTB for the random demand vectors of
experiments 1, 2 that mentioned before in TSK model numerical examples.

1. IF D(t) is Low AND L(t) is Low AND Time Period is Beginning of period THEN Y1(t) is Much more than W
2. IF D(t) is Low AND L(t) is Low AND Time Period is End of period THEN Y1(t) is slightly More than W
3. IF D(t) is Low AND L(t) is Medium AND Time Period is Beginning of period THEN Y1(t) is More than W
4. IF D(t) is Low AND L(t) is Medium AND Time Period is End of period THEN Y1(t) is Around W
5. IF D(t) is Low AND L(t) is High AND Time Period is Beginning of period THEN Y1(t) is Slightly more than W
6. IF D(t) is Low AND L(t) is High AND Time Period is End of period THEN Y1(t) is Slightly less than W
7. IF D(t) is Medium AND L(t) is Low AND Time Period is Beginning of period THEN Y1(t) is Around W
8. IF D(t) is Medium AND L(t) is Low AND Time Period is End of period THEN Y1(t) is Slightly less more than W
9. IF D(t) is Medium AND L(t) is Medium AND Time Period is Beginning of period THEN Y1(t) is Around W
10. IF D(t) is Medium AND L(t) is Medium Low AND Time Period is End of period THEN Y1(t) is Slightly less than W
11. IF D(t) is Medium AND L(t) is High AND Time Period is Beginning of period THEN Y1(t) is Slightly less than W
12. IF D(t) is Medium AND L(t) is High AND Time Period is End of period THEN Y1(t) is Less than W
13. IF D(t) is High AND L(t) is Low AND Time Period is Beginning of period THEN Y1(t) is Slightly less than W
14. IF D(t) is High AND L(t) is Low AND Time Period is End of period THEN Y1(t) is Much less than W
15. IF D(t) is High AND L(t) is Medium AND Time Period is Beginning of period THEN Y1(t) is Less than W
16. IF D(t) is High AND L(t) is Medium AND Time Period is End of period THEN Y1(t) is Much less more than W
17. IF D(t) is High AND L(t) is High AND Time Period is Beginning of period THEN Y1(t) is Less than W
18. IF D(t) is High AND L(t) is High AND Time Period is End of period THEN Y1(t) is Much less than W

Fig. 11 Y1(t) MISO rule base
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Fig. 12 a, b Graphical representation of a sample rule of the proposed hybrid MISO model. a Graphical
representation of a sample rule of the proposed hybrid MISO model for Y1(t), b Graphical representation of
a sample rule of the proposed hybrid MISO model for Yi (t)

Table 3 Numerical results of MISO-FTB for experiments 1, 2

Experiment no. Retailer Wholesaler Distributer Manufacturer SUM

(1)

MISO-FTB

BWE 1.18999158 1.33822291 1.4623105 1.60604997 5.596574958

Cost 135.6 105.6 120.5 128.4 490.1

Inventory variation 38.1161388 32.8476621 35.1809955 31.6711916 137.8159879

(2)

MISO-FTB

BWE 1.15723481 1.44671069 1.52495194 1.71018975 5.839087185

Cost 96.2 113.74 95.5 98.7 404.14

Inventory variation 17.5245098 26.8789593 30.3092006 24.3812217 99.0938914

Figure 13 represents a good summarized graphical view of Table 3 versus the results of
TB, FTB and TSK-FTB which were presented in previous section.

Table 3 and Fig. 13 obviously confirm that the MISO-FTB strategy has presented better
results for all considered SC performance measures, in comparison with the other three
approaches. Therefore, it can be concluded that MISO-FTB is able to make better decisions
about token-ordering values.

4 Discussion

In order tomake sure about the accuracy of the results, similar experiments have been done on
fifty different random demand vectors. The results are shown in Fig. 14. These experiments
have also confirmed previous results. Therefore, the strategies can be sorted as following
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Retailer Wholesaler Distributer Manufacturer

(a)

(b)

Fig. 13 Graphical view of Table 3. a Chart of BWE amounts for TB, FTB, TSK-FTB and MISO-FTB token-
ordering policies in numerical experiments 1, 2. b Chart of cost and inventory variation amounts for TB, FTB,
TSK-FTB and MISO-FTB token-ordering policies in numerical experiments 1, 2

according to their results for SC performance measures: (1) MISO-FTB, (2) TSK-FTB, (3)
FTB and (4) TB.

Note that the hybrid MISO model is more flexible vs TSK model in decision-making and
improved it by closing the token-ordering decisions to the process of human approximate
reasoning and enhanced its robustness, thus according to its better outcomes it seems to
be rational to use MISO-FTB. However, it should be noticed that hybrid MISO inference
mechanism is more complex and requires more computations which can lead to increasing
the system’s runtime.

So in the cases in which runtime and complexity are critical factors for the system, it may
be preferred not to use hybrid MISO, and in such cases using simple Mamdani approach is
more reasonable.

The Mamdani MISO approach has less complexity in comparison with hybrid MISO
approach, but it is more complex than TSKmodel. Therefore, our proposed approaches were
certified to be better from previous approaches, a trade-off between the degree of importance
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Fig. 14 a–c Scatter plots of overall BWE, cost and inventory variation values for TB, FTB, TSK-FTB and
MISO-FTB token-ordering policies with fifty different random demand vectors. aOverall BWE values for TB,
FTB and proposed fuzzy ordering policies with 50 different random demand vectors. bOverall cost values for
TB, FTB and proposed fuzzy ordering policies with 50 different random demand vectors. c Overall inventory
variation values TB, FTB and proposed fuzzy ordering policies with 50 different random demand vectors

of the SC measures or system constraints such as runtime or complexity can determine the
best selection among hybrid MISO, Mamdani MISO and TSK models.

5 Conclusion

The term BWE refers to a dynamical phenomenon, which is able to affect the efficiency
of SCs and cause the increase in inventory costs as a result of the existence of information
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asymmetry in supply chains (SCs). Several remedies have been presented for BWE man-
agement up to now, but none of them has been able to eliminate it completely. Information
sharing (IS) policies are known as an effective theoretical approach to managing BWE in
SCs. An effective IS technique which is recently used to facilitate sharing demand informa-
tion in SCs is the token-based ordering policy (TB). The strategy is dividing orders into two
streams: the first stream is actual value of customer demand, whereas the second one is adjust-
ments which are required to manage fluctuations and keep a stable inventory in each echelon
of SC.

This work concentrated on improving the efficiency of token-based ordering policy
through proposing a robust push–pull policy for the token-ordering procedure. Token-
ordering procedure is the procedure of obtaining the optimal amount of tokens which should
be ordered in every period by different SC echelons. Two new fuzzy approaches were pro-
posed to improve this procedure: the TSK and hybrid MISO fuzzy approaches. The main
characteristic of the proposed approaches is that they can eliminate the dependence between
the efficiency of TB ordering policy and exogenous and constant variables. In other words,
proposed fuzzy approaches are able to determine the amount of tokens that each SC echelon
should order to manage its inventory control policies through a push–pull approach and using
the endogenous variables of the supply system.

Numerical examples showed that both of the proposed fuzzy models improved the SC
performance criteria, but the hybridMISO fuzzymodel presented better outputs and prepared
more robust modeling. Finally, the advantages and disadvantages of the proposed approaches
were discussed to provide a basis for decision-making trade-offs.

Two main approaches are pursued in future works; applying type 2 fuzzy logic for
improvement of the power of the proposed model in coping with uncertainties (regarding the
capabilities of type 2 fuzzy logic in uncertainty modeling) and survey of the incentive of the
echelons for participation in information sharing (IS) through an automated negotiation in
an agent-based supply platform.

Acknowledgements Authors would like to thank dear reviewers for their constructive viewpoints that helped
to improving the paper.
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