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Abstract Optimal planning for public transportation is one of the keys helping to bring
a sustainable development and a better quality of life in urban areas. Compared to private
transportation, public transportation uses road space more efficiently and produces fewer
accidents and emissions. However, in many cities people prefer to take private transportation
other than public transportation due to the inconvenience of public transportation services.
In this paper, we focus on the identification and optimization of flawed region pairs with
problematic bus routing to improve utilization efficiency of public transportation services,
according to people’s real demand for public transportation. To this end, we first provide an
integrated mobility pattern analysis between the location traces of taxicabs and the mobility
records in bus transactions. Based on the mobility patterns, we propose a localized trans-
portation mode choice model, with which we can dynamically predict the bus travel demand
for different bus routing by taking into account both bus and taxi travel demands. This model
is then used for bus routing optimization which aims to convert as many people from private
transportation to public transportation as possible given budget constraints on the bus route
modification. We also leverage the model to identify region pairs with flawed bus routes,
which are effectively optimized using our approach. To validate the effectiveness of the pro-
posedmethods, extensive studies are performed on real-world data collected in Beijingwhich
contains 19million taxi trips and 10 million bus trips.
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1 Introduction

More and more people live in metropolitan areas with the rapid development of urbanization.
One major side effect of urbanization is more frequent and intense traffic congestion due
to more human activities within limited space, and consequently unnecessary energy con-
sumption during traffic congestion. Public transportation (e.g., bus, subway) not only saves
fuel and reduces congestion, but also offers a safe, affordable, and convenient way to travel
[14]. According to American Public Transportation Association,1 Americans living in areas
served by public transportation save 865million hours of travel time and 450 million gallons
of fuel annually in congestion reduction alone. A household that uses public transportation
frequently saves more than $9700 every year. Although there are various and huge benefits
by using public transportation, our current public transportation system is far from perfect
and has much room for improvement. Better public transportation planning can significantly
help to foster a more sustainable development and improve quality of life.

Traditional public transportation planningmethods have relied on human surveys to under-
standpeople’smobility patterns and their choice amongdifferent transportationmodes [4,21].
Despite the substantial time and cost spent on the survey process, the macroscopic analysis
based on surveys is too static to reflect the fast development of urban areas. Therefore, we
need a more cost-effective and adaptive way to handle the classical transportation problem.
In addition, we try to explore a new challenging problem of how to convert people who take
private transportation (e.g., private car, and taxi) to take public transportation in this paper.
It is a more urgent research problem as most past research on public transportation plan-
ning focuses on how to design a system to satisfy the current need for public transportation
instead of attracting more people to take public transportation. If transit agencies could have
an effective tool to quantify travel demand and a choice model on how people choose public
transportation and private transportation (e.g., private car, taxi), then recommendations on
how to better design and optimize a given public transportation network could be proposed to
attract more people to public transportation. As a result, cities would be able to better support
people’s travel demand through a regulated, efficient, more sustainable public transportation
system.

Meanwhile, with the wide deployment of Automatic Fare Collection (AFC) systems on
bus networks and Global Positioning System (GPS) devices on taxis, large amounts of bus
transactions and taxi traces are collected. The availability of rich travel data and the emergence
of big data technology enable the automatic analysis on human mobility patterns. We can
detect the up-to-date patterns adaptively because travel data dynamically change with the
development of urban areas. As demonstrated in this paper, this offers the possibility of
optimizing public transportation by taking overall city traffic into account. By leveraging
mobility patterns of public and private transportation, public transportation services can be
designed in a way that accommodates different levels of demands and, by doing so, attracts
more potential riders and increases utilization efficiency of the public transportation system.
For example, people may be more willing to choose bus over taxi when a better bus route
with less travel time and stops is provided.

1 http://www.apta.com.
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With integrated analysis on the mobility patterns, we aim to detect and replan flawed and
less effective bus routes for attracting most number of potential bus riders. There are two
main challenges to achieve this goal: (1) modeling people’s transportation mode choices for
different Origin–Destination (OD) pairs; (2) optimizing bus routes with budget constraints
to maximize converted bus rider number. For the first main challenge, it requires the under-
standing of human mobility pattern in a regional level. Since buses can only stop at bus
stops and taxi can stop anywhere, it is hard to understanding human mobility patterns if
their origins and destinations are not directly comparable. It requires us to integrate hetero-
geneous human mobility data together instead of focusing on single-mode human mobility
pattern. Through mapping their origins and destinations to their related regions, we are able
to understand regional interactions by aggregating individual human mobility patterns. Such
mapping can not only enable us work on unified features for both bus and taxi travel behav-
iors, but also reduce the computational complexity as the current base unit is regions instead
of individuals. Therefore, the whole urban area needs to be properly partitioned into regions,
and then, regional travel patterns related to taxis and buses can be modeled, respectively. For
the second main challenge, we only work on a suboptimal problem of improving flawed bus
routes instead of searching for a global optimized plan for some practical considerations.
First, bus route optimization under different constraints has already been recognized as a
complex, nonlinear, nonconvex, and multi-objective NP-hard problem [13,27]. Second, the
global optimization is too intrusive as it changes many existing routes. Therefore, we identify
flawed bus routes first and then work on the optimization problem of improving the identified
flawed bus routes.

The three main contributions of this paper are as follows:

– Transportationmode choicemodelingWemodel transportationmode choices of different
OD pairs separately using a spatio-functionally weighted regression method, providing
the probabilities of taking bus and taxi for each OD pair. Note that we investigate mode
choice as an aggregate problem [14], which means we focus on people’s group behavior
of OD pairs other than individual behavior.

– Bus routing optimizationGiven limited budgets for bus network restructuring,we propose
a method to attract the maximum number of potential bus riders from private transporta-
tion.

– Real evaluation We evaluate our method using a series of large-scale real GPS traces
generated by 30,000 taxis and over 10 million bus transactions in Beijing from August
to October in 2012. We also obtain data from the Beijing Bus Company, justifying the
effectiveness of our method.

We begin by introducing related work in Sect. 2 and the preliminaries of this study in
Sect. 3. Then, the transportation mode choice model is proposed in Sect. 4, followed by the
flawed OD pairs detection in Sect. 5 and bus routing optimization in Sect. 6. Experimental
results are presented in Sect. 7, and we discuss the results and give concluding remarks in
Sect. 8.

2 Related work

Our work is related to two research areas: The first one is human mobility pattern mining,
and the second one is bus route network optimization.
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2.1 Human mobility pattern mining

Understanding human mobility in urban environments is central to traffic forecasting,
location-based services, and urban reconstruction. A significant number of papers on human
mobility analysis have been published in recent years thanks to the widely available mobility
data, such as GPS data, cellular network data, and transportation data. Gonzalez [20] and
Liu et al. [28] suggested that human mobility patterns follow high degree of spatial and
temporal regularity and thus predictable. Song et al. [34] suggested that human mobility has
a predictability of 93%, and Montjoye et al. [15] showed that four spatial–temporal points
are enough to uniquely identify 95% of the individuals. Utsunomiya et al. [37] also reported
the consistency of daily travel patterns with public transportation transaction data.

To the best of our knowledge, we are the first to work on the problem of improving bus
routing to attract taxi riders by leveraging human mobility patterns. Although there is no
existing work on the exact application we are working on, there are many existing works
on making use of human mobility patterns for different novel applications. Giannotti et
al. [19,31] developed trajectory pattern mining and applied it to predict the next location
at a certain level of accuracy by using GPS data. Zheng et al. [43] detected flawed designs
in current road network with a frequent graph method on taxi GPS traces. Yuan et al. [40]
proposed a topic-based inference model that discovers regions of different functions, such as
educational areas and business districts, in a city using both human mobility data and points
of interests (POIs). Ge et al. [18] developed a mobile recommender system to maximize
the probability of business success and reduce energy consumption, which has the ability in
recommending a sequence of pickup points for taxi drivers or a sequence of potential parking
positions.

Specifically, there are some but not many efforts have been made to understand and
improve public transportation leveraging human mobility patterns. Lathia et al. [26] mined
Automated Fare Collection (AFC) data of London public transportation system with the aim
to build more accurate travel route planners. Lathia and Capra [25] also analyzed Oyster card
data of London to estimate future travel habits. By analyzing historical travel traces, they
have been able to extract features about when, where, and how often individual travels that
can then be predicted with a high level of accuracy. Watkins et al. [38] conducted a study on
the impact of providing real-time bus arrival information directly on riders’ mobile phones,
and found it reduced not only the perceived wait time of those already at a bus stop, but also
the actual wait time experienced by customers who plan their journey using such information.

However, these papers are not dedicated to the bus route network planning problem except
the following two [6,13]. Bastani et al. [6] leveraged historical taxi GPS trips to suggest a
flexible bus route. The authors first grouped taxi trips into different clusters with similar
starting time, duration, origin, and destination. Then, a route connecting multiple dense
clusters was identified. This work aimed to maximize the sum of each connected trip cluster
discarding other constraints such as time.Chen et al. [13] investigated night bus route planning
using large-scale taxi GPS traces, which aimed to find a bus route with a fixed frequency,
maximizing the number of passengers expected along the route subject to the total travel
time constraint. Similar to [6], this work first clustered “hot” areas with dense passenger
trips and treated these clusters as candidate bus stops. Then, several rules were derived to
build bus routing graph and finally generated candidate bus routes to maximize the number
of bus riders. However, Chen et al. [13] focused on night bus routing planning, and this
paper mainly focus on day bus routing planning which is more complicated with more routes
and riders considered. Moreover, these two papers only considered one single transportation
mode, i.e., taxi, and considered the taxi travel demand as new bus demand. They assumed
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all the taxi riders were willing to take bus if there was one. However, different taxi riders
may have different probabilities converting to bus based on the bus routes provided. From
this point of view, we propose a mode choice model using heterogenous human mobilities
to learn the probabilities of people choosing between taxi and bus. As a result, our proposed
routing optimization approach can predict the number of bus riders by integrating the mode
choice model and is able to both accommodate and maximize future bus travel demand.

Motivated by the above novel applications,we aimat the problemof optimizing bus routing
by comparing the difference of human mobility patterns between taxi and bus riders. Unlike
the above-mentioned work focusing on single-mode human mobility pattern, we integrate
heterogeneous human mobility data together to better represent the mobility of a city. Thus,
we are able to analyze the difference and relation between different human mobility patterns
and make planning in the city level considering the dynamic transitions between different
transportation modes.

2.2 Bus route network optimization

Bus route network optimization addresses the problems of how to design a new bus route
network or how to redesign bus routes in an existing network [9,14]. It is an intensive studied
area in the urban planning and transportation field, known to be a complex, nonlinear, non-
convex,multi-objectiveNP-hard problem [13,27]. Specifically, it focuses on the optimization
of a number of objectives representing the efficiency of bus network under operational and
resource constraints [11,16]. The outcome is a set of routes that cover the required OD pairs
in the network, and on which user demands can be fulfilled. The general process of bus net-
work optimization is as follows: (1) user travel demand generation; (2) bus stops and routing
network construction; (3) formulation of optimization model with objectives and constraints;
(4) construction of candidate bus routes; and (5) calculation of final solutions.

Traditional bus network design primarily considered passenger flows and user require-
ments gathered from census and household travel surveys [4,21]. In a general survey,
multi-type information is obtained, such as Origin–Destination, transportation mode and
distance, trip purpose, routes selected on a trip, fare paid, type of payment, frequency of use
by time of day, and socioeconomic and attitude elements [9]. As related surveys normally cost
several millions dollars each time for a metropolitan area, a common practice is to conduct
such surveys once every several years.

Some widely used objectives include shortest distance, shortest travel time, maximum
passenger flow, and maximum area coverage, while constraints include travel time, route
length, capacity, and so on [2,21]. However, these objectives may be generated from different
perspectives, i.e., the operator and the riders, and need to be considered simultaneously.
Therefore, there are no clear-cut criteria for evaluating the “goodness” of a bus network and
a trade-off rather than optimal solution is often achieved due to the conflicting objectives.

With user demands and objectives determined, a variety of approaches have been proposed
in formulating and solving the bus route network optimization problem [21,22], such as linear
programming, nonlinear programming, and heuristic algorithms [23]. Fan and Machemehl
[16] formulated the bus route network design problem as a multi-objective nonlinear mixed
integermodel. ThenDijkstra’s shortest path algorithm [1] andYen’s k-shortest path algorithm
[39] were combined to generate all candidate routes. At last a genetic algorithm procedure
was used to select an optimal set of routes. Ceder and Wilson [10] considered travel time as
a constraint and constructed routes which had minimized demand differences between them
and shortest paths.More recently, Chakroborty andDwivedi [12] used a demand-driven node-
addition approach. They estimated the incoming and outgoing passengers of each network
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node, and used the demand to guide the construction of routes. In the meanwhile, they used
the connectivity of nodes, route length, and number of nodes per route as constraints.

The above work assumed that travel demands were statically determined by user survey or
population estimation. Different from that we integrate the bus route network design problem
with real mobility demand, also the travel demands are dynamically estimated with different
routing results. This enables us to plan bus routes to maximize number of bus riders by
converting from taxi, which cannot be fulfilled by existing methods.

3 Preliminaries

We begin by introducing the routing network which provides the platform for bus routing
optimization. The routing network contains bus stops and connections between them, with
no bus route information included. We then generate the human mobility patterns between
regions (nodes of the routing network) using taxi traces and bus transactions. These compo-
nents are shown in the first (left) part of the framework in Fig. 1. Later in the second (right)
part of the framework, these mobility patterns will be modeled (in Sect. 4) to identify the fac-
tors affecting people’s transportation choices. After that, we detect and optimize the flawed
OD pairs with budget constraints to increase bus ridership (in Sects. 5 and 6, respectively).

Unless otherwise stated, we use bold characters to represent nonscalar variables, e.g.,
vectors, sequences, sets, and graphs. We use a comma in brackets to concatenate row vectors
or stack column vectors horizontally, and a semicolon in brackets to concatenate column
vectors or stack row vectors vertically. We use 〈·, ·〉 to represent the inner product of two
vectors.

3.1 Routing network

As buses can only stop at bus stops and taxis can stop anywhere, we need to construct
a common routing network for both buses and taxis. First, we partition the urban area into
disjoint regions served by buses and taxis. Through disjoint regions, we canmodify bus routes
to attract the corresponding taxi passengers. To this end, we partition the urban area using bus
stops S = {si |i = 1, . . . , N } to align service regions for both buses and taxis. Considering
duplicated bus stops on different sides of the same street, we have merged stops with same
names, or stops with different names but actually share the same place. For instance, for
each of the bridges (also called overpasses) there are usually two or four stops around it,
e.g., Mingguang Bridge North and Mingguang Bridge South at Xueyuan Road (as shown
in Fig. 2). Buses traveling north through Mingguang Bridge will stop at Mingguang Bridge

Fig. 1 Framework of our method
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Fig. 2 Bus stop merging of Mingguang Bridge. Mingguang Bridge North and Mingguang Bridge South are
merged together to represent Mingguang Bridge

North, but not Mingguang Bridge South. So we can merge these two stops into one, which
represents Mingguang Bridge. In the rest of this paper, we assume the stops in set S have
already been merged.

After merging bus stops serving the same regions, we then partition themap using Voronoi
diagram [5], which is a partitioning of a plane into regions based on distance to points in
a specific subset of the plane. In our map partition problem, we treat the whole city as the
plane, and bus stops as the points. With Voronoi diagram applied, the city can be partitioned
into regions based on distance to bus stops. As a result, there is one region formed for each
bus stop, and pickup/drop-off points for taxi trips are mapped to the regions located. Since
we are focusing on the bus routing problem in this paper, we assume bus stops are reasonably
designed and distributed in the city. So if a person taking taxi wants to take bus instead, then
the nearest bus stop will be his/her first choice. This partition method effectively describes
the travel demand around bus stops comparing to other partition methods, such as grid-based
partition [36] and road-network-based partition [43]. In the following sections, we use S to
represent both stops and their, respectively, associated regions. Please refer to Fig. 3a for the
map segmentation in Beijing.

Now, we define the routing networkG = (S,E) with the bus stops S as nodes. The edges
in E are direct connections of neighbor bus stops, which means there is a route existing from
one stop to anotherwithout transiting other stops. Specifically, we have edge e = (si , s j ) ∈ E,
if there is a direct road connection between the head stop si and tail stop s j without traveling
through other regions, where si , s j ∈ S. The edges are generated from existing road segments.
Please refer to Fig. 3b for an example of the routing network with nodes plotted in red dots
and edges in blue lines.

3.2 Human mobility pattern

The human mobility patterns contain travel information for both bus and taxi riders, repre-
senting public and private transportation, respectively. As shown in Fig. 4, there is a clear
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Fig. 3 Map of Beijing. aMap segmentation of Beijing. bBus routing network of Beijing (color figure online)

Fig. 4 Trip origin distribution of Beijing. The size of dot is proportional to the related number of trips. a Bus
trip origins. b Taxi trip origins

difference between the mobility patterns of these two transportation modes.We retrieve these
information by constructing transition records from the taxi traces and bus transactions, and
then, we summarize these information with a comprehensive set of statistics. Also, we have
observed that people’s behaviors and thus their mobility patterns vary significantly over dif-
ferent days and different time periods of a day. Therefore, we apply temporal partition on
the transition records before summarizing the statistics. We give details of these three steps
as follows.

3.2.1 Transition construction

We construct the transition records with the following definition:

Definition 1 A transition tr contains the following attributes: origin o, destination d , trans-
portation modem (0 and 1 stand for taxi and bus, respectively), leaving time lt , arriving time
at , travel distance td , travel fare t f , and number of stops sn. The set of all the transitions is
notated as TR.
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Fig. 5 Travel behavior in Beijing. The percentages of bus and taxi riders shown in y axis are calculated
separately. a Weekday. b Weekend

Table 1 Temporal slots for
weekday and weekend

Weekday Weekend

Slot 1 5:00a.m.–10:30a.m. Slot 5 5:00a.m.–12:30p.m.

Slot 2 10:30a.m.–4:00p.m. Slot 6 12:30p.m.–7:30p.m.

Slot 3 4:00p.m.–7:30p.m. Slot 7 7:30p.m.–11:00p.m.

Slot 4 7:30p.m.–11:00p.m.

Specifically, we project each bus and taxi trip to the nodes of the routing network G,
turning a trip into a transition. The travel distance of a taxi trip is calculated using the sum
of the road distance of all consecutive GPS points in the trace, and the travel distance of a
bus trip is calculated using the sum of the road distance of all consecutive bus stops traveled
through.

3.2.2 Temporal partition

People go to different places onweekends (including public holidays in China) in comparison
with weekdays. Also, people’s preferences among different transportation modes vary over
different timeperiods of the day. For example, people prefer public transportation to commute,
which usually happens during the morning and evening rush hours. Figure 5a shows the
distribution of bus and taxi riders during the day on weekdays. We can see there are two high
peaks of bus riders around 8a.m. and 6p.m., which are the morning and evening rush hours.
In contrast, people often prefer private transportation for business transit during the day.

To incorporate these facts, we segment the transitions TR based on the leaving time lt to
the temporal slots in Table 1, which is derived according to the traffic and travel behaviors
in different time of day [43]. Specifically, we first segment the time of day into 48 segments,
each for half an hour. By comparing the number of bus and taxi riders in each segment to
the total number of bus and taxi riders in a day (as shown in Fig. 5), and the speed in each
segment to the average speed in a day (as shown in Fig. 6), these segments can be further
merged into the temporal slots presented. In the same temporal slot, the semantic meaning
of people’s travel is similar. Figure 5 shows the travel behavior of riders on weekdays and
weekends, from which we can see the travel behaviors of bus and taxi differ in different time
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Fig. 6 Traffic conditions in Beijing. a Taxi on weekday. b Taxi on weekend. c Bus on weekday. d Bus on
weekend

slots. For example, slot 1 corresponds to people going to work and slot 3 corresponds to
people leaving from work, the number of people taking bus is much higher than other slots
since bus is a major commuting transportation method. Since few people take buses between
11p.m. and 5a.m. (as shown in Fig. 5), this paper focuses on the day bus lines, running from
5a.m. to 11p.m. We use c = 1, . . . , 7 to represent the temporal slots, and each is associated
with its time proportion in STimec, for example, STime1 = 5 ∗ 5.5h (5.5h every day and
5days every week).

3.2.3 Statistical summarization

Now, we summarize the partitioned transitions TRc
i j = {tr : tr.o = i, tr.d = j, tr.lt ∈ c}

with statistics defined in Table 2 for each OD pair (i, j), temporal slot c, and transportation
mode bus/taxi, respectively. With these six statistics, which are volume, travel time, travel
distance, velocity, fare, and stop number, we well depict the transportation modes and travel
demands of OD pairs [7,33]. In this paper, we focus on improving bus routing to attract
private transportation riders to public transportation, so we assume other perceived factors,
such as comfort and safety, remain the same after the bus route change [7,33]. The definition
of an OD pair is given as follows.
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Table 2 Statistics of transition records for OD pair (i, j) in temporal slot c

Statistic Definition

Volume BVol = |{tr : tr.m = 1}|
TVol = |{tr : tr.m = 0}|
Vol = BVol + TVol

Travel time BTime = ∑
tr:tr.m=1(tr.at − tr.lt)/|{tr : tr.m = 1}|

TTime = ∑
tr:tr.m=0(tr.at − tr.lt)/|{tr : tr.m = 0}|

Travel distance BDist = ∑
tr:tr.m=1 tr.td/|{tr : tr.m = 1}|

TDist = ∑
tr:tr.m=0 tr.td/|{tr : tr.m = 0}|

Velocity BVel = ∑
tr:tr.m=1 tr.td/(tr.at − tr.lt)/|{tr : tr.m = 1}|

TVel = ∑
tr:tr.m=0 tr.td/(tr.at − tr.lt)/|{tr : tr.m = 0}|

Fare BFare = ∑
tr:tr.m=1 tr.t f /|{tr : tr.m = 1}|

TFare = ∑
tr:tr.m=0 tr.t f /|{tr : tr.m = 0}|

Stop number BStop = ∑
tr:tr.m=1 tr.sn/|{tr : tr.m = 1}|

TStop = 0 (no stops for taxi)

Definition 2 An OD (Origin–Destination) pair (o, d) is a pair of regions with origin o = si ,
destination d = s j , where si , s j ∈ S. We write it as (i, j) for short.

Specifically, for each OD pair (i, j) and temporal slot c, we compute BVol, BTime, BDist,
BVel, BFare, BStop for bus and TVol, TTime, TDist, TVel, TFare, TStop for taxi. For example,
BTimeci j is the average bus travel time of all the bus trips from origin i to destination j during
the temporal slot c. In Sect. 4, we will further leverage these statistics to extract features
and build the transportation mode choice models. As we have contended earlier, the mobility
patterns are significantly different across different temporal slots, and for that reason, we
have partitioned the records into different temporal slots. Thus here, the aforementioned
statistics are summarized for each temporal slot, respectively. As a result, we will build the
transportation mode choice model for each slot, respectively.

In addition, using the transition records, we also compute some statistics of the routing
network, e.g., edge distance, edge travel time, which will be used later for the bus routing
optimization. Specifically, for each direct connection edge e ∈ E, we compute its travel
distance d and travel time t for bus along the connection edge e. We obtain d by projecting
the head and tail stops of e to the map and calculate the shortest travel distance on the
road map. To obtain the bus travel time t , we consider the travel speed v on each edge e
obtained by using taxis as flowed sensors. Due to the speed difference between taxi and
bus in different time slots, we estimate the bus speed as follows: vcbus = λc ∗ vctaxi , where
λc is a constant for temporal slot c[13]. Different cities may have different λ, here we set
λc =< 0.68, 0.67, 0.77, 0.65, 0.61, 0.68, 0.62 >, c = 1, . . . , 7 for Beijing by comparing
the difference between taxi and bus average speed in different temporal slots (as shown in
Table 3). By using bus speed divided by taxi speed, we get λ in different temporal slots. It
follows that tbus = t0 + 1

λ
∗ ttaxi = t0 + 1

λ
∗ d/vtaxi , where t0 is a constant indicating the

time for a bus stop [13]. Since the bus speed has already taken the stop time into account
when calculating λ, we use t0 = 0 minutes in this paper. We represent all the edge travel
distances in a vector EDistc ∈ R

|E |, and all the edge travel time in ETimec ∈ R
|E |, where

c signifies the temporal slot when computing the statistics. As noted, these statistics can be
specific for each temporal slot. Indeed, when the routing network is considered fixed, EDistc
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Table 3 Average speed (km/h)
in different temporal slots

Slot 1 2 3 4 5 6 7

Bus 21.66 21.97 20.75 24.25 22.79 21.43 24.04

Taxi 31.95 32.65 27.08 37.34 37.25 31.54 38.65

λ 0.68 0.67 0.77 0.65 0.61 0.68 0.62

is invariant with respect to c, but ETimec varies along with the traffic situations in different
temporal slots.

4 Transportation mode choice model

In this section, we learn a transportation mode choice model to estimate the probabilities of
people taking bus given origin, destination (the OD pair), and departing time (the temporal
slot). To achieve this goal, we first extract features that contribute to the decision process
of choosing transportation mode. Then, a spatio-functionally weighted regression model is
proposed to estimate the probability of taking bus p given these features.

4.1 Feature extraction

Understanding travel behavior and the reasons for choosing one transportation mode over
another is an essential issue. However, travel behavior is complex. The choice of transporta-
tion mode is influenced by various factors, such as travel time, monetary cost, accessibility,
and reliability [7,9]. Each transportation mode has its advantages and disadvantages. In gen-
eral, people choose taxis because of their shorter travel distance and time, and choose buses
for their lower cost. Here we focus on factors related to bus routing and consider that other
factors such as accessibility and reliability remain unchanged.

Given the statistical summarization of an OD pair (i, j) in a temporal slot c, we extract
the features Xc

i j to better describe the OD pair and compare the difference between the
transportation modes:

Xc
i j =

(

TDistci j ,
BDistci j
TDistci j

,TTimeci j ,
BTimeci j
TTimeci j

,TFareci j ,
BFareci j
TFareci j

,
BStopci j
TDistci j

)

,

where details and our motivations are given as follows.
Distance-related featuresDistance influences people’s choice in an intuitive way. It is usually
the first factor that comes to mind when traveling, e.g., how far is the destination from the
origin. In this paper, distance-related features include two parts: shortest road distance and
distance ratio of buses and taxis. Here we use TDist to represent the shortest road distance of
the OD pair, since it stands for the choice of experienced drivers which is usually the best in
real. As shown in Fig. 7a, with the increasing in distance ofODpairs, the percentage of people
taking a bus is also increased. On the other hand, the ratio of the travel distance of buses and
taxis BDist/TDist describes the difference between these two. A larger BDist/TDist, which
is larger than 1, indicates a longer travel distance by bus than taxi. As shown in Fig. 7b, with
the increase in BDist/TDist, the percentage of people taking bus is decreased.
Time-related features After the distance is determined, people consider time constraints.
Usually, one travels in a limited time, for which he/she has to choose a proper transportation
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Fig. 7 Trip distribution wrt. distance. a Travel distance of taxi. b Difference of travel distance
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Fig. 8 Trip distribution wrt. time. a Travel time of taxi. b Difference of travel time

mode that satisfies their time constraints. For example, if he/she is in a hurry, he/she will
probably choose taxi over bus. Similar to distance-related features, the time-related features
include two parts: the travel time of taxi and travel time ratio of buses and taxis. As shown
in Fig. 8a, with the increase in travel time of OD pairs, the percentage of people taking
bus also increases. Here we use TTime as a baseline for the travel time of OD pair, and the
travel time ratio of bus and taxi BTime/TTime describes the difference of these two. A larger
BTime/TTime, which is larger than 1, indicates a longer travel time by bus than taxi. As
shown in Fig. 8b, with the increase in BTime/TTime of OD pair, the percentage of people
taking bus decreases.
Fare-related features Monetary cost is another factor people need to consider. As shown in
Fig. 9a, with the increase in fare of OD pairs, the percentage of people taking bus increases.
That is because for long distances the taxi fare is much higher than bus. When the taxi fare
is fixed, with the fare ratio of bus and taxi BFare/TFare increasing, we can see from Fig. 9b
that the number of people taking bus decreases.
Stop number-related features Too many stops will affect the riding experience of a trip, not
only is the stop awaste of time, but waiting is also an unpleasant process. Onemain advantage
of a taxi is that it has no stop in the middle of a trip, while a bus has many stops. In this
paper, we use the bus stop number per kilometer BStop/TDist to evaluate whether it affects
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Fig. 9 Trip distribution wrt. fare. a Taxi fare. b Difference of fare

Fig. 10 Trip distribution wrt.
stop number
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people’s decisions to choose the bus. As shown in Fig. 10, with an increase in BStop/TDistT ,
the percentage of people taking bus drops quickly.

4.2 Spatio-functionally weighted regression

Given the features {Xc
i j }, and the historical trip numbers of buses and taxis, we propose a

spatio-functionally weighted logistic regression model (SFWLoR) to connect the features
and people’s transportation mode choices. First, for a given temporal slot c and an OD pair
(o, d), we build a regression model between the probability of taking bus and the features as
p̂cod = f (〈Xc

od ,�
c
od〉), where �c

od is the model coefficient vector to be estimated. Since we
want to estimate a probability distribution, we use the prediction function f (z) = 1

1+exp(−z) ,
which leads our model to logistic regression. Then, the regression model is locally fitted with
all the observations {(Xc

i j , p
c
i j ) : si , s j ∈ S}, where pci j is the observed probability of taking

bus from origin si to destination s j in temporal slot c, estimated with historical transition
records. By fitting the model, we obtain �c

od which minimize the model error. After the
coefficients �c

od have been obtained, we can use the fitted model to predict the probability
of taking bus from so to sd with given route in the future. Finally, we repeat the above steps
to learn �c

od for each OD pair (o, d) in each temporal slot c, where so, sd ∈ S.
The motivation of our proposed SFWLoR is as follows. We note that transportation mode

preferences vary over different temporal slots as well as different OD pairs, due to differences
in trip purpose and lifestyle. Indeed, different regions have different functions [40], and the
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Fig. 11 Weighted regression
example. Among the three OD
pairs, (o1, d1) and (o2, d2) are
more similar than with (o3, d3).
When modeling (o1, d1), a
higher weight should be assigned
to (o2, d2) than (o3, d3)

preferences of people from residential areas to commercial areas may differ from that of
people from commercial areas to residential areas. On the other hand, travel preferences are
more likely to be the same if two region pairs are near each other, sharing similar functions
and lifestyles. As shown in Fig. 11, we have three OD pairs (o1, d1), (o2, d2), and (o3, d3).
When learning �o1d1 , we use the observations from (o2, d2) and (o3, d3). However, d1 and
d2 both locate in university areas, while d3 locates in bar area. The traveling purposes of
(o1, d1) would probably more similar to (o2, d2) than (o3, d3). In order to better learn the
traveling behavior of (o1, d1), we should assign more weight on observation of (o2, d2)
than (o3, d3). Other than SFWLoR, a spatio-functionally weighted linear regression model
(SFWLiR) which adopts linear regression instead of logistic regression is proposed for more
efficient computation.

In these weighted models, we learn �c
od specifically for each OD pair (o, d), with

all the observations {(Xc
i j , p

c
i j ) : si , s j ∈ S}. However, we have different weights

ω
(i j)
od for each observation (i, j) when estimating �c

od which minimizes the total loss
∑

i j ω
(i j)
od Loss(pci j , f (〈Xc

i j ,�
c
od〉)) [35]. Loss(·, ·) is the loss function of regression for

each observation.
The observation weight of (i, j) for target OD pair (o, d) is defined as

ω
(i j)
od = exp

(

−α
(i j)
od

2hα

)

· exp
(

−β
(i j)
od

2hβ

)

= exp

(

−α
(i j)
od

2hα

− β
(i j)
od

2hβ

)

, (1)

where hα, hβ are parameters that control the scaling at which the weights are computed, α(i j)
od

is the spatial distance of (i, j) and (o, d), and β
(i j)
od is the functional distance of (i, j) and

(o, d). With higher distances between (i, j) and (o, d), (i, j) will have lower weight when
fitting the model. These two distances are calculated as follows.

We evaluate the spatial distance of (i, j) and (o, d) by comparing the travel distances of
origin regions i and o, destination regions j and d , separately. Then, use the average of these
two distances as the spatial distance of (i, j) and (o, d).

α
(i j)
od = dist(si , so) + dist(s j , sd)

2
, (2)

where dist (si , s j ) is the Euclidean distance between the bus stops in regions si and s j .
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Since each POI serves certain function, thus region function is highly related to the POI
distributed in this region. Here we measure the functional distance of two regions by com-
paring difference of POI distributions in these regions.

β
(i j)
od = dcos(si , so) + dcos(s j , sd)

2
, (3)

where dcos(si , s j ) is the cosine distance calculated by dcos(si , s j ) = 1 − ni ·n j
‖ni‖·‖n j‖ . The

vector ni = <n1, n2, . . . , nk> contains the POI distribution of the i th region, and k is the
number of POI category. More details about POI information are given in Sect. 7.1.

Note that the observation weight can also be extended by adding other distances of regions
if found to be impacting the choice of transportation mode.

5 Flawed OD pair identification

In this section, we detect flawedODpairs withwhich bus routing is problematically designed.
People may have to take a long detour traveling with the bus routing or even there are no bus
routes traveling through two regions with high travel demand. People would like to take taxi
other than take bus in these bus routes because bus is so inconvenient. Here we first detect
the flawed OD pairs with problematical bus routing and further improve them in the next
section.

5.1 Skyline patterns

Skyline detection method is used here to find the flawed OD pairs for every time slot sepa-
rately. Then, they are combined together as the flawed OD pair set.

As stated in Sect. 4,BDist/TDist,BTime/TTime,BStop/TDist will model the connectivity
and the accessibility between two regions through bus comparing to taxi, and BFare/TFare
will model the monetary cost between them. Specifically, BDist/TDist, BTime/TTime, and
BStop/TDist capture the property of the connection between an OD pair. A region pair with a
big BDist/TDist or BTime/TTimemeans people have to take a long detour traveling from one
region to the other, or they have to travel through congested road segments. A bigBStop/TDist
means people have to stop many times during the trip which very likely will degrade the rider
experience. In this step, we aim to retrieve the OD pairs with a big BDist/TDist, a big
BTime/TTime, and a big BStop/TDist which indicate problematic bus routing.

We first select the region pairs having the number of transitions above the average. Then,
we find the skyline set from these selected region pairs according to above features, using
skyline operator [8].

Definition 3 The skyline is defined as those points which are not dominated by any other
point. A point dominates another point if it is as good or better in all dimensions and better
in at least one dimension.

Specifically in our problem, each OD pair (i, j) is not dominated by others, in terms of
BDist/TDist, BTime/TTime, and BStop/TDist. That is, there is no OD pair having a bigger
BDist/TDist, BTime/TTime, and BStop/TDist than (i, j). Figure 12a depicts an example
of the skyline set in a two-dimensional axis where a point denotes a OD pair. Clearly, no
blank points simultaneously have a bigger BTime/TTime and a bigger BDist/TDist than the
skyline points in blue. Figure 12b shows an example of searching the skyline. OD pair 1
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(a) (b)

Fig. 12 An example of skyline detection. aTwo-dimensional skyline.bSearching skyline (color figure online)

is not considered as skyline because it is dominated by OD pair 8. However, point 2 is not
dominated by point 8 as point 2 has a bigger BTime/TTime than point 8. Likewise, points 5,
6, and 8 are detected as the skyline, while points 3, 4, and 7 are dominated by the skyline.

Note we want to find the region pairs with most urgent needs to improve the bus service
rather than all the flawed region pairs. Seeking the skyline from the region pairs with a large
volume of trips, we guarantee the detected skyline is related to many people’s travel and each
statistic is calculated based on a large number of observations.

5.2 Candidate selection

With all the flawed OD pairs detected, we further select top K OD pairs which can attract
most riders as the candidates to be optimized. People traveling between these OD pairs have
a relatively low probability of taking bus and can be improved dramatically after the bus
routing rework.

Routes traveled by taxi usually indicate the practically best driving directions [41]. It is
reasonable for us to use the travel route of taxi for each flawed OD pair (i, j) as the upper
bound of the bus route. Then, with the travel route of taxi Rc

T,i j in temporal slot c, we can
derive the features Xc

i j of Rc
i j . Finally, with the above information and the transportation

mode choice model, we are able to calculate the upper bound of probability of taking bus for
every flawed OD pair.

For all the flawed OD pairs, we rank them in descending order according to the potentially
increased bus rider number, which is calculated as follows:

�BVoli j =
∑

c

Volci j ×
(
f ci j

(
Rc
T,i j

)
− pci j

)
, (4)

and top K flawed OD pairs will be selected as candidates for bus routing optimization.
Moreover, we compute f ci j (R

c
T,i j ) = f (〈Xc

T,i j ,�
c
i j 〉) as proposed in Sect. 4. �c

i j is the
learned coefficient vector, and later we will show how to derive the features Xc

T,i j with the
route Rc

T,i j .

6 Bus routing optimization

Routing refers to the specifics of bus service alignment based on certain objective functions
and a set of constraints, both as individual routes and as a system of routes working together
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(a) (b) (c)

Fig. 13 Routing optimization comparison, a general bus routing; b bus routing for network renewal; c bus
routing with constraints. Blue solid line stands for bus route, while green dashed line stands for bus travel
demand of OD pair (color figure online)

[32]. In this section, we start by formulating a bus routing optimization problem, in light of
the transportation mode choice model in Sect. 4. Following is our proposed solution to this
problem.

6.1 Problem formulation

A general problem formulationOnemain goal of bus routing optimization is to accommodate
bus travel demand [32]. In this paper, with the transportation mode choice model, we can
estimate bus demand dynamically for different routing results, which further allows us to
both accommodate and maximize bus travel demand.

Specifically, we denote a bus route by a sequence of bus stops (. . . , si , . . .) and we search
for the optimal bus routeswhichmaximize the total number of bus riders.GivenODpair (o, d)

and the transportation mode choice model, one optimized routing Rod = (so, . . . , si , . . . , sd)
maximizes the bus riders of all stops traveled. In other words, Rod is the solution maximizing
the objective function:

F(Rod) =
∑

c

∑

(si ,s j )∈Rod
si≺s j

Volci j × f ci j (Ri j ), (5)

where (si , s j ) ∈ Rod and si ≺ s j indicate Rod passes si earlier and s j later, Ri j = (si , . . . , s j )
is the subroute of Rod from stop si to s j . Taking OD pair (o1, d1) in Fig. 13a for example,
to get the route (o1, s1, s2, d1) as the optimal route, we need to maximize the riders taking
bus for the following six OD pairs: (o1, s1), (o1, s2), (o1, d1), (s1, s2), (s1, d1), and (s2, d1)
(drawn in green dashed lines). Moreover, we compute f ci j (Ri j ) = f (〈Xc

i j ,�
c
i j 〉) as proposed

in Sect. 4. And later we will show how to derive the features Xc
i j with the route Ri j .

Bus routing for network renewal This problem can be well fitted into new bus route design,
where there previously were no bus routes. However, in this paper we aim to rework the
existing bus routing, in which case, it is unnecessary to change well-designed bus routes but
only flawed ones. As shown in Fig. 13b, to find an optimal route for OD pair (o1, d1)we now
only need to consider the bus travel demand between (o1, d1). Hence, the objective function
for optimizing a flawed OD pair (o, d) is to maximize the converted bus rider number of
(o, d), which is

F(Rod) =
∑

c

(
Volcod × f cod(Rod) − BVolcod

)

=
∑

c

Volcod × f cod(Rod) −
∑

c

BVolcod .
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Note that
∑

c BVol
c
od stands for the current bus rider numberwhich is a constant. Therefore,

our objective function is equal to

F(Rod) =
∑

c

Volcod × f cod(Rod). (6)

Bus routing optimization with constraints Furthermore, in a real application of bus routing
optimization, multiple flawed OD pairs need to be considered simultaneously due to various
constraints. For instance, the bus company (or government) is constrained by a limited budget
which does not always allow for implementation of the identified optimal transit solution and
service design. As an example, we have two flawed OD pairs as shown in Fig. 13b that show
the routing result when optimizing the two OD pairs independently, leading to two routes
which exceed the budget constraints; Fig. 13c shows the routing results using a multiple
optimization method, leading to one route under the budget constraint.

Following this line, the bus routing optimization problem is formulated as follows. Given
choice models f ck from Sect. 4 (i.e., f ck parameterized by �c

k = �c
okdk

), for each flawed OD
pair (ok, dk), k = 1, . . . , K , we optimize the total bus ridership under budget constraints.
Supposing the optimal bus routes are R = {Rk : k = 1, . . . , K }, where Rk has an origin ok
and a destination dk , our objective function is as follows,

F(R) =
∑

c

∑

k

Volck × f ck (Rk). (7)

where Volck = Volcokdk . As stated previously, f ck (Rk) = f (〈Xc
k,�

c
k〉) and we will show how

to derive the features Xc
k of Rk in Sect. 6.2.

We consider multiple budgets (e.g., total route length, total service time) under the fol-
lowing constraints:

cost(R) ≤ C, (8)

where the function cost is calculated with all the bus routes in R, and the budgets allowed
to stay within are defined in vector C. Note that when there is no budget constrain or the
budgets are large enough, the above problem becomes an independent routing problem for
each OD pair.

6.2 Problem solution

To find the optimal route, we consider the routing network G = (S,E). For each edge
e = (i, j) ∈ E connecting the bus stops si and s j , we define Rk ∈ R

|E|, where Rke = 1 if
and only if route Rk passes edge e, and Rke = 0 otherwise. Also, for each bus stop s ∈ S, we
define in(s) = {(s′, s) ∈ E} and out (s) = {(s, s′) ∈ E} as the incoming edges and outgoing
edges of s. To ensure the route has and only has one origin and one destination, also no loop
exists, for route Rk, k = 1, . . . , K , we have

∑

e∈out (ok )
Rke =

∑

e∈in(dk )

Rke = 1,

∑

e∈in(ok )

Rke =
∑

e∈out (dk )
Rke = 0,

∑

e∈out (s)
Rke =

∑

e∈in(s)

Rke,∀s �= ok, dk .
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Should be noted that Rk passes bus stop s if and only if
∑

e∈out (s) Rke = ∑
e∈in(s) Rke = 1

for s �= ok, dk .
Given route Rk , we need to get the features Xc

k of it to calculate the probability of people
taking bus using our mode choice model. The bus-related features can be aggregated from all
the edges that belong to Rk , while the taxi-related features remain the same and thus can be
obtained from historical data. Therefore, to derive the features Xc

k for route Rk at temporal
slot c, we have

BDistcRk
=

∑

e

Rke × EDistce = 〈EDistc, Rk〉

BTimecRk
=

∑

e

Rke × ETimece = 〈ETimec, Rk〉

BStopcRk
=

∑

s

∑

e∈out (s)
Rke =

∑

e

Rke = 〈1, Rk〉

where EDistc,ETimec ∈ R
|E| are travel distance and time on edges (introduced in Sect. 3),

and 1 ∈ R
|E| is a row vector of ones. We will also use 0 ∈ R

|E| as a row vector of zeros.
By letting

Ac
k =

(

0; 1

TDistck
EDistc; 0; 1

TTimeck
ETimec; 0; 0; 1

TDistck
1
)

,

Bc
k =

(

TDistck; 0;TTimeck; 0;TFareck;
BFareck
TFareck

; 0
)

,

we obtain all the features of Rk as Xc
k = Ac

k Rk + Bc
k .

For the constraints, we limit the service route length and driving time introduced per
unit time by the overall routing R on all traveled edges. By letting service waiting time
WTimeck be the time interval between two consecutive buses of route Rk at temporal slot c, if
WTimeck = WTimec, ∀k = 1, . . . , K , this cost can be written as

cost(R) =
∑

c

STimec

WTimec
∑

e

[
∑

k

Rke > 0

]

ECostce,

where ECostce = (EDistce;ETimece) is a two-dimensional column vector encoding both the
travel distance and time on edge e. A relaxed calculation which avoids the boolean test
operator ([·]) can be formulated as

cost(R) =
∑

c

STimec

WTimec
∑

e

∑

k

RkeECost
c
e

=
∑

c

∑

k

STimec

WTimeck
BCostRk ,

where BCostRk = (BDistcRk
;BTimecRk

) encodes the route travel distance and time of Rk . As
noted, this also allows us to calculate different waiting time for different bus routes. Since we
do not focus on the scheduling of bus, we use 15min as the waiting time for all bus routes in
this paper. In sum, our constraints inEq. 8 can be linearwith respect to the decision variables in
R. However, the objective in Eq. 7 is nonlinearwith the prediction function f (z) = 1

1+exp(−z) ,
the consequent optimization problem is nonconvex, and the gradient-directed searching will
result only a local optimal. We also exploit the choice model with a linear prediction function
f̃ (z) = z, which leads to a constrained linear programming problem. In experiments, we will
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Fig. 14 A sample bus network.
The edge distance and time are
shown as e = (EDist,ETime)

show results of the routing optimization with both nonlinear and linear prediction functions,
and it can be seen that the relaxed linear approach can approximate optimal routing effectively.
An example To help understand the optimization process, we take the following sam-
ple network (shown in Fig. 14) as an example. In this network, it has five bus stops
S = {s1, s2, s3, s4, s5}, and six edges E = {e1 = (1, 2), e2 = (1, 3), e3 = (2, 4), e4 =
(3, 4), e5 = (3, 5), e6 = (5, 4)} between them. Now we want to find an optimized bus route
R14 for (s1, s4) (which can be shorten as Rk given (ok = s1, dk = s4)) in one temporal slot,
with constraints as

∑
BDist ≤ 3 and

∑
BTime ≤ 3. Since we only have one OD pair in one

temporal slot to optimize, the objective function becomes F(R) = Volk × f (Rk). Volk is a
constant, so we only need to find a route from s1 to s4 with highest f (Rk).

We have three candidate routes for this kth ODpair (s1, s4), which are R′
k = (e1 = 1; e2 =

0; e3 = 1; e4 = 0; e5 = 0; e6 = 0), R′′
k = (e1 = 0; e2 = 1; e3 = 0; e4 = 1; e5 = 0; e6 =

0), and R′′′
k = (e1 = 0; e2 = 1; e3 = 0; e4 = 0; e5 = 1; e6 = 1). For candidate route R′

k ,
we have

X′
k = Ak R

′
k + Bk

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
1/1 1/1 1/1 2/1 1/1 1/1
0 0 0 0 0 0
1/1 2/1 1/1 1/1 1/1 1/1
0 0 0 0 0 0
0 0 0 0 0 0
1/1 1/1 1/1 1/1 1/1 1/1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
1
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
1
0
10
1/10
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2
1
2
10
1/10
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

given (TDistk,TTimek,TFarek,BFarek) = (1, 1, 10, 1)which are constants.With�k trained
from our SFWLoR model, we have z′ = 〈X′

k,�k〉, and f (R′
k) = 1

1+exp(−z′) . Similarly, for

candidate route R′′
k we can also get f (R′′

k ) = 1
1+exp(−z′′) , and candidate route R′′′

k has travel

time 4 which exceeds our constraint and will be excluded. Finally, we choose R′
k as Rk if

f (R′
k) > f (R′′

k ).

6.3 Computation details

In general, the resultant integer programming is NP-complete. However, since we optimize
only the most flawed OD pairs instead of the overall bus routing, the problem is of a reason-
able scale and it turns out that the branch-and-bound algorithm [24] can solve the problem
efficiently for flawed bus routing in Beijing. In the more general cases, we can also relax
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the binary requirements to Rke ∈ [0, 1], which can be interpreted as the probability of route
Rk passing edge e. A solution of the relaxed problem signifies how we should route the bus
from origin to destination, so that the maximum transportation needs are satisfied by the bus
service. To recover the solution for the unrelaxed problem, we can iteratively remove the
edge with the smallest probability, until there is a unique route for an OD pair.

More details of the solution are provided as follows.With the prediction function f̃ (z) = z,
our bus routing optimization problem can be written as:

max 〈A, R〉 + B

s.t. 0 ≤ R ≤ 1

〈P, R〉 ≤ p

〈Q, R〉 ≤ q

LR = r

Here, R = (R1; · · · ; RK ) is the vector of all routes to be optimized. A, B, P, Q, L , r are
constant matrices constructed with the observed data. p, q are user-specified parameters on
the budget constraints, where p is the maximum of service distance, while q is the maximum
of service time, per unit time, respectively. To be specific, we have:

A = (A1; · · · ; AK ),

B =
∑

c

∑

k

Volck〈Bc
k ,�

c
k〉,

P = (P1; · · · ; PK ),

Q = (Q1; · · · ; QK ),

L = diag(L, . . . ,L),

r = (r1; · · · ; rK ).

Here, Ak = ∑
c Vol

c
k(A

c
k)

′�c
k , Pk = ∑

c
STimec

WTimeck
EDistc, Qk = ∑

c
STimec

WTimeck
ETimec, and

Ak, Pk, Qk ∈ R
|E|. The matrix L represents the graph G (defined in Sect. 6) with rows

corresponding to nodes (bus stops) and columns corresponding to edges: for e = (i, j), we
let Lie = −1, L je = 1, and Lke = 0 for k �= i, j . rk is a vector of all 0’s except of 1 at ok
and of −1 at dk .

With these notations, the problem can be solved by calling the MATLAB function:

linprog(−A, [P ′; Q′], [p; q], L , r, 0, 1).

This procedure relaxes the binary constraints on R to be 0 ≤ R ≤ 1. To solve the problem
without relaxation, one can run:

bintprog(−A, [P ′; Q′], [p; q], L , r).

As for the prediction function p(z) = f (z) = 1
1+exp(−z) which leads the transportation

mode choicemodel to spatio-functionally weighted logistic regression, the objective function
for bus routing optimization is:

F(R) =
∑

c

∑

k

Volck
1

1 + exp(−〈�c
k, A

c
k Rk + Bc

k 〉)
.
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This can be solved by gradient-directed searching, such as the function f mincon in MAT-
LAB. Specifically, we have the gradients and hessian as follows:

∂F(R)

∂Rk
=

∑

c

Volck × f
(
zck

) (
1 − f

(
zck

)) 〈�c
k, A

c
k〉,

H(F) =
∑

c

diag
(
Hc
1 , . . . , Hc

K

)
,

where

zck = 〈�c
k, A

c
k Rk + Bc

k 〉,
Hc
k = Volck × f

(
zck

) (
1 − f

(
zck

)) (
1 − 2 f

(
zck

)) (
Ac
k

)′
�c

k

(
�c

k

)′
Ac
k .

7 Experimental results

In this section, we first introduce the data and settings of our experiments. Then, we evaluate
the results of the proposed transportation mode choice model, followed by the evaluation of
flawed OD pairs. Finally, we show the results of our bus routing optimization model.

7.1 Data and settings

Bus transactions Bus transactions are generated by BMAC smart card system2 installed on
all the buses in Beijing. We select the data from the same time span as the taxi data, from
August to November, 2012. This dataset contains the following information: card id, bus
route number, boarding and alighting, time, fare [42]. Note that a random sampling method
is used to recover bus trips to match taxi trips, where the ratio of bus trips to taxi trips is about
3.5:1.3

Taxi GPS traces These taxi GPS traces are generated by about 30,000 taxis in Beijing from
August to November, 2012. Each GPS point is associated with a label indicating if the taxi is
occupied or not. Here we only focus on the occupied points which form taxi trips of riders,
from pickup points to drop-off points. Table 4 shows some statistics of the two trip datasets.
Bus routes and road map (1) We have the bus route data, which contains 2427 stops and
1058 routes in the urban area of Beijing. After we merge the redundant stops, we obtain 1250
stops and we partition the urban area into 1250 regions accordingly. We use the stops/regions
as nodes of our routing network. (2) We have the road map data containing 196,307 road
segments and their locations.We use this data to construct the connection edges of our routing
network. For the 1250 routing nodes, we have 3855 connection edges.
POI data A Beijing POI dataset in the year 2012 is employed to compute the functional
observationweights. The number of POIsni = 〈n1, . . . , n10〉 in region si is counted following
the categories shown in Table 5.
Platform The algorithms are implemented inMATLAB2013b and C# onVisual Studio 2012.
All the experiments are conducted on a 64-bit machine with 3.40GHz Intel Core i7 CPU and
16GB memory.

2 http://www.bmac.com.cn/.
3 http://www.bjjtw.gov.cn/.
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Table 4 Statistics of the datasets

Datasets Properties Statistics

Taxi GPS traces Number of taxis 29,964

Effective days 114 (77 weekdays, 37 weekends)

Time period Aug. 2012–Nov. 2012

Number of occupied GPS points 333M

Number of occupied trips 19M

Total trip distance (km) 156M

Bus transactions Number of bus stops 7810

Time period Aug. 2012–Nov. 2012

Number of car holders 701,250

Number of trips 10M

Table 5 Category of POIs

Category Subcategories Number

1 Home Apartment building 29,246

2 Work Government and office building 71,915

3 Education School, training center 15,489

4 Food Restaurant 36,723

5 Shopping Shop, mall, outlet 56,520

6 Entertainment Museum, theater, club 7897

7 Outdoor Park, sports field 2211

8 Transportation Airport, railway and bus station 15,287

9 Health care Hospital, medical center, pharmacy 9768

10 Car service Car sale, repair, gas station 10,781

7.2 Transportation mode choice model

BaselinesTo the best of our knowledge, there is no existing work specifically on themodeling
of transportation mode choice with a data-driven method. We evaluate the effectiveness of
our spatio-functionally weighted regression (SFWLoR, SFWLiR) with a set of widely used
methods and their extensions, including unweighted logistic regression (LoR), temporal
logistic regression (TLoR), and temporal linear support vector machine (TLiSVM).

– A Logistic Regression model (LoR) on the data before segmented to temporal slots. That
means we treat the whole day as one temporal slot and it evaluates if the preference
changes through the day.

– A Temporal Logistic Regression model (TLoR), which estimates people’s choices in
different temporal slots.

– ATemporalLinear SupportVectorMachine (TLiSVM),which estimates people’s choices
in different temporal slots.

We use the receiver operating characteristics (ROC) curve and the area under ROC (AUC)
[17] to evaluate the performance of the transportation mode choice models. The ROC curve
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(a) (b)

Fig. 15 Results of all the OD pairs. The number listed is the AUC score of each ROC curve. a Different
methods. b SFWLoR on different slots

(a) (b)

Fig. 16 Results of OD pairs with route changed. a Bus routes changed. b ROC curve

is obtained by drawing pairs of sensitivity and false positive rate (1-specificity) at different
cutoff points, i.e., every 0.01 from 0 to 1 in our experiments. The sensitivity (sens) is defined
as the proportion of true positives as compared to the total positive class, whereas specificity
(spec) comprises the proportion of true negatives in relation to the total negative class.

sens = tp/(tp + f n), (9)

spec = tn/(tn + f p), (10)

where tp, f p, tn, and f n are true positives, false positives, true negatives, and false negatives,
respectively.
ResultsWe evaluate the models with tenfold cross-validation in each temporal slot separately
and then use the average of different temporal slots as the final result. Figure 15a shows the
overall performance of each method, and SFWLoR on each temporal slot. From the figure,
we can see SFWLoR outperforms other methods. The models perform better on weekdays
(Slot 1–4) than on weekends (Slot 5–7), because there is a lot of variation occurring on
weekend trips as compared to weekday trips and it increases the difficulty of modeling [3].
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(a) (b)

Fig. 17 Results of flawed OD pair identification. a Change of prob. and vol. of bus. b Top 100 flawed OD
pairs (color figure online)

Other than the experiments with an overall evaluation on all OD pairs, we notice that
routes of 8 bus lines (shown in Fig. 16a) changed in Beijing urban area started from Sep 21,
2012,4 which is in the middle of our dataset, from August to November 2012. This gives us
a chance to further test the effectiveness of our model by using data before Sep 21, 2012,
as training data, and the data after as testing data. Specifically, we summarize the statistics
of OD pairs for these two periods separately and train the mode choice model with training
data and then test it on the testing data. With an analysis of the changed routes, we select 86
OD pairs which were affected by the route change. The ROC curves on the 86 OD pairs are
shown in Fig. 16b.

As shown in Fig. 16, the ROC curves exhibit a consistent trend with the previous results
in Fig. 15. We can see our method demonstrates an advantage compared to other methods.

7.3 Flawed OD pairs

Using skyline detection, totally 651 flawed OD pairs are detected, with each time slot about
100 flawed OD pairs. More experimental results of flawed OD pair identification are shown
in Fig. 17a that shows the changes in probability (green line) and volume (blue line) of taking
bus after using taxi routes as the upper bound of bus routes; Fig. 17b shows us top 100 flawed
OD pairs.

From Fig. 17a we can see with the improvement of bus routing, an average of 5% increase
in probability taking bus is expected for all OD pairs. Moreover, we find that the bus volume
increase follows Zipf’s law [30], which means most of the volume increase happens among
a few OD pairs. This further validates our method which focuses on these flawed OD pairs
instead of all of them.

Figure 17b shows us the distribution of the top 100 flawed OD pairs. By comparing the
flawed OD pairs to the trip distributions of buses and taxis in Fig. 4, we can see the OD pairs
selected well reflect the travel demand of buses in the south western area of Beijing. There
are many taxi trips, but few bus trips are found, indicating the possibility of attracting riders
from taxis by improving bus service.

4 http://www.bjjtw.gov.cn/.
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Table 6 Results of bus routing on top K flawed OD pairs

K Methods BDist (km) BTime (h) BStop (#) BFare (CNY) Prob. �BVol

100 SD 3.65 0.26 3.72 0.44 0.83 450.2

ST 3.83 0.24 4.01 0.45 0.83 469.6

MRT 3.72 0.27 3.98 0.45 0.83 511.3

MCR-LiR 3.67 0.26 3.83 0.44 0.84 669.8

MCR-LoR 3.43 0.25 3.66 0.44 0.86 732.5

200 SD 4.25 0.31 4.55 0.48 0.81 248.3

ST 4.31 0.29 4.53 0.49 0.81 303.2

MRT 3.72 0.31 4.38 0.49 0.82 354.6

MCR-LiR 4.40 0.33 4.35 0.49 0.85 428.1

MCR-LoR 4.54 0.34 4.42 0.49 0.86 483.7

500 SD 4.33 0.32 4.77 0.48 0.79 191.1

ST 4.52 0.30 4.76 0.49 0.81 231.8

MRT 3.72 0.32 4.73 0.49 0.82 278.6

MCR-LiR 4.55 0.34 4.66 0.49 0.84 321.3

MCR-LoR 4.59 0.34 4.73 0.49 0.85 350.5

7.4 Routing optimization

Given the top K flawed OD pairs with a descending rank of potential increases in bus
riders, we evaluate our objective function (Maximum Converted Rider, MCR) on different
K . Two different solutions for MCR, MCR-LiR and MCR-LoR, are presented, using linear
and logistic regression choice models, respectively. We use shortest distance (SD), shortest
time (ST), and maximum rider with taxi demand (MRT) [13,21], which are the most widely
used routing methods in practice, as baselines of our method. Accordingly, the objective
functions of these three baselines in our experiment are as follows,

FSD(R) =
∑

c

∑

k

BDistRk , (11)

FST (R) =
∑

c

∑

k

BTimeRk , (12)

FMRT (R) =
∑

c

∑

k

TVolRk . (13)

What’s more, according to Eq. 7 the objective function of MCR is

FMCR(R) =
∑

c

Volck × f ck (Rk) =
∑

c

∑

k

ˆBVolRk . (14)

From which we can see, Volck × f ck (Rk) means the predicted bus rider number ˆBVol
c
k after the

route network renewal. So our method is trying to routing based on future bus travel demand
not the current one. This makes our method not only can accommodate bus travel demand
but also able to maximize it based on the prediction.

Results of top 100, 200, and 500 flawed OD pairs are shown in Table 6, where the columns
show average values of statistics of each OD pair. Specifically, we first use these methods
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Fig. 18 An example of routes
generated (color figure online) Qianmen

Shazikou

Xiaohongmen

to find the best routes R̂ for our identified flawed OD pairs. For every OD pair in different
temporal slots, the transportation mode model is used to predict the probability of taking bus
p̂ = f (R̂). Together with the total travel demand of each pair, the bus rider number can be
obtained. By comparing this to historical bus rider numbers, we then get the change in bus
rider number�BVol. Please note that herewe only use taxis to represent private transportation,
and the real effect of buses can be enlarged when other private transportation modes (e.g.,
private car) are considered.

As shown in Table 6, we can see MCR-LoR and MCR-LiR provide routes that lead to
highest probabilities of people taking bus because they successfully measure the trade-off
between different factors and lead to a maximum convert number from taxi riders to bus
riders. While MRT obtains third best routing results, it focuses on maximizing the taxi riders
on each route. However, not all the taxi riders willing to convert to bus and they will stick to
taxi no matter there is a bus line exists or not. Especially in commercial areas, the taxi riders
are very high, but the conversion rate to bus is low. On the other hand, we see ST performs
better than SD, which indicates people consider time a more important factor than distance.
Although some of the routes found by our method are the same as results found by either
SD, ST, or MRT, we can still provide suggestions on the selection of them. From this point
of view, our transportation mode choice model can serve as a criteria for choosing candidate
bus routes.

A real example of bus routes found for flawed OD pairs is shown in Fig. 18, where
includes two flawed OD pairs (Xiaohongmen, Qianmen) and (Shazikou, Qianmen). The
routes generated by SD, ST, MRT, and MCR are shown in green, red, black, and blue
lines, respectively. From the figure, we can see SD and ST both generate two routes,
which are similar to each other, while MRT and MCR generate a single route traveled
through these two OD pairs. Moreover, we found that this route share same subroutes
with bus line 93 which is newly added by the Beijing Bus Company from March
2013.
Efficient study Figure 19 presents the efficiency of the four methods for different K . From this
figure, we can see ST, SD, andMRT are the fastest among these four, since they do not involve
the bus travel demand prediction phase, while MCR-LoR costs the most time for computing
results. We note that MCR-LiR is much faster than MCR-LoR, but the performance is not
much worse. In real applications, MCR-LiR would be recommended for large-scale bus
routing. Since this application usually works in an off-line manner, MCR-LoR would also
be used for better planning results.
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Fig. 19 Running time of bus
routing

8 Conclusion

In this paper, we focused on the identification and optimal planning of the flawed bus routes
to improve the utilization efficiency of the public transportation service, according to the
transportation mode choice model built on real data. First, we partitioned the urban area into
disjoint regions on which an integrated analysis of the taxi traces and the bus transactions is
conducted. Second, based on the integrated analysis, we proposed a localized transportation
mode choice model, with which we can dynamically predict the bus travel demand for
different bus routing. Then,we leveraged thismodel to optimize the bus routes bymaximizing
the bus ridershipwith budget constraints.At last,we provided a solution for the identifiedmost
flawed region pairs in the urban area. Extensive studies, which validated the effectiveness
of our methods, were performed on real-world data collected in Beijing which contains 19
million taxi trips and 10million bus trips.

The work reported in this paper showed how to optimize bus routing to attract more
bus riders from taxi. Improvements can be made through several different directions. First,
we can further take bus stop location selection into account. In this way, we can optimize
bus routing and bus stop location simultaneously to meet people’s travel demands. Second,
more transportation modes can be considered, for example, bus network optimization can
be conducted together with subway system and city bike system. This can help to model the
whole city travel demand as a whole and better serve our goal to make public transportation
more attractive to riders.
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