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Abstract One of the serious challenges in computer vision and image classification is learn-
ing an accurate classifier for a new unlabeled image dataset, considering that there is no
available labeled training data. Transfer learning and domain adaptation are two outstanding
solutions that tackle this challenge by employing available datasets, even with significant
difference in distribution and properties, and transfer the knowledge from a related domain
to the target domain. The main difference between these two solutions is their primary
assumption about change in marginal and conditional distributions where transfer learning
emphasizes on problems with same marginal distribution and different conditional distribu-
tion, and domain adaptation deals with opposite conditions. Most prior works have exploited
these two learning strategies separately for domain shift problem where training and test sets
are drawn from different distributions. In this paper, we exploit joint transfer learning and
domain adaptation to cope with domain shift problem in which the distribution difference
is significantly large, particularly vision datasets. We therefore put forward a novel transfer
learning and domain adaptation approach, referred to as visual domain adaptation (VDA).
Specifically, VDA reduces the joint marginal and conditional distributions across domains
in an unsupervised manner where no label is available in test set. Moreover, VDA constructs
condensed domain invariant clusters in the embedding representation to separate various
classes alongside the domain transfer. In this work, we employ pseudo target labels refine-
ment to iteratively converge to final solution. Employing an iterative procedure along with
a novel optimization problem creates a robust and effective representation for adaptation
across domains. Extensive experiments on 16 real vision datasets with different difficulties
verify that VDA can significantly outperform state-of-the-art methods in image classification
problem.
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1 Introduction

In traditional machine learning and image processing, it is often assumed that the training
and testing datasets follow the same distribution. However, many real-world applications
disregard this assumption so that data from the same classes but various domains may show
different characteristics. Thus, the accuracy of machines and systems that are trained in the
laboratory and deployed in the wild are significantly damaged. For example, imagine that
we are to train a robot to detect objects in surroundings. Can we teach robot with indoor
appliances and expect it to still recognize objects well in the outdoor environment?

Our initial impression says no. The significant difference between the indoor and outdoor
objects will cripple robot and confuse it when dealing with new objects. In visual recognition
applications, a number of factors such as pose, lighting, blur, and resolution create a substan-
tial difference across source domain on which classifiers are trained and the target domain
on which the classifiers are tested [1–3]. Indeed, the classifiers often behave poorly on the
target domain because of significant difference across domains [4–8].

In object recognition systems, labeled images are often scarce in new domains and learning a
novel model without rich labeled source domain is very complex, or in some circumstances
impossible [9,10]. However, a challenging problem in computer vision that still remains is
to learn an accurate classifier for a new domain using labeled images from an old domain
[11,12]. Of the several available approaches for addressing this problem, transfer learning
(TL) and domain adaptation (DA) are two outstanding strategies. The main margin between
these two solutions is their assumptions about the drift condition among the training and test
domains [13]. In particular, DA highlights the case where the marginal distribution of the
source domain Xs and the target domain Xt has basic differences, i.e., P(Xs) �= P(Xt ),
but the conditional distributions of labels, P(Ys | Xs) and P(Yt | Xt ), are similar across
domains. On the other hand, TL engages the problem where the marginal distribution of
the source and target domains is similar, while P(Ys | Xs) and P(Yt | Xt ) have significant
difference.

Most of the available approaches decrease the distribution difference across domains based
on either marginal distribution or conditional distribution [14–16]. While in some real-world
applications when the domain difference is substantially large, such as image classifica-
tion, both marginal and conditional distributions vary highly across domains. Recently, some
approaches have started to match both themarginal and conditional distributions using kernel
density estimation [17], sample selection [18], or two-stage reweighting [19], but they need
to adapt in a semi-supervised manner where the target domain contains a few labeled data. In
addition, lately a joint distribution adaptation approach [20] has been proposed to extract a
shared subspace between the source and target domains by simultaneously reducing the mar-
ginal and conditional distributions. Despite its success, it is important to note that knowledge
transfer alone without considering separability across various classes reduces classification
accuracy of model on the target domain [21].

1.1 Contributions

In this paper, we attempt to discover a shared feature representation by reducing the dis-
tribution difference between the source and target domains. We introduce visual domain
adaptation (VDA), which is a novel joint transfer learning and domain adaptation approach
that simultaneously adapts both the marginal and conditional distributions. VDA proceeds
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to transfer the knowledge from the source to target domain alongside the preservation of
discrimination across different classes. Indeed, VDA exploits domain invariant clusters to
discriminate between different classes in the shared representation. In general, VDA employs
a principled dimensionality reduction that transfers knowledge across domains and discrim-
inates various classes.
In this work, we make use a nonparametric two-sample test method [22], referred to as
maximum mean discrepancy (MMD), to measure the dissimilarity across the empirical dis-
tributions of the source and target domains. Moreover, principal component analysis (PCA)
[23] is exploited to extract a shared representation that is robust for distribution difference.
We conduct extensive experiments on real-world vision datasets under various difficulties
in knowledge transference. Our results show a noteworthy improvement in terms of aver-
age classification accuracy, where VDA outperforms the state-of-the-art transfer learning
methods on most datasets.

1.2 Organization of the paper

Section 2 reviews relatedwork. Section 3 presents the proposedmethod. Sections 4 and 5 pro-
vide experimental details and comparisons with TL and dimensionality reduction approaches
for object recognition, and the paper is concluded in Sect. 6.

2 Related work

Transfer learning [24,25] is one of the challenging research areas studied in recent years and
has been extensively researched from various perspectives [26–33]. For example, transfer
learning has been employed beside genetic programming and gradient descent to tackle shift
problem in unseen data [34,35].

The existing transfer learning methods are divided into three main categories: (1) instance-
based methods, (2) model-based methods and (3) feature-based methods. Instance-based
methods [26,36,37] engage in reweighting or sample selection of source domain based on its
discrepancy from target domain. Indeed, the main strategy of instance-based methods is to
incorporate instance-dependant weights into the loss function to find an optimalmodel. Land-
mark selection [2] is one of the successful approaches that incorporatesMMD to reweight the
source examples, where landmarks are a subset of source domain instances that are similar to
the target domain in terms of the distribution. Since some of the features may only be relevant
to one specific domain, landmark selection suffers from original domain comparison. Kernel-
based featureMapping with Ensemble (KMapEnsemble) [18] is another adaptive kernel- and
sample-based method that maps the marginal distribution of the source and target data into a
shared space and exploits a sample selection method to reduce conditional distribution across
domains. The main drawback of KMapEnsemble is the increase in entropy of labels due to
data mapping into a common representation.

Model-based domain adaptation methods [38,39] find adaptive classifiers which transfer the
model parameters learned by the source domain into the target domain. The main focus in
this area is on the semi-supervised domain adaptation problemwhere support vector machine
(SVM) is used to find an adaptive classifier [31,40].

Our work belongs to the feature-based category [29,41,42], which can be divided into prop-
erty preservation [43,44] and distribution adaptation [32,45] subcategories. In the former,
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shared representation across domains is extracted by preserving important properties such
as geometric structure and statistical properties. But in the latter, the difference in either
marginal distribution or conditional distribution is minimized to reduce discrepancy. Trans-
fer component analysis (TCA) [29] is a dimensionality reduction feature-based approach
that exploits MMD to measure the distance across domains. It reduces the distance between
domains in reproducing kernel Hilbert space by learning transfer components. Downside to
TCA is that the method does not reduce conditional distribution difference explicitly and
only concentrates to reduce the marginal distribution difference across domains. Also, TCA
is an unsupervised method on which the assumption is that no label available in the source
and target domains; however, source data contain label and it could be exploited to transfer
knowledge across domains.

Geodesic flow kernel (GFK) [32] is another dimensionality reduction approach that inte-
grates an infinite number of subspaces in a geodesic from the source to the target subspace.
The incremental changes of domains are reflected along a flow as geometric and statistical
properties of domains. The main disadvantage of GFK is that the constructed subspaces do
not represent the original data accurately due to selecting small dimension for smooth transit
across flow. Transfer joint matching (TJM) [46] is an alternative state-of-the-art joint feature-
and instance-based domain adaptation method that learns a new space in which the distance
across the source and target data is minimized. TJM assigns less importance to the source
instances that are irrelevant to the target data. Moreover, it exploits a kernel mapping of
samples by a nonlinear transformation into a low-dimensional space. The downside to TJM
is that the optimization problem is quite complex, and it uses an iterative alternative to update
adaptation matrix.

In this paper, we propose a joint marginal and conditional distribution adaptationmethod that
exploits domain invariant clustering to discriminate between various classes. VDA transfers
knowledge from the source to target domain by preserving statistical and geometric struc-
ture of domains in the shared representation. Moreover, VDA constructs compact clusters
in the new representation that are domain invariant and discriminative for target data classi-
fication. Thus, VDA benefits from distance reduction and within-class scatter minimization
concurrently.

3 Proposed method

In this section,VDAapproach for effectively tackling the problemof domain shift is presented
in detail.

3.1 Motivation

Unlike most existing methods that solve domain shift problem with TL or DA, our method-
ology of addressing the problem is inspired by joint distribution adaptation (that illustrates
the benefits of adapting between domains by reducing the distance between them). VDA
tries to discover ’potential’ clusters between the source and target domains and learns the
discriminative information. Figure 1 represents the main idea of our proposed method. How-
ever, in search of the new representation, (1) we assume that we are given an m-dimensional
representation of data from Xs and Xt , and (2) we learn the domain invariant representation
between these two domains by preserving the geometric and statistics of their underlying
space. A formal problem statement is given below.
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Fig. 1 Main idea of our kernel-based visual domain adaptation approach (Best viewed in color). VDA embeds
source and target data into a latent space on which minimizes marginal and conditional distribution differences
and clusters same label instances. VDA employs an iterative procedure to predict target data label to compare
conditional distribution of domains. Surprisingly, VDA tends to converge based on increasing the amount of
true labels and number of repetitions completed

3.2 Problem description

We begin with the definitions of domain and task and thereafter express our problem descrip-
tion.
Definition 1(Domain) A domain D = {X , P(x)} composed of an m-dimensional fea-
ture space X and a marginal probability distribution P(x), where x ∈ X . Ds =
{(x1, y1), . . . , (xns , yns )} and Dt = {xns+1, . . . , xns+nt } are defined as labeled source and
unlabeled target domains. Moreover, Xs and Xt denote the input source and target matrices.

Definition 2 (Task) Given domain D, a task T = {Y, f (x)} is composed of label set Y
that pertains to C categories or classes, and a model f (x), which can be interpreted as the
conditional probability distribution, i.e., f (x) = Q(y | x) where y ∈ Y .
Our problem is to learn a feature representation that explicitly reduces distribution difference
between joint marginal and conditional distributions, i.e., Ps(xs) ≈ Pt (xt ) and Qs(ys | xs) ≈
Qt (yt | xt ), respectively, where Xs = Xt and Ys = Yt . In fact, VDA attempts to find a new
representation on which the marginal and conditional distributions are drawn from similar
distributions.

3.3 Generating domain invariant representation

In this paper, a joint adaptation methodology is proposed that extracts a low-dimensional
transformed representation which concurrently improves a classifier f based on the extracted
features on refined labels. Since there are no labeled data in the target domain, i.e., Qt (yt |xt )
cannot be estimated exactly, VDA seems to be a nontrivial problem. However, we exploit an
EM-like (Expectation-Maximization) method to iteratively refine the adaptation matrix and
classifier f . In our approximation, we estimate the Qt (yt |xt ) ≈ Qs(yt |xt ) to acquire accurate
target labels. In the next section, we will discuss the iterative structure of VDA in detail.

3.3.1 Visual domain adaptation

Domain adaptation Based on the source data {xsi } and {ysi }, and the target data {xti }, our
task is to predict unlabeled {yti } in the target domain. The general assumption in real-world
domain adaptation data is that the marginal distribution of the source and target domains is
very different, i.e., P(Xs) �= P(Xt ). Our goal is to find a low-dimensional invariant feature
representation for both Xs and Xt that preserves the data properties of two domains after
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adaptation. Let A ∈ R
m×k be the adaptation matrix, and Zs = AT Xs and Zt = AT Xt be

the projected source and target data. The major issue is to reduce the distribution difference
across domains by explicitly minimizing the empirical distance measure. Since the para-
metric criteria to measure distance between two distributions require expensive distribution
calculation [15], we employ a nonparametric distancemeasure, referred to asmaximummean
discrepancy (MMD). MMD computes the distance between the sample means of the source
and target domains in the k-dimensional embedding:

D1(Xs, Xt ) =‖ 1

ns

ns∑

i=1

AT xi − 1

nt

ns+nt∑

j=ns+1

AT x j ‖2 (1)

where D1 is the distance of marginal distributions across domains, and ns and nt denote the
number of instances in the source and target domains, respectively. It has been shown that
MMD can be estimated empirically [20,29,46] as

D1(Xs, Xt ) = argminAtr(A
T XW0X

T A) (2)

where X = {Xs, Xt } ∈ R
m×(ns+nt ) and W0 =

[
(W0)s,s (W0)s,t
(W0)t,s (W0)t,t

]
∈ R(n+m)×(n+m) is MMD

coefficient matrix where (W0)ss , (W0)t t and (W0)st are calculated by 1
nsns

, 1
nt nt

and −1
nsnt

,
respectively. Moreover tr(.) denotes the trace of a matrix.

Transfer learning Although domain adaptation reduces the difference in marginal distribu-
tion across domains, it cannot ensure that the difference between conditional distributions is
reduced as well. TL assumes that the marginal distribution of data in the source and target
domains is similar, while the conditional distributions Qs(ys | xs) and Qt (yt | xt ) are differ-
ent. In this paper, we propose a robust distribution adaptation by minimizing the difference
between the class-conditional distributions alongside the marginal distributions. Here, MMD
is modified to measure the class-conditional distributions:

D2(Xs, Xt ) =‖ 1

ncs

∑

xi∈Xc
s

AT xi − 1

nct

∑

x j∈Xc
t

AT x j ‖2 (3)

where D2 is the distance of class-conditional distributions between the source and target
domains; ncs and nct denote the number of examples in the source and target domains that
belong to the class c, respectively. Also, Xc

s and Xc
t are defined to be the set of instances

from class c belonging to the source and target data in turn. According to Eq. 2, MMD
for measuring class-conditional distribution between the source and target domains can be
estimated empirically as

D2(Xs, Xt ) = argminAtr(A
T XWcX

T A) (4)

where Wc =
[
(Wc)s,s (Wc)s,t
(Wc)t,s (Wc)t,t

]
∈ R(n+m)×(n+m) is MMD coefficient matrix that involves the

class labels, and it is computed with (Wc)ss = 1
ncsn

c
s
, (Wc)t t = 1

nct n
c
t
and (Wc)st = −1

ncsn
c
t
.

However, the computation of Wc is nontrivial where no labeled data in the target domain are
available, i.e., nct is unknown.
In this paper, we exploit the pseudo-labels of the target domain [20], which can be acquired
by training a base classifier on the labeled source data to predict the unlabeled target data.
The base classifier can be a standard machine learning algorithm such as nearest neighbor
(NN). However, our justification is that although most of the predicted labels at first glance
are inaccurate, we can still exploit them to calculate Eq. 4 to adapt conditional distribution
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(as shown in Fig. 1). The iterative structure of VDA (EM-like) refines the label assignment
of target domain during the learning process. Thus, the unlabeled target domain problem is
resolved by leveraging the auxiliary classifier. In the experiment section, we will show how
iterative pseudo-labeling aids in determining target domain labels with better accuracy.

Domain invariant clustering In domain shift setting, often the within-class frequencies are
unequal according to significant difference among the source and target datasets; naturally the
performance is challenging with respect to input data properties [6,33]. Therefore, we are to
minimize the within-class variance in any particular shifted data so that the maximal separa-
bility is guaranteed across different classes [12]. VDA endeavors to providemore separability
and decision region across given classes. In fact, VDA finds a linear combination of features
which jointly separates and transfers two or more classes. In this way, VDA tries to model the
difference between the classes and also preserve the statistics and geometry of the original
data. To this end, VDA clusters the samples with the same labels in the shared representation.
Indeed, VDA minimizes the distance of each projected sample from its mean. Sw ∈ R

m×m

denotes the within-class scatter matrix, which measures the distance of samples in the shared
representation from their class mean. Here we formulize the optimization problem:

D3(Xs, μ
c) = argminA(AT SwA) (5)

where D3 is the distance of each instance from its mean in the projected domain; Sw =∑
∀c∈C

∑
xi∈Xc

s
(xi − μc)

T (xi − μc) and μc denotes the mean of samples in class c. In real-
world applications, the problem data μc are not known and are estimated from the sample
data. Hence, VDA can be sensitive to the problem data and may provide poor discrimination
for some sets of problem data. This argument will be thoroughly verified in the experiments.

3.3.2 Optimization problem and optimal adaptation matrix

In VDA, to have an effective and robust learning, we aim to simultaneously do transfer
learning and domain adaptation besides domain invariant clustering across domains. Thus,
our optimization problem is comprised from Eqs. 2, 4 and 5:

min
AT XHXT A=I

C∑

c=0

tr(AT (XWcX
T + Sw)A) + λ ‖ A ‖2F (6)

where ‖ . ‖F is the Frobenius norm that guarantees the optimization problem to be well
defined, and λ denotes the regularization parameter. The optimization problem achieves an
adaptation matrix where it can learn a transformed feature representation by minimizing
the reconstruction error. We exploit PCA for data reconstruction so that AT XHXT A is
maximized subject to AT A = I , where H = I − 1

n 11
T denotes the centering matrix. I is

considered as the identity matrix and 1 as the ones vector. Moreover, XHXT denotes the
covariance matrix of the input data. The goal is to find an orthogonal transformation matrix
A ∈ R

m×k where the variance of data in the latent space is maximized.
We derive the Lagrange function for Eq. 6 such that φ = diag(φ1, . . . , φk) ∈ R

k×k is the
Lagrange multiplier.

L = tr(AT (X
C∑

c=0

WcX
T + Sw + λI )A) + tr((I − AT XHXT A)φ) (7)
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Considering dL
dA = 0, the generalized eigen decomposition is achieved as follows:

(X
C∑

c=0

WcX
T + Sw + λI )A = XHXT Aφ (8)

The adaptation matrix A is obtained from solving Eq. 8 for k smallest eigenvectors. Algo-
rithm 1 presents the complete flow of VDA. In each iteration, VDA exploits pseudo-labeling
besides optimization problem (EM-like) to refine the predicted labels. In general, VDA finds
the labels of target data in an iterative manner. We will verify this argument thoroughly in
the experiments.

Algorithm 1 Visual domain adaptation (VDA)
1: Input: source and target data X ; source domain labels ys ; regularization parameter λ; #subspace bases k
2: Output: target domain labels yt

3: (W0)i j =

⎧
⎪⎨

⎪⎩

1
nsns

if xi , x j ∈ Ds
1

nt nt
if xi , x j ∈ Dt

−1
nsnt

otherwise

4: Sw = (xs
c

i∗ − μc)(xs
c

i∗ − μc)T ∀i = 1 . . . ns , c = 1 . . .C
5: v = ones(n, n) ; an n × n matrix of ones
6: H = I − 1

n vvT

7: repeat until convergence
8: solve eigendecomposition (X

∑C
c=0 WcXT +Sw +λI )A = XHXT Aφ and select k smallest eigenvectors

as adaptation matrix A
9: update pseudo target labels using a standard classifier f trained on projected source data {AT Xs , ys }

10: update (Wc)i j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
ncs n

c
s

if xi , x j ∈ Dc
s

1
nct n

c
t

if xi , x j ∈ Dc
t

−1
ncs n

c
t

if xi ∈ Dc
s , x j ∈ Dc

t ‖ x j ∈ Dc
s , xi ∈ Dc

t

0 otherwise
11: end repeat
12: return target domain labels yt determined by classifier f

3.4 Computational complexity

In this section, the computational complexity of VDA is investigated. According to Algo-
rithm 1, the number of iterations (e.g., 10) and subspaces (e.g., 20) is considered constant, i.e.,
O(1). In this way, the computational complexity of VDA is achieved as O(mn+m2 +Cn2),
wheremn belongs to the matrix calculation,m2 denotes the eigen decomposition and Cn2 is
for the optimization problem construction. In more details, Line 3 needs O(n2) to compute
matrix W0. Line 4 runs in O(nsm) to compute within-class scatter matrix. Line 5 defines
matrix v in O(n2). Line 6 computes matrix H in O(n2). The eigenvalue decomposition is
done in O(m2), i.e., Line 8. The classification and update of matrix WC need O(mn) and
O(Cn2), respectively.

4 Experimental setup

In this section, we present the setup of our experiments on visual datasets for our proposed
approach.
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4.1 Data description

VDA is evaluated on three types of visual datasets that are benchmark in domain shift area
(Table 1). Figure 2 shows a sample view from Office+Caltech, Digits and COIL20 datasets.
Office dataset contains four domains which were studied in [2,32,33,47]: Webcam (W:
low-resolution images captured by webcam), Amazon (A: images downloaded from online
merchants), DSLR (D: high-resolution images captured by digital SLR camera), andCaltech-
256 (C) [48]. In our experiments, the public Office dataset exploited by Gong et al. [32] is
adopted to directly compare the published results.
10 common classes among all office domains were employed, i.e., calculator, laptop-101,
computer-keyboard, computer-mouse, computer-monitor, video-projector, head-phones,
backpack, coffee-mug , and touring-bike. The SURF features [49] are exploited by con-
sidering 800-bin histograms from the trained codebooks on Amazon images. The histograms
are standardized by z-score. Finally, two different domains are selected as the source and tar-
get domains, i.e., C −→ A,C −→ W, . . . , D −→ W . Thus, the number of cross-domain
office datasets will be 12.
COIL20 is a database of 20 grayscale objects with 1440 images [50]. Each object was placed
in the center of a turntable stable configuration with a black background. The 72 images
were taken per object through 360 degrees rotation (one for every 5 degrees of rotation).
A rectangular bounding box is used to clip out from the background. The achieved box is
resized to 32 × 32 pixels, and then, the size of images is normalized.
We follow similar experiment protocols used in previous works to compare results directly
by the reported experiments. In general, COIL20 dataset is divided into two different subsets

Table 1 Five benchmark datasets for evaluating domain shift problem in computer vision and image process-
ing domains

Dataset #Instances #Features #Classes Data Domains

Office 1410 800 10 A, W, D Object

Caltech 1123 800 10 C Object

USPS 1800 256 10 USPS Digit

MNIST 2000 256 10 MNIST Digit

COIL20 1440 1024 20 COIL1, COIL2 Object

Fig. 2 The first row illustrates the Office+Caltech-256 datasets, and the second row shows MNIST, USPS
and COIL20 datasets (from left to right)
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Table 2 Recognition accuracies on 16 pairs of source/target domains

Dataset NN PCA TCA GFK JDA TJM VDA

C −→ A 23.70 36.95 45.82 41.02 44.78 46.76 46.14

C −→ W 25.76 32.54 30.51 40.68 41.69 39.98 46.10

C −→ D 25.48 38.22 35.67 38.85 45.22 44.59 51.59

A −→ C 26.00 34.73 40.07 40.25 39.36 39.45 42.21

A −→ W 29.83 35.59 35.25 38.98 37.97 42.03 51.19

A −→ D 25.48 27.39 34.39 36.31 39.49 45.22 48.41

W −→ C 19.86 26.36 29.92 30.72 31.17 30.19 27.60

W −→ A 22.96 29.35 28.81 29.75 32.78 29.96 26.10

W −→ D 59.24 77.07 85.99 80.89 89.17 89.17 89.18

D −→ C 26.27 29.65 32.06 30.28 31.52 31.43 31.26

D −→ A 28.50 32.05 31.42 32.05 33.09 32.78 37.68

D −→ W 63.39 75.93 86.44 75.59 89.49 85.42 90.85

COIL1 versus COIL2 83.61 84.72 88.47 72.50 89.31 91.67 99.31

COIL2 versus COIL1 82.78 84.03 85.83 74.17 88.47 91.53 97.92

USPS versus MNIST 44.70 44.95 51.05 46.45 59.65 52.25 62.95

MNIST versus USPS 65.94 66.22 56.28 67.22 67.28 63.28 74.72

Average 40.84 47.23 49.87 48.48 53.77 53.48 57.70

In most cases (12 out of 16), VDA outperforms other dimensionality reduction and domain adaptation
approaches
Bold values indicate the best results

with the same number of images (720 images in each subset): COIL1 and COIL2. COIL1
contains all images taken in directions [0◦, 85◦] and [180◦, 265◦]; COIL2 contains all images
taken in directions [90◦, 175◦] and [270◦, 355◦]. We conduct two experiments with COIL1
and COIL2 as the source and target domains, respectively, and vice versa.
Digits dataset contains USPS and MNIST handwritten digits. USPS dataset refers to the
handwritten digits scanned from envelops of the US Postal Service. The number of training
and test samples is 7291 and 2007, respectively, and the objects have been normalized in
16 × 16 grayscale images. MNIST is a large dataset of handwritten digits that were taken
from mixed American Census Bureau employees and American high school students. The
images were normalized to fit into 20× 20 pixel bounding box with grayscale level. MNIST
has a training set of 60000 samples and a test set with 10000 samples. USPS and MNIST
share 10 classes of digits, but they have been drawn from very different distributions.
To speedup tests andhave similar conditionswith respect to publishedworks, the experiments
follow from [20].We uniformly rescale all images in USPS andMNIST to size 16×16 and fit
them into grayscale pixel feature vectors. Thus, the feature space of the source and target data
is unified. Also, we randomly select 1800 images fromUSPS as source data, and 2000 images
fromMNIST as target data. Next, source and target data are switched to form another dataset.

4.2 Method evaluation

Wecompare ourVDA resultswith twomachine learning baselinemethods (NNandPCA) and
four state-of-the-art domain adaptation approaches (TCA [29], GFK [32], JDA [20] and TJM
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(a)

(d)

(g)

(j) (k) (l)

(h) (i)

(e) (f)

(b) (c)

Fig. 3 Classification accuracy (%) with respect to the number of iterations for Office+Caltech datasets. In
each iteration, labels of target data are determined by an auxiliary classifier trained on the projected source
data. a C −→ A, b C −→ W , c D −→ D, d A −→ C , e A −→ W , f A −→ D, g W −→ C , h W −→ A,
i W −→ D, j D −→ C , k D −→ A, l D −→ W

[46]). Since PCA, VDA and other domain adaptation methods are dimensionality reduction
approaches, NN classifier is trained on the labeled source data for classifying unlabeled target
data. All methods are evaluated by their reported best results.

4.3 Implementation details

The performance ofVDAagainst othermethods is evaluated by classification accuracy,which
is widely used inmost DA and TLmethods.Moreover, since there is no random initialization,
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(a) (b)

(c) (d)

Fig. 4 Classification accuracy (%) with respect to the number of iterations for Digits and COIL20 datasets.
The performance of VDA shows growing improvement with increasing the number of iterations. a USPS
versus MNIST, b MNIST versus USPS, c COIL1 versus COIL2, d COIL2 versus COIL1

VDA does not run repeatedly. The number of iterations to VDA convergence is set to 10. We
set k = 20, number of subspaces, for Office+Caltech and COIL20 datasets and k = 120 for
Digits datasets. Also, we consider λ = 0.05 for Office+Caltech datasets, λ = 1.0 for Digits
datasets and λ = 0.001 for COIL20 datasets. In the next section, the parameter settings will
be discussed.

5 Experimental results and discussion

In this section, the performance of VDA and six baseline methods on visual benchmark
domain adaptation datasets are compared.

5.1 Results evaluation

In Table 2, we illustrate the classification accuracy of VDA and six baseline methods on
16 visual datasets. Our results show a significant improvement in classification accuracy
(3.93%) where VDA outperforms the state-of-the-art adaptation methods on most of the
datasets (12 out of 16). It is worth noting that VDA has (16.86%) improvement compared
to NN, which illustrates the adaptation difficulty in the examined datasets. As is clear from
the results, VDA adapts robustly and effectively across different domains.
PCA is an effective dimensionality reduction approach that induces a k-dimensional represen-
tation. Although PCA tries to find a shared representation across domains, the distribution
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5 Parameter evaluation with respect to the classification accuracy (%) and the number of subspace bases,
k, for Office+Caltech datasets. VDA shows better performance in the interval of k ∈ [20 100]. a C −→ A,
b C −→ W , c D −→ D, d A −→ C , e A −→ W , f A −→ D, g W −→ C , h W −→ A, i W −→ D, j
D −→ C , k D −→ A, l D −→ W

difference between domains will still be significantly large. However, PCA shows better
performance compared to NN, but it performs poorly against domain adaptation baseline
methods.
TCA is a state-of-the-art domain adaptation method that maps original data onto the transfer
components. TCA suffers from two major limitations: (1) It transfers domains fully unsu-
pervised and does not exploit source domain labels, and (2) it does not reduce conditional
distribution explicitly. VDA exploits source domain labels in composing domain invariant
clusters and reduces jointly conditional and marginal distributions.
In GFK, since the dimension of subspaces should be small enough (because of smooth
transit along flow), the subspaces do not represent original data accurately. Therefore, the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6 Parameter evaluation with respect to classification accuracy (%) and parameter, λ, for Office+Caltech
datasets. In general, VDA shows acceptable results with larger values of λ. a C −→ A, b C −→ W , c
D −→ D, d A −→ C , e A −→ W , f A −→ D, g W −→ C , h W −→ A, i W −→ D, j D −→ C , k
D −→ A, l D −→ W

classification accuracy is affectedwith respect to geodesic between source and target domains.
However, VDA learns a precise shared subspace across domains that exactly reflects input
data.
JDA and TJM are very noticeable approaches among current state-of-the-art methods that
learn a shared representation by minimizing empirical means of domains. The optimization
problem of TJM is very complex, and it uses an iterative alternative to update adaptation
matrix, since it optimizes two different criteria simultaneously. JDA performs well, but it
adapts in an unsupervised manner, similar to TCA. VDA outperforms both TJM and JDA in
14 out of 16 experiments.
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(a) (b)

(c) (d)

Fig. 7 Parameter evaluation with respect to the classification accuracy (%) and the number of subspace
bases, k, for Digits and COIL20 datasets. VDA indicates that is not sensitive to the number of subspace bases.
a USPS versus MNIST, b MNIST versus USPS, c COIL1 versus COIL2, d COIL2 versus COIL1

5.2 Effectiveness evaluation

The effectiveness of VDA and three baseline methods is evaluated by comparing their per-
formance in 10 iterations. We run TCA, JDA, TJM and VDA on Office+Caltech, Digits and
COIL20 datasets and illustrate the results in Figs. 3 and 4. Later it will be shown that our
algorithm converges in 10 iterations.
Figure 3 shows the classification accuracy computed for each method in 10 iterations on
Office+Caltech datasets. As is clear from the figures, TCA reduces substantial distribution
difference inmarginal distributions, but inmost cases it shows poor performance against other
baseline methods. JDA has very good classification accuracy and outperforms TJM in most
cases. However, VDA can perform transfer learning and domain adaptation simultaneously
and reduce the distribution difference across domains. Moreover, VDA composes compact
domain invariant clusters in embedding and extracts a robust and effective representation for
domain shift problem. However, VDA has a sensitivity to problem data where the estimated
mean value for clustering is not accurate. In this way, VDA illustrates a slight fluctuation on
some datasets, e.g., C −→ A.
Figure 4a, b illustrates the performance ofVDAand three baselinemethods onDigits datasets.
As is clear from the figures, despite the close performance of JDA on USPS vs MNIST
dataset to our approach (3.3% superiority of ours), VDA outperforms all baseline methods,
particularly JDA, onMNIST vs USPS dataset significantly (7.44% superiority). Indeed, VDA
shows superior performance onDigits dataset compared to otherDA state-of-the-artmethods.
In Figure 4c, d, the results are very different. Although VDA illustrates poor performance
in the starting steps, it shows unexpected progress in the last iterations (from iteration 4
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(a) (b)

(c) (d)

Fig. 8 Parameter evaluation with respect to the classification accuracy (%) and the regularization parameter,
λ, for Digits and COIL20 datasets. We choose λ ∈ [0.00001 1.0] where the sensitivity of VDA is low for
dealingwith Digits datasets, and also choose λ ∈ [0.000010.005] onCOIL20 datasets. aUSPS versusMNIST,
b MNIST versus USPS, c COIL1 versus COIL2, d COIL2 versus COIL1

onwards). The performance of VDA in iteration 10 is extraordinary, and it achieves 99.31
and 97.92% on COIL1 vs COIL2 and COIL2 vs COIL1 datasets, respectively. Indeed, VDA
misclassifies only 5 out of 720 instances on COIL1 vs COIL2 dataset and 15 out of 720
instances on COIL2 vs COIL1 dataset, regarding the significant difference across source and
target domains. Indeed, VDA assigns true labels iteratively to target samples. In this way,
pre-assigned pseudo-labels in the early steps switch to accurate labels in the final steps.

5.3 Impact of parameter settings

VDA is evaluated with respect to different values of parameters to analyze its performance
in different conditions. In general, we should tune the number of subspace bases, k, and the
regularization parameter, λ, for VDAon different datasets.We report the results of VDA, JDA
and TJM on Office+Caltech, Digits and COIL20 datasets (all three methods need iteration
to converge).
Figure 5 illustrates the experiments on Office+Caltech datasets for evaluating parameter k.
We run VDA, JDA and TJM with varying values of k. We report the classification accuracy
of VDA and baseline methods with k ∈ [20220] on 12 Office+Caltech datasets. The value of
k determines the low-dimensional representation accuracy for data reconstruction. The plots
indicate that in most cases increasing the value of k decreases the VDA performance while
the accuracy has negative slope. Indeed, VDA shows better performance in subspaces with
low dimension. In this way, k ∈ [20 100] for Office+Caltech datasets are chosen. It is worth
noting that in some datasets small values of k show poor performance; however, the overall
generalization of VDA with respect to the chosen interval is noteworthy.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9 Convergence evaluation with respect to the classification accuracy (%) in 20 iterations on
Office+Caltech20 datasets. In most cases, all three methods converge in first 10 iterations. a C −→ A, b
C −→ W , c D −→ D, d A −→ C , e A −→ W , f A −→ D, g W −→ C , h W −→ A, i W −→ D, j
D −→ C , k D −→ A, l D −→ W

Figure 6 shows the results for parameter λ on Office+Caltech datasets. The shown sub-
figures denote the classification accuracy of VDA compared to the baseline methods with
λ ∈ [0.00001 10] on 12 Office+Caltech datasets. As is clear from the plots, in most cases
VDA shows acceptable results with large values of λ. Indeed, we choose λ ∈ [0.05 10] for
Office+Caltech datasets. In general, larger values of regularization parameter can give more
importance to regularization term, and DA is not performed. However, small values of λ

ill-define the optimization problem and make the eigen decomposition difficult.
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(a) (b)

(c) (d)

Fig. 10 Convergence evaluation with respect to the classification accuracy (%) in 20 iterations on Digits and
COIL20 datasets. The classification accuracy of VDA increases consistently with more iteration and converges
within 10 iterations. a USPS versus MNIST, bMNIST versus USPS, c COIL1 versus COIL2, d COIL2 versus
COIL1

Figure 7 illustrates the parameter evaluation with respect to classification accuracy and para-
meter k for Digits and COIL20 datasets. We consider k ∈ [20 220] which is integrated with
the aforementioned experiments. The results indicate that VDA on Digits and Coil datasets
is not sensitive to the value of k. In other words, VDA transfers knowledge from source to
target domain robustly and effectively on Digits and Coil datasets. Indeed, domain invariant
clustering strengthens the extracted embeddings on which the within-class similarity is high
while between-class similarity is low. Also, we can conclude that the estimated mean for
these datasets has close approximation to the exact mean value of domain.
Figure 8 shows the classification accuracy of VDA, JDA and TJM with respect to λ ∈
[0.00001 10] on Digits and COIL20 datasets. As is clear from the figures, the parameter λ

has partly uniform manner on Digits dataset, particularly on MNIST vs USPS. We choose
λ ∈ [0.00001 1.0] where the sensitivity of VDA is low for dealing with Digits datasets.
However, VDA behaves a little differently on COIL20 datasets, while TJM has a rather
constant behavior on most values of λ; VDA shows a descending manner on large values of
λ. In other words, when the value of λ increases, VDA cannot construct robust representation
for cross-domain classification. In this way, VDA cannot handle DA and TL across domains.
As a result, we choose λ ∈ [0.00001 0.005] on COIL20 datasets.

5.4 Convergence evaluation

We evaluate the convergence property of VDA by conducting comprehensive experiments on
Office+Caltech, Digits and COIL20 datasets and compare the results of VDA against TJM
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and JDA. Figure 9 shows the classification accuracy of VDA and other DA baseline methods
in 20 iterations on Office+Caltech datasets. The results indicate that all three methods in most
cases converge in 10 iterations, but in some datasets they fluctuate, particularly VDA and
JDA. The fluctuation for these datasets originates from the imprecise estimated mean value
for domain invariant clustering. The amount of fluctuation is variable according to different
datasets; however, it has a confined interval after 10 iterations. In this way, we empirically
choose to test VDA in 10 iterations and report its performance on Office+Caltech dataset.
Figure 10 shows that classification accuracy of VDA increases consistently with more iter-
ation and converges within 10 iterations on Digits and COIL20 datasets. In general, VDA,
TJM and JDA have a steady manner when faced with Digits and COIL20 datasets and their
classification accuracy follows a persistent curve.

6 Conclusion and future work

In this paper, we presented a VDA approach for cross-domain classification. VDA exploits
transfer learning and domain adaptation strategies to cope with domain shift problem. More-
over, VDA employs domain invariant clustering to enhance the adaptation performance in
a principled dimensionality reduction subspace. The extracted embedding for source and
target domains is the most effective and robust representation for cross-domain problems.
Performance of VDA is evaluated from different perspectives such as results, effectiveness,
parameters and convergence, and its yields are compared with six state-of-the-art baseline
methods. Our comprehensive experiments on a variety of vision datasets with different dif-
ficulties show that VDA significantly outperforms other adaptation methods.
One important direction remains worth researching, to extend VDA to confront different
transfer learning and domain adaptation scenarios. Here, we suggest some directions for
future VDA extension to interested researchers to investigate: multiple sources, i.e., the
number of sources is more than one; zero target training, i.e., no target training data exist;
online transfer learning, i.e., using online and real-time data; and inductive transfer learning,
i.e., the target test instances are unseen.
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