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Abstract Recently, there is a surge of social recommendation, which leverages social rela-
tions among users to improve recommendation performance. However, in many applications,
social relations are very sparse or absent. Meanwhile, the attribute information of users or
items may be rich. It is a big challenge to exploit this attribute information for the improve-
ment of recommendation performance. In this paper, we organize objects and relations in
recommender system as a heterogeneous information network and introduce meta-path-
based similarity measure to evaluate the similarity of users or items. Furthermore, a matrix
factorization-based dual regularization framework SimMF is proposed to flexibly integrate
different types of information through adopting users’ and items’ similarities as regularization
on latent factors of users and items. Extensive experiments not only validate the effective-
ness of SimMF but also reveal some interesting findings.We find that attribute information of
users and items can significantly improve recommendation accuracy, and their contribution
seems more important than that of social relations. The experiments also reveal that different
regularization models have obviously different impacts on users and items.
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1 Introduction

In order to tackle information overload problem, recommender systems are proposed to help
users to find objects of interest through utilizing the user–item interaction information and/or
content information associated with users and items. Recommender systems have attracted
much attention from multiple disciplines, and many techniques have been proposed to build
recommender systems. Thereinto, hybrid recommendation [1] is widely studied, which can
achieve better recommendation performance in certain scenarios through combining user
feedback data (e.g., ratings) and additional information of users or items. Particularly, with
increasing popularity of social media, there is a surge of social recommendation techniques
[6,15], which leverage rich social relations among users, such as friendships in Facebook,
following relations in Twitter.

However, the emerging social recommendation usually faces the problem of relation spar-
sity. On the one hand, dense social relations can improve the recommendation performance.
However, social relations are very sparse or absent in many real applications. For example,
there are no social relations in Amazon, and 80% users in Yelp have less than 3 following
relations. On the other hand, users and items inmany applications have rich attribute informa-
tion, which are seldom exploited. This information may be very useful to reveal users’ tastes
and items’ properties. For example, the group attribute of users can reflect their interests, and
the type attribute of movies can reveal the content of movies. So it is desirable to effectively
integrate all kinds of information for better recommendation performance, including not only
feedback and social relations but also attributes of users and items. Some works have began
to explore this issue [7,26,28], while they did not focus on revealing the importance of these
attributes and their effects on recommendation accuracy.

Although integrating more information is promising to achieve better recommendation
performance, how to integrate this information still faces two challenges. (1) The information
to be integrated has different types. Thesemixed information types include integer (i.e., rating
information), vector (i.e., attribute information), and graph (i.e., social relations). We need
to design a unified model to effectively integrate these different types of information. (2)
A unified and flexible method is desirable to integrate all or some of this information. In
order to intensively study the impacts of different information, the designed method should
flexibly integrate different granularities of information and uniformly utilize different types
of information.

In this paper, we organize objects and relations in recommender system as a heterogeneous
information network which contains different types of nodes or links. Figure 1 shows such an
example representing the objects and their relations in amovie recommender system (detailed
in Sect. 3). Intuitively, this network can effectively integrate different types of heterogeneous
information including not only feedback (i.e., user–movie) and social relations (i.e., user–
user) but also attribute information of users (e.g., user–group) and items (e.g., movie–type).
Moreover, meta-path, a relation composition connecting two types of objects, contains rich
semantic information [21]. For example, themeta-path “User–Movie–User” connecting users
means users watching the same movies.

In order to utilize this heterogeneous information, we introduce meta-path-based similar-
ity measure to evaluate the similarity of users and items. Based on matrix factorization, a
dual regularization framework SimMF is proposed to integrate heterogeneous information
through adopting similarity information of users and items as regularization on latent factors
of users and items. Moreover, in SimMF, two different regularization models, average- and
individual-based regularization, can flexibly confine regularization on users or items. Exten-
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Fig. 1 Objects and relations in movie recommender system are organized as a heterogeneous information
network

sive experiments on four real datasets (i.e., Douban Movie, Yelp, MovieLens, and Douban
Book) validate the effectiveness of SimMF and reveal some interesting and useful findings.
The major contributions of this paper are summarized as follows:

1. We proposed a unified and flexible matrix factorization-based dual regularization frame-
work to integrate heterogeneous information. The framework can flexibly and granularly
integrate different types of information. In addition, it provides two optional regulariza-
tion models on users and items.

2. We crawled comprehensive Douban Movie and Douban Book datasets including feed-
back, social relations, and attribute information of users and items. More importantly,
extensive experiments reveal some interesting and useful findings. On these experimental
datasets, the attribute information of items and users can significantly enhance recom-
mendation performance. Their improvements are even higher than that of social relations.
In addition, the similarity information generated by meta-paths with dense relations and
meaningful semantics usually obtain better performance. These findings indicate that,
although social recommendation is an important direction, utilizing attribute information
can also be a promising way to further improve recommendation performance.

3. Another important finding is that different regularization models on users and items have
obvious effects on recommendation performance. Ma et al. [14] have studied the effect
of different regularization models on social relations, and we further discuss the effect
on similarity relations of users and items. This finding illustrates that it is helpful to set
proper regularization model according to data property in real applications.

The remainder of this paper is organized as follows. Section 2 introduces the related work.
Section 3 presents some preliminary knowledge, then the proposed SimMFmodel is detailed
in Sect. 4. Experiments and analysis are shown in Sect. 5. Finally, we conclude the paper in
Sect. 6.

2 Related work

According to the utilized information for recommendation, we can roughly classify contem-
porary recommendation methods into three types: feedback-based, social relation-based, and
heterogeneous information-based methods.

Traditional recommender systems normally only utilize user–item rating feedback infor-
mation for recommendation. Collaborative filtering is one of the most popular techniques,
which includes two types of approaches: memory-based method and model-based method.
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Recently, matrix factorization has shown its effectiveness and efficiency in recommender
systems, which factorizes user–item rating matrix into two low-rank user-specific and item-
specific matrices, then utilizes the factorized matrices to make further predictions [20].

With the prevalence of social media, more and more research study social recommender
systems which utilize social relations among users. Many researchers utilized trust informa-
tion among users. Ma et al. [12] fused user–item matrix with users’ social trust networks
by sharing a common latent low-dimensional user feature matrix. Furthermore, the authors
in [13] coined with the social trust ensemble to represent the formulation of the social trust
restrictions. Meanwhile, friendship relation among users is also exploited. In [14], the addi-
tional social regularization term ensures that the distance of latent feature vectors of two
friends with similar tastes to be closer. Yang et al. [24] inferred category-specific social trust
circles from available rating data combined with friend relations. Recently, many studies
have begun to utilize other types of information. For example, Cantador et al. [4] made use
of user and item profiles defined in terms of weighted lists of social tags for top N recom-
mendation. Furthermore, they presented a comparative study on the influence that different
types of information available in social systems have on item recommendation [2].

Research on heterogeneous information network, in which objects are of different types
and links among objects represent different relations, has surged over the years. More and
more researchers have been aware of the importance of heterogeneous information for rec-
ommendation. Jones et al. [8] validated the importance of the exploitation on available
heterogeneous data sources and proposed a Bayesian approach called LaD-BAE to capture
both feature heterogeneity and predictive heterogeneity. Zhang et al. [29] investigated the
problem of recommendation over heterogeneous network and formalized the recommenda-
tion as a ranking problem then proposed a random walk model to estimate the importance of
each object in the heterogeneous network. Considering heterogeneous network constructed
by different interactions of users, Jamali and Lakshmanan [7] proposed HETEROMF to inte-
grate a general latent factor and context-dependent latent factors. Wang et al. [5] proposed
the OptRank method to alleviate the cold start problem by utilizing heterogeneous infor-
mation contained in social tagging system. Yu et al. [26,28] proposed an implicit feedback
recommendation model with systematically extracted latent features from heterogeneous
network. Furthermore, they utilized users’ clicked URLs to build a Freebase entity graph,
which is a heterogeneous information network [27]. More recently, Luo et al. [11] proposed a
collaborative filtering-based social recommendationmethod, calledHete-CF, using heteroge-
neous relations, and Burke et al. [3] incorporated multiple relations generated by meta-paths
in a weighted hybrid model. Vahedian [23] designed the WHyLDR approach for multiple
recommendation tasks, which combines heterogeneous information with a linear-weighted
hybrid model. In addition, due to massive amounts of fashion items available online, Han-
bit et al. [10] extracted meta-paths from heterogeneous information network and designed
a meta-path-based method for fashion items recommendation. Shi et al. [19] proposed the
concept of weighted heterogeneous information network and designed a meta-path-based
recommendation model called SemRec.

The proposed SimMF belongs to heterogeneous information-based methods. Compared
to feedback-based and social relation-based methods, SimMF can flexibly integrate vari-
ous heterogeneous information. And SimMF is also different from existing heterogeneous
information-based models in several aspects. Contemporary methods usually consider one
or two types of heterogeneous information. For example, HETEROMF focuses on different
interactions of users. Themethod proposed byYu et al. only considers attributes of items [25],
and it is an item recommendation model [26,28]. SimMF considers all kinds of information
and flexibly integrates them together. Moreover, we intensively investigate the impact of
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this heterogeneous information which is seldom explored before. WHyLDR considers het-
erogeneous information as SimMF does. However, while WHyLDR focuses on component
selection and component combination and is for item recommendation rather than rating
prediction. The method proposed in [10] and SemRec [19] are both meta-path-based model,
while SimMF should be considered as a matrix factorization-based model. The proposed
work is similar to Hete-CF, but Hete-CF only applies one type of matrix factorization con-
straint called individual regularization on users and items, and SimMF considers two types
of regularization and exploits their different impacts on recommendation performance.

3 Preliminary

In this section, we describe the notations used in this paper and present some preliminary
knowledge.

A heterogeneous information network (HIN) is a special type of information network with
underneath data structure as a directed graph, which contains either multiple types of objects
or multiple types of links. Specifically, given a schema S = (A,R) which consists of a set
of entity types A = {A} and a set of relations R = {R}, an information network is defined
as a directed graph G = (V, E) with an object type mapping function ϕ:V → A and a link
type mapping function ψ :E → R. If types of objects |A| > 1 or types of relations |R| > 1,
the network is called heterogeneous information network; otherwise, it is a homogeneous
information network.

Figure 1 shows the network schema of a typical heterogeneous network which organizes
objects and relations in movie recommender system. The heterogeneous network contains
objects from multiple types of entities: user (U), movie (M), group (G), location (L), actor
(A), director (D), and type (T). For each user, it has links to a set of other users as his (her)
friends, a set of affiliated groups, and a set of rated movies. Links exist between user and user
denoting the friendship relation, between user and group denoting the membership relation,
between user andmovie denoting rating and rated relation. It is similar for movie.We can find
that above HIN includes different types of information, such as feedback (i.e., user–movie),
social relations (i.e., user–user), and attributes (e.g., user–group, movie–actor).

Two objects in a heterogeneous network can be connected via different paths, which can
be called meta-path [21]. A meta-path P is a path defined on a schema S = (A,R), and is

denoted in the form of A1
R1−→ A2

R2−→ · · · Rl−→ Al+1 (abbreviated as A1A2 · · · Al+1), which
defines a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl between type A1 and Al+1, where ◦
denotes the composition operator on relations. As an example shown in Fig. 1, users can
be connected via “User–User” (UU) path, “User–Group–User” (UGU) path, “User–Movie–
User” (UMU), and so on. It is obvious that semantics underneath these paths are different.
The UU path means users’ friends (i.e., friend relation among users), while the UMU path
means users watching the same movies. Since different meta-paths have different semantics,
objects connecting by different meta-paths have different similarity. So we can evaluate the
similarity of users (or movies) based on different meta-paths. For example, for users, we
can consider meta-paths UU, UGU, UMU, and so on. Similarly, meaningful meta-paths
connecting movies include MAM, MDM, and so on.

There are several path-based similarity measures to evaluate the similarity of objects in
HIN [9,17,21]. Considering semantics in meta-paths, Sun et al. [21] proposed PathSim to
measure the similarity of same-type objects based on symmetric paths. Lao and Cohen [9]
proposed a path-constrained random walk (PCRW) model to measure the entity proximity

123



840 C. Shi et al.

in a labeled directed graph constructed by the rich meta-data of the scientific literature. The
HeteSim [17] can measure the relatedness of heterogeneous objects based on an arbitrary
meta-path. All these similarity measures can be used in the similarity calculation, and their
differences can be seen in reference [17].

We define S(l)
i j to denote the similarity of two objects ui and u j under the given meta-path

Pl . The similarity (S) is determined by the given meta-path (P) and the similarity measure
(M). That is S = P × M. We know that the similarity of different paths are different, and
they are incomparable. Sowe normalize themwith Sigmoid function as shown in Eq. 1, where
S̄(l) means the average of S(l)

i j and β is set to 1. The normalization process has the following
two advantages. (1) It confines the similarity into [0, 1] without changing their ranking. (2)
It can reduce the similarity difference of different paths. In the following section, we directly
use the S(l)

i j to represent the normalized similarity:

S(l)
i j

′
= 1

1 + e−β×(S(l)
i j −S̄(l))

(1)

Since users (or items) have different similarity under different meta-paths, we consider
their similarity on all paths through assigning weights on different paths. For users, we define
SU for the similarity matrix of users on all paths, and SI for the similarity matrix of items
on all paths. They can be defined as follows, where wU

l represents the weight of similarity
matrix of users under the path Pl and wI

l represents that of items,

SU =
∑

l
wU
l S(l)

∑
l
wU
l = 1; 0 ≤ wU

l ≤ 1,

SI =
∑

l
wI
l S

(l)
∑

l
wI
l = 1; 0 ≤ wI

l ≤ 1. (2)

4 The SimMF method

In this section, we will introduce the SimMF method, which utilizes matrix factorization
framework to incorporate similarity information. We firstly review the basic low-rank matrix
factorization framework and then introduce the improved model through constraining sim-
ilarity regularization on users and items, respectively. Finally, we show the unified model
through applying similarity regularization on users and items simultaneously.

4.1 Low-rank matrix factorization

The low-rank matrix factorization has been widely studied in recommender system [20].
Its basic idea is to factorize the user–item rating matrix R into two matrices (U and V )
representing users’ and items’ distributions on latent semantic, respectively. Then, the rating
prediction can bemade through these two specificmatrices. Assuming anm×n rating matrix
R to be m users’ ratings on n items, this approach mainly minimizes the objective function
L(R,U, V ) as follows:

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2

+λ1

2
‖U‖2 + λ2

2
‖V ‖2, (3)

where Ii j is the indicator function that is equal to 1 if user i rates item j and equal to
0 otherwise. U ∈ R

m×d and V ∈ R
n×d , where d is the dimension of latent factors and
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d � min(m, n). Ui is a row vector derived from the i th row of matrix U and Vj is a
row vector derived from the j th row of matrix V . λ1 and λ2 represent the regularization
parameters. In summary, the optimization problem minimizes the sum-of-squared-errors
objective function with quadratic regularization terms which aim to avoid overfitting. This
problem can be effectively solved by a simple stochastic gradient descent technique.

4.2 Similarity regularization on users

As mentioned above, the user-specific factorized matrix describes users’ distribution over
latent semantic. In this section, we will introduce two different types of similarity regulariza-
tion (i.e., average-based and individual-based regularization) on users to force the distance
between Up and Uq to be much smaller if user p is highly similar to user q .

4.2.1 Average-based regularization

Intuitively, we have similar behavior model with people who are similar with us. That is, the
latent factor of a user is similar to the latent factor of people who are the most similar to the
user. Based on this assumption, we add user’s similarity regularization to the basic low-rank
matrix factorization framework.

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2

+ α

2

m∑

i=1

∥∥∥∥∥Ui −
∑

f ∈T +
u (i) S

U
i f U f

∑
f ∈T +

u (i) S
U
i f

∥∥∥∥∥

2

+ λ1

2
‖U‖2 + λ2

2
‖V ‖2 (4)

whereT +
u (i) is the set of userswho are in the top k similarity list of user i and SUi f is the element

located on the i th row and the f th column of user similarity matrix SU . The average-based
regularization confines that the latent factor of a user is close to the average of the latent factor
of the top k similar people to the user. The analogous regularization has been used in social
recommendation [14], while it just enforces constraints on friends of users. Here the average-
based regularization not only extends to the top k similarity list of users but also considers the
similarity values as the weights. The parameter k can be set to trade off accuracy and compu-
tation cost. Large k usually means high accuracy but low efficiency. In our experiments, k is
set to 5% of the vector dimension. A local minimum of the objective function given by Eq. 4
can be solved by performing gradient descent in feature vectorsUi and Vj , which is shown in
Eqs. 5 and 6. Here T −

u (i) represents the set of users whose top k similarity list contains user i .

∂L
∂Ui

=
n∑

j=1

Ii j (UiV
T
j − Ri j )Vj + α

(
Ui −

∑
f ∈T +

u (i)(S
U
i f U f )

∑
f ∈T +

u (i) S
U
i f

)

+α
∑

g∈T −
u (i)

−SUig

(
Ug −

∑
f ∈T +

u (g)
(SUg f U f )

∑
f ∈T +

u (g)
SUg f

)

∑
f ∈T +

u (g) S
U
g f

+ λ1Ui , (5)

∂L
∂Vj

=
m∑

i=1

Ii j (UiV
T
j − Ri j )Ui + λ2Vj . (6)
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4.2.2 Individual-based regularization

The above average-based regularization constrains user’s taste with the average taste of
people who are the most similar users. However, it may be ineffective for users whose similar
users have diverse tastes. In order to avoid this disadvantage, we employ individual-based
regularization on users as follows:

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2

+α

2

m∑

i=1

m∑

j=1

SUi j ‖Ui −Uj‖2

+λ1

2
‖U‖2 + λ2

2
‖V ‖2. (7)

In essential, the individual-based regularization enforces a large SUi j to have a small distance
between Ui and Uj . That is, similar users have smaller distance on latent factors. With the
same optimization technique, a local minimum of Eq. 7 can also be found by performing
gradient descent in Ui and Vj .

∂L
∂Ui

=
n∑

j=1

Ii j (UiV
T
j − Ri j )Vj

+α

m∑

j=1

(SUi j + SUj i )(Ui −Uj ) + λ1Ui , (8)

∂L
∂Vj

=
m∑

i=1

Ii j (UiV
T
j − Ri j )Ui + λ2Vj . (9)

4.3 Similarity regularization on items

For simplicity, we define the notation Regxy to represent the average-based or individual-
based regularization term on users or items, where x ∈ {U, I} means Users or Items and
y ∈ {ave, ind} means average or individual-based regularization. That is, for similarity
regularization on users, we have

RegUave =
m∑

i=1

∥∥∥∥∥Ui −
∑

f ∈T +
u (i) S

U
i f U f

∑
f ∈T +

u (i) S
U
i f

∥∥∥∥∥

2

, (10)

RegUind =
m∑

i=1

m∑

j=1

SUi j ‖Ui −Uj‖2. (11)

Similar to the regularization on users, we can also define these two different types of
regularization on items as follows.

RegIave =
n∑

j=1

∥∥∥∥∥Vj −
∑

f ∈T +
i ( j) S

I
j f V f

∑
f ∈T +

i ( j) S
I
j f

∥∥∥∥∥

2

, (12)

RegIind =
n∑

i=1

n∑

j=1

SIi j‖Vi − Vj‖2. (13)
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where T +
i ( j) is the set of items who are in the top k similarity list of item j , and SIj f is the

element located on the j th row and the f th column of similarity matrix SI . We can also
define the optimization function based on these two regularization terms on items and derive
their gradient learning algorithms as above.

4.4 A unified dual regularization

Now we consider regularization on users and items simultaneously. The corresponding opti-
mization function is shown as follows:

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2

+α

2
RegUy + β

2
RegIy

+λ1

2
‖U‖2 + λ2

2
‖V ‖2, (14)

where α and β control the effect of user and item regularization, respectively. For y ∈
{ave, ind}, there are four regularization models. Similarly, we can use the gradient descent
method to solve this optimization problem. The whole algorithm framework is shown in
Algorithm 1.

Algorithm 1 Algorithm Framework of SimMF
Input:

G: heterogeneous information network
PU ,PI : sets of meta-paths related to users and items
η: learning rate for gradient descent
α, β, λ1, λ2: controling parameters defined above
ε: convergence tolerance

Output:
U, V : the latent factor of users and items

1: Calculate similarity matrix of user SU based on PU , G
2: Calculate similarity matrix of item SI based on PI , G
3: Initialize U, V
4: repeat
5: Uold := U ,Vold := V
6: Calculate ∂L

∂U , ∂L
∂V

7: Update U := U − η ∗ ∂L
∂U

8: Update V := V − η ∗ ∂L
∂V

9: until ‖U −Uold‖2 + ‖V − Vold‖2 < ε

4.5 Discussion

Through employing dual regularization on users and items, SimMF is a general and flexible
framework formatrix factorization-based recommendation, which can integrate rating, social
relations, and attribute information of users and items. Theα and β control howmuch SimMF
integrates information from social relations and attribute of users and items, and SU and SI

decide what kind of similarity information will be used. If both α and β are set with 0,
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SimMF degrades to traditional collaborative filtering with matrix factorization [20]. When
the α is 0, SimMF can integrate the attributes of items, which is recently considered by Yu
et al. [26,28]. When β is 0, SimMF can fuse the social relations, like social recommendation
[12], as well as the attributes information of users. Particularly, social relations in social
recommendations can be presented through setting the similarity matrix of users SU with the
similarity generated by special meta-paths. For example, in DoubanMovie dataset, the friend
relation can be represented by the meta-path UU, and the membership can be represented
by the meta-path UGU. In this condition, SimMF converts to the social recommendation
[12,13] indeed. In addition, SimMF considers two regularizationmodels (i.e., individual- and
average-based regularization) to integrate similarity information. We can find that these two
regularizationmodels have different impacts on users and items in the following experiments.

Let’s give more discussion on the similarity matrix of users (SU ) and items (SI ). As
we know, SU and SI are the similarity matrix of users and items on multiple meta-paths,
respectively. There are two notable problems. (1) How to select the meta-paths for users or
items? We know that there are infinite meta-paths connecting users or items. As illustrated
in the following experiments, the short and meaningful meta-paths are helpful to achieve
better recommendation performance through generating good similarity measures. Sun et al.
[21] pointed out that the semantics of long meta-paths are not meaningful and they fail to
produce good similaritymeasures. Some priori knowledge can also be applied to the selection
of meta-paths, such as domain knowledge and user-guided information [22]. (2) How to
combine themultiplemeta-paths?We can set properweights formeta-paths according to their
importances. Supervised weight learning can also be designed to automatically determine
the weight of meta-paths, as Yu et al. [28] and Lao et al. [9] did. In this paper, we simply set
the weight with the equal value, since the mean weight is sufficient to show the benefits of
SimMF.

According to Algorithm 1, the complexity of SimMF can be analyzed as follows. SimMF
contains two main parts: (1) similarity evaluation (Lines 1–2). It can be completed offline,
and many strategies [17] can speed it up; (2) parameters learning (Lines 4–9). The main
computation of the parameters learning is to calculate the gradients. The complexity of
calculating gradients need to consider two conditions: average-based and individual-based
regularizations. Assume that |R| is the number of nonzero entries in rating matrix R. In
terms of user-related gradient, |T −

u (i)| and |T −
i ( j)| can be usually estimated by a small

constant c and c � m, c � n. Thus, the complexity for average-based regularization ∂L
∂U

is O((m × k × c + |R|) × d) and the complexity for individual-based regularization ∂L
∂U

is O((m × k + |R|) × d). Similarly, the complexity for average-based regularization ∂L
∂V

is O((n × k × c + |R|) × d) and the complexity for individual-based regularization ∂L
∂V

is O((n × k + |R|) × d). In summary, the whole complexity of parameters learning is
O(((m + n) × k × c + |R|) × d × t) where t is the number of iterations.

5 Experiments

In this section, we will verify the superiority of our model by conducting a series of experi-
ments compared to the state-of-the-art recommendation methods.
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5.1 Datasets

Although there are many public datasets for recommendation, they focus on the rating infor-
mation and social relations [12,14,15]. Yu et al. [26,28] considered the attribute information
of items, while they ignore the attribute information of users. In order to get more compre-
hensive heterogeneous information, including rating information, attribute information of
users and items, and social relations, we prepared four different datasets from three various
domains.

Douban Movie1 and MovieLens2 [25] are from the movie domain. Douban is a well-
known social media network in China. Douban Movie dataset includes 13,616 users and
34,453 movies with 1,301,072 movie ratings ranging from 1 to 5. Moreover, we also extract
social realtions among users and attribute information of users (e.g., groups and locations)
and movies (e.g., actors, directors, and types). The network schema of Douban Movie is
shown in Fig. 1. MovieLens dataset contains rating information of users on movies and
attributes information of user (e.g., age range and occupations). Stemming from the business
domain, the widely used Yelp challenge dataset3 [26,28] records users’ ratings on local
business and also contains social relations and attribute information of business (e.g., cities
and categories). Belonging to the book domain, the Douban Book4 includes 13,024 users,
22,347 books, and 792,026 rating records between users and books. The detailed description
can be seen in Table 1. Besides different domains, we can find that these four datasets have
different characteristics. MovieLens dataset has dense rating information but with no social
relation, and Douban Movie dataset has medium dense rating information with sparse social
relations. In addition, Douban Book dataset has medium dense rating information with dense
social relations, and Yelp dataset has sparse rating information with dense social relations.

5.2 Metrics

We use mean absolute error (MAE) and root mean square error (RMSE) to evaluate the
performance of different methods. The metric MAE is defined as:

MAE = 1

T

∑

i, j

|Ri j − R̂i j |, (15)

where Ri j is the rating user i gives to item j and R̂i j denotes the rating user i gives to item j as
predicted by a method. Particularly, R̂i j can be calculated byUiV T

j in our model. Moreover,
T is the number of tested ratings. The metric RMSE is defined as:

RMSE =
√

1

T

∑
i, j

(Ri j − R̂i j )2. (16)

From the definitions, we can see that smaller value of MAE or RMSE means better
performance.

1 http://movie.douban.com/.
2 http://grouplens.org/datasets/movielens/.
3 http://www.yelp.com/dataset_challenge/.
4 http://book.douban.com/.
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5.3 Compared methods

In this section, we compare SimMFwith six representative methods. There are different vari-
ations for SimMF.We use SimMF-U(y)I(y) to represent SimMFwith regularization on users
and items, where y ∈ {a, i} and it represents the average- or individual-based regulariza-
tion. Similarly, SimMF-U(y) (SimMF-I(y)) means SimMF with regularization only on users
(items). There are six baseline methods, including four types. There are two basic methods
(i.e., UserMean and ItemMean), a collaborative filtering with low-rank matrix factorization
(i.e., PMF), a social recommendation method (i.e., SoMF), and two HIN-based methods (i.e.,
Hete-MF and Hete-CF). These baselines are summarized as follows.

• UserMean. This method uses the mean value of every user to predict the missing values.
• ItemMean. This method utilizes the mean value of every item to predict the missing

values.
• PMF. This method is a typical matrix factorization method proposed by Salakhutdinov

and Minh [16]. And in fact, it is equivalent to basic low-rank matrix factorization in
Sect. 4.1.

• SoMF. This is the matrix factorization-based recommendation method with social
average-based regularization proposed by Ma et al. [14].

• Hete-MF. This is the matrix factorization-based recommendation framework combining
user ratings and various entity similarity matrices proposed by Yu et al. [25].

• Hete-CF. This is the social collaborative filtering algorithmusing heterogeneous relations
[11].

We employ HeteSim [17] to evaluate the similarity of objects. For the Douban Movie
dataset, we use 7 meaningful meta-paths for user whose length is smaller than 4 (i.e., UU,
UGU, ULU, UMU, UMDMU, UMTMU, and UMAMU) and 5 meaningful meta-paths for
movie whose length is smaller than 3 (i.e., MTM, MDM, MAM, MUM, and MUUM). For
the Yelp dataset, we use 4 meta-paths for user (i.e., UU, UBU, UBCBU, and UBLBU) and
4 meta-paths for business (i.e., BUB, BCB, BLB, and BUUB). Similarly, we utilize 5 meta-
paths for user (i.e., UGU, UAU, UOU, UMU, and UMTMU) and 2 meta-paths for movie
(i.e., MTM and MUM) for the MovieLens dataset. And for the Douban Book dataset, we
utilize 7 meta-paths for user (i.e., UU, UGU, ULU, UBU, UBABU, UBPBU, and UBYBU)
and 5 meta-paths for book (i.e., BAB, BPB, BYB, BUB, and BUUB). These similarity data
are fairly used for Hete-CF and SimMF. Hete-MF uses similarity data of users, since the
model only considers the similarity relationships between items.

5.4 Effectiveness experiments

This section will validate the effectiveness of SimMF through comparing its different vari-
ations to baselines. Here we run four versions of SimMF-U(y)I(y) (y ∈ {a, i}) and record
the worst (denoted as SimMF-max in Tables 2, 3, 4, 5), the best (denoted as SimMF-min)
and average (denoted as SimMF-mean) performance of these four versions. The α and β

are set to 100 and 10, respectively, for Douban Movie dataset, as suggested in the following
parameter experiment. For other datasets, α and β are set to the optimal values according
to related parameter experiments. For all the experiments in this paper, the values of λ1 and
λ2 are set to a trivial value 0.001 and the length of latent feature vectors Ui and Vj are set
to 10. The parameters of other methods are set to the optimal values obtained in parameter
experiments.
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For these datasets, we use different ratios (80, 60, 40, 20%) of data as training set. For
example, the training data 80% means that we select 80% of the ratings from user–item
rating matrix as the training data to predict the remaining 20% of ratings. The random
selection was carried out 10 times independently in all the experiments. We report average
results on DoubanMovie, Yelp, MovieLens, and Douban Book datasets in Tables 2, 3, 4, and
5, respectively, and record the improvement ratio of all methods compared to the PMF. In
addition, we also report the average running time of thesemethodswith the 80% training ratio
in the last line of above tables. For those HIN-based methods (i.e., Hete-CF, Hete-MF, and
SimMF), we only report the running time of the model learning process, ignoring the running
time of similarity computation. Note that, we report the mean running time for SimMF, since
the four versions of SimMF have the similar computational complexity.

The results are shown in Tables 2, 3, 4, and 5. In addition, we also conduct the t-test
experiments with 95% confidence, which shows that the MAE/RMSE improvement differ-
ence is statistically stable and non-contingent. Due to the space limitation, they are omitted
in the paper, but the results can be found in [18]. Note that SoMF is absent in Table 4 because
there is no social relation in MovieLens dataset. From the experimental comparisons, we can
observe the following phenomena.

– SimMF always outperforms the baselines in most conditions, even for the worst per-
formance of SimMF (i.e., SimMF-max). It validates that more attribute information
from users and items exploited in SimMF is really helpful to improve the recommen-
dation performance. In addition, the model integrating more information usually has
better performances. That is the reason why other matrix factorization models integrat-
ing heterogeneous information usually have better performance than the basic matrix
factorization model PMF.

– Although Hete-MF and Hete-CF also utilize the attribute information from users and
items, they have worse performance than SimMF, which implies the proposed SimMF
has better mechanism to integrate heterogeneous information. We know that Hete-MF
only integrates attribute information of items, while the same parameter for similarity
regularization terms of users and items may cause the bad performance of Hete-CF.

– When considering different training data ratios, we can find that the superiority of SimMF
is more significant for less training data. It indicates that SimMF can effectively alleviate
data sparsity problem.We think the reason lies in that, through exploiting different meta-
paths, we can make full use of rich attribute information of users and items to reflect
the similarity of users and items from different aspects. The integration of similarities
can comprehensively reveal the similarity of users and items, which compensates for
shortage of training data.

Comparing results of PMFon these four datasets, we can find the performances of PMF are
greatly affected by the density of rating matrix. For DoubanMovie (see Table 2) and Douban
Book (see Table 5) datasets, PMF performs reasonably, while its performance degrades
greatly on Yelp dataset (see Table 3) because of the very sparse rating data on Yelp dataset.
When comparing results of SoMF toPMF, itmarginally improves the performance onDouban
Movie dataset because of the sparse social relations on Douban Movie, while it obviously
improves the performance on Yelp dataset due to the sparse social relations on Yelp. So
we can conclude that the recommendation performance of SoMF is largely affected by the
density of social relations. However, nomatter how dense or sparse rating and social relations,
SimMF can always achieves the best performance throughmaking full use of the rich attribute
information.
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Fig. 2 Performance of SimMF with different regularizations on Douban Movie and Yelp datasets. a Douban
Movie, MAE. b Douban Movie, RMSE. c Yelp, MAE. d Yelp, RMSE

Observing the running time of different methods in the last row of Tables 2, 3, 4, and 5,
we can find that the running time becomes longer as the models become more complex. That
are, HIN-based methods (i.e., Hete-MF, Hete-CF, and SimMF) have longer running time
than the other methods, since they have more parameters to be learned. However, SimMF is
still faster than the other two HIN-based methods because SimMF does not need to learn the
weights of meta-paths.

5.5 Impact of different regularizations

Experiments in this section will validate the effect of different regularization models on
users and items. Ma et al. [14] have explored the effect of average- and individual-based
regularization on social relations of users. However, in this paper, we not only explore the
effect on more complex relations but also consider the effect on both users and items.

We employ four variations of SimMFwith average- and individual-based regularization on
users and items (i.e., SimMFwithU(a)I(i), U(a)I(a), U(i)I(i), andU(i)I(a)) and four variations
of SimMF with average- or individual-based regularization on users or items (i.e., SimMF
with U(a), U(i), I(a), and I(i)). The same parameters are set with above experiments, and the
average results are shown inFig. 2.We canfind that SimMF, integrating similarity information
on both users and items, always has better performance than the one only integrating similarity
information on users or items. Again we can observe the difference is far more pronounced
when the fraction of training set is low, e.g., at 20% SimMF-U(i) and SimMF-U(a) perform
very bad. Moreover, we can also observe an interesting phenomena: Regularization models
have different effects on users and items. SimMF-U(a) has better performance than SimMF-
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Fig. 3 Performance of SimMF with different meta-paths on Douban Movie dataset. a Paths on users, MAE.
b Paths on users, RMSE. c Paths on movies, MAE. d Paths on movies, RMS

U(i) on both datasets, which indicates average-based regularization may be more suitable for
users. However, it is not the case for items. SimMF-I(i) performs better than SimMF-I(a) on
Douban Movie, while SimMF-I(a) outperforms SimMF-I(i) on Yelp. As a result, SimMF-
U(a)I(i) has the best performance onDoubanMovie, while SimMF-U(a)I(a) is the best one on
Yelp. Although it is hard to draw general conclusions, the above study indicates that different
regularization model may significantly affect performance of matrix factorization methods.
In summary, we need to find the optimal regularization model according to data properties
in real applications.

5.6 Impact of different meta-paths

In this section, we study the impact of different meta-paths. Due to similar analysis, we only
show results onDoubanMovie dataset. As illustrated above,we employ 7meta-paths on users
and 5 meta-paths on movies. We will observe performance of SimMF with similarity matrix
generated by one single meta-path. Under the same parameters with above experiments, we
run SimMF-U(a) with similarity matrix generated by each meta-path on users. Similarly, we
also run SimMF-I(i) with similarity matrix generated by each meta-path on movies.

The experimental results on Douban Movie dataset are shown in Fig. 3. We can observe
different impacts of meta-paths on users and movies. The SimMF-U(a) with different meta-
paths (see Fig. 3a, b) on users all have close performance.Moreover, SimMF-U(a)withMUM
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Fig. 4 Performance of SimMF onMAE and RMSE with different weights setting methods. aMAE. b RMSE

has slightly better performance and SimMF-U(a) with UU has worse performance. However,
it is not the case for meta-paths on items. The SimMF-I(i) with different meta-paths on items
(see Fig. 3c, d) have totally different performance. We can find that SimMF-I(i) with MDM
has the worst performance, even worse than PMF in some conditions, while SimMF-I(i) with
MTM and MUM achieve much better performance on both criteria. We think there are two
reasons: (1) Observing Table 1, we can find that the performance of SimMF aremuch affected
by the density of relations. The density of relations on MT and MU is much higher than that
on MD and MA. The dense relations are helpful to generate good similarity of items. The
similar phenomena have been widely observed in social recommendation [12,14]. (2) The
meaningful meta-paths are helpful to reveal the similarity of objects. MTM means movies
with same type, and MUM means movies seen by same users. These two paths are highly
correlated as both reveal properties of the movies. These two reasons can also explain the
slightly worse performance of the meaningful but sparse UUmeta-path as compared to other
meta-paths of users. The experiments imply that we only need to use one single dense and
meaningful meta-path to generate similarity information, which also can obtain good enough
performance.

We further design an experiment to illustrate different importance of meta-paths. Con-
cretely, we observe the performance of above SimMF-I(i) with different weight combination
methods on 5 meta-paths. Except mean weight and random weight on 5 paths, we design
a heuristic weight method, i.e., setting the weights according to the performance of these
paths. That is, paths with good performance have higher weights. Assume the MAE perfor-
mance value of a path (Pl ) is Pl , and the max MAE value is Pmax . Then the difference is
dl = ePmax−Pl . And thus, the weight of the path iswI

l = dl∑
l dl

. The experiment also includes
PMF as the baseline. The results are shown in Fig. 4. It is obvious that SimMF-I(i) with the
heuristic weight method has the best performance, which further validates the meaningful
and dense meta-paths are more important.

5.7 Parameter study on α and β

Since other parameters have been studied in other matrix factorization methods, here we only
do parameter study on α and β. The parameters α and β control how much SimMF fuses the
similarity information of users and items. On the one hand, if we only factorize the user–item
matrix for recommendationwith a very small value ofα and β, SimMFwill ignore users’ own
tastes and items’ latent properties. On the other hand, if we employ a very large value of α and
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Fig. 5 Performance of SimMF on MAE and RMSE with varying α and β on Douban Movie dataset. The
lower, the better. aMAE. b RMSE

β, the similarity information of users and items will dominate the model learning process.
Intuitively, we need to set moderate values for α and β to balance the rating and similarity
information. In this section, we will analyze how α and β affect the final recommendation
accuracy. Specifically, we observe the performance of SimMF-U(a)I(i) with varying α and
β on Douban Movie dataset.

Figure 5 shows the impacts of α and β onMAE and RMSE in SimMF-U(a)I(i) model. We
can find that performance of SimMF-U(a)I(i) on MAE and RMSE have very similar trend.
Moreover, the value of α and β affect recommendation results significantly, which demon-
strates that incorporating the similarity information generated by attribute information greatly
affects the recommendation accuracy. For very small values of α and β, SimMF-U(a)I(i) will
degrade to the traditional PMF,whichmakes itsMAEandRSME increase to higher and stable
values (i.e., bad performance). For large values of α and β, the similarity information of users
and items will dominate model learning process, which makes the MAE and RSME values
of SimMF-U(a)I(i) sharply increase. It indicates that the matrix factorization on user–item
rating matrix should dominate the learning process, while similarity information is useful
supplement to improve performance. In addition, we can observe that, when the value of β

is around 10 and the value of α is between 10 and 100, SimMF-U(a)I(i) has stable and good
performance.

6 Conclusion

In this paper, we organized the objects and relations in recommender system as a heteroge-
neous information network, and designed a unified and flexible matrix factorization-based
dual regularization framework SimMF to effectively integrate different types of information.
SimMF employs meta-path-based similarity measure to evaluate the similarity of objects
and flexibly integrate heterogeneous information through adopting the similarity of users
and items as regularization on latent factors of user and item. Experiments on real datasets
validate the effectiveness of SimMF, and some interesting works are needed to explore in
the future. It is desirable to design clever weight learning strategy for the combination of
similarity matrices to further improve recommendation performance.
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