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Abstract The accuracyof a text classificationmethodbasedon aSVMlearner depends on the
weightingmetric used in order to assign aweight to a term.Weightingmetrics can be classified
as supervised or unsupervised according to whether they use prior information on the number
of documents belonging to each category. A supervised metric should be highly informative
about the relation of a document term to a category, and discriminative in separating the
positive documents from the negative documents for this category. In this paper, we propose
80 metrics never used for the term-weighting problem and compare them to 16 functions
of the literature. A large number of these metrics were initially proposed for other data
mining problems: feature selection, classification rules and term collocations. While many
previous works have shown the merits of using a particular metric, our experience suggests
that the results obtained by such metrics can be highly dependent on the label distribution
on the corpus and on the performance measures used (microaveraged or macroaveraged F1-
Score). The solution that we propose consists in combining the metrics in order to improve
the classification. More precisely, we show that using a SVM classifier which combines the
outputs of SVM classifiers that utilize different metrics performs well in all situations. The
secondmain contribution of this paper is an extended term representation for the vector space
model that improves significantly the prediction of the text classifier.
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1 Introduction

Text classification is the problem of automatically labeling natural language texts with pre-
defined thematic categories. In the last two decades, a huge number of machine learning
techniques were proposed to automatically classify and organize text documents [1,28].
These studies were motivated by the exponential growing of the number of texts available
online. Applications includes classification of news articles, web pages and scientific pub-
lications into controlled vocabulary, sentiment analysis and opinion mining among social
networks, spam filtering, protein classification.

In text classifier systems, documents are preprocessed in order to be suitable as training
data for a learning algorithm. Traditionally, each text document is converted into a vector
where each dimension represents a term which value is the weight that will be used in the
learning process. As the weight reflects the importance of the term in the document, an
appropriate choice of the metric function used for weighting terms is crucial for correct
classification.

Traditional unsupervised termweightsmetrics, as the popular TFIDF, depend only on term
frequency in the document and the (inverse) number of training documents containing this
term. For the purpose of text classification, supervised alternatives have been developed to
take into account the categories of the corpus documents [3,5,7–10,14,20,21,23,24,27]. The
key idea is to build ametric function that discriminates the terms according to the category for
which we are testing the document membership. Such a metric should be highly informative
about the relation of a document term t to a category c and discriminative in separating the
positive documents from the negative documents of category c. While unsupervised term
weights depend only on term frequency in the document and the number of training corpus
documents containing this term, supervised term weights are computed for each category
and use the number of documents belonging to the category containing this term. Intuitively,
supervised term weights measure the degree of correlation between term’s presence in a
document and membership of this document in the category.

In this work, we propose to experiment for term weighting the large number of metric
functions which were proposed for other data mining problems in order to measure the
correlation between two events. We use metrics collected from papers dealing with feature
selection [13,26,31], supervised term weighting [3,8,10,14,21,23,27], classification rules
[15] and term collocations [25]. We compare experimentally 96 metrics for term weighting.
Only 16 of them have been used for term-weighting problem in the literature, and 9 are new
metrics designed by the authors of this paper. It appears that using these metrics instead
of already used weights can improve the performances of SVM classifiers. Moreover, we
show that combining metrics improves the quality of the classification. While many previous
works have shown the merits of using a particular metric [3,5,7–10,14,20,21,23,24,27], our
experience suggests that the results obtained by such metrics can be highly dependent on the
label distribution on the corpus and also on the performancemeasures used (microaveraged or
macroaveraged F1-Score).However,we show that using a SVMclassifierwhich combines the
outputs of SVM classifiers that use different metrics improves significantly text classification
performances in all situations.

The secondmain contribution of this paper is an extended term representation for the vector
space model. Following the scheme used by TFIDF metric, which is the product of the term
frequency (TF) and inverse document frequency (IDF), alternative supervised forms have
been traditionally formulated by replacing the IDF term with a supervised metric function
[3]. However, merging by product TF with a factor such as IDF, Chi square or odds ratio is
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problematic. It is not clear why a two times larger TF is equivalent to a two times larger IDF
(Chi square or odds ratio). From our point of view, TFIDF is the product of two quantities
that are not of the same statistical nature. TF counts the number of occurrences of a term t
in a document, while IDF counts the (inverse) number of documents containing the term t .
We propose as an alternative to count the (inverse) number of documents containing the term
with frequency at least n. By doing this, we integrate the term frequency in a document in the
number of documents. The IDF quantity becomes the number of documents containing the
term t at least n times. Precisely, in our model, we propose to convert a text document into a
vector where each dimension represents a feature of the form (t, n), meaning that the term t
appears in the document at least n times. If the term t appears 10 times in the document, we
generate all the term frequency features (t, n) with n = 1, 2, 4 and 8 (powers of 2 in order to
limit the number of features). Hence, rather than associating the weight TFIDF to a term t ,
we affect in our model the weight IDF to features (t, n)which depends on the inverse number
of documents containing a term t at least n times. Our intuition is that this new definition of
IDF keeps more information for learning. This assumption is confirmed experimentally as
it improves the quality of the text classification. As all term weighting metrics (such as Chi
square or odds ratio) depend on the document frequency, our extended term representation,
explained here for IDF, is applicable to any metric. We also propose another type of extended
term feature based on the idea that the terms which are more correlated with the subject of the
document tend to appear at the beginning.We generate term position features (t, p), meaning
that the first position of t in the document is lower or equal to p. Experimental results show
that using these two extended term representations improves significantly the prediction of
the text classifier.

A brief review about supervised term-weighting metrics for text classification is presented
in Sect. 2. Our extended term representation is presented in Sect. 3. The metrics that we
proposed to compare are described in Sect. 4. The experimental comparison on Reuters-
21578, Ohsumed and 20 Newsgroups datasets are presented in Sect. 5.

2 Related works

First term-weightingmetrics for text classificationwere unsupervised and generally borrowed
from information retrieval (IR) field. The simplest IR metric is the binary representation BIN
which assigns a weight of 1 if the term appears in the document and 0 otherwise. The term can
be assigned aweight TF that depends on its frequency tf in the document. Different variants of
term frequency have been presented, for example, the raw term frequency tf or its logarithm
log(1+ tf). TFIDF is the most commonly used weighting metric in text classification. TFIDF
is the product of TF and IDF, the inverse document frequency which favors rare terms in
the corpus over frequent ones. However, there are some drawbacks on using unsupervised
weighting functions, as the category information is omitted.

Previous studies proposed different supervised weighting metrics where the document
frequency factor IDF of TFIDF is replaced by a factor that use prior information on the
number of documents belonging to each category. Several classical metrics were tested in
the literature, for instance, Chi square (χ2), information gain (IG), gain ratio (GR) and odds
ratio (OR) [5,7,8,10]. These early studies get an improvement with TF.χ2, TF.IG, TF.GR
and TF.OR term weights trained with SVM.

Accurate SVM text classification was obtained using Bi-Normal Separation (BNS) metric
[13] for supervised termweighting [14]. In the later study, Forman tested two variants TF.BNS
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and BIN.BNS (considering the term frequency or not) and noticed that “best F-measure was
obtained by using binary features with BNS scaling” (BIN.BNS) but “recall was slightly
better with TF.BNS features”. This observation shows that merging TF with a factor such as
BNS is problematic, i.e., not using TF yields to a better F1-Score but decreases the fraction
of the predicted categories that are relevant for a document.

More recently, other specific metrics were proposed for the supervised term-weighting
problem.Liu et al. [21] use a probability-based (PB) termweight in order to tackle the problem
of imbalanced distribution of documents among categories. Lan et al. [20] utilize a term
weight TF.RF based of the relevance frequency (RF) metric. The relationship and differences
between these term-weightingmetrics are studied in [2].Martineau et al. [23] propose ametric
TF.δIDF where IDF is replaced by the class inverse document frequency difference (δIDF).
Altinçay andErenel [3] combineRFmetricwithmutual information and the difference of term
occurrence probabilities in the collection of the documents belonging to the category and in
its complementary set. Nguyen et al. [24] propose aweighting scheme based on theKullback–
Leibler (KL) and Jensen–Shannon (JS) divergence measures for centroid-based classifiers.
Ren and Sohrab [27] test two metrics TF.IDF.ICF and TF.IDF.ICSδF that incorporate the
inverse class frequency (ICF) and inverse class space density frequency (ICSδF) to TF.IDF.
Bouillot et al. [6] propose alternative metrics for centroid termweighting and investigated the
influenceof numbers of categories, documents and terms in the classificationof small datasets.
Deng et al. [9] and Fattah [12] adapt and compare various text classificationweightingmetrics
for sentiment analysis. This application is also considered in the two pre-cited papers [23] and
[24]. Badawi and Altinçay [4] propose a framework based on employing the co-occurrence
statistics of pairs of terms for term selection and weighting in binary text classification.
Escalante et al. [11] use genetic programming for weighting terms. Ko [19] use a weighting
scheme based on the term relevance ratio (TRR).

From this state-of-the-art, we notice that each paper in the literature gives a newmetric and
demonstrates its classification improvement on some corpora considering a certain number
of categories (typically 10 categories for Reuters corpus). However, as we will show in the
following, there is no metric among the literature and also among the 80 metrics we propose
that yields the best results in all situations (corpus and number of categories). In order to
overcome this problem, we propose to combine the metrics.

3 Extended term representation

Text classification is traditionally achieved by applying a learning method to a representation
of the text document. In the vector space model, the document is represented as a vector
in the term space. Each dimension of the vector space represents a term which value is the
weight that will be used in the learning process. In this section, we propose to represent each
dimension by a term together with its minimal frequency or its minimal first position in the
document. We call these alternatives extended term representations.

3.1 Term features

In this classical representation, terms are viewed as the dimensions of the learning space. A
term may be a single word or a phrase (n-gram).
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3.2 Term frequency features

The number of occurrences of a term t in a document d is by itself a property that we propose
to use as a feature. Let us consider, for example, a particular term t such that 25% of the
documents where t appears are in category c. If 45% of the documents where t appears at
least 3 times are in category c, then the term t is probably more correlated with the category
c when its frequency exceeds 2. Hence, we propose features of the form (t, n) in documents
containing t with a term frequency at least n. If a document d contains ten times a term t ,
we must generate ten features (t, i) (i = 1, 2, . . . , 10), meaning that t occurs at least once,
twice, . . ., ten times. This could unnecessarily grow the number of features so we consider
only powers of 2 less or equal to n. Then, if t occurs ten times, we will generate the features
(t, 1), (t, 2), (t, 4) and (t, 8). The number of frequency features associated with a term t
which appears n times in a document d will only be log2 n in the worst case. In practice,
however, most terms have a low frequency and the number of features grows moderately as
we will show in the experiments (see Sect. 5.4).

3.3 Term position features

Most of the terms that are related to the main topics of a document occur at its beginning. In
order to validate this assumption, we propose features of the form (t, p), meaning that the
first position of t in the document is lower or equal to p. The position being defined as the
number of words preceding the term occurrence. As for term frequency features, we generate
only features (t, p) when p is a power of 2. For example, if a term t first appears at position
5 in a document of size 100 words, we generate the features (t, 8), (t, 16), (t, 32) et (t, 64),
meaning that the first position of t is lower or equal than 8, 16, 32 and 64. The number of
position features associated with a term t which appears in a document d at first position p
will be log2 |d| in the worst case, where |d| is the size of d in number of words. However,
using term frequency features augments moderately the number of features (see Sect. 5.4).

4 Weighting metrics

Supervised term metrics try to give a high weight to a feature that is particularly present in
documents that belong to a category. Hence, a good term-weightingmetric must be ameasure
of an observed correlation between two events in the set of training documents: containing a
term and belonging to a category. In this section, we propose to use the large number ofmetric
functions proposed for other data mining problems, but not yet used for term weighting, in
order to measure the correlation between the two events.

4.1 Notations

We consider a corpus D of N documents and d a particular document of D.
Let x denotes a nominal feature of d representing either:

– t a term that occurs in d ,
– (t, n) a term that occurs at least n times in d ,
– or (t, p) a term which first position is lower or equal to p in the document d .

Each document can belong to one or many categories (labels or classes) c1, c2, . . . , cM .
We denote by y a particular category ci .

123



914 M. Haddoud et al.

Table 1 Two-way contingency
table for nominal feature x and
category y

y ȳ ∗
x f (xy) = f11 = a f (x ȳ) = f12 = b f (x∗) = f1
x̄ f (x̄ y) = f21 = c f (x̄ ȳ) = f22 = d f (x̄∗)

∗ f (∗y) = f2 f (∗ȳ) f (∗∗) = N

Table 2 Expected contingency table for nominal feature x and category y

y ȳ ∗

x f̂ (xy) = f (x∗) f (∗y)
N f̂ (x ȳ) = f (x∗)(N− f (∗y))

N f̂ (x∗)

x̄ f̂ (x̄ y) = (N− f (x∗)) f (∗y)
N f̂ (x̄ ȳ) = (N− f (x∗))(N− f (∗y))

N f̂ (x̄∗)

∗ f̂ (∗y) f̂ (∗ȳ) N

We denote by x̄ the fact that the feature x is not present in d and by ȳ the fact that d does
not belong to the category y.

The number of documents containing the feature x and belonging to the category y is
denoted by f (xy) and represents the document frequency. In general, f (uv) denotes the num-
ber of documents containing u and belonging to v, u being x , x̄ or ∗ (documents containing
any term) and v being y, ȳ or ∗ (documents belonging to any category). These frequencies are
represented in the contingency table (Table 1) in which the number of documents is denoted
by N , f (xy) by a and f11, f (x ȳ) by b and f12, and so on.

Many metrics are based on the estimation of the probability P(uv), the probability that a
document containing u belongs to the category v, u being x , x̄ or ∗ and v being y, ȳ or ∗.
Under the maximum-likelihood hypothesis, this probability is estimated by:

p(uv) = f (uv)

N

Some metrics are based on the difference between the observed and the expected frequen-
cies. The expected contingency frequencies under the null hypothesis of independence H0

are given in Table 2.
Few metrics use the number of categories containing a document that contains a feature

x . This quantity is denoted by fc(x) and corresponds to:

fc(x) = |{y| f (xy) > 0}|
4.2 Metrics

Giving a weight to a feature x associated with a term in a document labeled with y depends
on the correlation between x and y in the training corpus. This correlation can be estimated
by different metrics, and all the metrics used in this paper depend only on five values:

– N the number of training documents.
– f (xy) the joint frequency.
– f (x∗) and f (∗y) the marginal frequencies.
– fc(x) the number of categories containing (a document that contains) feature x .
– M the number of categories.
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Given these values, one can compute the contingency table and then compute any of the
96 metrics described in Table 3. Most of these metrics are collected from papers dealing with
feature selection [13,26,31], supervised termweighting [3,8,10,14,21,23,27], classification
rules [15] and term collocations [25]. The first 16 metrics of Table 3 are those already used
for the term- weighting problem in the literature [3,8,10,14,20,21,23,27]. The last 9 metrics
are proposed by the authors of this paper.

5 Experiments

5.1 Benchmark

In order to compare experimentally the metrics, we use Reuters-21578, Ohsumed and
20 Newsgroups corpora. These datasets are the most widely used benchmarks for text clas-
sification.

The distribution of the categories in Reuters-21578 corpus is highly unbalanced. In order
to study the performances obtained by each weighting metric in more or less unbalanced
situations, our results on Reuters-21578 are reported:

– for the 115 categories with at least one training example,
– for the 52 categories with at least 16 training examples,
– and for the set of the 10 categories with the highest number of training examples.

Ohsumed is a medical abstract corpus with 23 cardiovascular diseases categories. Twenty
Newsgroups corpus contains articles taken from 20 Usenet newsgroups (categories).

Term variation can affect its frequencywhich is an important parameter in the termweight,
and the solution consists in replacing eachword by its stem. For all the corpora,we used Porter
stemmer which gives the best performances in our experiments. After stemming, we have
tokenized the text documents. For each sentence in a document, we generate all possible
n-grams (terms). We choose the size of n-grams according to the performances obtained
in each corpus. For Reuters-21578 corpus, the size of n was fixed to 1; for Ohsumed and
20 Newsgroups corpora, we fixed n ≤ 2.

Weused the training/testing split proposed inReuters-21578 (Mobapte split) andOhsumed
corpora. There is no fixed literature split for 20 Newsgroups. It is usually used for cross-
validation. We have adopted a fivefold cross-validation on 20 Newsgroups corpus in order
to evaluate the statistical significance of the achieved performance improvements.

Traditionally, the performance of a classifier on a corpus is estimated by learning the
classification on the training data and evaluating the accuracy of the prediction obtained on
the evaluation data. The evaluation metrics used are the precision which is the proportion
of documents placed in the category that are really in the category, the recall which is the
proportion of documents in the category that are actually placed in the category, and the
F1-Score defined as:

F1-Score = 2.precision.recall

precision + recall

The microaveraged F1-Score is computed globally for all the categories, while the
macroaveraged F1-Score is the average of the F1-Scores computed for each category. The
latter measures the ability of a classifier to perform well when the distribution of the cate-
gories is unbalanced, while the microaveraged F1-Score gives a global view of the document
classification performance.
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916 M. Haddoud et al.

Table 3 Metrics used for supervised feature weighting

Metric Mathematical form

IDF log( N
f (x∗)

)

Pearson’s χ2 testa
∑

i, j
( fi j− ˆfi j )

ˆfi j
Information gaina

∑
u∈{x,x̄}

∑
v∈{y,ȳ} p(uv) log p(uv)

p(u∗)p(∗v)

Gain ratioa
∑

u∈{x,x̄}
∑

v∈{y,ȳ} p(uv) log p(uv)
p(u∗)p(∗v)∑

v∈{y,ȳ} p(v) log p(v)

Odds ratiob ad
bc

Log odds ratioc log ad
bc

Forman log odds ratioc | log ad
bc |

Bi-normal separation (BNS)c |F−1(p(x |y)) − F−1(p(x |ȳ))|d
Probability-based term weighte log(1 + a2

bc )

Pointwise mutual informatione log p(xy)
p(x∗)p(∗y)

Relevance frequencyf log2(2 + a
max(b,1) )

Relevance frequencyOR
g log2(2 + a

max(b,1) )(1 + p(x |y) − p(x |ȳ))
Relevance frequencyχ2

g log2(2 + a
max(b,1) )|p(x |ȳ) − p(x |y)|

δIDFh log( p(x |y)
p(x |ȳ) )

IDF.ICFi log(1 + N
f (x∗)

) log(1 + M
fc(x)

)

IDF.ICSδFi log(1 + N
f (x∗)

) log(1 + M∑
ci∈C p(x |ci ) )

Joint probability p(xy)

Conditional probability p(y|x) = p(xy)
p(x∗)

Reverse conditional probability p(x |y)
Mutual dependency log p(xy)2

p(x∗)p(∗y)
Log frequency biased log p(xy)2

p(x∗)p(∗y) + log p(xy)

Normalized expectation 2 f (xy)
f (x∗) f (∗y)

Mutual expectation 2 f (xy)
f (x∗) f (∗y) + p(xy)

Salience log p(xy)2

p(x∗)p(∗y) + log f (xy)

t Test f (xy)− f̂ (xy)√
f (xy)(1−( f (xy)/N ))

z Score f (xy)− f̂ (xy)√

f̂ (xy)(1−( f̂ (xy)/N ))

Poisson significance f̂ (xy)− f (xy) log f̂ (xy)+log f (xy)!
log N

Log likelihood ratio −2
∑

i, j fi, j log
fi, j
f̂i, j

Squared log likelihood ratio −2
∑

i, j fi, j
log f 2i, j
f̂i, j

Russel–Rao a
a+b+c+d

123



Combining supervised term-weighting metrics for SVM text… 917

Table 3 continued

Metric Mathematical form

Sokal–Michiner a+d
a+b+c+d

Rogers–Tanimoto a+d
a+2b+2c+d

Hamann (a+d)−(b+c)
a+b+c+d

Third Sokal–Sneath b+c
a+d

Jaccard a
a+b+c

First Kulczynski a
b+c

Second Sokal–Sneath a
a+2(b+c)

Second Kulczynski 1
2 ( a

a+b
a

a+c )

Yulle’s ω

√
ad−√

bc√
ad+√

bc

Yulle’s Q ad−bc
ad+bc

Driver–Kroeber a√
(a+b)(a+c)

Fifth Sokal–Sneath ad√
(a+b)(a+c)(d+b)(d+c)

Pearson ad−bc√
(a+b)(a+c)(d+b)(d+c)

Baroni-Urbani a+√
ad

a+b+c+√
ad

Braun-Blanquet a
max(a+b,a+c)

Simpson a
min(a+b,a+c)

Michael 4(ad−bc)
(a+d)2+(b+c)2

Mountford 2a
2bc+ab+ac

Fager a√
(a+b)(a+c)

Unigram subtuples log ad
bc − 3.29

√
1
a
1
b
1
c
1
d

U cost log(1 + min(b,c)+a
max(b,c)+a )

S cost log(1 + min(b,c)+a
a+1 )

− 1
2

R cost log(1 + a
a+b ) log(1 + a

a+c )

T combined cost
√
Ucost × Scost × Rcost

Phi p(xy)−p(x∗)p(∗y)√
p(x∗)p(∗y)(1−p(x∗))(1−p(∗y))

Kappa p(xy)+p(x̄ ȳ)−p(x∗)p(∗y)−p(x̄∗)p(∗ȳ)
1−p(x∗)p(∗y)−p(x̄∗)p(∗ȳ)

J measure max[p(xy) log p(y|x)
p(∗y) + p(x ȳ) log p(ȳ|x)

p(∗ȳ) , p(xy) log p(x |y)
p(x∗)

+
p(x̄ y) log p(x̄ |y)

p(x̄∗)
]

One-way J measure p(xy) log( p(y|x)
p(∗y) ) + p(x ȳ) log( p(ȳ|x)

p(∗ȳ) )

Gini index max[p(x∗)(p(y|x))2+ p(ȳ|x)2)− p(∗y)2+ p(x̄∗)(p(y|x̄))2+
p(ȳ|x̄)2) − p(∗ȳ)2, p(∗)(p(x |y))2 + p(x̄ |y)2) −
p(x∗)2 p(∗)(p(x |y))2+ p(x̄ |y)2)− p(x∗)2+ p(∗ȳ)(p(x |ȳ))2+
p(x̄ |ȳ)2) − p(x̄∗)2]

One-way Gini index p(x∗)(p(y|x))2 + p(ȳ|x)2) − p(∗y)2 + p(x̄∗)(p(y|x̄))2 +
p(ȳ|x̄)2) − p(∗ȳ)2
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918 M. Haddoud et al.

Table 3 continued

Metric Mathematical form

Confidence max[p(y|x), p(x |y)]
Laplace max[ f (xy)+1

f (x∗)+2 ,
f (xy)+1
f (∗y)+2 ]

One-way Laplace f (xy)+1
f (x∗)+2

Conviction max[ p(x∗)p(∗ȳ)
p(x ȳ) ,

p(x̄∗)p(∗y)
p(x̄ y) ]

One-way conviction p(x∗)p(∗ȳ)
p(x ȳ)

Piatersky–Shapiro p(xy) − p(x∗)p(∗y)
Certainty factor max[ p(y|x)−p(∗y)

1−p(∗y) ,
p(x |y)−p(x∗)

1−p(x∗)
]

One-way certainty factor p(y|x)−p(∗y)
1−p(∗y)

Added value max[p(y|x) − p(∗y), p(x |y) − p(x∗)]
One-way added value p(y|x) − p(∗y)
Collective strength p(xy)p(x̄ ȳ)

p(x∗)p(∗y)+p(x̄∗)p(∗ȳ) .
1−p(x∗)p(∗y)−p(x̄∗)p(∗ȳ)

1−p(xy)−p(x̄ ȳ)

Klosgen
√
p(xy)max(p(y|x) − p(∗y), p(x |y) − p(x∗))

One-way Klosgen
√
p(xy)(p(y|x) − p(∗y))

GSS coefficient p(xy)p(x̄ ȳ) − p(x ȳ)p(x̄ y)

Specificity p(ȳ|x̄)
Leverage p(y|x) − p(x∗)p(∗y)
Relative risk p(y|x)/p(y|x̄)
One-way support p(y|x) log2 p(xy)

p(x∗)p(∗y)
Two-way support p(xy) log2

p(xy)
p(x∗)p(∗y)

Two-way support variation p(xy) log2
p(xy)

p(x∗)p(∗y) + p(x ȳ) log2
p(x ȳ)

p(x∗)p(∗ȳ) +
p(x̄ y) log2

p(x̄ y)
p(x̄∗)p(∗y)+p(ȳ|x̄) log2

p(x̄ ȳ)
p(x̄∗)p(∗ȳ)

Loevinger 1 − p(x∗)p(∗ȳ)
p(x ȳ)

Sebag–Schoenauer log p(xy)
p(x∗)p(∗y)

Least contradiction p(xy)−p(x ȳ)
p(∗y)

Odd multiplier p(xy)p(x ȳ)
p(∗y)p(x ȳ)

Example and counterexample rate 1 − p(x ȳ)
p(xy)

Zhang p(xy)−p(x∗)p(∗y)
max(p(xy)p(∗ȳ),p(∗y)p(x ȳ))

Weighted log likelihood ratio p(x |y) log( p(x |y)
p(x |ȳ) )

Document TFIDF f (xy)
f (∗y) log

N
f (x∗)

Reverse-way document TFIDF f (xy)
f (x∗)

log N
f (∗y)

Conditional probability variation 1 p(y|x)p(ȳ|x̄)
Conditional probability variation 2 p(y|x) + p(ȳ|x̄)
Conditional probability variation 3 p(y|x) + p(∗y)
Conditional probability variation 4 p(y|x)+p(ȳ|x̄)+p(x̄ |ȳ)

3
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Table 3 continued

Metric Mathematical form

Conditional probability variation 5 p(x |y) − p(x |ȳ)
Relevance frequency variation log2(2 + a

max(b,1) ) × log2(2 + a
max(c,1) )

Reverse-way BNS |F−1(p(y|x)) − F−1(p(y|x̄))|i

a Debole and Sebastiani [8]
b Deng et al. [10]
c Forman [14]
d F−1 is the inverse normal cumulative distribution function.
e Liu et al. [21]
f Lan et al. [20]
g Altinçay and Erenel [3]
h Martineau et al. [23]
i Ren and Sohrab [27]

5.2 Learning

In multi-label text classification, each document d belongs to one or many of the categories
in C = {c1, c2, . . . , cl}. In order to learn for multi-label classification, we use the traditional
binary relevance (BR) strategy [22,29,32], the well-known one-against-all problem trans-
formation method that learns |C | independent binary classifiers, one for each category. Each
binary classifier gives a probability that d belongs or not to the category y = ci .

5.2.1 Weighting

For each binary classifier associated with a category y, every document d is transformed to a
vector Wd = (w(x1, y, d), w(x2, y, d), . . . , w(xn, y, d)) where each feature x is weighted
by:

w(x, y, d) = wTF(x, d) × wDF(x, y)

The term frequency weight wTF depends on the frequency of x in the document d . The
document frequency weight wDF is one of the metrics described in Table 3.

Each feature x can be either:

– a term feature t in the classical model,
– or a term frequency feature (t, n) or a term position (t, p) feature as defined in Sect. 3.

For the classical term representation, following [20], we experimented three possible
term frequency weights (see Table 4). For our model, we use only binary term weights
(wTF(x, d) = BIN(x, d)), because the frequency of the term is already considered in the
extended term representation x = (t, n).

5.2.2 SVM classifier

For each category, we have used a SVM binary classifier which learns a linear combination
of the features in order to define the decision hyperplane. We adopted the SVMLight tool
[17] with a linear kernel and used the default settings. Previous studies show that SVMLight
performs well for text classification [16].
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Table 4 Experimented term frequency weights as a function of the frequency tf(x, d) of x in d

Term frequency weight Value Description

BIN(x,d) 1 if tf(x, d) > 0, 0 otherwise Binary weight

RTF(x,d) tf(x, d) Raw term frequency

LTF(x,d) log(1 + tf(x, d)) Term frequency logarithm

ITF(x,d) 1 − 1
1−tf(x,d)

Inverse term frequency

5.2.3 SVM classifier combination

Classifier combination [30] methods are ensemble techniques that use the predictions of
several classifiers to obtain better predictive performance than could be obtained from any of
the constituent classifiers. One way to combine several classifiers is to consider the multiple
classifier outputs as inputs to a generic classifier called secondary classifier.

In our case for each category, we combine with a SVM classifier the scores given by
multiple base SVM binary classifiers, each classifier uses one of the 96 metrics for weighting
the features. Base SVM learners are trainedwith the same set of documents. The classification
scores obtained by each training document are used as input features for the secondary SVM
learner. We also tried random forest as secondary classifier, but SVM gives better results.

5.3 Results

In order to estimate the performance of both our model and the 96metrics, we have compared
the F1-Score of SVM classification on Reuters-21578, Ohsumed and 20 Newsgroups docu-
ments with classical and extended term representations using different weighting schemes.

5.3.1 Metric comparison

We recall that for a fixed category y the weight w(x, y, d) of a feature x in a document d is:

w(x, y, d) = wTF(x, d) × wDF(x, y)

where the term frequency weight wTF (see Table 4) depends on the frequency of x in the
document d and the document frequency weight wDF is one of the metrics described in
Table 3. The feature x represents either a term feature t , a term frequency feature (t, n) or a
term position feature (t, p).

For each document frequency weight metric wDF we have experimented 5 weighting
schemes:

– raw term frequency weight (wTF = RTF) for term features t
– term frequency logarithm weight (wTF = LTF) for term features t
– inverse term frequency weight (wTF = ITF) for term features t
– binary term frequency weight (wTF = BIN) for term frequency features (t, n)

– binary term frequency weight (wTF = BIN) for term frequency features (t, n) and term
position features (t, p)

Table 5 reports themicroaveraged F1-Score forReuters-21578 (10, 52 and 115 categories),
Ohsumed and20Newsgroups.After calculation of the F1-Score for each classifier, themetrics
are ranked in descending order of the best weighting scheme score. Table shows only the
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Table 5 Microaveraged F1-Scores of SVMmethodwith different term representations and weightingmetrics
(top-10 metrics and IDF scores) on Reuters (10, 52 and 115 categories), Ohsumed and 20 Newsgroups corpora

Corpus Term representation t t t (t, n) (t, n) and (t, p)

Term frequency weight RTF LTF ITF BIN BIN

Reuters 10 cat. Document frequency weight

1 Yulle’s ω 0.912 0.921 0.926 0.927 0.947

2 Log odds ratio 0.913 0.922 0.927 0.929 0.947

3 Forman log odds ratio 0.913 0.922 0.927 0.929 0.947

4 Yulle’s Q 0.909 0.919 0.924 0.925 0.946

5 Pointwise mutual information 0.909 0.920 0.923 0.929 0.946

6 Unigram subtuples 0.911 0.922 0.926 0.928 0.946

7 Bi-normal separation 0.915 0.922 0.927 0.928 0.946

8 δIDF 0.911 0.920 0.926 0.929 0.945

9 Zhang 0.908 0.918 0.921 0.923 0.945

10 Reverse-way BNS 0.911 0.920 0.924 0.924 0.944

. . .

30 IDF 0.854 0.886 0.892 0.888 0.932

Reuters 52 cat. Document frequency weight

1 Bi-normal separation 0.843 0.861 0.867 0.878 0.893

2 Log odds ratio 0.837 0.855 0.860 0.872 0.891

3 Forman log odds ratio 0.837 0.855 0.860 0.872 0.891

4 Reverse-way BNS 0.834 0.853 0.855 0.870 0.890

5 Probability-based term weight 0.821 0.847 0.853 0.862 0.889

6 δIDF 0.833 0.853 0.858 0.869 0.889

7 Pointwise mutual information 0.826 0.853 0.856 0.864 0.889

8 Yulle’s ω 0.830 0.854 0.859 0.868 0.888

9 Collective strength 0.820 0.842 0.849 0.858 0.887

10 Relevance frequency variation 0.826 0.848 0.854 0.866 0.886

. . .

76 IDF 0.750 0.797 0.810 0.820 0.864

Reuters 115 cat. Document frequency weight

1 Bi-normal separation 0.852 0.865 0.870 0.883 0.877

2 Log odds ratio 0.848 0.865 0.870 0.880 0.875

3 Forman log odds ratio 0.848 0.865 0.870 0.880 0.875

4 Relevance frequencyOR 0.834 0.851 0.854 0.878 0.869

5 Conviction 0.835 0.847 0.852 0.876 0.861

6 Yulle’s ω 0.843 0.861 0.865 0.875 0.870

7 Relevance frequency 0.828 0.849 0.850 0.875 0.865

8 Reverse-way BNS 0.847 0.861 0.865 0.874 0.875

9 S cost 0.833 0.850 0.853 0.874 0.864

10 One-way conviction 0.831 0.844 0.849 0.874 0.854

. . .

75 IDF 0.790 0.823 0.833 0.849 0.845
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Table 5 continued

Corpus Term representation t t t (t, n) (t, n) and (t, p)

Term frequency weight RTF LTF ITF BIN BIN

Ohsumed Document frequency weight

1 One-way Klosgen 0.587 0.604 0.609 0.631 0.639

2 Klosgen 0.586 0.600 0.605 0.626 0.636

3 z Score 0.578 0.601 0.605 0.624 0.634

4 Pearson 0.577 0.600 0.604 0.624 0.633

5 Phi 0.577 0.600 0.604 0.624 0.633

6 Squared log likelihood ratio 0.558 0.585 0.593 0.621 0.631

7 Odds ratio 0.563 0.582 0.590 0.617 0.629

8 One-way Gini index 0.593 0.598 0.600 0.618 0.629

9 Pearson’s χ2 test 0.593 0.598 0.600 0.618 0.629

10 Sebag–Schoenauer 0.560 0.581 0.588 0.616 0.628

. . .

81 IDF 0.296 0.363 0.380 0.417 0.444

20 Newsgroups Document frequency weight

1 One-way Klosgen 0.731 0.759 0.764 0.767 0.790

2 z Score 0.713 0.755 0.762 0.767 0.790

3 Pearson 0.708 0.753 0.761 0.766 0.788

4 Phi 0.708 0.753 0.761 0.766 0.788

5 Bi-normal separation 0.664 0.737 0.747 0.749 0.785

6 Reverse-way BNS 0.666 0.737 0.747 0.750 0.783

7 One-way Laplace 0.671 0.733 0.742 0.748 0.782

8 Klosgen 0.706 0.742 0.750 0.758 0.781

9 Relative risk 0.692 0.743 0.751 0.756 0.781

10 Second Kulczynski 0.672 0.736 0.746 0.753 0.781

. . .

78 IDF 0.396 0.589 0.617 0.628 0.708

top-10 metrics. It is clearly observed that the proposed representation models (t, n) and
(t, n) and (t, p) perform significantly better than the classical representation and achieve
the best performances in all experiments in terms of microaveraged F1-scores for all the
metrics. The model (t, n) and (t, p) performs better than the model (t, n), which means that
using the position improves the performances. The only exception is Reuters-21578 with 115
categories. We think this is due to the fact that a significant number of categories (40/115) are
represented by only up to 3 training documents, and the influence of position in the document
cannot be learned correctly.

These observations comfort our intuition that including term frequency in document fre-
quency formula as a feature is more relevant than multiplying those quantities. For the
classical term representation model, the inverse term frequency (ITF) weight gives better
F1-scores than raw and logarithm term frequency (RTF and LTF). We also notice that the
baseline metric TFIDF with the classical representation, precisely ITF.IDF, performs sig-
nificantly worse than other metrics. Put together using other metrics than TFIDF and using
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Table 6 Macroaveraged F1-Scores of SVMmethodwith different term representations andweightingmetrics
(top-10 metrics and IDF scores) on Reuters (10, 52 and 115 categories), Ohsumed and 20 Newsgroups corpora

Corpus Term representation t t t (t, n) (t, n) and (t, p)

Term frequency weight RTF LTF ITF BIN BIN

Reuters 10 cat. Document frequency weight

1 Unigram subtuples 0.836 0.864 0.874 0.881 0.898

2 Bi-normal separation 0.857 0.868 0.876 0.882 0.897

3 Log odds ratio 0.851 0.868 0.876 0.878 0.896

4 Forman log odds ratio 0.851 0.868 0.876 0.878 0.896

5 Pointwise mutual information 0.844 0.864 0.869 0.880 0.895

6 Yulle’s ω 0.849 0.867 0.874 0.880 0.894

7 Yulle’s Q 0.840 0.860 0.871 0.873 0.892

8 Zhang 0.834 0.857 0.862 0.869 0.892

9 δIDF 0.846 0.864 0.871 0.878 0.891

10 Collective strength 0.825 0.850 0.856 0.867 0.890

. . .

73 IDF 0.743 0.807 0.817 0.814 0.862

Reuters 52 cat. Document frequency weight

1 Kappa 0.615 0.645 0.661 0.706 0.765

2 Normalized expectation 0.612 0.647 0.657 0.710 0.763

3 One-way Klosgen 0.585 0.620 0.639 0.691 0.762

4 Bi-normal separation 0.645 0.686 0.686 0.721 0.762

5 Jaccard 0.614 0.646 0.655 0.706 0.761

6 Poisson significance 0.630 0.660 0.670 0.723 0.760

7 Log likelihood ratio 0.627 0.651 0.658 0.692 0.760

8 J measure 0.627 0.654 0.659 0.693 0.759

9 One-way J measure 0.626 0.647 0.661 0.705 0.759

10 One-way Gini index 0.593 0.624 0.637 0.695 0.759

. . .

86 IDF 0.380 0.500 0.520 0.576 0.625

Reuters 115 cat. Document frequency weight

1 Relevance frequencyOR 0.443 0.498 0.493 0.574 0.489

2 Bi-normal separation 0.474 0.514 0.533 0.566 0.508

3 Poisson significance 0.504 0.513 0.522 0.565 0.546

4 Log odds ratio 0.465 0.509 0.524 0.563 0.495

5 Forman log odds ratio 0.465 0.509 0.524 0.563 0.495

6 Pearson 0.482 0.509 0.521 0.562 0.539

7 Phi 0.482 0.509 0.521 0.562 0.539

8 Conviction 0.465 0.508 0.529 0.561 0.510

9 S cost 0.444 0.501 0.510 0.560 0.477

10 Mutual expectation 0.481 0.458 0.432 0.512 0.557

. . .

81 IDF 0.362 0.417 0.426 0.474 0.380
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Table 6 continued

Corpus Term representation t t t (t, n) (t, n) and (t, p)

Term frequency weight RTF LTF ITF BIN BIN

Ohsumed Document frequency weight

1 One-way Klosgen 0.538 0.569 0.575 0.595 0.602

2 Squared log likelihood ratio 0.540 0.557 0.564 0.589 0.601

3 Klosgen 0.536 0.565 0.570 0.591 0.598

4 One-way Gini index 0.553 0.562 0.567 0.586 0.598

5 Pearson’s χ2 test 0.553 0.562 0.568 0.587 0.598

6 Odds ratio 0.520 0.545 0.553 0.576 0.594

7 z Score 0.523 0.556 0.562 0.584 0.592

8 Pearson 0.522 0.556 0.562 0.583 0.591

9 Phi 0.522 0.556 0.562 0.583 0.591

10 J measure 0.537 0.552 0.555 0.561 0.591

. . .

85 IDF 0.185 0.237 0.255 0.289 0.319

20 Newsgroups Document frequency weight

1 One-way Klosgen 0.737 0.764 0.770 0.773 0.795

2 z Score 0.718 0.761 0.768 0.773 0.795

3 Pearson 0.713 0.758 0.766 0.771 0.793

4 Phi 0.713 0.758 0.766 0.771 0.793

5 Bi-normal separation 0.669 0.743 0.753 0.754 0.789

6 Reverse-way BNS 0.672 0.743 0.752 0.755 0.788

7 Klosgen 0.712 0.748 0.757 0.765 0.787

8 One-way Laplace 0.676 0.738 0.747 0.754 0.786

9 Relative risk 0.697 0.749 0.756 0.761 0.786

10 Second Kulczynski 0.678 0.741 0.752 0.759 0.785

. . .

78 IDF 0.403 0.595 0.623 0.633 0.712

extended term representation gives significant improvement to the classification. For exam-
ple, the F1-Score increased from 0.892 for TFIDF to 0.947 for Yulle’s ω with the extended
term representation (t, n) and (t, p) in the Reuters-21578 corpus with 10 categories. The
best improvement is obtained in Ohsumed corpus as we move from a F1-Score of 0.380
to 0.639 with one-way Klosgen metric with an extended term representation. However, we
notice that the best metrics are very different according to the corpus used and whether the
label distribution is balanced or not for Reuters-21578 corpus.

Table 6 provides the macroaveraged F1-Scores of the top-10 metrics among all weighting
schemes.We observe also that the proposed representation models (t, n) and (t, n) and (t, p)
achieve better macroaveraged F1-scores. However, the top-10 metrics when we consider the
macroaveraged F1-scores are generally different from the top-10 metrics considering the
microaveraged F1-scores.

We also notice that lots ofmetrics proposed in this paper for the first time in termweighting
give better results than metrics previously used for this problem.
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Table 7 Microaveraged andmacroaveraged F1-Scores of SVMmethods and their combinationwith extended
term representation (t, n) and (t, p) for different weighting metrics on Reuters (10, 52 and 115 categories),
Ohsumed and 20 Newsgroups corpora

Document frequency weight MiF Document frequency weight MaF

Reuters 10 categories

Combination 0.952 Combination 0.910

Yulle’s ω 0.947 Unigram subtuples 0.898

Log odds ratio 0.947 Bi-normal separation 0.897

Forman log odds ratio 0.947 Log odds ratio 0.896

Yulle’s Q 0.946 Forman log odds ratio 0.896

Pointwise mutual information 0.946 Pointwise mutual information 0.895

Unigram subtuples 0.946 Yulle’s ω 0.894

Bi-normal separation 0.946 Yulle’s Q 0.892

δIDF 0.945 Zhang 0.892

Zhang 0.945 δIDF 0.891

Reverse-way BNS 0.944 Collective strength 0.890

Reuters 52 categories

Combination 0.905 Combination 0.772

Bi-normal separation 0.893 Kappa 0.765

Log odds ratio 0.891 Normalized expectation 0.763

Forman log odds ratio 0.891 One-way Klosgen 0.762

Reverse-way BNS 0.890 Bi-normal separation 0.762

Probability-based term weight 0.889 Jaccard 0.761

δIDF 0.889 Poisson significance 0.760

Pointwise mutual information 0.889 Log likelihood ratio 0.760

Yulle’s ω 0.888 J measure 0.759

Collective strength 0.887 One-way J measure 0.759

Relevance frequency variation 0.886 One-way Gini index 0.759

Reuters 115 categories

Combination 0.888 Combination 0.570

Bi-normal separation 0.877 Mutual expectation 0.557

Log odds ratio 0.875 One-way Gini index 0.554

Forman log odds ratio 0.875 Second Sokal–Sneath 0.553

Reverse-way BNS 0.875 Pearson’s χ2 test 0.553

Probability-based term weight 0.873 Jaccard 0.552

Pointwise mutual information 0.873 First Kulczynski 0.551

Relevance frequency variation 0.872 R cost 0.551

z Score 0.872 T combined cost 0.551

Pearson 0.871 One-way Klosgen 0.551

Phi 0.871 One-way J measure 0.547
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Table 7 continued

Document frequency weight MiF Document frequency weight MaF

Ohsumed

Combination 0.679 Combination 0.647

One-way Klosgen 0.639 One-way Klosgen 0.602

Klosgen 0.636 Squared log likelihood ratio 0.601

z Score 0.634 Klosgen 0.598

Pearson 0.633 One-way Gini index 0.598

Phi 0.633 Pearson’s χ2 test 0.598

Squared log likelihood ratio 0.631 Odds ratio 0.594

Odds ratio 0.629 z Score 0.592

One-way Gini index 0.629 Pearson 0.591

Pearson’s χ2 test 0.629 Phi 0.591

Sebag–Schoenauer 0.628 J measure 0.591

5.3.2 Classifier combination

As no metric gives the best results in all situations, we have tested classifier combination.
The classification of a new document is done in two steps: We first compute classification
scores with 96 base SVM learners, and each learner uses a different metric for weighting
the features, and then, we use these scores as features for classifying the document with the
secondary SVM learner.

Table 7 provides the F1-Scores obtained by different weighting metrics and their combi-
nation when we use extended term representation (t, n) and (t, p) on Reuters (10, 52 and 115
categories), Ohsumed and 20 Newsgroups corpora. We can see that the performances of the
classifier combination are always better according to all criteria: the microaveraged and the
macroaveraged F1-score for all the corpora. This confirms that by combining the predictions
of several classifiers using different metrics one obtains better predictive performance than
could be obtained from any of the constituent classifiers that use one metric.

The statistical significance of the achieved performances on 20 Newsgroups corpus are
given in Table 8. Besides the fact that the F1-score obtained by the classifier combination is
more (in 20 Newsgroups) or less (in Reuters with 10 categories) significantly better than the
best metric for each corpus, combination is the only method that gives good results for all
corpora, all number of categories and both type of F1-Scores (micro and macro).

5.4 Computation time and time complexity

Table 9 gives the number of features considered in the training set according to the term
representations we have considered in our experiments. It shows a moderate growth in the
number of features, by a factor of 3, when we consider term frequency and position features
compared to traditional term features.

It is interesting to note in the same table that SVM learning computation time (on one
processor of an Intel(R) Core(TM) i7-3520M at 2.90 GHz) is almost proportional to the
number of features. Indeed, Thorsten Joachims showed that training linear SVM can be
achieved in time O(ns), where s is the number of nonzero features (terms) in each example
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Table 8 Fivefold cross-validation performances (mean and standard deviation) of SVM methods and their
combination with extended term representation (t, n) and (t, p) for different weighting metrics on 20 News-
groups corpora

Document frequency weight MiF Document frequency weight MaF

20 Newsgroups

Combination 0.861±0.008 Combination 0.866±0.006

One-way Klosgen 0.790 ± 0.007 One-way Klosgen 0.795 ± 0.006

z Score 0.790 ± 0.008 z Score 0.795 ± 0.005

Pearson 0.788 ± 0.009 Pearson 0.793 ± 0.006

Phi 0.788 ± 0.009 Phi 0.793 ± 0.006

Bi-normal separation 0.785 ± 0.012 Bi-normal separation 0.789 ± 0.010

Reverse-way BNS 0.783 ± 0.010 Reverse-way BNS 0.788 ± 0.009

One-way Laplace 0.782 ± 0.009 Klosgen 0.787 ± 0.004

Klosgen 0.781 ± 0.006 One-way Laplace 0.786 ± 0.007

Relative risk 0.781 ± 0.009 Relative risk 0.786 ± 0.007

Second Kulczynski 0.781 ± 0.007 Second Kulczynski 0.785 ± 0.006

Table 9 Number of features considered in the training set of Reuters-21578, Ohsumed and 20 Newsgroups
corpora and average SVM learning computation time for one metric and one category in each corpus

Feature type Number of features Time (in s)

Reuters-21578

Term features t 20 767 0.203

Term frequency features (t, n) 32 690 0.283

Term frequency and position features (t, n) and (t, p) 61 096 0.627

Ohsumed

Term features t 175 803 2.254

Term frequency features (t, n) 223 589 3.236

Term frequency and position features (t, n) and (t, p) 500 474 8.082

20 Newsgroups

Term features t 393 797 8.306

Term frequency features (t, n) 462 370 21.083

Term frequency and position features (t, n) and (t, p) 861 749 33.028

(document) and n the number of examples [18], with the assumption that s � N , N being
the number of features in the entire corpus. This last assumption is verified for a corpus of
text documents. As we have already discussed in Sects. 3.2 and 3.3, the number of frequency
and position features associated with a term t in each document grows with the logarithm of
s. This means that the time complexity for training a corpus with documents containing at
most s terms is O(ns log s). In practice, log s is small as it is confirmed by both the number
of features and the computation time presented in Table 9.

Our classifier combination method implies the use of 96 SVM learners in the first step,
then another SVM learner for the final classification. The theoretical time complexity is not
affected because 96 is a constant value. However, in practice, it means that it multiplies the
computation time by 96. In many text classification problems, one can afford such compu-
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tation time constant growth in order to obtain significant improvement in the quality of the
classification (from a microaveraged F1-Score of 0.444 with IDF to 0.679 by combining 96
metrics in the case of Ohsumed corpus).

6 Conclusion

In this paper,we have studied 96 term-weightingmetrics, and among them80metrics have not
been used for this problem in the literature. Many of them provide better results than those
already used for term weighting. We have also proposed an extended term representation
where the term frequency and the term position in the document are adequately integrated
to the document frequency. As no metric gives the best results according to whether the
label distribution is balanced or not, we have proposed a classifier combination method with
different metrics that performs well for both macroaveraged and microaveraged F1-scores
for different cases of label distribution.

Future work includes searching for superior weighting metrics, using other learning meth-
ods (NaivesBayes, centroid, etc.) and testing on large-scale benchmark data sets. In particular,
it would be interesting to improve the computation time in order to apply our ideas on MED-
LINE and Wikipedia corpora.
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