Know! Inf Syst (2016) 49:861-884 @ CrossMark
DOI 10.1007/510115-016-0919-y

REGULAR PAPER

A fast and efficient Hamming LSH-based scheme
for accurate linkage

Dimitrios Karapiperis'® - Vassilios S. Verykios!

Received: 13 October 2014 / Revised: 3 December 2015 / Accepted: 20 January 2016 /
Published online: 3 February 2016
© Springer-Verlag London 2016

Abstract In this paper, we propose an efficient scheme for privacy-preserving record linkage
by using the Hamming locality-sensitive hashing technique as the blocking mechanism and
the Bloom filter-based encoding method for anonymizing the data sets at hand. We achieve
highly accurate results and simultaneously reduce significantly the computational cost by
minimizing the number of distance computations performed. Our scheme provides theoretical
guarantees for identifying the similar anonymized record pairs by conducting redundant
blocking and by performing a distance computation only if the corresponding anonymized
record pair is formulated a specified number of times. A series of experiments illustrate the
efficacy of our scheme in identifying the similar record pairs, while simultaneously keeping
the running time exceptionally low.

Keywords Privacy-preserving record linkage - Locality-sensitive hashing - Blocking -
Bloom filters

1 Introduction

The process of linking records, which lack global unique identifier, from disparate data sets
in order to identify those pairs of records that refer to the same real-world entity, is known
as the record linkage, entity resolution, and data matching problem [6]. When data to be
matched are deemed to be sensitive or private, such as health data or data kept by national
security agencies, specialized privacy-preserving techniques should be applied, which allow
data integration and analysis. Privacy-preserving record linkage (PPRL) [15] investigates how
to make linkage computations securely by respecting the privacy of the data. For this reason,
input records undergo a necessary anonymization process which embeds those records into
an anonymization space, where the underlying data are kept private.

B Dimitrios Karapiperis
dkarapiperis @eap.gr

I School of Science and Technology, Hellenic Open University, Patras, Greece

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-016-0919-y&domain=pdf
http://orcid.org/0000-0002-3878-5988

862 D. Karapiperis, V. S. Verykios

PPRL consists of two steps. During the first step, potentially matching pairs of records are
formulated, while during the second step, these pairs are matched. The first step is commonly
termed as the blocking step, which should be as efficient as possible given large data sets. By
the term efficient, we mean that we should perform the least possible distance computations
in order to identify the matching pairs, regardless of the size of the data sets at hand. The
second step, known as the matching step, performs the distance computations between the
pairs which have been brought together for comparison during the previous step. The distance
computations are performed in an approximate manner, which is a core component of PPRL,
since the field values of records owned by different data custodians and indeed refer to
the same real-world entity, usually contain variations, errors, misspellings, and typos. An
illustrative example might be the submission of anonymized medical records, which lack
a common unique identifier, by hospitals to an independent trusted party, which in turn
identifies any potentially matching pairs by processing the anonymized records.

The blocking solutions, which have been developed to solve the PPRL problem, rely
mostly either on clustering [19,26,36] or on tree-based [18,32] techniques. The efficiency
of the clustering-based techniques is highly dependent on the public reference set of values,
which is used by the participating parties in order to generate clusters of similar records
independently. On the other hand, the tree-based indexing methods, as reported and proved
in [1,14,38], degrade rapidly even with moderate dimensionality (>10), because during the
matching step, nearly all indexed records are accessed.

In [9,20,24], redundant randomized methods are used, where each record is blocked to
several independent blocking groups, which amplify the probability of bringing together
similar records for comparison. These methods perform by far better than the traditional
methods given large data sets, including high-dimensional records, by exploiting the effi-
ciency of the locality-sensitive hashing (LSH) technique [13]. The authors though utilize an
arbitrary number of blocking groups which may either perform unnecessary and expensive
distance computations or miss matching record pairs. Recently, the authors in [22] proposed
the BfH method which quantifies the absolutely necessary number of blocking groups that
are required in order to provide theoretical guarantees in identifying the similar anonymized
pairs. Despite these guarantees, given large data sets, the number of pairs which are formu-
lated for comparison is also large and consequently consumes running time at high levels.
Specifically, in [22], the number of the matching pairs remains below 10 % of the total number
of the formulated pairs.

In this paper, we propose an efficient scheme, namely the frequent pairs scheme (FPS),
which improves significantly the running time during the linkage process without sacrificing
the accuracy. Our scheme is applied on the string values of the data sets at hand, which are
first embedded into the Hamming metric space by using the Bloom filter-based encoding
method [33]. Then, these Bloom filters generated are blocked several times into independent
blocking groups by applying the locality-sensitive hashing technique. The theoretical premise
behind our scheme is the number of times, termed as collisions, a certain Bloom filter pair is
formulated during the blocking step. We formally prove that the number of collisions a Bloom
filter pair achieves, reflects its Hamming distance. We quantify the exact number of collisions
that those pairs should exhibit in order to be considered for comparison during the matching
step. By doing so, we exclude a large number of pairs and achieve great savings in terms
of running time. We also quantify the exact number of blocking groups that are required
toward providing theoretical guarantees for identifying each similar pair with a specified
confidence. The experimental results in Sect. 6 confirm the efficiency of our scheme, where
the number of the matching pairs may be up to 90 % of the total number of the formulated
pairs. We also compare with four state-of-the-art-methods which are: (a) the BfH method, (b)

@ Springer

A fast and efficient Hamming LSH-based scheme... 863

the h-CC algorithm of the HARRA suite [24], (c) the multi-dimensional privacy-preserving
blocking (MPPB) method [19], and (d) the embedding scheme of strings in the Euclidean
space presented in [32].

The structure of the paper is organized as follows: In Sect. 2, the related work is presented.
Problem is formally defined in Sect. 3, while in Sect. 4 we present the elementary components
of FPS, namely the anonymization process, and the redundant blocking technique. In Sect.
5, we illustrate the theoretical ground of FPS, which is evaluated and compared to other
state-of-the-art methods in Sect. 6. Conclusions and ideas for future extensions are discussed
in Sect. 7.

2 Related work

In the literature, several privacy-preserving blocking solutions have been proposed such as
[9,17-20,22,32,35,36]. A method that had great impact on the research community is the
sorted neighborhood approach [16], including all its privacy-preserving variants, e.g.,[19,36],
which sorts all records from the participating data sets, and then uses a fixed-sized sliding
widow over the sorted records in order to compare record pairs which have been formulated
within that window. Kuzu et al. [26] proposed a private blocking approach which is based on
the differential privacy paradigm [11]. In this approach, a trusted third party, by using public
reference values, creates global clusters into which each data custodian independently inserts
her records. Then, these records are compared using secure multi-party (SMC) computations
[29]. However, methods which rely on the use of a common set of reference values, e.g., those
presented in [19,30,36] attain accurate results only when this reference set is a superset of
the values included in the data sets at hand.

The two-party techniques developed in [35,36,39] although eliminating the risk of collu-
sion among the participating parties, incur high computation, and communication cost. For
instance, Vatsalan et al. [36] introduced a two-party clustering technique where each cluster
is generated by using a common set of reference values and additionally contains at least k
records for providing enhanced privacy guarantees. Nevertheless, the data custodians need to
exchange the reference values of each generated cluster, which should be merged and sorted,
in order to identify any common clusters and formulate record pairs. Then, these pairs should
be compared using a computationally expensive SMC technique.

Recently, the randomized blocking methods, e.g., [9,20,22], have received much attention,
since they both provide theoretical accuracy guarantees in the anonymization space and also
handle the large data sets efficiently. We refer the interested reader to two recent surveys
presented in [5,37].

The Bloom filter-based encoding methods, presented in [10,33,34] and used by our pro-
posed scheme, are easily implemented and preserve the distances of the original record pairs.
However, under certain circumstances, these methods are susceptible to cryptanalysis [25,28].

Scannapieco et al. [32] presented a scheme for embedding strings into a Euclidean space
in a private manner, by utilizing a trusted third party. We use this scheme as one of our
competitors and evaluate it in Sect. 6. Yakout et al. [39], by relying on [32], introduced a
two-party approach which maps the records to points in the complex plane and then performs
distance computations only for those points which lie within a predefined proximity threshold.
Bonomi et al. presented in [3] another embedding scheme which instead of relying on random
string values for building the reference sets, it uses the frequent Q-grams extracted from the
data sets at hand by performing a time-consuming mining phase.

@ Springer

864 D. Karapiperis, V. S. Verykios

3 Problem definition

Let us suppose a number of data custodians who engage themselves into a process for
identifying the common entities among their records. Without loss of generality, we assume
two data custodians who own the data sets A and B, respectively. The data custodians first
have to agree on a common schema (a set of common fields) based on which they can actually
compare their records. They also need to provide a third field, let us call it /d, which plays
the role of uniquely identifying each record. In order to accomplish their goals, the data
custodians should make use of the services offered by an independent party whom we call
G. However, the records owned by the data custodians are deemed private; therefore, they
cannot be submitted to G without first undergoing an anonymization process. Toward this
end, the data custodians embed the strings of the respective fields of their records into an
anonymization space. We denote by A’ (ny = |A’|) and B’ (ng = |B’|) the anonymized
versions of A and B, respectively. We assume that G follows the Honest-but-Curious (HBC)
model [37], in that she follows the protocol steps while being curious to learn about other
party’s data. We also assume that there will be no collusion among the participating parties.

Definition 3.1 (A similar anonymized record pair) An anonymized record pair is considered
as similar if the distance of the constituent anonymized records is below or equal to a threshold
¥ specified in the used anonymization space. It follows that the corresponding original record
pair is also similar if the used anonymization space preserves the distances from the original
space of strings.

Each record in a secure anonymized form is submitted to G who utilizes an efficient mech-
anism in order to identify the set of the similar anonymized record pairs, denoted by M,
as fast as possible. Let us also denote the set M which consists of the truly matching pairs,
which refer to the same real-world entity, that are also similar in the original space of strings.

Definition 3.2 (Problem definition) Given the large volume of records in A" and B’, G
should produce set M, which should coincide with set M to the highest possible extent, by
consuming the least possible running time.

To this end, the distance computations should be performed between similar anonymized
record pairs. A motivating example might be the submission of anonymized personal data
of customers of financial institutions on an ongoing basis to a central financial authority.
Next, this authority constructs the set M by using the anonymized data submitted. A pair in
M may potentially correspond to a single customer who, e.g., maintains multiple accounts
at several banks worldwide. By combining such pieces of voluminous data very fast, one
may make important inferences with respect to the financial status of certain customers.
This example becomes more challenging as personal data of these customers may contain
variations, errors, and typos. To this end, the mechanism used by G should be as efficient as
possible in performing approximate matching operations between anonymized records.

4 Background

In this section, we give a brief outline of the elementary components utilized by our proposed
scheme. We list in Table 1 the main variables used throughout this paper.

@ Springer

A fast and efficient Hamming LSH-based scheme... 865

Table 1 Interpretation of the

most important variables used in T The /th blocking group (hash table) where
this paper I=1,...,Lopt
H A composite hash function used to block a Bloom filter
to some 7

The number of the base hash functions used in an H;

S The size of a record-level Bloom filter
dy The Hamming distance between a pair of Bloom filters
) The confidence parameter which bounds above the

probability of failure for the similar Bloom filter pairs
during the blocking mechanism

2 The distance threshold

p§ The probability of collision for Bloom filter pairs whose
distance is equal to ¥

C The number of collisions achieved by a Bloom filter pair

C The number of collisions that a Bloom filter pair should
achieve in order to be considered as a frequent pair

Le The number of blocking groups utilized by FPS

F The set of frequent pairs

4.1 Anonymization of records using Bloom filters

A Bloom filter is a data structure used to represent the elements of a set in order to support
membership queries for these elements efficiently, in terms of time and space required. More
specifically, the authors in [33] use bitmap arrays of size S, initialized with zeros, where
certain components are set to 1 by hashing the bigrams® of the strings of a record. Each
bigram x is hashed by using F independent composite cryptographic hash functions of the
form G; (x); = [g1(x) + (i g2(x))] mod S, wherei =0, ..., F —1,andboth g; and g; are
keyed hash message authentication code (HMAC) functions like HMAC-MD5 and HMAC-
SHA2.,? which utilize a secret key that should be shared only by the data custodians. It has
been demonstrated in [9,22,33] that by embedding strings into the Bloom filter (Hamming)
space S = {0, 1}5, distances between the original strings are preserved.

Each record is encoded into a record-level Bloom filter by using two formats. The first
format, termed as rBf [33], uses concatenated field-level Bloom filters, whose size is 500 bits.
Each such Bloom filter represents a string of a field, whose bigrams are hashed by F = 15
hash functions. The other format, termed as CLK [34], uses a single Bloom filter of a larger
size, e.g., S = 1,000, for hashing the bigrams of all the strings of a record, by using F = 10
hash functions. Throughout the rest of the manuscript, when referring to a Bloom filter, we
denote arecord-level Bloom filter. These two Bloom filter formats are demonstrated in Fig. 1.

The cryptographic hash functions, the secret key, as well as the order of concatenation are
only known to the data custodians. Should these pieces of information leak, an adversary could
establish a frequency attack by using these Bloom filters and publicly available resources
such as voter lists, or telephone catalogs.

LA bigram is pair of adjacent characters in a string.
2 http://tools.ietf.org/html/rfc2104.

@ Springer

http://tools.ietf.org/html/rfc2104

866 D. Karapiperis, V. S. Verykios

rBf format

Hashing two strings to two distinct field -level Bloom filters by using F =2

cryptographic hash functions for each bigram. These field-level Bloom

filters are then concatenated in order to construct a record -level Bloom
filter of size S=12 bits.

CLK format

Hashing two strings to a record-level Bloom filter by using F=1
cryptographic hash function for each bigram of size S =8 bits.

Fig. 1 Creating record-level Bloom filters by using both the rBf, and CLK format

4.2 The Hamming LSH-based blocking technique

FPS uses the Hamming LSH-based blocking technique [9,22] in order to block the produced
Bloom filters and formulate pairs for comparison. The principal component of this technique
is a bunch of L independent hash tables, termed also as blocking groups. Each hash table,
denoted by 77, where! = 1, ..., L, consists of key-bucket pairs. A bucket hosts a linked list of
1d’s which belong to potentially similar Bloom filters. The reasoning behind this grouping will
be specified later. Additionally, each hash table has been assigned a composite hash function
H; which consists of a fixed number, say K of base hash functions hl(k) concatenated, where
k =1,..., K. A base hash function applied to a Bloom filter returns the value of its sth
component where s € {0, ..., S — 1} chosen uniformly at random.

Definition 4.1 (A locality-sensitive hash family) A family H of base hash functions has the
following key property for any Bf |, Bf, € S [13]:

Ifdy < 0 then Pr(n{" (Bf) = h{" (Bf,)] = py, M
where py =1 — % and dy denotes the Hamming distance between Bf| and Bf,.

The Hamming distance between two Bloom filters is equal to the number of components in
which these Bloom filters exhibit different bits. For the sake of simplicity, throughout the rest
of the manuscript by using the term distance we refer to the Hamming distance. Intuitively,
the smaller the distance is, the higher the probability of a base hash function of producing the
same result. The result of an H; applied to a Bloom filter specifies to which bucket, termed
also as block, of a 7; the Id of that Bloom filter will be stored. Figure 2 illustrates how two
similar Bloom filters are hashed to some 7;.

This redundant blocking model amplifies the probability of collision for similar Bloom
filters but also increases the running time and the utilized space. Therefore, the optimal
number of blocking groups, denoted by L, should be used so that the set of the formulated
pairs should include as many as possible from the similar pairs. Thus, by setting [2]:

L In(s) o
P (1 - pk)

@ Springer

A fast and efficient Hamming LSH-based scheme... 867

G
_ N
4 T, H;=<0,1,7,9>
1011 A10 B10
Id Bf 4
A10, 10711010111
H,(Bf,) T, H=<32,58>
Hz(Bf1) 1111
Hq(Bf) 1110 p——{B10]
H,(Bf;)
Id Bf,
B10, 1077070101
'
N v

Fig.2 Snapshot of the blocking mechanism using Lp; = 2 and K = 4. The bits chosen by the hash functions
Hy and Hj are underlined and italicized, respectively

each similar Bloom filter pair is returned with high probability at least 1 — &, since the
confidence parameter §, which specifies the probability of failing to return such pairs, is
usually set to a small value, e.g., § = 0.1.

The value for K can be set empirically since the correctness of the scheme is guaranteed
by setting appropriately L, but by doing so, we may not be optimal in terms of running time.
In [21], a method for choosing the optimal value is presented, with respect to the Min-Hash
LSH family [31], which can be easily adapted to the Hamming family. This method relies on
Bloom filter pairs sampling, where by providing several values for K, the one that minimizes
the running time is finally chosen. This value, regardless the way we choose it, should be
sufficiently large because otherwise a small number of buckets is generated in each 7;, which
are overpopulated by Bloom filters resulting in the formulation of mostly dissimilar pairs.
This happens because the results of the H;’s, which map the Bloom filters to buckets, do not
reflect sufficiently the variations of the bit sequences of those Bloom filters.

5 The frequent pairs scheme

In this section, we present our proposed scheme FPS, used as a shorthand for ‘Frequent Pairs
Scheme.” FPS follows the redundant blocking model of the Hamming LSH-based blocking,
as described before, where a certain pair of Bloom filters might be formulated in several 7;’s
exhibiting a number of collisions.

Definition 5.1 (A collision) A collision is a Bloom filter pair formulated in some 7;. The
number of collisions for a certain Bloom filter pair is denoted by C where C € {1, ..., Ly}

The novel notion of collisions is the main theoretical premise of FPS, which correlates
the number of collisions> a certain Bloom filter pair achieves with its distance. Our scheme
first identifies these pairs that exhibit a certain number of collisions, which will be exactly
specified later, and then performs the distance computations only for these pairs.

3 LSH-based collision counting has also been studied in [12], but the underlying theoretical foundations and
the techniques used therein are completely different than ours.

@ Springer

868 D. Karapiperis, V. S. Verykios

During the blocking step, certain Bloom filter pairs are being blocked together in multiple
T;’s, which might be an indication of similarity; especially, the pairs which exhibit C collisions
where C = L, should be similar with overwhelming probability. Intuitively, the more the
collisions are, the higher the probability of similarity is.

We next specify the required number of collisions in terms of a threshold, denoted by
C, that a Bloom filter pair should achieve in order to be considered as a potential matching
pair. Let Cy be the random variable that counts the number of collisions of any Bloom
filter pair (Bf;, Bf>) whose distance is exactly equal to ¢. Since each H; consists of K base
hash functions, the probability of collision in some 7; for these pairs is pg . Hence, Cy is
binomially distributed as:

Cy ~ bin(Lop, p¥), 3)

where bin(-, -) denotes the binomial distribution, Ly, is the number of trials, and pg is the
probability of success.

Lemma 5.1 The expected number of collisions E[Cy] of any Bloom filter pair (Bf|, Bf>)
whose distance is equal to ¥ is:

E[Cy] = Lopi P - @
Proof
Lopt Lupt
E[Col=E | D 1" | =D EU"1 = Lo pf. ®)
=1 =1

where 11(79) indicates a collision of (Bf;, Bf;) in some 7}, defined as:

®) _ | it Hi(Bfy) = Hi(Bf,)
Iy (Bfl’BfZ)—[o, it Hi(Bfy) # H(Bf)

and E [11(19)] = p§ .If dg < ¥, then the probability of collision is bounded from below by
pf,(since pf,(increases as ¥ decreases for a fixed K. O

Random variable Cy achieves the number of collisions shown in Lemma 5.1 on expectation

with standard deviation o = \/ Lop: pK (1= pk).

Corollary 5.1 The expected number of collisions E[Cy] depends on the confidence para-
meter §.

Proof We expand Eq. (4) from Lemma 5.1, which is written as:

In@d)pX In@)pX 1
o = 1 -
In(1—pf) —pj ") ©

E[Cy] = Loy pX =

where we use the fact that (1 — p{,() < ¢~P5 and substitute In(1 — pf,() with ln(e‘pg). |

Corollary 5.2 Given any Bloom filter pair, with distance T where T < 19, that exhibits a
number of collisions C-, it follows from Lemma 5.1 that

E[C:] = E[Cy]. @)

Proof
pK > pK = E[C.]1> E[Cy).

T =

@ Springer

A fast and efficient Hamming LSH-based scheme... 869

Table 2 Indicative configuration

parameters for FPS K 30
Lopt 14
pK 0.293
§ 0.01
s 80
S 2000
C 2
L¢ 20
(a) — (b)
~ - N
o — o M
Pt Pt
35 S| 3 S|
® ®
o - Q «
O S S S
Q. Q.
Yo [T
S H S H
o o
o ’J T T T T T T m o - T T T T T T m
01 2 3 4 5 6 7 8 01 2 3 45 6 7 8 910
number of collisions number of collisions

Fig. 3 The colored bars indicate the distribution of probability for pairs whose distance is equal to ¥ of
exhibiting C collisions where C € {0, ...,C — 1}

Thus, E[Cy] is the expected lower bound of collisions for the similar pairs.

Definition 5.2 (A frequent pair) A Bloom filter pair which achieves a number of collisions
C > C where
C=|E[Cy] -0

is a frequent pair and is also expected to be a similar pair. We symbolize by || - || the nearest
integer value.

The set of the frequent pairs is denoted by F. We subtract one standard deviation o from
E[Cyp]in order to identify those similar pairs whose number of collisions is slightly below C.
As aresult of doing this, we minimize the accuracy loss. In the next subsection, we quantify
the accuracy loss of FPS with a specified probability.

5.1 Specifying the level of confidence

By using the binomial distribution with the parameters shown in (3), the camulative proba-
bility of any Bloom filter with dy = ¥ exhibiting less than C collisions bounds from above
the accuracy loss of FPS.

By using the parameters in Table 2, which yield C = 2, the value of the cumulative
distribution function (cdf) is Pr[C < 2] ~ 0.0523. Thus, the probability of missing pairs
with dg < ¢ is bounded above by 0.0523.4 By setting § = 0.001, we obtain C = 4 and
Pr[C < 4] ~ 0.1181. These probability distributions are illustrated in Fig. 3a, b, respectively.

4 The cumulative probability for pairs with dy < ¥ is less than 0.0523 due to the higher success probability
yielded by the smaller distances than ¢.

@ Springer

870 D. Karapiperis, V. S. Verykios

Therefore, by setting smaller values to §, we obtain larger values both for C, as Corollary
5.1 suggests, and for the cdf Pr[C < C]. As we notice though, these values of the cdf are
quite larger than the corresponding values of §, which implies potential loss of accuracy. For
this reason, we increase the number L, of blocking groups so that the similar pairs will
have the chance to collide more frequently. The new value for Ly, that is L¢, should be
adjusted to the values of C and 4.

Theorem 5.1 Each similar pair is included in F by using L¢ blocking groups, where

(€ —1) —In(8) +/(In(8))2 —2(C — 1) In (8)

Pi

Lopt < LC <

®)
with confidence at least 1 — §.

Proof A straightforward way to specify L¢ is by bounding the cdf Pr[C < C] using the
following Chernoff inequality [27]:

®

K _c_1)2
Pr[C<C]§eXp[_(LCp19 (@ 1))]’

ZLszI;

for the binomial distribution bin(Lc, pg), where C < L¢ pz’; . We solve for L and obtain:

_ (=1 —-In@)+ V(In(8))2 —2(C — 1) In (8)

K
pl?

L¢ (10)
(see the solution in the “Appendix”)

This bound though is not tight and imposes unnecessary running time and space. For
instance, by using the parameters in Table 2, the value of L¢ increases considerably to 38.
For this reason, we apply a different strategy by iteratively increasing L,y by 1 and by
calculating the value of the cdf Pr[C < C], which refers to a new binomial distribution using
the newly derived value of L. We perform these iterations until Pr[C < C] < 6. O

By doing so, in the previous example, we obtain L¢ = 20 blocking groups.

As distances increase beyond i), the probability of the corresponding pairs to achieve
additional collisions decreases, as well as to achieve less collisions than C increases, which
is quite convenient for our scheme. This behavior is clearly illustrated in Fig. 4, where for
C = 2, the value of the cdf Pr[C > (] for similar pairs is much higher than for pairs with
distances greater than ¢. In the same sense, the value of the cdf Pr[C < C] increases, as the
distances increase.

Fig. 4 By setting § = 0.01 and =
C = 2, as distances increase, the
value of Pr[C < C] increases,
while the value of Pr[C > C]
decreases

0.8

0.6

0.4

probability

0.2

0.0

80 100 120 140 160 180 200
distance

@ Springer

A fast and efficient Hamming LSH-based scheme... 871

Algorithm 1 Counting the collisions of a Bfj, in the buckets of the 7;’s.

Require: Bfp € B’

1: U < new UniqueCollection() > U is a collection of unique Ids.
2:forl=1,...,Lc do

3 Id_list < Tj.get(H;(Bfp)) > Object Id_list is a linked list of Ids.
4 fori =1,...,1d_list.size() do

5: Id < Id_list[i]

6: if (U.contains(Id)) then

7: U.inc(Id) > Method inc(-) increases by 1 the count of a certain /d stored in /.
8 else

9: U .add(1d) > Method add(-) inserts an Id into U and sets its count to 1.
10: end if

11: C <« Uli].count

12: if (C =C) then

13: f_list.add(Id) > Object f_list is a linked list which represents set F.
14: end if

15: end for

16: end for

17: fori =1, ..., f list.size() do

18: Id < f list[i]

19: Bfpg: < retrieve(ld) > Method retrieve(-) retrieves a Bloom filter from a data store.
20: dy < distance(Bf 4/, Bfgr)

21: if (dy < v) then

22: M.add(Bf 4/, Bfgr) > Method add(-) adds a similar Bloom filter pair to M.
23: end if
24: end for

5.2 Outline of FPS

Let us denote by Bf4 and Bfp the Bloom filters which belong to data sets A’ and B,
respectively. G first hashes each Bf 4, and stores their /d’s in the buckets of the 7;’s. Then, G
applies FPS for each Bf 5/ by counting the corresponding collisions, as conveyed by Algorithm
1. A collection of unique elements, denoted ny U, is used to store each Id € A’, whose Bf
formulates a pair with Bf/, together with the count of collisions. This collection is initialized
for each Bfp:. For each bucket that a Bf: maps to, G retrieves the Id’s already stored therein
(line 3) and then queries them against /. If an Id is found in i/, then G increases its count
(lines 6 and 7); otherwise, it is inserted into I/ (line 9). Then, by checking whether this count is
equal to C (line 12), that Id is added to the linked list f list, which materializes the set F (line
13). G next iterates f_list and performs the distance computations between the corresponding
Bloom filter pairs, which are added to set M if the threshold condition is met (lines 20 and 21).

6 Evaluation

We evaluate FPS in terms of (a) the accuracy in identifying the truly matching record pairs
and (b) the efficiency in reducing the number of Bloom filter pairs. For the needs of the
experiments, we used data sets which were originated by two sources, namely (a) the NCVR
list,% and (b) the DBLP bibliography database.” The fields used for each data set are listed
in Table 3. We developed a software prototype which extracts two data sets A and B, of

5 Collection I is instantiated by a HashBag object, which is contained in the Apache Commons package
http://commons.apache.org/, for Java programming language.

6 ftp://www.app.sboe.state.nc.us/data/.
7 http://dblp.uni-trier.de/xml/.

@ Springer

http://commons.apache.org/
ftp://www.app.sboe.state.nc.us/data/
http://dblp.uni-trier.de/xml/

872 D. Karapiperis, V. S. Verykios

Table 3 Fields used in each Field Avg. bigrams
record
NCVR
FirstName 5.1
LastName 5.0
Address 20.0
Town 7.2
DBLP
FirstName 4.8
LastName 6.2
Title 64.8
Year 3.0

user-defined size and perturbation frequency by using the two sources mentioned before.
Insert, edit, delete, and transpose operations are used to perturb the values of the fields. The
perturbed records are placed in data set B. We apply:

— A light perturbation scheme, termed as Pt1, which perturbs three, randomly chosen, fields
using an insert, an edit, and a delete perturbation operation.

— A heavy scheme, termed as Pt,, where we apply the above-mentioned operations to the
first, second, and fourth field, respectively. Additionally, we apply an insert and a transpose
operation to the values of the third field, which exhibit the largest number of bigrams, in
both data sets.

We also illustrate the accuracy of our scheme by increasing (a) the number of perturbation
operations and (b) the size of the data sets at hand. The frequency of selecting records for
perturbation was set to 0.5. The experiments were executed on a dual-core Pentium PC with 40
GB of main memory. The software components were developed using the Java programming
language (JDK 1.7).

6.1 Quality measures and configuration parameters

The Pairs Completeness (PC), Pairs Quality (PQ), and Reduction Ratio (RR) metrics [5] are
employed to evaluate the efficiency with respect to accuracy of our scheme. The set of the
truly matching record pairs is denoted by M and the set of the identified similar pairs by M.
The accuracy in identifying the pairs of M is indicated by the PC metric, which is equal to
IMNM]|/|M|. The PQ metric shows the efficiency in generating mostly matching pairs with
respect to the number of the candidate pairs, defined as PQ = |[M N M|/|CR|, where CR
is the set of candidate pairs. The RR metric indicates the percentage in the reduction in the
comparison space, which is equal to 1.0 — |CR|/|A x B|, where A x B denotes the set of
all possible record pairs. Throughout the evaluation, we ran each experiment 50 times and
plotted the average values of these metrics in the figures shown below.

We embed the strings into the Bloom filter space by using both the rBf and CLK formats
presented in Sect. 4.1. We use Bloom filters of size § = 2,000 bits® for rBf,and S = 1, 000
bits for CLK. Distance thresholds for rBf are specified according to the observations reported
in [22]. More specifically, an insert (or delete), an edit, and a transpose operation changes
around 30, 40, and 80 bits, respectively, in the perturbed Bloom filter. Thus, ¥ is set to

8 Each record includes four fields; therefore, S = 4 x 500.

@ Springer

A fast and efficient Hamming LSH-based scheme... 873

Table 4 Statistical analysis of

distances Avg. SD
NCVR Pt rBf 45 16
CLK 25 9
Pty rBf 171 13
CLK 88 11
DBLP Pty rBf 30 16
CLK 14 6
Pty rBf 138 15
CLK 61 11
Table 5 nfiguration
p:rl:nfleterfo gurato v 8 ¢ Lopt Le
rBf Pty 100 0.01 2 20 28
0.005 3 22 40
0.001 4 29 56
0.0005 5 32 105
0.0001 6 39 129
Pty 210 0.01 2 127 183
0.005 3 146 255
0.001 4 190 360
0.0005 5 209 628
0.0001 6 253 768
CLK Pt 55 0.01 2 23 34
0.005 3 27 47
0.001 4 35 67
0.0005 5 38 123
0.0001 6 46 151
Pty 110 0.01 2 150 217
0.005 3 173 303
0.001 4 225 426
0.0005 5 247 742
0.0001 6 300 908

100 and 210 for Pt; and P1,, respectively. For CLK, we specified the distance thresholds by
perturbing pairs of strings and then computing the corresponding distances in the Bloom filter
space. CLK uses a smaller number of cryptographic hash functions than rBf, which results in
generating pairs with also smaller distances. We empirically quantified these distances which
are on average 15,25, and 40 for each perturbation, respectively. Therefore, 9 is set to 55 for
Pt; and to 1200 for Pr,. Throughout the evaluation, we fix K = 30 which combined with
these thresholds yields the parameters listed in Table 5.

9 For Pty, we apply an insert, a delete, and an edit operation, thus @ for rBf should be set to 30430440 = 100
bits, while for Pty to 30 + 30 + 40 + 30 + 80 = 210 bits due to the two additional operations.

10 For Pt1, ¥ for CLK should be set to 15+ 15425 = 55 bits, while for Pty to 15+ 15425+ 15+40 =110
bits.

@ Springer

874 D. Karapiperis, V. S. Verykios

Table 4 lists the average distances, as well as the values of the standard deviation, of both
Bloom filter formats for each data set used and for each perturbation scheme applied. We
notice that the DBLP-based data set exhibits smaller distances than the NCVR-based data
set. This behavior is related to the larger number of bigrams contained in the strings of the
DBLP-based data set, as conveyed by Table 3. Another key observation is that by applying
Pt to the NCVR-based data set, the values of standard deviation show that distances are
concentrated very close to . Therefore, we can evaluate the effectiveness of our scheme in
identifying the corresponding pairs. On the other hand, by applying Pt;, distances lie away
from © by using both formats. Therefore, the corresponding pairs are more easily identifiable.

6.2 Baseline methods

We compare FPS with four other state-of-the-art blocking methods, namely BfH [22], EUC
[32], MPPB [19], and HARRA [24]. BfH is a randomized method that relies on the redun-
dant Hamnming LSH-based blocking, described in Sect. 4.2, and utilizes L,,, independent
blocking groups. BfH uses Bloom filters, and specifically the rBf format, for anonymizing
the strings of a record. Each Bloom filter is hashed and inserted into some bucket, of each
blocking group, specified by the result of the respective H;. During the matching step, a pair
is formulated when a Bloom filter from A’ is grouped to the same bucket of some 7; with a
Bloom filter from B’. To be more precise, the stored Ids in the T;’s are used for retrieving
the corresponding Bloom filters from the data stores. These pairs are compared and are clas-
sified as matching or as non-matching pairs according to their distance which is compared
to a specified threshold . For BfH, we use the values of thresholds, K, §, and L, listed in
Table 2.

EUC was proposed by Scannapiecco et al. [32]. This method represents strings in a private
manner by embedding them in a Euclidean space. EUC uses P reference sets, common to both
data custodians who participate in the linkage process. In these reference sets, each element
comprises a random sequence of characters of length approximately equal to the average
length of strings in the data sets. Embedding a string s results in a vector of size P, where
each component of this vector stores the minimum edit distance of s from all the elements in
a reference set. For higher accuracy, we (a) set 30 dimensions for each field and (b) turned
off both the greedy re-sampling and the distance approximation heuristic, both illustrated
in [32]. The authors, in order to find the similar vectors, use a multi-dimensional tree-based
index, which has the performance drawback described in Sect. 2. For this reason, we utilize
the Euclidean LSH-based blocking scheme [7,22] specifically developed for finding similar
points in Euclidean spaces. For the LSH-based mechanism, we set K = 5, and thresholds to
5.5 and 11 for each perturbation scheme, respectively. We experimented with several values
for L, and we chose L = 40 and L = 160 which achieve a good balance between efficiency
and accuracy.

MPPB was proposed by Karakasidis et al. [19] and is based on the K-Medoids algorithm
[23] for creating clusters from elements of public reference sets. Records are first classified to
those clusters and are encoded into Bloom filters. Then, the sorted neighborhood algorithm
[16] is used for the formulation of Bloom filter pairs by applying a sliding window within
each cluster. MPPB uses the dice coefficient [6] for computing the similarity between the
pairs formulated during the previous step. We set similarity thresholds to 0.85 and 0.80 for
the two perturbation schemes, respectively.

Kim et al. introduced the h-CC algorithm as part of the HARRA suite [24]. HARRA
uses the Min-Hash LSH-based technique [4,31] as the blocking mechanism. Hash functions
of the Min-Hash family are locality sensitive to the Jaccard distance [31]. Each record is

@ Springer

A fast and efficient Hamming LSH-based scheme... 875

represented as a binary vector, where each component represents a distinct bigram. HARRA
sets to 1 those components which refer to bigrams that are contained in the strings of a
record. A drawback of this ambiguous approach is that one cannot distinguish to which field
a certain bigram belongs. Those vectors also exhibit high degree of sparsity because their
size is large in order to accommodate all possible bigrams of a specific alphabet. For exam-
ple, by considering the uppercase characters, HARRA uses size of 26> components for each
vector. However, as Table 3 suggests, the number of bigrams for a record is usually small
compared to the size of the vectors. During the blocking phase, HARRA randomly permutes
the indexes of the components of each vector and chooses the index of the minimum nonzero
component, as the value of each base hash function. HARRA performs the blocking and
matching steps iteratively for each 7;. When the matching condition is met for a pair, the
corresponding records from A and B are removed from the data sets and do not participate
in the subsequent iterations. Since HARRA chooses arbitrary values for L, we empirically
set K = 6 and the distance thresholds to 0.35 (L = 30) and 0.45 (L = 70) for Pt and P,
respectively.

6.3 Experimental results

For the first set of the experiments, we use the NCVR-based data sets with ny = np =
1,000,000 records.

6.3.1 Confidence parameter &

We set several values to ¢ in order to derive different values for the collision threshold C as
illustrated in Table 2. We measured both the PC and PQ rates using the rBf, and CLK formats
shown in Fig. 5a—d. A general observation is that the PQ rates increase almost linearly as
the value of § decreases by using both Bloom filter formats. Figure 5a—c highlights that by
applying P11, as the value of § decreases, where we indirectly require more accuracy, both the
PC and PQ rates achieve remarkable performance. Specifically, the PQ rates reach almost
0.93, while the PC rates are constantly above 0.95. We note that smaller values of § entail
larger number of blocking groups, which seem not to hamper the efficient formulation of the
frequent pairs. By applying Pt,, the PC rates shown in Fig. 5b drop slightly, since distances
are tightly concentrated around the specified threshold, as described before. However, FPS
achieves to identify most of the similar pairs and only a small amount of them is missed.
The larger thresholds for Pt yield larger values for L¢, shown in Table 2, which inevitably
formulate much more dissimilar pairs than Pt;. Consequently, by using § = 0.001, the
PQ rates are lower, which still remain on a remarkably high level, as can be seen in Fig.
5d. By setting § = 0.0005 and 6 = 0.0001, which entail accuracy of 0.9995 and 0.9999,
respectively, FPS required more amount of main memory to build the blocking groups than
the one available in our system.

6.3.2 Bloom filter formats

We observe that rBf constantly achieves higher PC rates than CLK, which has the drawback
of representing identical bigrams that belong to different fields in the same structure. For
instance, CLK would consider the pair of strings ‘Steve Johnson’ and ‘John Stevens’ as similar,
although in reality they are quite different. Another drawback of CLK is that the results of the
cryptographic hash functions overlap much more frequently than rBf for different bigrams
because a single Bloom filter is used for all the bigrams of a record. This behavior results in the

@ Springer

876 D. Karapiperis, V. S. Verykios

o @ o (b
T 1 T 1
n - -a--C] 0
2 SR S 2
c -z K -- o S
o E-- s | ____-- a8
2 09 3209 lE e A
o B Q b N VIR
£ IS A --—-~"" A=
o) —=— rBf S
o -a- CLK o - Bf
2 2 -a- CLK
© ®
D_ T T T T T D_ T T
0.01 0.005 0.001 0.0005 0.0001 0.01 0.005 0.001
confidence parameter & confidence parameter &
© (d)
1 1
o ety - Rty R
© k,’ﬂ”— © 0.8 - —=— Bf
>08p - -~ PR > -A- CLK
= g’ = 06+
- -8
> i S - - -
G067, - 3 04 -4~ -__--4
» —a— rBf » F - - _ A
= -A- CLK T ooda---"7
$ 04+ g o2
0.01 0.005 0.001 0.0005 0.0001 0.01 0.005 0.001
confidence parameter & confidence parameter &

Fig. 5 The PC and PQ rates achieved by FPS by setting several values to 8. a PC rates by applying Pt].
b PC rates by applying Pt;. ¢ PQ rates by applying Pt1. d PQ rates by applying Pty

obfuscation of the expected distances for certain types of perturbations, which are described
in Sect. 6.1. Hence, we may miss some truly matching pairs and misleadingly consider pairs
as matching, which in reality they are not. Figure 5c indicates that for Pt;, the PQ rates of
CLK are much higher than rBf. This happens due to the smaller size used by CLK for creating
the Bloom filters. Thereby, the H;’s have higher probability to reflect the variations of the
bit sequences caused by the differing bigrams of the initial similar strings and to produce
high-quality buckets in the 7;’s, which are populated with mostly similar pairs. In contrast,
by applying Pt,, the larger number of differing bigrams, combined with the smaller size of
CLK, downgrades its performance. The number of bigrams is another factor that plays an
important role in the formulation of the Bloom filters using both formats and consequently
in the corresponding distances. For example, by using rBf the distance between ‘Jones’ and
‘Jonas’ is 45. In contrast, the distance between ‘Karapiperis’ and ‘Karipiperis’is equal to 28.
Comparing the Bloom filters generated by the same strings but by using CLK, the distances
are 29 and 19, respectively. Therefore, an error between a pair of strings of the Address field
or of the 7itle field has less impact on the distance between the corresponding Bloom filters
than an error between strings of the LastName field, which has smaller average number of
bigrams as shown in Table 3.

6.3.3 Increasing the number of perturbations

Another interesting view of the results is the performance of FPS in identifying the similar
pairs by progressively increasing the number of perturbations applied on the values of a
single field by using the rBf format. For this series of experiments, we chose the Address
field whose values contain on average 20 bigrams (21 characters). We initially set threshold

@ Springer

A fast and efficient Hamming LSH-based scheme...

877

(@) 11 (b) 14
g 5 -6 §,0]5 " a----8----a
% 091 % 09
6 - PC - 5 —&- PC
g -~ PQ g -& PQ
£ 2 oA
S |A-- _al S |la---- --a
O - ~A - _ _ - O
o -A o
O'GA\ T T T O'GA\ T T T
J 2 3 4 1 2 3 4

number of perturbations number of perturbations

Fig. 6 By applying progressively a certain number of perturbations to the values of a single field, the PC
rates were restored after increasing the size S of the field-level Bloom filter. a Size of the Bloom filters of the
Address field set to § = 500 bits. b Size of the Bloom filters of the Address field set to S = 550 bits

to 180'! bits, which yielded L¢ = 189 (8 = 0.01). A natural side effect that follows,
which is quite similar to CLK’s behavior explained previously, is the increased number of
overlapping results when hashing different bigrams during the construction of the Bloom
filters. Figure 6a suggests that the PC rates were affected negatively as we were increasing
the number of perturbations. The remedy was to empirically increase the size S of the field-
level Bloom filters for the Address field by 10 % which yielded S = 550 bits and L¢ = 176
blocking groups. By doing so, the PC rates were restored, as Fig. 6b clearly shows, and we
also noticed that the PQ rates slightly increased because of the smaller number of blocking
groups generated due to the higher threshold.

6.3.4 Size S of the Bloom filters

We next illustrate the relation of size S with the performance of FPS using the »Bf format,
since in CLK the size is set to a constant value. We applied an edit operation (¢ = 40)
to the values of the LastName field and then gradually increased the number of fields that
participated in the linkage process, which resulted in the proportional increase in size S
without applying any perturbations. Table 6 shows the corresponding PQ rates where we
observe that as size S increases, the PQ rates also increase due to the reducing number L¢ of
the blocking groups that are utilized. We also notice that the PC rates remain stable because
they are guaranteed by the values of Lc. We then perturbed the values of each appended
field and increased proportionally the value of ¢, which yielded a constant value for L¢,
namely L¢ = 136. In Table 7, we observe that both the PC and PQ rates exhibit a very small
deviation due to the same number of blocking groups utilized.

6.3.5 Wall-clock time

We complete this set of experiments by measuring the wall-clock time consumed by our
scheme given an increasing number of records for both data sets used. Figure 7a, c, for Pt1,
clearly indicates a linear increase in the required time as the number of records increases,
where CLK is faster than rBf. This superiority of CLK, in Pt;, keeps up with the higher PQ
rates illustrated in Fig. 5c. Not surprisingly, in Pt,, rBf performs slightly faster than CLK, as
Fig. 7b, d suggest, due to the corresponding higher PQ rates achieved, depicted in Fig. 5d.

I Since we apply an insert, a delete, an edit, and a transpose operation, ¥ should be set to 30+30+40+80 =
180 bits.

@ Springer

878

D. Karapiperis, V. S. Verykios

Table 6 The PQ rates increase

as the size S of the Bloom filters 5 v Le ro rc
grow and the number of 500 40 136 0.10 0.98
perturbations remains stable ' ’
C=2) 1000 40 38 0.51 0.98
1500 40 26 0.63 0.99
2000 40 21 0.65 0.98
2500 40 19 0.65 0.99
Table 7 The PQ rates remain
almost stable as threshold 5 v Le ro rc
increases according to the
perturbations applied (C = 2) 500 40 136 0.12 0.99
1000 80 136 0.11 0.98
1500 120 136 0.12 0.95
2000 140 136 0.14 0.94
2500 180 136 0.10 0.94
(@) (b)
m B B m " —8— Bf e -
o] -A- CLK a b
S 2 - 5 -A- CLK PR
£ e £ 104 L7 -
1S -7 S P
= _ - A c X 7.
=1 4 _ - _ - = | _ - -
o _ - o ° - T - -
E |lgii-- Eosla=7"
250K 500K ™ 250K 500K ™
number of records number of records
(c) (d)
4 30 A
—=- rBf a — -,
m - 25 - [m]
8 3| c .- a| 8 - P
2 o 2 207 |-a clk PRoie
E 2 PR E 154 e
c - :E - p= 15 //// 4
by -Z-- o 101 -
® 14@m = Z -) -
E |B- E .==7
-— -— 5 n B -
250K 500K ™ 250K 500K ™

number of records

number of records

Fig.7 Measuring wall-clock time by scaling the size of the data sets. a P¢| and 6 = 0.01. b Pty and 6 = 0.01.

¢ Pty and § = 0.001. d Pty and § = 0.001

6.3.6 Comparing with the baseline methods

The next set of experiments includes the comparison with the baseline methods presented in
the previous subsection. Both FPS and BfH use the rBf format and 6 is set to 0.01. The rest

of the parameters are set as above.

@ Springer

A fast and efficient Hamming LSH-based scheme... 879

@) o (b) o
N - m Pt o - m P
Q m Pt = @ Pt
£ 3 2| '3y ’
%) [
8 o 8 o
Q Q
Q. < Q <«
€ o € S
3 3
[} N w N
s o e
© ©
o o

o | <

© BfH FPS EUC MPPB HARRA © BfH FPS EUC MPPB HARRA
(©) (d)

e ©

© -

l‘C-"?) te)
Q m Pty o S
© < | = Pt © m Py
= o | =
23] 23
QCS - | D‘.“ —

o S]

o | <

© BfH FPS EUC MPPB HARRA © BfH FPS EUC MPPB HARRA

Fig. 8 The PC rates of BfH and FPS are constantly above 0.95. Simultaneously, FPS achieves outstanding
PQ rates. a NCVR-based data set. b DBLP-based data set. ¢ NCVR-based data set. d DBLP-based data set

6.3.7 Pairs completeness and pairs quality

Figure 8a, b clearly indicates that both FPS and BfH outperform the other methods by a
large margin in terms of accuracy. Both schemes perform better using the DBLP-based data
sets due to the smaller distances exhibited, as explained in Sect. 6.1. EUC and MPPB exhibit
rather low PC rates due to different reasons. EUC falls short in preserving the initial distances
of strings, especially in Ptp, where more perturbations are applied. For MPPB, neither the
clustering nor the sliding window steps are capable of formulating similar record pairs. We
attempted to set the sliding window size to a large value (>70) in order to improve accuracy,
but this affected the performance negatively, since a large number of candidate record pairs
were generated. Consequently, the PQ rates fell below 0.1, which are slightly better than BfH
and by far lower than FPS, as Fig. 8c, d illustrates. These figures highlight the superiority
of FPS in formulating mostly similar pairs with outstanding PQ rates, which exceed 0.4 for
both perturbation schemes. HARRA’s accuracy is affected negatively by two factors. The first
is the early removal of records of those pairs, which although meet the distance threshold,
they do not constitute a truly matching pair. Since those records are then excluded from the
remaining iterations, they do not have any other chance to formulate any possible matching
pairs. The other factor is the ambiguity caused by the way the bit vectors are created, as
described in Sect. 6.2. The PQ rates are around 0.1 using both data sets and are almost equal
to the rates of FPS and MPPB.

@ Springer

880 D. Karapiperis, V. S. Verykios

Fig. 9 The RR along with the 2 -
PC rates B RRPY
@© @ PCPYy
@ |
[%2]
Lo
© o
(@]
o <«
€S
o
N
o
=
o
BfH FPS EUC MPPB HARRA
(a) % (b) 45 | X
™ —&- BfH e ™ —&— BfH .
L1104 |4 FPS e e -A- FPS -
2 —— EUC s 2 30 |« EUC .
= MPPB . = MPPB Py -0
= HARRA - c HARRA - -7
< 54 _ =X = _ -7
g -z __-=8 g15— _ e -
E25-4% = _--___--A £ % = R i
= §==:::::ﬂ———- T big===---
250K 500K 1™ 250K 500K ™
number of records number of records

Fig. 10 Measuring the wall-clock times of all methods using the NCVR-based data set. a Applying Ptq.
b Applying Pty

6.3.8 Reduction ratio

The RR is high for all LSH-based methods (BfH, FPS, and HARRA), but this reduction in
the comparison space is efficient only for FPS and BfH, which achieve also high PC rates,
as can be seen in Fig. 9.

6.3.9 Wall-clock time

Figure 10a, b illustrates the wall-clock times for all methods by increasing the number of the
records of the data sets at hand. In Pt{, we observe that the wall-clock times of FPS, BfH,
and HARRA increase almost linearly with the size of the data sets. We also notice that as the
number of records increases, the gap between FPS/BfH/HARRA and the other methods also
increases. By applying P>, the larger number of blocking groups increases the wall-clock
time of FPS, but its simple counting mechanism, which prevents most of the unnecessary
distance computations, keeps it fairly lower than the other methods.

6.3.10 Increasing the number of parties

Finally, we performed a series of experiments by using three different NCVR-based data sets,
which are A’, B/, and C’ and materialize the scenario of three different data custodians. We
perturb these data sets, which are of varying size, by applying the Pt; and Pt, schemes. Under
this multi-custodian scenario, a pair might be formulated by Bloom filters which belong to
any of these three data sets. When using 1M of records for each data set, it was impossible

@ Springer

A fast and efficient Hamming LSH-based scheme... 881
(a) (b) X
— —8- BfH __ 60 |-= BfH _ < Pol
a -A- FPS 4 -A- FPS - P
5 394 [EUC 5 —— EUC” -7 A
£ MPPB £ 404 ~MPPB g
E HARRA | _ - % £ L7 HARRA PR
£ 207 = - - £ IR
= -7 -~ ~ 204 IR T
[0} 1% - - _ A (0] F == _ X
§ 090 _-Z.-:-= -U’_,—" g l.f——‘ -
S 54 - IZ- A- s A
250K 500K 1™ 250K 500K 1M
number of records number of records
(©) (d)
[%2] 1]
9 14 =é Q 14
© B —===== == ====-§f QOQAE,____==:6====___B
® 0.9 - o U
] 3 o8
S 0.8 S
k) —&— BfH @ 0.7 -8 BfH
a 0.7 1 —A- FPS [=% —A- FPS
g _,—“'—X — EUC gO'GA — EUC
&) 0.6 4% MPPB O 053 - — — = = = = X MPPB
) HARRA o HARRA
© 051, : ‘ £ 04, ‘ |
& 250k 500K M & 250K 500K M

number of records

number of records

Fig. 11 Measuring the wall-clock times and the PC rates of all methods using three NCVR-based data sets.
a Applying Pt1. b Applying Pty. ¢ Applying Pt1. d Applying Pty

to obtain any measurements for the EUC and MPPB methods due to their excessive space
requirements in main memory. FPS first stored the Id’s of the Bloom filters of A" and then
counted the collisions for pairs formulated by using B’, and C’,'? as discussed in Sect. 5.2.
The scalable performance of FPS is clearly shown in Fig. 11a, b where we observe that the
slope of its line is increasing, but is definitely smoother than the other methods. We also
notice that the performance of BfH and HARRA is almost the same. The corresponding PC
rates shown in Fig. 11d exhibit the superiority of FPS and BfH in identifying the similar
pairs as also illustrated in Fig. 8a, b. A common and natural consequence for all methods is
the increase in the space requirements, where the LSH-based blocking methods (FPS, BfH,
HARRA, and EUC) need to store the Id’s of A’ and B’, while MPPB should store the Id’s
of all the participating data sets.

7 Conclusions

Linking huge collections of anonymized records is an intriguing problem in the core of the
domain of Privacy-Preserving Record Linkage. In this paper, we introduce a novel scheme,
that is FPS, which accomplishes high levels of recall, by performing the least possible distance
computations. FPS formally relies on the number of collisions that Bloom filter pairs achieve
in the buckets of the blocking groups and provides theoretical performance guarantees based
on the confidence parameter §. We also quantify (a) the number of blocking that are required
and (b) the exact number of collisions that a pair should exhibit in order to be considered for
comparison.

12 Counting the collisions for C’ required storing the Id’s of both A’ and B’.

@ Springer

882 D. Karapiperis, V. S. Verykios

For the future, we intend to investigate the applicability of FPS on multi-party settings in
order to eliminate the possibility of collusion among the participating parties. Another fruitful
research direction is the application of our scheme to the Map/Reduce framework [8]. Within
this framework, we plan to (a) implement hash tables, which materialize the blocking groups,
in a distributed manner, and (b) use a storage system, which facilitates efficient queries to
massive data sets. Applying FPS on real-time settings, where accuracy and speed are the
most important factors, is another research direction of great interest.

Appendix: Solving for L¢ in (9)

We bound above the right-hand side of (9) in order to guarantee that the probability for a pair
with dg = ¥ to exhibit less collisions than C is bounded by § as follows:

(Lepy —€=D) o Lepf—cC-Dy
2L¢ ley(- 2L¢ pz{,(

exp < In(9). (11)

We expand (L¢ p§ — (C — 1))? and derive the following quadratic equation:
(p§ Le)* + @2 py n(®) =2 pf (€ — D)Le + (€ —1)* =0, (12)

where we finally solve for L¢ and keep only the equality, since we want to be as optimal as
possible.

References

1. Aggarwal CC, Yu PS (2000) The igrid index: reversing the dimensionality curse for similarity indexing
in high dimensional space. In: International conference on knowledge discovery and data mining, pp
119-129

2. Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. Commun ACM 51(1):117-122

3. Bonomi L, Xiong L, Chen R, Fung BCM (2012) Frequent grams based embedding for privacy preserving
record linkage. In: International conference on information and knowledge management, pp 1597-1601

4. Broder AZ, Charikar M, Frieze A, Mitzenmacher M (1998) Minwise independent permutations. In:
Symposium on theory of computing, pp 327-336

5. Christen P (2012a) A survey of indexing techniques for scalable record linkage and deduplication. IEEE
Trans Knowl Data Eng 12(9):1537-1555

6. Christen P (2012b) Data matching—concepts and techniques for record linkage, entity resolution, and
duplicate detection. Springer, Data-Centric Systems and Applications

7. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable
distributions. In: Symposium on computational geometry, pp 253-262

8. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM
51(1):107-113

9. Durham E (2012) A framework for accurate efficient private record linkage. PhD thesis, Vanderbilt
University, USA

10. Durham E, Kantarcioglu M, Xue Y, Toth C, Kuzu M, Malin B (2014) Composite Bloom filters for secure
record linkage. IEEE Trans Knowl Data Eng 26(12):2956-2968

11. Dwork C (2006) Differential privacy. In: Automata, languages and programming, international collo-
quium. Springer, Berlin Heidelberg, pp 1-12

12. Gan J, Feng J, Fang Q, Ng W (2012) Locality-sensitive hashing scheme based on dynamic collision
counting. In: International conference on management of data, pp 541-552

13. Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In: International
conference on very large databases, pp 518-529

@ Springer

A fast and efficient Hamming LSH-based scheme... 883

20.
21.
22.

23.

24.

25.

26.

27.
. Niedermeyer F, Steinmetzer S, Kroll Martin M, Schnell R (2014) Cryptanalysis of basic Bloom filters

29.
30.
31.
32.
33.
34.
35.

36.

37.
38.

39.

Goodman J, O’Rourke J, Indyk P (2004) Handbook of discrete and computational geometry. CRC, Boca
Raton

. Hall R, Fienberg SE (2010) Privacy-preserving record linkage. In: International conference on privacy in

statistical databases, pp 269-283

Hernandez MA, Stolfo SJ (1998) Real world data is dirty: data cleansing and the merge/purge problem.
Data Mining Knowl Discov 2(1):9-37

Inan A, Kantarcioglou M, Bertino E, Scannapieco M (2008) A hybrid approach to private record linkage.
In: International conference on data engineering, pp 496-505

Inan A, Kantarcioglu M, Ghinita G, Bertino E (2010) Private record matching using differential privacy.
In: International conference on extending database technology, pp 123-134

Karakasidis A, Verykios VS (2012) A sorted neighborhood approach to multidimensional privacy pre-
serving blocking. In: International conference on data mining workshops, pp 937-944

Karapiperis D, Verykios VS (2013) A distributed framework for scaling up LSH-based computations in
privacy preserving record linkage. In: Balkan conference in informatics, ACM, pp 102-109

Karapiperis D, Verykios VS (2014) A distributed near-optimal Ish-based framework for privacy-preserving
record linkage. Comput Sci Inf Syst 11(2):745-763

Karapiperis D, Verykios VS (2015) An LSH-based blocking approach with a homomorphic matching
technique for privacy-preserving record linkage. IEEE Trans Knowl Data Eng 27(4):909-921

Kaufman L, Rousseeuw P (1987) Clustering by means of medoids. In: Statistical Data Analysis Based
on the L1Norm, Reports of the Faculty of Mathematics and Informatics. Delft University of Technology.
Elsevier, Amsterdam, pp 405-406

Kim H, Lee D (2010) Fast iterative hashed record linkage for large-scale data collections. In: International
conference on extending database technology, pp 525-536

Kuzu M, Kantarcioglou M, Durham E, Malin B (2011) A constraint satisfaction cryptanalysis of Bloom
filters in private record linkage. In: International conference on privacy enhancing technologies, pp 226—
245

Kuzu M, Kantarcioglu M, Inan A, Bertino E, Durham E, Malin B (2013) Efficient privacy-aware record
integration. In: International conference on extending database technology, pp 167-178

Motwani R, Raghavan P (1995) Randomized algorithms. Cambridge University Press, Cambridge

used for privacy preserving record linkage. J Priv Confid 6(2)

Paillier P (1999) Public-key cryptosystems based on composite degree residuosity classes. In: Eurocrypt,
pp 223-238

Pang C, Gu L, Hansen D, Maeder A (2009) Privacy-preserving fuzzy matching using a public reference
table. Intell Patient Manag 189:71-89

Rajaraman A, Ullman JD (2010) Mining of massive datasets, chapter finding similar items. cambridge
University Press, Cambridge

Scannapieco M, Figotin I, Bertino E, Elmagarmid AK (2007) Privacy preserving schema and data match-
ing. In: International conference on management of data, pp 653-664

Schnell R, Bachteler T, Reiher J (2009) Privacy-preserving record linkage using Bloom filters. BMC Med
Inform Decis Making 9(1)

Schnell R, Bachteler T, Reiher J (2011) A novel error-tolerant anonymous linking code. Tech. report
WP-GRLC-2011-02, German Record Linkage Center

Vatsalan D, Christen P, Verykios V (2011) An efficient two-party protocol for approximate matching in
private record linkage. In: Australasian data mining conference, pp 125-136

Vatsalan D, Christen P, Verykios V (2013a) Efficient two-party private blocking based on sorted nearest
neighborhood clustering. In: International conference on information and knowledge management, pp
1949-1958

Vatsalan D, Christen P, Verykios VS (2013b) A taxonomy of privacy-preserving record linkage techniques.
Inf Syst 38(6):946-969

Weber R, Schek H, Blott S (1998) A quantitative analysis and performance study for similarity search
methods in high dimensional spaces. In: International conference on very large data bases, pp 194-205
Yakout M, Atallah MJ, Elmagarmid AK (2009) Efficient private record linkage. In: International confer-
ence on data engineering, pp 1283-1286

@ Springer

884

D. Karapiperis, V. S. Verykios

@ Springer

Dimitrios Karapiperis is a PhD student with the Hellenic Open Uni-
versity. He also holds an MSc degree from the University of York (UK)
and a BSc degree from the Technological Institute of Thessaloniki
(Greece). His research interests lie in the areas of privacy-preserving
record linkage, similarity algorithms and data structures, and approxi-
mation schemes which rely on various randomization schemes. Specif-
ically, he deals with running time optimizations by applying the
Locality-Sensitive Hashing technique to voluminous data sets which
have undergone an anonymization process. Other particular research
interests include the development of efficient privacy-preserving sum-
marization algorithms, scalable solutions using the Map/Reduce pro-
gramming paradigm, and distributed architectures.

Vassilios S. Verykios received the Diploma degree in Computer Engi-
neering from the University of Patras, Greece in 1992, and the MSc
and the PhD degrees from Purdue University, USA in 1997 and 1999,
respectively. From 1999 to 2002 he was with the Faculty of Infor-
mation Systems in the College of Information Science and Technol-
ogy at Drexel University, USA, as a tenure track Assistant Professor.
From 2002 to 2005 he held various research and academic positions
at Intracom SA, SingularLogic SA, CTL University of Thessaly, Hel-
lenic Open University, University of Patras and the Athens Information
Technology institute in Greece. From 2005 to 2011 he was an Assistant
Professor in the Department of Computer and Communication Engi-
neering at the University of Thessaly in Volos, Greece. Since January
of 2011, he is an Associate Professor in the School of Science and
Technology and the Director of the Graduate Program on Information
Systems, both at the Hellenic Open University (HOU). From May of
2014 he serves as the Director of the e-Comet Lab (http://eeyem.eap.
gr/en) at HOU.

http://eeyem.eap.gr/en
http://eeyem.eap.gr/en

	A fast and efficient Hamming LSH-based scheme for accurate linkage
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition
	4 Background
	4.1 Anonymization of records using Bloom filters
	4.2 The Hamming LSH-based blocking technique

	5 The frequent pairs scheme
	5.1 Specifying the level of confidence
	5.2 Outline of FPS

	6 Evaluation
	6.1 Quality measures and configuration parameters
	6.2 Baseline methods
	6.3 Experimental results
	6.3.1 Confidence parameter δ
	6.3.2 Bloom filter formats
	6.3.3 Increasing the number of perturbations
	6.3.4 Size S of the Bloom filters
	6.3.5 Wall-clock time
	6.3.6 Comparing with the baseline methods
	6.3.7 Pairs completeness and pairs quality
	6.3.8 Reduction ratio
	6.3.9 Wall-clock time
	6.3.10 Increasing the number of parties

	7 Conclusions
	Appendix: Solving for LmathcalC in (9)
	References

