
Knowl Inf Syst (2016) 49:597–627
DOI 10.1007/s10115-015-0914-8

REGULAR PAPER

On efficiently mining high utility sequential patterns

Jun-ZheWang1 · Jiun-LongHuang1 · Yi-ChengChen2

Received: 25 November 2014 / Revised: 10 October 2015 / Accepted: 29 December 2015 /
Published online: 11 January 2016
© Springer-Verlag London 2016

Abstract Highutility sequential patternmining is an emerging topic in patternmining,which
refers to identify sequenceswith high utilities (e.g., profits) but probablywith low frequencies.
To identify high utility sequential patterns, due to lack of downward closure property in this
problem, most existing algorithms first generate candidate sequences with high sequence-
weighted utilities (SWUs), which is an upper bound of the utilities of a sequence and all its
supersequences, and then calculate the actual utilities of these candidates. This causes a large
number of candidates since SWU is usually much larger than the real utilities of a sequence
and all its supersequences. In view of this, we propose two tight utility upper bounds, prefix
extension utility and reduced sequence utility, as well as two companion pruning strategies,
and devise HUS-Span algorithm to identify high utility sequential patterns by employing
these two pruning strategies. In addition, since setting a proper utility threshold is usually
difficult for users, we also propose algorithm TKHUS-Span to identify top-k high utility
sequential patterns by using these two pruning strategies. Three searching strategies, guided
depth-first search (GDFS), best-first search (BFS) and hybrid search of BFS and GDFS, are
also proposed to improve the efficiency of TKHUS-Span. Experimental results on some real
and synthetic datasets show that HUS-Span and TKHUS-Span with strategy BFS are able
to generate less candidate sequences and thus outperform other prior algorithms in terms of
mining efficiency.

B Jiun-Long Huang
jlhuang@cs.nctu.edu.tw

Jun-Zhe Wang
jzwang@cs.nctu.edu.tw

Yi-Cheng Chen
ycchen@mail.tku.edu.tw

1 Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, ROC

2 Department of Computer Science and Information Engineering, Tamkang University,
New Taipei City, Taiwan, ROC

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-015-0914-8&domain=pdf

598 J.-Z. Wang et al.

Keywords High utility sequential pattern · High utility sequential pattern mining ·
Top-k high utility sequential pattern · Utility mining

1 Introduction

Sequential patternmining,which is to discover sequenceswith high frequencies in a sequence
database (SDB), plays an important role in datamining.Many algorithms have been proposed
to address this problem, and sequential pattern mining has wide real-life applications, such
as market basket analysis, Web click log analysis and network traffic analysis [5,7–9,16,19,
22,24]. However, without considering the information such as selling quantity and profit in
a SDB, classical sequential pattern mining algorithms may lose some sequences with low
frequencies but with high utilities (e.g., profits). For example, in a consumer electronics retail
store, the unit profit of selling aLCD television ismuch higher than that of selling an extension
cord, but the selling quantity of LCD televisions is usuallymuch smaller than that of extension
cords. Hence, sequential pattern mining algorithms may filter out LCD televisions and obtain
some patterns related to extension cords. Therefore, how to mine sequential patterns catching
business or users’ interest is an important research topic nowadays.

To address this problem, some studies argued that both selling quantity and unit profit
of each item should be considered together. In high utility sequential pattern mining [3,26],
each item in the database has an external utility (e.g., unit profit) and an internal utility (e.g.,
selling quantity). The utility of a sequence represents its importance, which can be measured
in terms of profit (e.g., sum of product of selling quantity and unit profit of each item in
the sequence) or other information which business or users concern. Therefore, high utility
sequential pattern mining refers to find out sequences in a sequence database with utilities
no less than a user-specified minimum utility threshold.

However, mining high utility sequential patterns is challenging due to the following two
reasons. First, the utility of a sequence is neither monotone nor anti-monotone. Therefore,
most techniques used in sequential pattern mining algorithms, which rely on the anti-
monotonicity of support to prune the search space, cannot be directly applied to find out
high utility sequential patterns. To address this problem, sequence-weighted utility (SWU),
which is an upper bound of the utilities of a sequence and all its supersequences, has been
proposed in [3] to prune the search space in high utility sequential patternmining. A sequence
can be safely pruned when the SWU of this sequence is smaller than the minimum utility
threshold. Otherwise, this sequence is considered as a candidate sequence. Generally, algo-
rithms applying SWU first scan the database to find out the set of candidate sequences whose
SWUs are no less than the utility threshold, and then scan the database again to find out the
high utility sequential patterns by calculating the utility of each candidate sequence. How-
ever, algorithms using SWU may generate a huge amount of candidates and hence prolong
the execution time. In view of this, we design two tighter upper bounds of utility and prove
that using these bounds will not wrongly prune any high utility sequential patterns. Second,
for a sequence t and a sequence s, where t is a subsequence of s, s may contain multiple
instances of t and each instance is of its own utility. Thus, a feasible way is to define the
utility of t in s as the maximum utility of all instances of t in s. In order to calculate the
utility of a subsequence t in a sequence s, a brute force way is to find out each instance of t
in s, calculate the utility of each instance and then obtain the maximum among the utilities
of these instances. Such process will degrade the performance of calculating the utility of
any sequence.

123

On efficiently mining high utility sequential patterns 599

To address the above problems, we propose an efficient algorithm HUS-Span for mining
high utility sequential patterns. Specifically, we propose two utility upper bounds, named
prefix extension utility (PEU) and reduced sequence utility (RSU), and devise two pruning
strategies accordingly. HUS-Span then uses these two pruning strategies to prune the search
space. Compared with SWU, PEU and RSU are much tighter and hence generate less can-
didates. In addition, a data structure named utility-chain is also proposed to speed up the
calculation of the PEUs, RSUs and utilities of sequences. The utility-chain of a sequence t
stores the compact utility information so that the PEU, RSU and utility of t can be quickly
obtained from the utility-chain without enumerating each instance of t in each sequence
containing t .

Although HUS-Span is able to efficiently mine high utility sequential patterns, setting a
proper utility threshold is usually difficult for userswithout sufficient knowledge about a SDB.
In view of this, the concept of top-k high utility sequential pattern mining was introduced in
[27]. Instead of setting the minimum utility threshold, the users only need to set the value
of k to ask the algorithms to identify the top-k high utility sequential patterns in the SDB.
Different from high utility sequential pattern mining, the minimum utility threshold is not
specified in advance in top-k high utility sequential pattern mining. A general solution is to
use a min heap structure to store the top-k high utility sequential patterns found so far and
gradually replace the smallest utility sequence in the structure with a new sequence with
higher utility. Once the min heap contains k sequences, the sequence with the lowest utility
in the min heap can be applied to prune the search space. Thus, how to design an algorithm
able to quickly fill the min heap with higher utility sequences is important for top-k high
utility sequential pattern mining.

To address the problem of top-k high utility sequential pattern mining, we propose three
algorithms, namely TKHUS-SpanGDFS, TKHUS-SpanBFS and TKHUS-SpanHybrid for top-
k high utility sequential pattern mining by applying the guided depth-first search (GDFS),
best-first search (BFS) and hybrid search of BFS and GDFS into HUS-Span. Similar to [27],
the search space is modeled as a lexicographic tree. TKHUS-SpanGDFS traverses the tree
by DFS and always visits the child node with highest PEU among its unvisited siblings.
As mentioned in [17,28], DFS-based algorithms usually visit mores nodes than BFS-based
algorithms. Therefore, TKHUS-SpanBFS is proposed to traverse the search space by BFS
according to the PEU of each node. Similar to most BFS-based algorithms, TKHUS-SpanBFS
may consume a lot of memory and is not suitable for the cases with limited memory. In view
of this, TKHUS-SpanHybrid is proposed to traverse the search space with memory constraint.
Specifically, TKHUS-SpanHybrid uses BFS to traverse the search space when memory is
sufficient and switches to use guided DFS when memory usage almost reaches memory
limitation. Hence, TKHUS-SpanHybrid is able to strike a balance between mining efficiency
and memory usage.

To measure the performance of the proposed algorithms, several experiments on various
real and synthetic datasets are conducted. The experimental results show that for high utility
sequential pattern mining, HUS-Span outperforms the state-of-the-art algorithmUSpan [26].
For top-k high utility sequential pattern mining, TKHUS-SpanBFS outperforms other algo-
rithms including TUS [27]. Even so, TKHUS-SpanBFS runs out of memory space on one of
the datasets. Fortunately, due to controlling the required memory space, TKHUS-SpanHybrid
performs the best when the memory space is insufficient.

The rest of this paper is organized as follows. Section 2 gives the problem definitions
and reviews the related work. Sections 3 and 4 present the proposed algorithms for high
utility sequential patternmining and top-k high utility sequential patternmining, respectively.
Section 5 shows the experimental results, and finally, Sect. 6 concludes this paper.

123

600 J.-Z. Wang et al.

2 Preliminaries

In this section, we first give the formal definition of high utility sequential pattern mining
and top-k high utility sequential pattern mining in Sect. 2.1 and then review previous studies
on high utility itemset and high utility sequential pattern mining in Sect. 2.2.

2.1 Problem definition

Let I = {i1, i2, . . . , in} be a set of distinct items. A nonempty subset X ⊆ I is called an
itemset and |X | represents the si ze of X . For brevity, the brackets are omitted if an itemset
contains only one item. Without loss of generality, all items within an itemset are assumed to
be arranged lexicographically. A sequence 〈e1e2 . . . em〉 is an ordered list of itemsets, where
ei ⊆ I,∀i = 1, . . . ,m. The length l of sequence 〈e1e2 . . . em〉 is defined as l ≡ �m

i=1|ei |,
and the size of sequence 〈e1e2 . . . em〉 is defined as m. A sequence with length l is called
an l-sequence. Sequence t = 〈X1X2 . . . Xk〉 is called a subsequence of another sequence
s = 〈Y1Y2 . . . Ym〉, denoted as t � s, if there exists integers 1 ≤ j1 < j2 < · · · < jk ≤ m
such that X1 ⊆ Y j1 , X2 ⊆ Y j2 , . . . , Xk ⊆ Y jk . A sequence database D is a set of tuples
(sid, s), where sid is the ID of sequence s. Each item i of an itemset X j in a sequence
s = 〈X1X2 . . . Xm〉 is associated with a positive real number q(i, j, s), which is called the
internal utility or quantity of i . In the example sequence database given in Table 1a, the
internal utility of item b within the second itemset in s2 (i.e., q(b, 2, s2)) is 1.

Table 1 A sequence database and its profit table

(a) A sequence database

SID Sequence

s1 TID 1 2 3

Itemset b a, b c, e

Internal utility 3 5, 2 1, 6

s2 TID 1 2 3 4

Itemset c, e a, b d a, d

Internal utility 5, 4 3, 1 6 2, 8

s3 TID 1 2 3 4

Itemset c, d c, d, e e a

Internal utility 2, 1 5, 6, 1 1 2

s4 TID 1 2 3 4 5

Itemset a, d a, b b, d a, b d, e

Internal utility 1, 5 3, 2 1, 4 2, 1 6, 1

s5 TID 1 2 3 4

Itemset a, c, e a, c, e a, c, e d

Internal utility 1, 2, 3 40, 1, 1 5, 1, 1 1

(b) A profit table

Item a b c d e

External utility 2 10 4 3 1

123

On efficiently mining high utility sequential patterns 601

Definition 1 The external utility of item i , denoted as p(i), is a positive real number which
represents the unit profit or importance of i . The external utility of each item i ∈ I is recorded
in a profit table. Table 1b shows the corresponding profit table for the sequence database given
in Table 1a.

Definition 2 The utility of item i within the j th itemset of s is defined as u(i, j, s) =
p(i) × q(i, j, s). For example, u(b, 2, s2) = p(b) × q(b, 2, s2) = 10 × 1 = 10.

Definition 3 The utility of itemset X contained in the j th itemset of s is defined as

u(X, j, s) =
∑

∀i∈X
u(i, j, s). (1)

For example, u({a, c}, 2, s5) = u(a, 2, s5) + u(c, 2, s5) = 2 × 40 + 4 × 1 = 84.

Definition 4 When t is a subsequence of s, where 1 ≤ j1 < j2 < · · · < jk ≤ m and X1 ⊆
Y j1 , X2 ⊆ Y j2 , . . . , Xk ⊆ Y jk , we say that s has an instance of t at position 〈 j1, j2, . . . , jk〉.
Definition 5 When s has an instance of t at position 〈 j1, j2, . . . , jk〉, the utility of the
instance of t at position 〈 j1, j2, . . . , jk〉 is defined as

u(t, 〈 j1, j2, . . . , jk〉, s) =
k∑

i=1

u(Xi , ji , s), (2)

where Xi ⊆ Y ji . For example, u(〈a{c, e}〉, 〈1, 2〉, s5) = u(a, 1, s5) + u({c, e}, 2, s5) = 2 +
(4+1) = 7, and u(〈a{c, e}〉, 〈2, 3〉, s5) = u(a, 2, s5)+u({c, e}, 3, s5) = 80+ (4+1) = 85.

Definition 6 The utility of sequence t in sequence s, denoted as u(t, s), is defined as the
maximum of the utilities of all instances of t in s. That is,

u(t, s) = max
{
u (t, 〈 j1, j2, . . . , jk〉, s) |∀ 〈 j1, j2, . . . , jk〉 : t � 〈

Y j1Y j2 . . . Y jk

〉}
. (3)

For example, u(〈a{c, e}〉, s5) = max{u(〈a{c, e}〉, 〈1, 2〉, s5), u(〈a{c, e}〉, 〈1, 3〉, s5),
u(〈a{c, e}〉, 〈2, 3〉, s5)} = max{7, 7, 85} = 85.

Definition 7 The utility of a sequence t in D, denoted as u(t), is defined as

u(t) =
∑

∀s∈D∧t�s

u(t, s). (4)

For example, u(〈a{c, e}〉) = u(〈a{c, e}〉, s1) + u(〈a{c, e}〉, s5) = 20 + 85 = 105.

Definition 8 A sequence t is called a high utility sequential pattern in a sequence database
D ifu(t) ≥ ξ ,where ξ is a user-specifiedminimumutility threshold.When ξ = 100, 〈a{c, e}〉
is a high utility sequential pattern since u(〈a{c, e}〉) = 105 ≥ 100.

Problem 1 (High Utility Sequential Pattern Mining) Given a sequence database D, a profit
table and the minimum utility threshold ξ , high utility sequential pattern mining is to identify
the complete set of high utility sequential patterns in D.

Definition 9 A sequence t is called a top-k high utility sequential pattern in a sequence
database D if in D, there are less than k sequences whose utilities are larger than u(t).

Problem 2 (Top-k High Utility Sequential Pattern Mining) Given a sequence database D,
a profit table and the desired number of high utility sequential patterns k, top-k high utility
sequential pattern mining is to identify a set of top-k high utility sequential patterns in D,
where the set contains k sequences with highest utilities in the database D if there are at least
k sequences in D; otherwise, it contains all sequences in D.

123

602 J.-Z. Wang et al.

2.2 Related work

2.2.1 High utility itemset mining

The concept of high utility itemset mining, which is to mine all itemsets with utilities larger
than or equal to a user-specified threshold in a transaction database, was first introduced
in [25]. Mining high utility itemsets is more difficult than frequent itemset mining since
the downward closure property does not hold for the utilities of itemsets. Fortunately, the
downward closure property holds for transaction-weighted utility (TWU), which is an upper
bound of the utilities of an itemset and all its super-itemsets. Thus, several algorithms
have been proposed to mine high utility itemsets by applying TWU to prune the search
space. Generally, these algorithms can be grouped into two classes: the level-wise candi-
date generation-and-test manner and the pattern-growth manner. In the level-wise candidate
generation-and-test manner, Liu et al. [14] proposed a two-phase algorithm with a pruning
strategy to efficiently mine high utility itemsets. Li et al. [11] proposed the isolated item
discarding strategy to further reduce the number of candidates. However, these algorithms
suffer from the problem of multiple database scans. To address this problem, some algo-
rithms based on the pattern-growth manner have been proposed. Ahmed et al. [4] devised
three tree structures to facilitate incremental high utility itemset mining. Inspired by FP-tree
used in FP-Growth [8], Tseng et al. [21] also proposed a tree structure UP-Tree as well as
four pruning strategies to mine high utility itemsets. However, all of these algorithms cannot
avoid candidate generation. Recently, two algorithms [12,13] without candidate generation
have been proposed to achieve mining efficiency better than the algorithms proposed in
[4,21].

Since it is difficult for users to set an appropriate minimum utility threshold if they do not
have sufficient knowledge on the transaction database, this limitation brings out the top-k
high utility itemset mining problem. To the best of our knowledge, algorithm TKU [23] is the
only algorithm for top-k high utility itemset mining. TKU adopted the UP-Tree to maintain
the information of top-k high utility itemsets. TKU consists of three phases. In the first phase,
UP-tree is constructed. In the second phase, all the candidate top-k high utility itemsets are
found. In the third phase, the actual utilities of the candidate itemsets are calculated. By
initially setting a minimum utility threshold to 0, after k itemsets are found, the lowest utility
among the k itemsets can be used to replace the minimum utility threshold. Therefore, after k
itemsets are found, how to raise the minimum utility threshold as soon as possible becomes a
major concern for mining efficiency. Accordingly, five strategies are proposed to effectively
raise the minimum utility threshold in order to prune the search space during different phases
of TKU.

2.2.2 High utility sequential pattern mining

The problem of high utility sequential pattern mining was first addressed in [3]. References
[10,26] argued that the definition of utility used in [3] is too specific, and hence adopted
“the maximum utility of all occurrences of t in s” as the utility of t in s. Our work follows
the definition of utility used in [10,26]. Due to the absence of downward closure property
in sequence utility, SWU, which is an upper bound of the utilities of a sequence and all its
supersequence, was applied to prune the search space during the mining process. Here, we
give the definition of SWU as below.

123

On efficiently mining high utility sequential patterns 603

Definition 10 ([3,10,26]) The SWU of a sequence t , denoted as SWU (t), is defined as

SWU(t) =
∑

∀s∈D∧t�s

u(s, s). (5)

For example, SWU (〈a{c, e}〉) = u(s1, s1) + u(s5, s5) = 70 + 116 = 186.

Theorem 1 (Sequence-Weighted Downward Closure Property [3,26]) Given a sequence t
in a sequence database D, SWU (t) ≥ SWU (t ′) for all t � t ′.

Theorem 2 ([3,10]) Given a sequence t in a sequence database D, SWU (t) ≥ u(t).

According to Theorems 1 and 2, we can see that the downward closure property holds
in SWU and SWU of a sequence is no less than the utility of the sequence. By using SWU
to prune the search space, Ahmed et al. [3] proposed an Apriori-like algorithm UL and
PrefixSpan-like algorithm US to mine high utility sequential patterns by the following two
phases. In phase I, the sequences with high SWUs are first found from the sequence database.
Then, in phase II, the actual utilities of all high SWUs sequences are computed and hence all
high utility sequential patterns can be identified. There are some applications related to high
utility sequential pattern mining; for example, UMSP algorithm [18] was proposed to mine
high utility mobile sequences, and algorithms with UWAS-tree and IUWAS-tree [2] were
designed to mine high utility Web log sequences. Yin et al. gave in [26] a generic problem
definition of high utility sequential pattern mining and proposed algorithm USpan to mine
high utility sequential patterns. They represented the search space of high utility sequential
patternmining problem as a lexicographic tree and usedUSpan tomine high utility sequential
patterns by traversing the tree in a DFS manner. They also used SWU and proposed a depth
pruning strategy to prune the tree for a better efficiency. Although SWU adopted by most of
the above algorithms (e.g., UL [3], US [3] and USpan [26]) can prune the search space, they
usually suffer from the problem of massive candidate sequences, especially when minimum
utility threshold is small. In view of this, we propose two tight utility upper bounds as well
as two companion pruning strategies to generate less candidates, thereby achieving efficient
mining of high utility sequential patterns.

As in high utility itemset mining, it is difficult for users to select a suitable minimum
utility threshold, and thus, Yin et al. [27] proposed algorithm TUS to solve the problem of
top-k high utility sequential pattern mining. Similar to USpan, they mined top-k patterns by
traversing the lexicographic tree in a DFS way. They proposed a utility metric SPU, identical
to the depth pruning strategy in USpan [26], to determine the visiting order of the child nodes
of a parent node and to raise the minimum utility threshold as soon as possible. Moreover,
they proposed a utility metric SRU to prune the search space.

To address the problem of top-k high utility sequential pattern mining, we first pro-
pose algorithm TKHUS-SpanGDFS to mine top-k high utility sequential patterns by using
DFS to traverse lexicographic trees with the aid of PEU and RSU. Although TUS and
TKHUS-SpanGDFS can mine top-k high utility sequential patterns effectively by DFS, they
may not find out the top-k high utility sequential patterns in the early stage and will visit
many nodes to complete the mining process [17,28]. In view of this, we propose algorithm
TKHUS-SpanBFS by adopting BFS to explore the search space as thoroughly as possible.
TKHUS-SpanBFS can raise the minimum utility threshold more effectively than TUS and
TKHUS-SpanGDFS. In the situation of limited memory space of machines, we also proposed
an algorithm with a hybrid search of BFS and GDFS, named TKHUS-SpanHybrid, to balance
the mining efficiency and space usage.

123

604 J.-Z. Wang et al.

3 HUS-Span: the proposed algorithm for mining high utility sequential
patterns

3.1 Lexicographic tree

Similar to SPAM [5] and USpan [26], the search space of the high utility sequential pattern
mining problem can be represented as a lexicographic tree. A lexicographic tree is a tree
structure with the root labeled with “〈〉”, and each node t other than the root consists of
the following fields: t .seq , and t .uchain, where t .seq is the sequence represented by t and
t .uchain contains the utility-chain (some auxiliary information to facilitate efficient PEU,
RSU and utility calculation) of t for search space pruning.

Definition 11 ([5]) Given an l-sequence t , if an (l+1)-sequence t ′ is generated by appending
a new itemset consisting of a single item to the end of t , t ′ is called an s-extension sequence.
On the other hand, t ′ is called an i-extension sequence if it is formed by inserting an item into
the last itemset of t . The process of generating an s-extension sequence is called S-Extension,
and the process of generating an i-extension sequence is called I-Extension. For example,
〈cd〉 is an s-extension sequence of 〈c〉, and 〈{c, e}〉 is an i-extension sequence of 〈c〉.

Given a node t in the tree, the sequence of each child node t ′ of t (i.e., t ′.seq) is either
an i-extension sequence or an s-extension sequence of t .seq . Figure 1 shows a part of the
lexicographic tree of the sequence database in Table 1a. All the child nodes of a parent node
are ordered lexicographically with i-extension sequences before s-extension sequences.

Similar to SPAM [5] and USpan [26], the basic idea of HUS-Span is to traverse the
lexicographic tree by DFS. For each visited node t , HUS-Span calculates the utility of t
and reports t as a high utility sequential pattern if the utility of t is larger than or equal to
ξ . It is clear that a lot of nodes in a lexicographic tree will not be of enough utility. For
better efficiency, some existing algorithms [3,26] adopted SWU to prune a sequence t if
SWU (t) is less than ξ . However, SWU is usually much larger than the real utilities of t
and all supersequences of t , thereby severely reducing the pruning effect of SWU-based
algorithms. This problem becomes worse, especially when a sequence database consists of
a large amount of long sequences. Such problem motivates us to design two novel utility
upper bounds, called PEU and RSU, which are tighter than SWU. With the aid of PEU and
RSU, we then propose two companion pruning strategies and develop algorithm HUS-Span
to efficiently mine high utility sequential patterns using the proposed pruning strategies. In
Sect. 3.2, we design a novel data structure, utility-chain, to facilitate efficient calculation of
PEUs, RSUs and utilities. The details of PEU and RSU as well as the companion pruning
strategies are given in Sect. 3.3. Finally, the details of HUS-Span are described in Sect. 3.4.

3.2 Utility-chain structure

Considering two sequences t = 〈X1X2 . . . Xk〉 and s = 〈Y1Y2 . . . Ym〉, where t � s, it is
possible that s contains multiple instances of t at different positions. Take sequence 〈ac〉
for example. Sequence s5 = 〈{a, c, e}{a, c, e}{a, c, e}d〉 contains three instances of 〈ac〉 at
positions 〈1, 2〉, 〈1, 3〉, and 〈2, 3〉. Hence, the utility of 〈ac〉 in s5 (i.e., u(〈ac〉, s5)) should be
obtained by calculating the maximum of the utilities of these three instances. Obviously, it is
time-consuming to obtain the utility of each instance of t in s since we have to first find the
positions of all instances of t in s, then compute the utility of each instance, and finally obtain
the maximum of the utilities of all instances. This motivates us to design the utility-chain

123

On efficiently mining high utility sequential patterns 605

<>

 <c> <d><a> <e>

<{a, b}> <{a, c}> <a,a> <a b> <a c> <a d> <a e>

<{a, b}a>

I-Extension

S-Extension

<{a, d}> <{a, e}>

<{a, b}b> <{a, b}c> <{a, b}e><{a, b}d>

<{a, b }{a, b}> <{a, b}{a, d}> <{a, b}a d> <{a, b}a e>

<{a, b }{a, b}d> <{a, b }{a, b}e>

Fig. 1 Partial lexicographic tree for the example in Table 1a

structure to speed up the calculation of the utilities of all instances of t in s when s contains
multiple instances of t .

Definition 12 If s has an instance of t at position 〈 j1, j2, . . . , jk〉, the last item of Xk , say
item i , is called the extension item of t , and jk is called an extension position of t in s. For
example, item e is the extension item of sequence 〈a{c, e}〉, while 2 and 3 are extension
positions of 〈a{c, e}〉 in sequence s5 = 〈{a, c, e}{a, c, e}{a, c, e}d〉.

Suppose that t is an l-sequence. To perform the extension process of t in s, we can record
each extension position of t in s since it is the qualified position for t to append an item
to form (l + 1)-sequences. Furthermore, to calculate the utility of each (l + 1)-sequence
extended from t in s, an efficient way is, for each extension position of t in s, say p, to record
the maximum utility of the instances of t at extension position p in s.

Definition 13 The maximum utility of t at extension position p in s, denoted as u(t, p, s),
is defined as

max{u(t, 〈 j1, j2, . . . , p〉, s)|∀1 ≤ j1 < j2 < · · · < p ≤ m : t � 〈X j1X j2 . . . X p〉}. (6)

For example, u(〈a{c, e}〉, 3, s5) = max{u(〈a{c, e}〉, 〈1, 3〉, s5), u(〈a{c, e}〉, 〈2, 3〉, s5)} =
max{7, 85} = 85.

It is obvious that the utility of t in s (i.e., u(t, s)) can be efficiently obtained from the
maximum utility of t at each extension position p in s (i.e., u(t, p, s)).

Definition 14 Suppose that s contains an instance of t at position 〈 j1, j2, . . . , jk〉. The
remaining sequence of s with respect to extension position jk , denoted as s/(t, jk), is defined
as the subsequence of s from the item after the extension item of such instance to the end of
s.

Definition 15 The utility of the remaining sequence s/(t, jk), denoted as ru(s/(t, jk)), is the
sum of the utilities of all items in s/(t, jk).

For example, s5 = 〈{a, c, e}{a, c, e}{a, c, e}d〉 contains three instances of 〈c〉. The remain-
ing sequences of these three instances are s5/(〈c〉,1) = 〈e{a, c, e}{a, c, e}d〉, s5/(〈c〉,2) =

123

606 J.-Z. Wang et al.

Fig. 2 Utility-chain of sequence 〈c〉

〈e{a, c, e}d〉, and s5/(〈c〉,3) = 〈ed〉. In addition, the utilities of these three remaining
sequences are ru(s5/(〈c〉,1)) = 106, ru(s5/(〈c〉,2)) = 19 and ru(s5/(〈c〉,3)) = 4, respectively.

Suppose all the extension positions of t in s are p1, p2, . . . , pq , where p1 < p2 < · · · <

pq . The utility-list of t in s is a list of q elements, where the i th element in the utility-list
contains the following fields:

– Field sid is the sequence ID of s.
– Field tid is the i th extension position pi .
– Field acu is the maximum utility of t at extension position pi in s (i.e., u(t, pi , s)).
– Field ru is the utility of the remaining sequence s/(t,pi) (i.e., ru(s/(t,pi)))
– Field link is a pointer pointing to either the (i+1)th element when i < q or null when

i = q .

The utility-chain of a sequence t is a set of utility-lists for all sequences containing t .

3.2.1 Generating utility-chains of 1-sequences

To construct the utility-chains of all 1-sequences, HUS-Span first scans the sequence data-
base D to accumulate SWU of each 1-sequence and constructs the utility-chains for the
1-sequenceswith SWUs larger than or equal to ξ . Figure 2 shows the utility-chain of sequence
〈c〉 in the sequence database given in Table 1a. The sequences containing 〈c〉 are s1, s2, s3
and s5. In sequence s1 = 〈b{ab}{ce}〉, only one instance of 〈c〉 at extension position 3 exists.
Thus, u(〈c〉, 3, s1) = 4, and the remaining utility ru(s1/(〈c〉,3)) = u(e, 3, s1) = 6. So, the
utility-list of sequence 〈c〉 for s1 contains only one element (1, 3, 4, 6, null). On the other
hand, s3 = 〈{c, d}{c, d, e}ea〉 contains two instances of 〈c〉 at extension positions 1 and 2.
The utilities as well as the remaining utilities of these two instances are u(〈c〉, 1, s3) = 8 and
ru(s3/(〈c〉,1)) = 47, and u(〈c〉, 2, s3) = 20 and ru(s3/(〈c〉,2)) = 24, respectively. We can see
in Fig. 2 that the utility-list of 〈c〉 for s3 consists of two elements e1 = (3, 1, 8, 47, e2), and
e2 = (3, 2, 20, 24, null), where the link of e1 pointing to e2 indicates that the next extension
position after the position 1 is 2.

3.2.2 Generating utility-chains of l-sequences (l ≥ 2)

We use the following examples to describe, given an l-sequence t , how to generate all t’s i- or
s-extension (l + 1)-sequences as well as their utility-chains based on the utility-chains of t .
In a sequence s, items able to form i-extension sequences from t are those items which exist
within the pi th itemset of s and are lexicographically larger than the extension item of t , for

123

On efficiently mining high utility sequential patterns 607

all extension positions pi of t in s. Consider sequence s3 = 〈{c, d}{c, d, e}ea〉 consisting
of the 1-sequence 〈c〉. Since there are two instances of 〈c〉 in s3, the utility-list of 〈c〉 for s3
consists of two elements. The value of tid field in the first element is set to 1 to indicate that
the first extension position of 〈c〉 in s3 is 1. Similarly, the value of tid of the second element
is set to 2. In the first itemset of s3, d is the item after the first occurrence of the extension
item of 〈c〉, and in the second itemset, d and e are items after the second occurrence of the
extension item. Thus, we know that items in s able to form i-extension sequences from 〈c〉
are d and e.

Next, we take item d as an example to show how to construct the utility-chain of 〈{c, d}〉.
Since item d is within the first and second itemsets of s3, there are two extension positions
of 〈{c, d}〉 in s3, and the utility-chain of 〈{c, d}〉 consists of two elements. The first element
is of field tid = 1 since the first extension position of 〈{c, d}〉 in s3 is 1. Similarly, the
second element is of field tid = 2. The utility of u(〈{c, d}〉, 1, s3) can be calculated by the
utility of the extension item in the first itemset of s3 (i.e., u(d, 1, s3)) plus the acu of the
first element of the utility-list of 〈c〉 in s3. Thus, we have u(〈{c, d}〉, 1, s3) = u(d, 1, s3) +
u(〈c〉, 1, s3) = 3+ 8 = 11, and the value of u(〈{c, d}〉, 1, s3) is stored in the field acu of the
first element of the utility-list of 〈{c, d}〉 in s3. The value of u(〈{c, d}〉, 2, s3) is obtained by
u(d, 2, s3)+u(〈c〉, 2, s3) = 18+20 = 38, and hence the value of acu of the second element
of the utility-list of 〈{c, d}〉 in s3 is 38. Since 〈{c, d}〉 occurs only in s3, the utility-chain of
〈{c, d}〉 consists of only one utility-list and the utility-chain of 〈{c, d}〉 is shown in Fig. 3.

On the other hand, items able to form s-extension sequences from t in s are those items
which exist after the p1th itemset of s, where p1 is the first extension position of t in s. Take
〈{c, d}〉 as an example. Since the value of tid of the first element of the utility-list of 〈{c, d}〉
for s3 is 1, the items able to form s-extension sequences from 〈{c, d}〉 in s3 are all the items
occurring at least once among the itemsets from the second itemset to the last itemset of s3. In
this example, they are a, c, d and e. Here, we take item e to show how to construct the utility-
list of 〈{c, d}e〉 for s3.With a scan from thefirst itemof the second itemset to the last itemof the
last itemset, two extension positions of 〈{c, d}e〉 within the second and the third itemsets are
found. Therefore, a utility-chain with two elements e1 and e2 is formed, and the values of the
fields tid of e1 and e2 are set to 2 and 3, respectively. The value of field acu of the first element
(i.e., u(〈{c, d}e〉, 2, s3)) can be calculated by u(〈{c, d}〉, 1, s3) + u(e, 2, s3) = 11+ 1 = 12.
We now consider the second element. From the utility-list of 〈{c, d}〉 for s3, we know that
there are two extension positions 1 and 2 for 〈{c, d}〉. Sequence 〈{c, d}e〉 can be formed by
appending item e to the extension item of 〈{c, d}〉 occurring in the first and the second item-
sets. Thus, u(〈{c, d}e〉, 3, s3) = max{u(〈{c, d}〉, 1, s3), u(〈{c, d}〉, 2, s3)} + u(e, 3, s3) =
max{11, 38} + 1 = 38 + 1 = 39. Finally, the utility-chain of 〈{c, d}e〉 is shown in Fig. 4.

Fig. 3 Utility-chain of 〈{c, d}〉

Fig. 4 Utility-chain of sequence 〈{c, d}e〉

123

608 J.-Z. Wang et al.

Fig. 5 Utility-chain of sequence 〈a{c, e}〉

3.3 The proposed pruning strategies

3.3.1 The prefix extension utility strategy

Definition 16 The PEU of sequence t in sequence s at position p, denoted as PEU (t, p, s),
is defined as:

PEU (t, p, s) =
{
u(t, p, s) + ru(s/(t,p)) if ru(s/(t,p)) > 0,

0 otherwise.
(7)

The PEU of sequence t in sequence s, denoted as PEU (t, s), is defined as:

PEU (t, s) = max{PEU (t, p, s)|∀extension position p of t in s}. (8)

Definition 17 The PEU of sequence t in D, denoted as PEU (t), is defined as:

PEU (t) =
∑

∀s∈D∧t�s

PEU (t, s). (9)

Example 1 Consider the sequence t = 〈a{c, e}〉. Since t is a subsequence of s1 =
〈b{a, b}{c, e}〉 and s5 = 〈{a, c, e}{a, c, e}{a, c, e}d〉, the utility-chain of t is shown in Fig. 5.
The value of ru of the first element in the utility-list for s1 is 0, meaning that it is not pos-
sible to form any i- or s-extension sequence of t in s1. Thus, PEU (t, s1) is 0. On the other
hand, the utility-list for s5 consists of two elements, and their remaining utilities (i.e., ru) are
larger than 0. It means that in s5, there are some items able to be inserted or appended to the
end of t to form i- or s-extension sequences. According to the definition of PEU, we have
PEU (t, s5) = max{7+ 18, 85+ 3} = max{25, 88} = 88, meaning that the upper bound of
the utility of any descendant sequence of t in s5 is 88. Finally, the upper bound of the utility
of any descendant sequence of t is PEU (t) = PEU (t, s1) + PEU (t, s5) = 88.

Theorem 3 Given a sequence t, for each sequence t ′ where t is a prefix of t ′ (i.e., t ′ is a
descendant of t), u(t ′) ≤ PEU (t).

Proof Let St ⊆ D be the set of sequences containing t . For each s ∈ St , let EPt,s be the set
of each extension position of t in s whose utility of the remaining sequence is larger than 0
(i.e., EPt,s = {p|ru(s/(t,p)) > 0}. Since t is a prefix of t ′, we assume that t ′ = t · t ′′ where
|t ′′| > 0. Consider an instance of t ′ in s and let p be the extension position of the instance
of t in s. The utility of this instance in s consists of two parts: (1) the utility of an instance
of t at extension position p in s and (2) the utility of an instance of t ′′ where the first item of
such instance is after p. The first part can be obtained from field acu of the corresponding
element in t’s utility-chain. As to the second part, it is clear that the instance of t ′′ must be
a subsequence of the remaining sequence s/(t,p). Thus, the upper bound of the utility of the

123

On efficiently mining high utility sequential patterns 609

instance of t ′′ is the utility of the remaining sequence s/(t,p), which is able to be obtained
from field ru of the corresponding element in t’s utility-chain. Thus, the upper bound of an
instance of t ′, where the extension position of the corresponding instance of t in s is p, is
u(t, p, s)+ru(s/(t,p)). Since PEU (t, s) is defined asmax∀p∈EPt,s {(u(t, p, s)+ru(s/(t,p))},
we have u(t ′, s) ≤ PEU (t, s) and u(t ′) ≤ PEU (t). �

According to Theorem 3, PEU (t) is an upper bound of the utilities of any descendants
of t . Therefore, each descendant node of t can be safely pruned without affecting the mining
result when PEU (t) < ξ .

3.3.2 The reduced sequence utility strategy

Definition 18 Consider a sequence t and let α be the sequence able to generate t by one I -
or S-Extension. The RSU of t in sequence s, denoted as RSU (t, s), is defined as:

RSU (t, s) =
{
PEU (α, s) : t � s ∧ α � s

0 : otherwise , (10)

where p is an extension position of α in s. The RSU of a sequence t , denoted as RSU (t), is
defined as:

RSU (t) =
∑

∀s∈D
RSU (t, s). (11)

Example 2 Consider the sequence 〈{c, d}e〉. In the database given in Table 1a, only sequence
s3 = 〈{c, d}{c, d, e}ea〉 contains 〈{c, d}e〉. After scanning s3 from the item after the extension
position of 〈{c, d}e〉 in s3 (i.e., the first item of the third itemset of s3) to the last item of the last
itemset,we canfind that only itemsa, and e are able to form s-extension sequences of 〈{c, d}e〉
(i.e., 〈{c, d}ea〉 and 〈{c, d}ee〉). According to Definition 18, we have RSU (〈{c, d}ee〉, s3) =
max{12 + 5, 39 + 4} = max{17, 43} = 43. 〈{c, d}ee〉 occurs only in s3, and thus, we have
RSU (〈{c, d}ee〉) = RSU (〈{c, d}ee〉, s3) = 43.

Theorem 4 Given a sequence t, for each sequence t ′ where either t is a prefix of t ′ or t ′ = t ,
u(t ′) ≤ RSU (t).

Proof Letα be the sequence able to generate t by one I - or S-Extension. In the lexicographic
tree, it is clear that α is the parent node of t and t ′ is a descendant of t . Let St ⊆ D be the
set of sequences containing t . Given a sequence s ∈ St , according to Definition 18, we have
RSU (t, s) = PEU (α, s). In addition, based on the proof of Theorem 3, we know that for
each sequence t ′ where α is a prefix of t ′ (i.e., either t is a prefix of t ′ or t ′ = t), u(t ′, s) ≤
PEU (α, s). Thus, we have u(t ′, s) ≤ PEU (α, s) = RSU (t, s) and u(t ′) ≤ RSU (t). �

According toTheorem4, RSU (t) is an upper boundof the utilities of t and each descendant
of t , and thus, the sub-tree rooted by t can be safely pruned without affecting the mining
result when RSU (t) < ξ .

3.4 HUS-span algorithm

As shown in Algorithm 1, HUS-Span traverses a lexicographic tree by DFS. When visiting
a node t , HUS-Span first checks whether each descendant of t is unable to be a high utility
sequential pattern by the PEU pruning strategy (line 1). If so, HUS-Span backtracks to the

123

610 J.-Z. Wang et al.

parent of t . Otherwise, HUS-Span scans t-projected DB (line 3) and puts i- and s-extension
items into ilist or slist , respectively (lines 4 to 5). Then, HUS-Span removes some items
from ilist and slist according to the RSU pruning strategy (line 6). For each item i in
ilist , HUS-Span performs the I-Extension operation to generate each child node t ′ (line 8),
constructs the utility-chain t ′.uc of t ′ and outputs t ′ as a high utility sequential pattern if the
utility of t ′ is larger than or equal to the minimum utility threshold ξ (lines 10 to 11). Finally,
HUS-Span recursively expands node t ′ (line 12) in a similar manner. Similarly, HUS-Span
performs the above procedure to handle each s-extension item i in slist (lines 13–18).

Algorithm 1: HUS-Span(t , t.uc)
Input: A sequence database D, the minimum utility threshold ξ , and a sequence t with utility-chain

t.uc
Output: The set of high utility sequential patterns
if PEU(t) < ξ then1

return2

scan t-projected DB once to;3
1. put i-extension items into ilist ;4
2. put s-extension items into slist ;5

delete low RSU items from ilist and slist ;6
foreach item i ∈ ilist do7

t ′ ← I − Extension(t, i);8

construct t ′.uc;9

if u(t ′) ≥ ξ then10
output t ′;11

HUS-Span(t ′, t ′.uc);12

foreach item i ∈ slist do13
t ′ ← S − Extension(t, i);14

construct t ′.uc;15

if u(t ′) ≥ ξ then16
output t ′;17

HUS-Span(t ′, t ′.uc);18

3.5 Implementation details

Similar to USpan, each sequence in a sequence database is represented as a utility matrix
stored in memory. The utility matrix of a sequence s is indexed by item and TID, where the
(i, j) entry represents the utility u(i, j, s) of item i within the j th itemset of s. In addition,
for each sequence, we also use a remaining utility matrix to record the utility of remaining
sequence after each item in the sequence, where the (i, j) entry represents the utility of the
remaining sequence after item i of the j th itemset. Table 2a, b represent the utility matrix
and remaining utility matrix of s1, respectively.

For sequences α and t , where t is an i- or s-extension sequence of α, it is intuitive that
PEU (t) and the utility u(t) of t can be obtained by first (1) building the utility-chain of t
based on the utility-chain of α and then (2) scanning the utility-chain of t . To reduce the
execution time, when obtaining the ru of each element, say element j , in the utility-chain of
t , we can directly retrieve ru from the (i , p j) entry of the remaining utility matrix without
computation, where i is an extension item of t and p j is the tid of element j . In addition,
PEU (t) and utility u(t) are stored together with sequence of t for better efficiency.

123

On efficiently mining high utility sequential patterns 611

Table 2 The sequence
representation of s1

TID 1 2 3

(a) The utility matrix of s1
a 0 10 0

b 30 20 0

c 0 0 4

e 0 0 6

(b) The remaining utility matrix of s1
a 70 30 10

b 40 10 10

c 40 10 6

e 40 10 0

Fig. 6 Utility-chain implementation of sequence t = 〈a{c, e}〉

For a sequence t whose PEU (t) ≥ ξ , HUS-Span needs to scan t-projected DB to find
the i- and s-extension sequences whose RSUs are larger than or equal to ξ and computes the
utility of each resultant extension sequence. Assume that s ∈ D, and let t ′ be an extension
sequence of t , where t ′ � s. To compute RSU (t ′, s), during the t-projected sequence scan
with respect to s, an intuitive way is to scan all elements in the utility-list of t in s. According
to Definition 18, we know that RSU (t ′, s) = PEU (t, s). Thus, we insert PEU (t, s) into
the utility-list of t in s to avoid scanning all the elements in the utility-list of t in s. In this
way, the computation of RSU (t ′, s) is accelerated during t-projected DB scan. Furthermore,
instead of keeping sid of s in each element in the utility-list of t in s, the field sid of s is only
kept once in the utility-list of t in s for saving space. Figure 6 shows the implementation of
the utility-chain of sequence t = 〈a{c, e}〉 (Fig. 5) with optimization.

4 TKHUS-Span: the proposed algorithm for mining top-k high utility
sequential patterns

To mine top-k high utility sequential patterns in a sequence database D, we use a min heap
structure topkL with size k to maintain the k highest utility sequences found during the
mining process. Each element in topkL consists of two fields: sequence and its utility. Let
topkL .lowest.s be the sequence with the lowest utility among all sequences in topkL and
topkL .lowest.u be the utility of topkL .lowest.s. The basic idea of the proposed top-k

123

612 J.-Z. Wang et al.

high utility sequential pattern mining algorithm, TKHUS-Span, is as follows. The minimum
utility threshold ξ is initialized to -1. Similar to HUS-Span, TKHUS-Span traverses the
nodes of a lexicographic tree. If topkL is not full, when finding a sequence t , TKHUS-Span
inserts sequence t as well as its utility u(t) into topkL; otherwise, if u(t) > topkL .lowest.u,
TKHUS-Spanwill remove the sequence topkL .lowest.s and its utility topkL .lowest.u from
topkL and insert t as well as u(t) into topkL , and thus, ξ is updated to topkL .lowest.u after
topkL is updated. After all nodes in the lexicographic tree have been either visited or pruned
by TKHUS-Span, the sequences in topkL are the top-k high utility sequential patterns.

In high utility sequential pattern mining, the order to traverse a lexicographic tree does not
affect the mining efficiency since all nodes should be visited or pruned. Thus, DFS is usually
applied to traverse the lexicographic tree. However, in top-k high utility sequential pattern
mining, the traversal order becomes important since a good traversal ordermay lead TKHUS-
Span to identify top-k high utility sequential patterns earlier, thereby making TKHUS-Span
able to prune more nodes with insufficient utilities. Therefore, we propose three search
strategies, namely guided depth-first search (guided DFS), best-first search (BFS) and hybrid
search of BFS and GDFS, in the following subsections.

4.1 TKHUS-Span with guided depth-first search strategy

Algorithm 2 illustrates the proposed algorithm TKHUS-SpanGDFS for mining top-k high
utility sequential patterns by the guided DFS strategy. In the beginning of mining process,

Algorithm 2: TKHUS-SpanGDFS
Input: A sequence database D
Output: Top-k high utility sequential patterns in D
construct a min heap topkL of size k;1
set minimum utility threshold ξ to -1;2
scan D once to:;3
put s-extension items into slist ;4

//process 1-sequences
foreach item i ∈ slist do5

CalUtility(〈i〉);6

sort each sequence in slist according to its PEU in descending order;7

foreach sequence t ′ ∈ slist do8
GDFS(t ′, t ′.uc, topkL);9

output all sequences in topkL;10

Function CalUtility(t ′)
Input: A sequence t ′
construct t ′.uc;11
if I sFull(topkL) then12

if u(t ′) > topkL .lowest.u then13
remove topkL .lowest.s and topkL .lowest.u from topkL;14

insert (t ′, u(t ′)) into topkL;15
set ξ to topkL .lowest.u;16

else17
insert (t ′, u(t ′)) into topkL;18
set ξ to topkL .lowest.u when I sFull(topkL) = true;19

123

On efficiently mining high utility sequential patterns 613

Function GDFS(t, t.uc, topkL)
Input: A sequence t , the utility-chain t.uc of t , and a min heap topkL
if IsFull(topkL) and PEU(t) ≤ ξ then20

return21

scan t-projected DB once to:;22
1. put i-extension items into ilist ;23
2. put s-extension items into slist ;24

foreach item i ∈ ilist do25
sequence t ′ ← I − Extension(t, i);26

if IsFull(topkL) and RSU (t ′) ≤ ξ then27
Remove i from ilist ;28

else29
CalUtility(t ′);30

foreach item i ∈ slist do31
sequence t ′ ← S − Extension(t, i);32

if IsFull(topkL) and RSU (t ′) ≤ ξ then33
Remove i from slist ;34

else35
CalUtility(t ′);36

put all sequences in ilist and slist into clist ;37
sort each sequence in clist according to its PEU in descending order;38

foreach sequence t ′ ∈ clist do39
GDFS(t ′, t ′.uc, topkL);40

since no sequence exists in topkL , a database scan is performed to construct the utility-
chain t.uc of each 1-sequence t by calling Function CalUtili t y. During the construction
of the utility-chain of each sequence, the utility u(t) and PEU (t) of each sequence are
also computed. After the first database scan, these 1-sequences as well as their utilities are
inserted into topkL . Once there are k sequences in topkL , TKHUS-SpanGDFS updates ξ

to topkL .lowest.u and employs the PEU and RSU pruning strategies to prune some nodes
during traversing the lexicographic tree.

When determining the visiting order of all the child nodes of a parent node,
TKHUS-SpanGDFS first visits the child with the highest PEU among its unvisited siblings
since we argue that a node with high PEU is of high likelihood to be of high utility. Our
strategy is called guided DFS since we use PEU as the hint to guide the traversal order of
DFS. After visiting a parent node t , TKHUS-SpanGDFS calls function GDFS and takes the
child node with the highest PEU among all t’s unvisited children as input to recursively
traverse the sub-tree rooted by such child node in DFS. Once function GDFS terminates,
TKHUS-SpanGDFS outputs the sequences in topkL as the top-k high utility sequential pat-
terns.

4.2 TKHUS-Span with best-first search strategy

Although being able tomine top-k high utility sequential patterns, TKHUS-SpanGDFS mayfill
topkL with sequential patterns whose utilities are not high enough from the whole database’s
perspective in the early stage of mining process. This may make TKHUS-SpanGDFS not
able to prune some nodes which should be pruned indeed. In view of this, we propose
algorithm TKHUS-SpanBFS, which uses a best-first search (BFS) strategy to traverse the

123

614 J.-Z. Wang et al.

lexicographic tree in order to rapidly find high utility sequential patterns from the whole
database’s perspective. The idea of TKHUS-SpanBFS is as follows. When determining the
next node to be visited, different from the TKHUS-SpanGDFS which always chooses the child
node with the highest PEU to visit, TKHUS-SpanBFS expands the node with highest PEU
among all unvisited nodes found so far. To do so, TKHUS-SpanBFS uses a max heap structure
BFSqueue to store the unvisited nodes found so far.

Algorithm 5: TKHUS-SpanBFS
Input: A sequence database D
Output: Top-k high utility sequential patterns in D
construct a min heap topkL of size k;1
construct a max heap BFSqueue;2
set minimum utility threshold ξ to -1;3
scan D once to;4
put s-extension items into slist ;5

//process 1-sequences
foreach item i ∈ slist do6

CalUtility(〈i〉);7
insert (〈i〉, PEU (〈i〉), 〈i〉.uc) into BFSqueue;8

while IsEmpty(BFSqueue)=false do9
if IsFull(topkL) and BFSqueue.highest.PEU ≤ ξ then10

break;11

BFS(BFSqueue, topkL);12

output all sequences in topkL;13

In BFSqueue, each node consists of three fields: sequence t , its PEU PEU (t)
and its utility-chain t.uc. Let BFSqueue.higest.s be the sequence of the highest
PEU among all nodes in BFSqueue and BFSqueue.highest.PEU be the PEU of
BFSqueue.highest.s. Algorithm 3 shows the procedure of TKHUS-SpanBFS. The pro-
cedure of visiting the root is the same as that of TKHUS-SpanGDFS. After visiting the
root, TKHUS-SpanBFS puts all child nodes of the root into BFSqueue and visits the
nodes with the highest PEU in BFSqueue (i.e., BFSqueue.highest.s) by calling func-
tion BFS. The main purpose of function BFS is to pick the node BFSqueue.highest.s
in BFSqueue to visit, and to put the child nodes of BFSqueue.highest.s with
their PEU and utility-chain into BFSqueue. Once (1) BFSqueue gets empty or (2)
BFSqueue.highest.PEU ≤ topkL .lowest.u when topkL is full, TKHUS-SpanBFS ter-
minates immediately and outputs the sequences in topkL as the top-k high utility sequential
patterns.

4.3 TKHUS-Span with hybrid search strategy

Although TKHUS-SpanBFS can explore the lexicographic tree more efficiently than
TKHUS-SpanGDFS, it suffers from the drawback of high memory usage in BFSqueue.
To limit the memory usage, the maximal size of BFSqueue is set. In the beginning,
TKHUS-SpanHybrid traverses the lexicographic tree by BFS. When BFSqueue gets full,
TKHUS-SpanHybrid starts to visit the nodes in BFSqueue by the guided DFS until the num-
ber of nodes in BFSqueue is much smaller than the maximal size of BFSqueue. When
the number of nodes in BFSqueue gets small enough, TKHUS-SpanHybrid starts to traverse
the lexicographic tree by BFS until BFSqueue gets full again. Since taking BFS and GDFS

123

On efficiently mining high utility sequential patterns 615

Function BFS(BFSqueue, topkL)
Input: A min heap topkL , and a max heap BFSqueue.
t ← BFSqueue.highest.s;14
t.uc ← BFSqueue.highest.uc;15
scan t-projected DB once to:;16
1. put i-extension items into ilist ;17
2. put s-extension items into slist ;18

delete BFSqueue.highest.s, BFSqueue.highest.PEU and BFSqueue.highest.uc from19
BFSqueue;
foreach item i ∈ ilist do20

sequence t ′ ← I − Extension(t, i);21

if IsFull(topkL) and RSU (t ′) ≤ ξ then22
Remove i from ilist ;23

else24
CalUtility(t ′);25

insert (t ′, PEU (t ′), t ′.uc) into BFSqueue;26

foreach item i ∈ slist do27
sequence t ′ ← S − Extension(t, i);28

if IsFull(topkL) and RSU (t ′) ≤ ξ then29
Remove i from slist ;30

else31
CalUtility(t ′);32

insert (t ′, PEU (t ′), t ′.uc) into BFSqueue;33

in turn to traverse the lexicographic tree, TKHUS-SpanHybrid is able to take the relative
advantages of TKHUS-SpanBFS and TKHUS-SpanGDFS to strike a balance between mining
efficiency and memory usage.

5 Experimental evaluation

In this section, the performance of the proposed algorithms is evaluated. The experiments
were performed on a computer with a 3.4 GHz Intel Core i7 CPU, 12GB memory and
running on Windows 7 × 64 operating system. All proposed algorithms were implemented
in C++ using Mingw-w64 compiler. USpan and TUS are also implemented for compari-
son purposes. Two synthetic and six real datasets are used for experiments. The synthetic
datasets D50C10T5N0.5S4I2.5 and D100C8T4N10S6I2.5 are generated by the IBM data
generator [19]. Real datasets Foodmart and Tafeng are grocery shopping datasets, where
Foodmart is acquired from Microsoft SQL Server 2008 database [15] and Tafeng is from
AIIA Lab [20]. Real datasets Msnbc and Gene are obtained from the UC Irvine Machine
Learning Repository [6], where Msnbc is the Web click stream data from the IIS log for
msnbc.com on September, 28, 1999, and Gene is the primate splice-junction gene sequences
data collected from Genbank 64.1. Real datasets Music and Movies are the customer rat-
ings of the 100 most popular music and movies products, respectively, in Amazon.com [1].
The parameters settings of the synthetic datasets and the statistics of the real datasets are
summarized in Table 3a, while the meaning of the parameters and statistics are expressed in
Table 3b.

Datasets Foodmart, Tafeng, Music and Movies are of the utility of each item (i.e., unit
profit times quantity in Foodmart and Tafeng, and customer rating in Music and Movies)

123

616 J.-Z. Wang et al.

Table 3 Characteristics of synthetic and real datasets

Dataset D C T N Type (domain)

(a) Statistics and parameters of synthetic and real datasets

D10C8T4N0.1S4I2.5 10K 8 4 100 Synthetic

D100C8T4N10S6I2.5 100K 8 4 10000 Synthetic

Foodmart 8842 6.59 4.63 1559 Real (shopping)

Tafeng 32266 3.71 6.84 23812 Real (shopping)

Msnbc 989818 4.74713 1 17 Real (web log)

Gene 3190 60 1 8 Real (bioinformatics)

Music 32778 1.13387 4.0131 100 Real (product review)

Movies 11528 1.04754 7.1291 100 Real (product review)

Statistics/parameter Description

(b) Statistics and parameter description

D Number of sequences

C Average number of itemsets per sequence

T Average number of items per itemset

N Number of distinct items

External Utility

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r o

f I
te

m
s

0

1000

2000

3000

4000

5000

6000

7000

External Utility

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

10-4

0

1

2

3

4

5

6

7

8

9
×(a) (b)

Fig. 7 External utility distribution. a External utility distribution on Tafeng. b Log-normal distribution with
(μ, σ) = (8, 8)

in the original datasets. For other datasets, similar to [26], the internal utility of each item
within each itemset in each sequence is randomly generated ranging from 1 to 10. Most stud-
ies on high utility pattern mining [26,27] use log-normal distributions to generate external
utility for each item on those datasets without utility information according to the obser-
vation that most items are of low external utility in most real datasets. Figure 7a shows
the distribution of the external utility in dataset Tafeng. As shown in Fig. 7b, the PDF
of log-normal distribution with parameter (μ, σ) = (8, 8) is quite close to the distribu-
tion of the external utility in dataset Tafeng. Thus, we use the log-normal distribution with
parameter (μ, σ) = (8, 8) to generate external utility for the datasets without external util-
ity.

123

On efficiently mining high utility sequential patterns 617

Table 4 Preprocessing time

Dataset Time (s) Dataset Time (s)

D10C8T4N0.1S4I2.5 0.702 D100C8T4N10S6I2.5 118.556

Foodmart 9.019 Tafeng 127.623

Msnbc 31.766 Gene 0.466

Music 72.923 Movie 2.074

5.1 Experimental results of high utility sequential pattern mining

Similar to [26], the preprocessing time is defined as the time period of loading each sequence
from disk and transforming it into the matrices. As given in Table 4, USpan and HUS-Span
are of the same preprocessing time for each dataset. In the following subsections, we use
execution time as the performance metric, where execution time is defined as the time period
elapsing from the time that all sequences have been loaded into memory to the time that all
high utility sequential patterns have been found.

5.1.1 Effect of utility threshold

This subsection shows the experimental results of HUS-Span and USpan for high utility
sequential pattern mining on each dataset. The minimum utility threshold (ξ) is determined
as a ratio (γ) times the utility of the whole database, i.e., ξ = γ × ∑

∀s∈D u(s). Figure 8
shows the execution time on each dataset under varied utility threshold, and Table 5 shows
the numbers of candidates generated by USpan and HUS-Span. We can observe from Fig. 8
that HUS-Span generally outperforms USpan on each dataset, and the execution time of
both algorithms increases when the utility threshold becomes smaller. Figure 8a, b shows
the execution time on the synthetic dense dataset D10C8T4N0.1S4I2.5 and the synthetic
sparse dataset D100C8T4N10S6I2.5, while Fig. 8e, f shows the execution time on real dense
datasets, Msnbc and Gene, under different utility thresholds. We can observe from Figure 8a,
b, e, f that HUS-Span is of the best performance. On datasets D10C8T4N0.1S4I2.5, Msnbc,
and Gene, HUS-Span runs faster than USpan when the utility threshold becomes smaller due
to the reason that HUS-Span is able to generate less candidates than USpan does as given
in Table 5. Furthermore, although the numbers of candidate sequences generated by USpan
and HUS-Span on the sparse dataset D100C8T4N10S6I2.5 are close, HUS-Span still runs
faster than USpan since with the aid of PEU, HUS-Span can greatly reduce the number of
projected DB scans than USpan.

Figure 8c, d show the execution time of HUS-Span and USpan on real shopping datasets,
Foodmart and Tafeng, respectively. As shown in Fig. 8c, HUS-Span runs about 1.7 times
faster than USpan on dataset Foodmart. On the other hand, on the sparsest dataset Tafeng,
whose number of distinct items is much larger than that of Foodmart, HUS-Span still runs
faster than USpan though the difference of the performance between HUS-Span and USpan
is not significant as shown in Fig. 8d. When the number of distinct items and sequences
gets larger, HUS-Span and USpan take more time to generate a huge number of nodes in
the lexicographic tree. Fortunately, since our pruning strategies are more effective than those
used in USpan, as shown in Table 5, HUS-Span is still able to prune more nodes than USpan
does. Thus, HUS-Span still runs faster than USpan on dataset Tafeng.

123

618 J.-Z. Wang et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8 Effect of utility threshold. a Execution time on D10C8T4N0.1S4I2.5. b Execution time on
D100C8T4N10S6I2.5. c Execution time on foodmart. d Execution time on Tafeng. e Execution time on
Msnbc. f Execution time on gene. g Execution time on music. h Execution time on movies

123

On efficiently mining high utility sequential patterns 619

Figure 8g, h shows the performance on real product reviews datasets, Music and Movies,
respectively. We can observe from Fig. 8g and Table 5 that on dataset Music, the speedup of
HUS-Span over USpan becomes more significant when utility threshold ratio gets smaller.
The reason is that with the aid of PEU and RSU, HUS-Span can generate less candidates

Table 5 Number of candidates

γ 0.014 0.012 0.01 0.008 0.006

D10C8T4N0.1S4I2.5

USpan 1,268,636 1,931,159 3,184,118 5,895,354 13,146,809

HUS-Span 285,404 422,656 676,013 1,208,351 2,554,345

γ 0.08 0.07 0.06 0.05 0.04

D100C8T4N10S6I2.5

USpan 17,955 135,915 1,524,253 7,942,976 13,555,491

HUS-Span 16,995 135,915 1,523,803 7,939,825 13,555,487

γ 0.001725 0.001724 0.001723 0.001722 0.001721

Foodmart

USpan 1,540,820 1,543,929 1,547,228 2,625,574 2,667,625

HUS-Span 568,910 570,554 572,150 613,906 646,331

γ 0.004265 0.004264 0.004263 0.004262 0.004261

Tafeng

USpan 53,774 53,850 128,481 5,455,894 147,189,639

HUS-Span 18,111 18,130 62,097 5,389,344 147,122,966

γ 0.07 0.06 0.05 0.04 0.03

Msnbc

USpan 558 902 1713 4217 18,338

HUS-Span 354 552 1002 2230 8181

γ 0.72 0.71 0.7 0.69 0.68

Gene

USpan 69907 92,801 121,220 152,510 188,722

HUS-Span 34,301 43,018 55,516 71,489 90,507

γ 0.008 0.007 0.006 0.005 0.004

Music

USpan 10,138 10,510 37,791 42,258 296,084

HUS-Span 9186 9527 10,757 14,835 134,142

γ 0.1 0.08 0.06 0.04 0.02

Movies

USpan 250,955 296,671 308,481 309,720 8,067,671

HUS-Span 250,955 296,671 308,481 309,720 4,092,608

123

620 J.-Z. Wang et al.

(a) (b)

Fig. 9 Effect of dataset size. a Execution time on DxC8T4N0.1S4I2.5. b Execution time on
DxC8T4N10S6I2.5

than USpan does. On datasetMovies, although the numbers of candidates generated byHUS-
Span and USpan are the same when utility threshold ratio is larger than or equal to 0.04 (as
shown in Table 5), HUS-Span still outperforms USpan as shown in Fig. 8h. The reason is
that HUS-Span can reduce more projected DB scans with the aid of PEU.

5.1.2 Effect of database size

We also measure the performance of HUS-Span and USpan under different dataset sizes,
where the size of the synthetic datasets ranges from 200000 to 500000 in increments of
100000. The experiments are performed on the synthetic dense dataset DxC8T4N0.1S4I2.5
and the sparse datasetDxC8T4N10S6I2.5, and the results are shown in Fig. 9a, b, respectively.
We observe from Fig. 9a, b that the speedup of HUS-Span over USpan in the dense dataset
DxC8T4N0.1S4I2.5 is more significant than that in the sparse dataset DxC8T4N10S6I2.5.
Moreover, HUS-Span gets better than USpan when the number of sequences increases,
showing that HUS-Span is more scalable than USpan, especially on dense datasets.

In summary, we can observe from the above experiments that HUS-Span outperforms
USpan in all cases on the synthetic and real datasets. The reasons are twofold. First, our
utility upper bounds, PEU and RSU, are tighter than those adopted by USpan, making HUS-
Span able to prunemore nodes and reducemore projectedDBscans thanUSpan does. Second,
with the aid of the proposed utility-chain structure, HUS-Span is able to rapidly calculate the
PEU, RSU and utility of each sequence, thereby achieving shorter execution time.

5.2 Experimental results of top-k high utility sequential pattern mining

5.2.1 Effect of the maximal size of BFS queue

To evaluate the effect of the maximal size of BFSqueue on execution time and memory
consumption, we conduct an experiment on dataset Foodmart by fixing k to 100, where
the maximal size of BFSqueue ranges from 216 to 220 with a grow ratio of 2. Since only
TKHUS-SpanHybrid is affected by the maximal size of BFSqueue, only the experimental
result of TKHUS-SpanHybrid is shown in Fig. 10. We can observe from Fig. 10b that the
memory consumption almost linearly increases with the increase in the maximal size of
BFSqueue. Such result agrees with our intuition. In addition, as shown in Fig. 10a, the

123

On efficiently mining high utility sequential patterns 621

(a) (b)

Fig. 10 Effect of the maximal size of BFS queue. a Execution time. b Memory consumption

execution time decreases as the maximal size of BFSqueue increases since larger available
memory makes TKHUS-SpanHybrid able to find high utility sequential patterns more quickly.
However, when the maximal size of BFSqueue is large enough (i.e., available memory is
large enough), increasing themaximal size of BFSqueue does not result in significant reduc-
tion in execution time. In the following experiments, we set themaximal size of BFSqueue to
218 to strike a balance between mining efficiency and memory consumption for each dataset
except dataset Gene. On dataset Gene, we set the maximal size of BFSqueue to 213 due to
the characteristic that TKHUS-SpanHybrid runs out of memory space when the maximal size
of BFSqueue grows to 214 for k > 3.

5.2.2 Effect of k

In this section, we evaluate the effect of k on the performance of these algorithms. To evaluate
the effects of varied k, we increase k from 1 to 10,000 with a grow ratio of 10 for each
dataset. However, due to the characteristics of these datasets, the DFS-based algorithms
spend considerable time (larger than 10000 seconds) on some datasets when k ≥ 100, yet
short on others. So, we use different scales for each dataset to compare the performance
of these algorithms. The execution time and the numbers of candidates generated by these
algorithms on each dataset are shown in Fig. 11 and Table 6, respectively.

Figure 11a, b shows the execution time on the synthetic datasets D10C8T4N0.1S4I2.5 and
D100C8T4N10S6I2.5, respectively. In Fig. 11a, on the dense dataset D10C8T4N0.1S4I2.5,
we can see that TKHUS-SpanBFS and TKHUS-SpanHybrid perform the best and the difference
between TUS and TKHUS-SpanBFS becomes significant when k ≥ 10000. This is because
the BFS-based algorithms traverse the lexicographic tree in a more global manner than
DFS-based algorithms do, thus being able to find top-k high utility sequential patterns more
quickly. This is also validated by the numbers of generated candidates as given in Table 6.
The number of candidates generated by TUS is about 180 times more than that generated by
the BFS-based algorithms when k = 10000. On the sparse dataset D100C8T4N10S6I2.5, we
can see that TKHUS-SpanHybrid has the best performance, followed by TKHUS-SpanBFS,
TKHUS-SpanGDFS and TUS. Similarly, as shown in Fig. 11b and Table 6, when k gets larger,
the improvements of the BFS-based algorithms over the DFS-based algorithms becomemore
significant in terms of execution time and the numbers of generated candidates.

Figure 11c, d shows the execution time on the real grocery shopping datasets Foodmart
and Tafeng, respectively. As shown in Fig. 11c, TKHUS-SpanBFS has the best performance

123

622 J.-Z. Wang et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11 Effect of k. a Execution time on D10C8T4N0.1S4I2.5. b Execution time on D100C8T4N10S6I2.5.
c Execution time on foodmart. d Execution time on Tafeng. e Execution time on Msnbc. f Execution time on
gene. g Execution time on music. h Execution time on movies

123

On efficiently mining high utility sequential patterns 623

Table 6 Number of visited nodes

K 10000 20000 30000 40000 50000

D10C8T4N0.1S4I2.5

TUS 6,596,345 16,897,917 28,006,638 39,652,138 52,407,544

TKHUS-SpanGDFS 1,575,403 5,291,370 9,231,872 12,797,686 16,844,738

TKHUS-SpanHybrid 36,732 71,236 103,408 134,534 165,467

TKHUS-SpanBFS 36,732 71,236 103,408 134,534 165,467

D100C8T4N10S6I2.5

TUS 527,411 1,790,952 3,595,141 5,628,303 7,669,982

TKHUS-SpanGDFS 245,647 989,746 2,096,549 3,442,181 4,771,458

TKHUS-SpanHybrid 7061 18,446 25,997 44,682 46,916

TKHUS-SpanBFS 7061 18,446 25,997 44,682 46,916

K 1 10 50 100 1000

Foodmart

TUS 60,082 112,242 382,266 739,450 7,561,228

TKHUS-SpanGDFS 60,011 111,355 382,963 744,691 7,588,483

TKHUS-SpanHybrid 46,224 66,459 167,421 392,338 6,025,016

TKHUS-SpanBFS 46,224 47,842 53,989 59,839 155,850

Tafeng

TUS 505 8927 5,124,466 − −
TKHUS-SpanGDFS 504 8657 5,121,166 − −
TKHUS-SpanHybrid 504 5655 6769 7925 572,250

TKHUS-SpanBFS 504 5655 6769 7925 22,452

Msnbc

TUS 7 32 2294 800,672 −
TKHUS-SpanGDFS 5 29 2041 760,280 −
TKHUS-SpanHybrid 5 19 546 1442 38,707

TKHUS-SpanBFS 5 19 546 1442 38,707

Gene

TUS 11,632 37,812 62,327 97,111 321,860

TKHUS-SpanGDFS 10,540 33,571 54,542 84,377 271,602

TKHUS-SpanHybrid 10,540 33,196 52,249 73,943 217,082

TKHUS-SpanBFS 10,540 − − − −
Music

TUS 71 329 1388 1,258,852 10,631,332

TKHUS-SpanGDFS 69 284 1042 798,800 6,710,901

TKHUS-SpanHybrid 69 254 861 2324 28,845

TKHUS-SpanBFS 69 254 861 2324 28,845

123

624 J.-Z. Wang et al.

Table 6 continued

K 1 10 100 1000 10000

Movies

TUS 988 4104 14,361 9,716,140 84,187,158

TKHUS-SpanGDFS 834 3235 10,342 5,898,046 51,746,841

TKHUS-SpanHybrid 834 3214 9416 41,717 67,359

TKHUS-SpanBFS 834 3214 9416 41,717 67,359

under varied k, followed by TKHUS-SpanHybrid, TKHUS-SpanGDFS and TUS. Similar to
other experiments, the improvements of TKHUS-SpanBFS over the DFS-based algorithms
becomemore significant when k increases. On the sparse dataset Tafeng, we can also see from
Fig. 11d that the execution time of all the algorithms is close when k is smaller than 50.When
k is 50, the BFS-based algorithms outperform the DFS-based algorithms about 45 times in
terms of execution time. Moreover, the execution time of the BFS-based algorithms does not
significantly increase when k increases. The reason is that the BFS-based algorithms are able
to find top-k high utility sequential patterns in the early stage, and thus, usually outperform
DFS-based algorithms.

Figure 11e shows the execution time of each algorithm on real dense dataset Msnbc, and
we can observe that the execution time of each algorithm is close when k is smaller than
100. Similar to the experiment on dataset Tafeng, the DFS-based algorithms is much slower
than the BFS-based algorithms when k is larger than 100. In our experiment, the DFS-based
algorithms run even almost 356 times slower than the BFS-based algorithms when k is 200.
Figure 11f shows the execution time on real dataset Gene. We only show the results of
TKHUS-SpanHybrid, TKHUS-SpanGDFS and TUS since TKHUS-SpanBFS runs out of mem-
ory space when k is larger than 3. In Fig. 11f, we can see that although TKHUS-SpanHybrid is
of the best performance, the execution time of these three algorithms is close. The reason is
that the number of distinct items in the dataset Gene is 8 and almost all sequences are formed
by only 4 of these 8 items. In addition, each itemset in the dataset Gene consists of only one
item. This phenomenon makes each node in the lexicographic tree is of close PEU, thereby
reducing the pruning effect of PEU.

We can observe from Fig. 11g, h that all algorithms are of close performance on real
datasets Music and movies when k is smaller than or equal to 100. However, the DFS-based
algorithms get much slower than the BFS-based algorithms when k gets larger than 100.
When k is 10,000, the DFS-based algorithms run even about 29 and 142 times slower than
the BFS-based algorithms do on datasets Music, and Movies, respectively. The reason is that
when k becomes larger, the BFS-based algorithms can visit much more promising nodes in
the lexicographic tree in the earlier stage than the DFS-based algorithms, thus generating
much fewer candidates than the DFS-based algorithms (as shown in Table 6).

5.2.3 Effect of database size

We also measure the performance of these algorithms under different dataset sizes, where
the size of the synthetic datasets ranges from 200,000 to 500,000 in increments of 100,000.
The experiments are performed on the synthetic dense dataset DxC8T4N0.1S4 I2.5 under
k = 100 and the sparse dataset DxC8T4N10S6I2.5 under k = 50000, and the experimental
results are shown in Fig. 12a, b, respectively. In Fig. 12a, b, we can observe that when the

123

On efficiently mining high utility sequential patterns 625

(a) (b)

Fig. 12 Effect of database size. a Execution time on DxC8T4N0.1S4I2.5. b Execution time on
DxC8T4N10S6I2.5

number of sequences increases, the execution time of all algorithms almost increases linearly,
and all the BFS-based algorithms outperform the DFS-based algorithms.

In summary, we can see from the above experiments that TKHUS-SpanBFS and
TKHUS-SpanHybrid outperform TKHUS-SpanGDFS and TUS almost in all cases on all
datasets when k is large enough. The reasons are twofold. First, the BFS-based algorithms
are able to find the top-k high utility sequential patterns in the early stage by traversing the
lexicographic tree using BFS. Second, PEU and RSU are able to prune more nodes than
SPU (the pruning strategy used in TUS) does. Although outperforming the other algorithms
on most datasets, TKHUS-SpanBFS may run out of memory space. To avoid this problem,
TKHUS-SpanHybrid can be applied to strike a balance between execution time and memory
usage.

6 Conclusions

In this paper, we proposed a novel algorithm HUS-Span to efficiently mine high utility
sequential patterns. Specifically, we developed two tighter utility upper bounds, PEU and
RSU, as well as two companion pruning strategies to prune the search space. We also devel-
oped the utility-chain so that the utility, PEU and RSU of each sequence can be efficiently
calculated. Extensive experimental results on both the synthetic and real datasets showed that
HUS-Span outperforms the state-of-the-art algorithm USpan in terms of execution time.

In addition, with the aid of PEU,RSU and utility-chain, we also proposed three algorithms,
TKHUS-SpanGDFS, TKHUS-SpanBFS and TKHUS-SpanHybrid to mine top-k high utility
sequential patterns by traversing the lexicographic tree by guidedDFS,BFS and hybrid search
ofBFS andGDFS. It is obvious that TKHUS-SpanBFS has better possibility to find out the top-
k high utility sequential patterns more quickly. However, TKHUS-SpanBFS suffers from the
problem of running out of memory space in some cases. In view of this, TKHUS-SpanHybrid,
a hybrid search algorithm, which combines the relative advantages of GDFS and BFS, is
a good trade-off in all cases. Extensive experimental results on both the synthetic and real
datasets showed that TKHUS-SpanBFS generally outperforms all algorithms when k is large
except the dataset where TKHUS-SpanBFS runs out of memory space. Therefore, in the
situation with limited memory space, TKHUS-SpanHybrid can be applied to achieve a better
performance by avoiding memory shortage.

123

626 J.-Z. Wang et al.

Acknowledgments The authors were supported by the Ministry of Science and Technology, Taiwan, under
Project No. MOST 104-2221-E-032-037-MY2, MOST 103-2221-E-009-126-MY2, MOST 104-2918-I-009-
003, MOST 104-2218-E-009-009 and MOST 104-2218-E-009-029.

References

1. Amazon reviews (2013). http://snap.stanford.edu/data/web-Amazon.html
2. AhmedCF, Tanbeer SK, Byeong-Soo J (2011) A framework for mining high utility web access sequences.

IETE Tech Rev 28(1):3–16
3. Ahmed CF, Tanbeer SK, Jeong B-S (2010) A novel approach for mining high-utility sequential patterns

in sequence databases. ETRI J 32(5):676–686
4. AhmedCF, Tanbeer SK, JeongB-S, LeeY-K (2009) Efficient tree structures for high utility patternmining

in incremental databases. IEEE Trans Knowl Data Eng 21(12):1708–1721
5. Ayres J, Gehrke J, Yiu T, Flannick J (2002) Sequential pattern mining using a bitmap representation.

In: Proceedings of the 8th ACM international conference on knowledge discovery and data mining, pp
429–435

6. Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
7. Garofalakis MN, Rastogi R, Shim K (1999) Spirit: sequential pattern mining with regular expression

constraints. In: Proceedings of the 25th international conference on very large data bases, pp 223–234
8. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of the

2000 ACM SIGMOD international conference on management of data, pp 1–12
9. Kim C, Lim J-H, Ng RT, Shim K (2007) Squire: sequential pattern mining with quantities. J Syst Softw

80(10):1726–1745
10. Lan G-C, Hong T-P, Tseng VS, Wang S-L (2014) Applying the maximum utility measure in high utility

sequential pattern mining. Expert Syst Appl 41(11):5071–5081
11. Li Y-C, Yeh J-S, ChangC-C (2008) Isolated items discarding strategy for discovering high utility itemsets.

Data Knowl Eng 64(1):198–217
12. Liu J, Wang K, Fung B (2012) Direct discovery of high utility itemsets without candidate generation. In:

the 12rd IEEE international conference on data mining, pp 984–989
13. Liu M, Qu J (2012) Mining high utility itemsets without candidate generation. In: Proceedings of the 21st

ACM international conference on Information and knowledge management, pp 55–64
14. Liu Y, Liao W, Choudhary A (2005) A fast high utility itemsets mining algorithm. In: Proceedings of the

1st ACM international workshop on utility-based data mining, pp 90–99
15. Microsoft sql server 2008 analysis services unleashed (2008). http://www.informit.com/store/microsoft-

sql-server-2008-analysis-services-unleashed-9780672330018
16. Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu M-C (2004) Mining sequential

patterns by pattern-growth: the prefixspan approach. IEEE Trans Knowl Data Eng 16(11):1424–1440
17. Russell SJ, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Pearson Education,

London
18. Shie B-E, Hsiao H-F, Tseng VS, Yu PS (2011) Mining high utility mobile sequential patterns in mobile

commerce environments. In: Proceedings of the 16th international conference on database systems for
advanced applications, pp 224–238

19. Srikant R, Agrawal R (1996) Mining sequential patterns: Generalizations and performance improve-
ments. In: Proceedings of the 5th international conference on extending database technology: advances
in database technology, pp 3–17

20. Ta-feng datasets (2001). http://aiia.iis.sinica.edu.tw/index.php?option=com_frontpage&Itemid=1
21. Tseng VS, Wu C-W, Shie B-E, Yu PS (2010) Up-growth: an efficient algorithm for high utility itemset

mining. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery
and data mining, pp 253–262

22. Wang J, Han J (2004) Bide: Efficient mining of frequent closed sequences. In: Proceedings of the 20th
IEEE international conference on data engineering, pp 79–90

23. Wu CW, Shie B-E, Tseng VS, Yu PS (2012) Mining top-k high utility itemsets. In: Proceedings of the
18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 78–86

24. Yan X, Han J, Afshar R (2003) Clospan: Mining closed sequential patterns in large datasets. In: Proceed-
ings of the 3rd SIAM international conference on data mining, pp 166–177

25. Yao H, Hamilton HJ, Butz CJ (2004) A foundational approach to mining itemset utilities from databases.
In: Proceedings of the 7th SIAM international conference on data mining, pp 482–486

123

http://snap.stanford.edu/data/web-Amazon.html
http://archive.ics.uci.edu/ml
http://www.informit.com/store/microsoft-sql-server-2008-analysis-services-unleashed-9780672330018
http://www.informit.com/store/microsoft-sql-server-2008-analysis-services-unleashed-9780672330018
http://aiia.iis.sinica.edu.tw/index.php?option=com_frontpage&Itemid=1

On efficiently mining high utility sequential patterns 627

26. Yin J, Zheng Z, Cao L (2012) Uspan: an efficient algorithm for mining high utility sequential patterns.
In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data
mining, pp 660–668

27. Yin J, Zheng Z, Cao L, Song Y, Wei W (2013) Efficiently mining top-k high utility sequential patterns.
In: the 13rd IEEE international conference on data mining, pp 1259–1264

28. Zhang W, Korf RE (1993) Depth-first vs. best-first search: New results. In: the 11th AAAI national
conference on artificial intelligence, pp 769–775

Jun-Zhe Wang received the B.S. and M.S. degrees in Information
Management from National United University and National Chi Nan
University, Taiwan, in 2007 and 2009, respectively. He is currently
pursuing the Ph.D. degree in Computer Science, National Chiao Tung
University, Taiwan. His research interests include data mining, mobile
data management and spatial query processing.

Jiun-Long Huang received his B.S. and M.S. degrees in Computer
Science and Information Engineering Department in National Chiao
Tung University in 1997 and 1999, respectively, and his Ph.D. degree
in Electrical Engineering Department in National Taiwan University in
2003. He joined National Chiao Tung University in 2005 and currently
is an associate professor in Computer Science Department in National
Chiao Tung University. His research interests include mobile comput-
ing, wireless networks, data mining and cloud computing.

Yi-Cheng Chen received the B.S. degree in Computer Science and
Engineering from Yuan Ze University, Taiwan, in 2000, and the M.S.
degree in Computer Science and Engineering from National Taiwan
University of Science and Technology, Taiwan, in 2002, and the Ph.D.
degree in Computer Science, National Chiao Tung University, Taiwan,
in 2012. He has been an assistant professor in the Department of Com-
puter Science and Information Engineering at, Tamkang University,
Taiwan, since 2013. His research interests include data mining, cloud
computing, social network analysis, bioinformatics and multimedia.

123

	On efficiently mining high utility sequential patterns
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 Related work
	2.2.1 High utility itemset mining
	2.2.2 High utility sequential pattern mining

	3 HUS-Span: the proposed algorithm for mining high utility sequential patterns
	3.1 Lexicographic tree
	3.2 Utility-chain structure
	3.2.1 Generating utility-chains of 1-sequences
	3.2.2 Generating utility-chains of l-sequences (l2)

	3.3 The proposed pruning strategies
	3.3.1 The prefix extension utility strategy
	3.3.2 The reduced sequence utility strategy

	3.4 HUS-span algorithm
	3.5 Implementation details

	4 TKHUS-Span: the proposed algorithm for mining top-k high utility sequential patterns
	4.1 TKHUS-Span with guided depth-first search strategy
	4.2 TKHUS-Span with best-first search strategy
	4.3 TKHUS-Span with hybrid search strategy

	5 Experimental evaluation
	5.1 Experimental results of high utility sequential pattern mining
	5.1.1 Effect of utility threshold
	5.1.2 Effect of database size

	5.2 Experimental results of top-k high utility sequential pattern mining
	5.2.1 Effect of the maximal size of BFS queue
	5.2.2 Effect of k
	5.2.3 Effect of database size

	6 Conclusions
	Acknowledgments
	References

