
Knowl Inf Syst (2016) 49:553–595
DOI 10.1007/s10115-015-0908-6

REGULAR PAPER

Compressed kd-tree for temporal graphs

Diego Caro1 · M. Andrea Rodríguez1 ·
Nieves R. Brisaboa2 · Antonio Fariña2

Received: 30 June 2015 / Revised: 13 November 2015 / Accepted: 14 December 2015 /
Published online: 31 December 2015
© Springer-Verlag London 2015

Abstract Temporal graphs represent vertices and binary relations that change along time.
The work in this paper proposes to represent temporal graphs as cells in a 4D binary matrix:
two dimensions to represent extreme vertices of an edge and two dimensions to represent the
temporal interval when the edge exists. This strategy generalizes the idea of the adjacency
matrix for storing static graphs. The proposed structure called Compressed kd-tree (ckd-tree)
is capable of dealing with unclustered data with a good use of space. The ckd-tree uses
asymptotically the same space than the (worst case) lower bound for storing cells in a 4D
binary matrix, without considering any regularity. Techniques that group leaves into buckets
and compress nodes with few children show to improve the performance in time and space.
An experimental evaluation compares the ckd-tree with kd-tree (the d-dimensional extension
of the k2-tree) andwith other up-to-date compressed data structures based on inverted indexes
andWavelet Trees, showing the potential use of the ckd-tree for different types of temporal
graphs.

Keywords Multidimensional compact data structure · Compact data structures for temporal
graphs · Time-varying graphs · Evolving graphs

B Diego Caro
diegocaro@udec.cl

M. Andrea Rodríguez
andrea@udec.cl

Nieves R. Brisaboa
brisaboa@udc.es

Antonio Fariña
fari@udc.es

1 Computer Science Department, University of Concepción, Concepción, Chile

2 Database Lab, Facultade de Informática, University of A Coruña, A Coruña, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-015-0908-6&domain=pdf

554 D. Caro et al.

1 Introduction

A temporal graph is a graph whose connectivity between vertexes changes along time (i.e.,
edges can appear and disappear). They are useful for modeling data such as the evolution
of friendship relations when a user adds or removes friends in online social networks, the
dynamism of citation networks when new scientific articles are published, the time-varying
connectivity between mobile devices when they change their base station, or the changes
of links that appear or disappear in the Web graph. Using temporal graphs, it is possible to
get not only the current, but also the historical state of the connectivity between vertexes.
Formally, we consider a temporal graph as a set of contacts between vertices, indicating the
time interval when the vertices are connected [35].

A temporal graph can be represented as several static graphs (or snapshots), storing the
active edges for each time point1 in the lifetime of the graph [22]. Main issue with this
strategy is the use of space even if edges remain in the same state (active or inactive) for
a long time. A strategy to overcome the space issue is to store differences between some
snapshots (carefully chosen), but at the expenses of processing the differences at running
time [17,33,37]. Other strategies are based on storing events of activation or deactivation
along time. With these methods, the state of an edge is recovered by counting how many
events on the queried edge occur: an even number of times means that the edge is active, or
inactive otherwise [12].

Using a multidimensional approach, contacts can be seen as 4-tuples [5] represented with
a 4D binary matrix. For 2-tuples, the k2-tree [10] achieves good results over Web graphs,
binary relations, and raster data, because it is capable of representing in a small space clustered
data. The kd-tree [16,18] is the multidimensional version of the k2-tree. Thus, a k4-tree is the
4-tuples version of the kd-tree [18], which shows to be inappropriate to compress temporal
graphs that do not exhibit the clustering properties found for 2-tuples.

The work in this paper proposes modifications to the kd-tree [16,18] with the aim of
reducing the use of space for unclustered data while keeping good time performance. In
particular, it proposes two compressed data structures, ckd-tree and bckd-tree, based on rep-
resenting temporal graphs as a whole space-time data structure (mixing nodes and time in the
same representation), which is capable of recovering the state of an edge at any time without
storing snapshots and without counting the number of changes. We concentrate on temporal
adjacency operations over nodes and edges (i.e., retrieval of direct/reverse neighbors, check
whether an edge is active, or obtain a snapshot of the graph), constrained to a specific time
point or to a time interval.

The organization of this paper is as follows. Section 2 introduces main concepts useful to
explain the proposed structures and summarizes related work. Section 3 presents the ckd-tree,
covering the description of the structure, its basic access operations and its analytical cost
in space. Section 4 shows how to represent temporal graphs with ckd-tree and how the
operations on temporal graphs can be solved as range search queries on ckd-tree. Further
improvements of ckd-tree are given in Sect. 5. Section 6 provides the experimental evaluation
of the proposed structures and its variants with respect to baselines and state-of-art structures
using diverse types of temporal graphs. Finally, Sect. 7 gives conclusions and future research
directions.

1 We use the term time instant and time point indistinctly.

123

Compressed kd-tree for temporal graphs 555

ba

da

cb

eb

bd

de

0 2 4 6 7531

(a)

b

a c

de

Snapshot at t=5

(b)

Fig. 1 Example of a temporal graph and a snapshot: a a set of contacts among five nodes. b The snapshot of
active edges at time t = 5 corresponds to the dashed line on the set of contacts (figure adapted from [35])

2 Preliminary concepts and related work

In this section, we introduce the definition of temporal graphs adopted in this work, summary
existing structures for temporal graphs, and revise in more detail structures that are closely
related to the structures proposed in this paper.

2.1 Temporal graphs

Formally, a temporal graph is a set C of contacts between a set of vertexes V during a set of
time points T (with total order) representing the lifetime of the graph. A contact of an edge
(u, v) ∈ E ⊆ V × V is a quadruplet c = (u, v, t, t ′), where [t, t ′) ⊂ T × T is the time
interval when the edge (u, v) is active [35]. We denote n = |V | the number of vertices,
m = |E | the number of edges, τ = |T | the number of time points in the lifetime of the
graph and c = |C| the number of contacts. As Nicosia et al. [35] claim, we assume that
there are no empty or overlapping intervals for a given edge. This is, given two contacts
(u, v, ti , t ′i), (u, v, t j , t ′j) ∈ C , then ti < t j if and only if t ′i < t j . We call this temporal
property of edges the temporal constraint. We named aggregated graph to the static graph
composed by the set of edges E in the temporal graph. Figure 1 shows an example of a
temporal graph.

In what follows, we will say that a contact (u, v, t, t ′) is active at a time point tq , if
tq ∈ [t, t ′), and it is active at a time interval [tq , t ′q), if [tq , t ′q) lays during [t, t ′).

The operations over temporal graphs extend queries over static graphs with a temporal
criteria [12]. The queries can be divided into four classes: (1) queries about vertices, retrieving
the active direct/reverse neighbors of a vertex, (2) queries about edges, checking whether an
edge is either active or inactive or retrieving the next activation time of an edge, (3) queries
about the graph, retrieving the active or inactive state of all edges and (4) queries about
events/changes on edges, recovering the edges that were activated/deactivated or both. These
queries can be constrained to a time point or time interval. For queries about vertices and
edges in a time interval [t, t ′), we consider two possible semantics: (1) a strong semantics,
which retrieves contacts that are active during the interval [t, t ′), and (2) a weak semantics,
which retrieves contacts that occur within the interval [t, t ′). Table 1 shows the definition
of operations for a time point, and Table 2 shows an example of operations on the graph in
Fig. 1a. For a detailed review on queries over temporal graphs, see [12, pp. 3–5].

123

556 D. Caro et al.

Table 1 Basic operations over a temporal graph constrained by a time point

Class Operations defined for a time point

About vertices DirectNeighbors(u, t): returns the adjacent active neighbors of u at a
given time point t

ReverseNeighbors(v, t): gives the active reverse adjacent vertices of v at
time t

About edges Edge((u, v), t): true if the edge (u, v) is active at t , false otherwise

EdgeNext((u, v), t): returns the instant of the next activation of (u, v)

after t , or t if it is active; otherwise returns ∞
About the graph Snapshot(t): returns all active edges at a time point t

About events ActivatedEdges(t): return all edges that were activated at time point t

DeactivatedEdges(t): return all edges that were deactivated at time point
t

ChangedEdges(t): return all edges that were activated or deactivated at
time point t

Table 2 Examples of basic operations over the temporal graph in Fig. 1

Operation Point tq = 1 Interval tq = [3, 5)
Weak Sem. Strong Sem.

DirectNeighbors of a {b} {b, d} {}
ReverseNeighbors of b {a, d} {a, d} {d}
Edge (a, b) True True False

EdgeNext of (a, d) 3 –

Snapshot {(a,b), (d,b)} –

ActivatedEdges {(a, b)} {(a, d), (b, c), (b, e), (e, d)}
DeactivatedEdges {} {(a, b), (a, d)}
ChangedEdges {(a, b)} {(a, b), (a, d), (b, c), (b, e), (e, d)}
Table extracted from [12]

Temporal graphs can be classified by the duration of its contacts [28]. If the duration
of the contacts is always a time point, e.g., of the form (u, v, t, t + 1) with (u, v) ∈ E
and t ∈ T , we say that the graph is a point-contact temporal graph2;otherwise, we say
that it is an interval-contact temporal graph. Temporal graphs can be also classified by its
dynamism [19]. We say that a temporal graph is fully dynamic if the contacts of any of its
edges occur at many time points. If there exists only one contact per edge, we say that the
graph is partially dynamic. If all contacts start at the beginning of the lifetime of the graph,
we say that the graph is decremental because, as time goes, there are fewer active edges. In
contrast, a temporal graph is incremental if all contacts end at the end of the lifetime.

Depending on the type of the graph, some operations are always empty or equivalent
to other operations. For example, a time interval query over a point-contact graph using a
strong semantics always returns empty, because the duration of all contacts is a time point. The
same happens withDeactivatedEdges operations on incremental graphs, which also return

2 Holme and Saramäki defined this as a contact sequence, but we renamed the concept to point-contact
temporal contact.

123

Compressed kd-tree for temporal graphs 557

empty because all edges remain active until the end of the lifetime. This also implies that if
we are asking for the DeactivatedEdges at the last time point of the graph, the operation is
equivalent to a Snapshot, since all edges are deactivated at the end of the lifetime.

In an incremental graph, the weak semantics over a query interval [t, t ′) can be computed
by doing a time-point query over t ′. This is because as contacts always end at the end of
the lifetime, the right-endpoint t ′ of the query interval gets all the active contacts. The same
does the strong semantics, which can be answered by a time-point query over t . On point-
contact graphs, the operation ActivatedEdges for a time instant t can be computed as a
Snapshot(t), because all edges are active for only a time instant and the activated edges at
t are also the edges that are active at t . Similarly, DeactivatedEdges for a time instant t
can be computed as Snapshot(t − 1), because the deactivated edges at time t are those that
were activated at t − 1.

2.2 Existing structures for temporal graphs

The simplest methods for representing temporal graphs are based on storing snapshots (or
several static graphs) with the active edges for each time instant in the lifetime of the graph.
An example of this representation is the presence matrix [22, p. 3], a binary matrix of size
m × τ , where each cell (i, j) indicates the activation state of edge i at the time instant j . The
main issue with this strategy is the excessive use of space for edges that remain in the same
state (active/inactive) for long periods of time. This is due a new cell is required, although
the state of a the following time instant is the same as the current time instant.

The G* database [33] is a distributed index based on the snapshot representation that
solves the space issue by storing a new version of edges only when a new state is achieved.
They keep, for each time instant, a pointer to the current active edges, represented by a set
of adjacency lists. If a edge become active in next time instant, they create a new adjacency
list for storing the new edge. Then they update the time instant pointer to this new adjacency
list, but also keep a pointer to the adjacency lists of the last instant. If none edge change its
state in the next time instant, they point to the last time instant. Although this mechanism
saves space, do not work very well if after some changes the current snapshot is exactly the
snapshot before the last changes. The DeltaGraph [31] is also a distributed index that groups
graphs in a hierarchical structure based on common edges. It is a similar idea, in the sense
that store different versions of edges, but it is capable of taking into a account that future
snapshots can be exactly the same occurred some changes before.

Another strategy is to store the temporal graph as a log of events [22, p. 6]. This log
stores the events of activation/deactivation of edges along time, and contrary to the snapshot
representation, the space usage depends on the number of contacts related to each edge.
However, the main issue with this approach is the time required to obtain the state of an edge,
as it is obtained by a sequential traversal of the events related to an edge.

Some attempts have been made to improve the time taking to process a log of events.
The simplest strategy is to combine logs with snapshots. These snapshots act like a sampling
of the state of the graph at some time instants. The FVF-Framework [37] obtain a set of
representative snapshots through a clustering processing. Then, for each time instant, the
store what changes with respect to the most similar representative snapshots. However, they
are focused on solving other than adjacency queries over time.

The research on temporal graph compression is still in an early stage. Here, the space of
the compressed strategies is measured in bits per contact (bpc), that is, the number of bits
needed to have the graph in main memory divided by the number of contacts (time intervals
when an edge was active).

123

558 D. Caro et al.

A strategy based on adjacency lists has been proposed in [41]. The idea is to represent
the graph as a set of adjacency lists, but for each neighbor, it stores a list of time intervals
indicating when the edge was active. The compressed version of this idea is the EdgeLog,
presented in [12, p. 9]. Here, both adjacency lists and time intervals are stored with gap
encoding. Although this strategy is very fast, it does not compress very well, and it also
requires an external structure to retrieve reverse neighbors.

The Adjacency Log (EveLog) [12, p. 10] is a compressed structure based on log of events
idea. The EveLog models the log as two separated lists per vertex: one for representing the
time instants and the other one for representing the edges related to the event. The list of
time points is compressed with gap encoding, and the list of edges is compressed with a
statistical model. The state of an edge is obtained by a sequential scanning of the adjacency
log related to an edge. The issue with this approach is related to the time that takes the
sequential scanning of the log used to retrieve the state of edges.

In [17], both snapshots and logs were compressed in k2-trees [10]. The log is modeled as
a differential, representing the edges that change between two consecutive time instants. The
time performance of this strategy was improved with the ik2-tree [25], which corresponds
to a special arrangement of the bitmaps of each k2-tree. This arrangement of bitmaps allows
the retrieval of the state of an edge by counting how many times the edge appears in the
log. Assuming that all edges are inactive at the beginning of time, the first occurrence of an
edge in a list means that the edge becomes active, the second occurrence means that the edge
becomes inactive and so on. Thus, if it appears an even number of times, it means that the
edge is inactive; otherwise, it is active. The benefits of the ik2-tree are its reduced space and
the ability of answering reverse neighbors (predecessors of a vertex) using the same space.
But, as we will show in the experimental section, the retrieval time depends on how many
events are required to obtain the state of an edge.

The work in [12] presents another strategy to solve the problem of processing a log, which
is based on a fast counting method to retrieve the state of edges. They proposed CAS, a
compact data structure based on a sequence composed by the concatenation of the log of
events of all vertices. To retrieve the state of an edge, they also count how many times the
edge appears in the log of events. For a fast counting, they use the Wavelet Tree [27], a
data structure capable of retrieving the frequency of apparitions of a symbol in logarithmic
time, regardless the size of the sequence. The authors also proposedCET, which also models
the log of events as a sequence ordered by time (instead of by vertex). They develop an
extension of the Wavelet Tree for representing sequences of multidimensional symbols,
called InterleavedWavelet Tree. The InterleavedWavelet Tree allows the retrieval of the
frequency of symbols in any component of a multidimensional symbol in logarithmic time.
The state of edges is also recovered by counting how many times an edge appear. Although
both structures are capable of answering reverse neighbors using the same space, only CET
is capable of answering reverse and direct neighbors with the same time cost.

Brisaboa et al. [5] propose a structure based on the compressed suffix array (CSA) for
large alphabets [21,39]. The temporal graph is represented as a sequence of 4-tuples, each of
them representing a contact. The sequence is composed of four different alphabets, one per
each component of the 4-tuple. These four disjoint alphabets produce a nice property used
to compress the CSA, the first quarter of the suffix array always points to symbols in the
second quarter, the second quarter always points to elements in the third quarter and so on.
To retrieve the state of an edge, they search a pattern composed by the edge. Then, they check
whether there is at least one contact that is active at the query time. This strategy requires
more space than CAS and CET, but it allows the retrieval of direct and reverse neighbors
with the same time cost.

123

Compressed kd-tree for temporal graphs 559

2.3 Multidimensional compact data structures

A contact can be naturally represented as a cell in a 4D binary matrix, with two dimensions
encoding edges and the others two encoding time intervals. In this section, we review some
compressed representation of binarymatriceswith two ormore dimensions that can be used to
represent temporal graphs. We start with the k2-tree [8,10], which is a compact data structure
to represent sparse binarymatrices. It takes advantages of sparseness and regularities in many
real-world matrices to achieve good compression ratios. The k2-tree has been successfully
applied in different contexts such asWeb graphs [10], binary relations [6], geographical raster
data [16], RDF databases [3] and temporal graphs [17]. We also review the kd-tree [16,18]
and the Interleaved k2-tree [24,25]. The former is d-dimensional extension of the k2-tree
to deal with multidimensional matrices, and the latter is a specialization of the k2-tree for
storing 3D binary matrices as several 2D matrices.

2.3.1 The k2-tree

Conceptually, the k2-tree [8,10] corresponds to a MX Quadtree [40] with a succinct
representation of the tree shape. The tree is encoded using the generalized Jacobson’s level-
order [7,30] for cardinal trees of degree k2. This representation is based on binary sequences,
which is capable of representing a tree of N nodes of degree k2 in Nk2 +o(Nk2) bits instead
of O(Nk2 log(Nk2)) bits of the classical pointer-based representation. The position of active
cells is encoded as a root-to-leaf path (like in a trie or prefix tree). The k2-tree works best
when active cells are clustered, because leaves share a large portion of the root-to-leaf paths.

There are methods that compress Quadtrees based on reducing the length of the root-to-
leaf paths (i.e., Compressed Quadtree [4,13] and Skip Quadtree [20]). However, they do not
reduce the space used for encoding the position of the cells on the binary matrix. The Linear
Quadtree [23] is another encoding for the Quadtree that compresses the position of cells,
which does not exploit the prefixes that are shared by similar root-to-leaf paths. The k2-tree
is a structure where the tree shape itself encodes the data (i.e., the position of active cells).

The k2-tree stores a n×n binarymatrix through a recursive decomposition of the input into
k2 square submatrices of size n/k × n/k. This recursive decomposition of the input matrix
continues until the submatrices are of size k × k, corresponding to a leaf node representing
k2 cells. Each node of the tree has k2 children, one per each submatrix. They are numbered
from 0 to k2 − 1, starting from left to right and top to bottom. Each submatrix is represented
using a single bit: 1 if the submatrix has at least one cell, or 0 if the submatrix is empty.
Thus, if the submatrix is empty, its children are not represented in the next level. The method
proceeds recursively for each 1 child until the current submatrix is full of zeros or we reach
the basic cells of the original matrix. In this representation, each active cell of the matrix
corresponds to a path in the tree; a mechanism analogously used by binary tries. This means
that, for checking the state of a cell, one should check whether a path exists until the leaves
at level h = �logk n�. Figure 2 shows an example of a k2-tree with k=2.

Notice that the k2-tree does not store the boundary of each submatrix. Rather, this is
implicitly represented by the path from the root node.3 As the root node represents the whole
matrix, its upper-left corner is located at (0, 0) and the lower-right corner at (n, n). The
boundaries of internal nodes can be calculated while we traverse down the tree. Let (x, y)
be the upper-left corner of the root node with n × n the size of the matrix. By definition, the
size of the submatrix of each child node is n/k × n/k. The upper-left corner of the i-child is

3 We assume that the boundary is closed at the upper-left corner and open at the lower-right corner.

123

560 D. Caro et al.

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

x:

y:

0010 0100 0001 0010 0100 0001 0010 1100

0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0

(2,1)

1 1 1 1 1 0 0 0 1 1 0 0

1 1 1 0

(5,2) (1,5) (4,5) (5,6) (9,1) (0,9) (6,8) (7,8)Cells:

T = 1110 1111 1000 1100 0100 0010 1000 1010 1000 1000 0100
L = 0010 0100 0001 0010 0100 0001 0010 1100

Fig. 2 A k2-tree representation for a 10 × 10 binary matrix

defined by (x ′, y′), with x ′ = x + n/k × (i mod k) and y′ = y + n/k × (i/k mod k). The
lower-right corner is defined by the upper-left corner plus the size of the child submatrix,
that is, (x ′ +n/k, y′ +n/k). This continues recursively until we find a leaf node or an empty
submatrix. This gives us a time for checking the state of a cell of O(logk2 n

2) = O(logk n),
which corresponds to the height of the tree h.

The k2-tree is traversed level wise and stored in two bit arrays: T stores the internal levels,
and L stores the leaf level, as shown in Fig. 2. The first of the k2 children of a 1 bit at position
p in T will be at position p′ = rank1(T, p) × k2. If p′ is larger than the size of T , we will
access the array L at the position p′′ = p′ − |T |. Notice that this property holds because
each bit set to 1 at a level of the k2-tree adds k2 bits to the next level. On the other hand, bits
set to zero do not have descendants.

The total space used by a k2-tree depends on the distribution of the input. A complete
analysis is shown in [10]. Basically, in the worst case (for amatrix of size n×n with a uniform

distribution ofm 1s), the total space is k2m logk2
n2
m +O(k2m) bits. In real collections, such as

Web graphs [10] or Spatial data [16], this upper bound is far away. Compression is achieved
because in these domains data are clustered, which generates leaves that share a high portion
of the path from the root (i.e., self-similarity). Indeed, different node orderings influence how
much the 1s in the matrix are clustered. A simple strategy to improve space is to permute (or
rename) the nodes by following a breadth-first search [2].

The time cost of the different operations supported by the k2-tree depends also on the
characteristics of thematrix. Ladra et al. [10] experiment with differentWebGraphs, showing
that clustered matrices have a better performance compared with matrices with a uniform
distribution of ones.

Some enhancements have been proposed to improve space and time performance of the
k2-tree. These improvements use the following strategies: varying the k value at different
levels of the tree, compressing the bitmap L (last level of the tree) and compressing the
submatrices that are full of ones. A brief description of these improvements follows.

Hybrid k2-tree A higher value of k produces a shorter tree, improving the query time at the
cost of increasing the space. The Hybrid k2-tree [10] mixes different values of k, with higher
values for the first levels and lower values for the last levels. With this strategy, the space
of the final data structure remains the same, but the time performance improves in matrices
with a clustered distribution of 1s (i.e., Web graphs).

123

Compressed kd-tree for temporal graphs 561

Compression of L The last level of the k2-tree represents submatrices of size k × k. An
alternative to reduce the space of L is to create a vocabulary of the non-empty submatrices
at the last level, sorting it by its frequency like in statistical compression. Then, the L bitmap
can be replaced by a list of integers pointing to the vocabulary of submatrices. With a skewed
distribution of the submatrices, a variable-length encoding representation of the integers will
reduce the space, because small numbers should be more frequent than larger ones. Ladra et
al. [10] compressed these integers usingDirectly Addressable Codes (DACs) [9], whosemain
property is the direct access to any position. Moreover, better compression can be achieved
by taking larger submatrices kl × kl , this is, stopping the recursive decomposition at a higher
level l < h− 1. Like in the Hybrid k2-tree, experiments showed that this method only works
when the matrix has a clustered distributions of 1s.

Compression of full-of-ones zones A variant of the k2-tree has been proposed by de Bernardo
et al. [16] to compress larger zones of ones in matrices representing raster data. The basic
idea is to stop the recursive decomposition when a zone is full of zeroes (like in the original
k2-tree) or when a submatrix is full of ones. They developed two strategies to encode the new
kind of nodes in the k2-tree (i.e., the node encoding a zone that is full of ones). In the 2-bits
variant, both empty and full-of-ones submatrices are encoded with a 0 in T . To distinguish
if a position p in T is empty or full of ones, they add a second bitmap T ′. If the position
T ′[rank0(T, p)] is set to 0, it means that the zone is empty; otherwise, it is full of ones.
This mechanism allows a reduction in the space used by the k2-tree preserving the same time
performance.

2.3.2 The kd-tree

The kd-tree [16,18] is a generalization of the k2-tree for representing d-dimensional binary
matrices. The d-dimensional matrix of size n1 × n2 × · · · × nd is recursively divided into
kd submatrices. To simplify the analysis, we will assume that ni = n for all i , where each
node of the tree has kd children that represent each of the submatrices. The submatrices
are numbered from 0 to kd − 1, following a row-major order.4 This means that the first
dimension is contiguous for the first kd−1 submatrices (i.e., submatrices are ordered by the
highest dimension, then the second and so on). The codification of the tree into the bitmaps
T and L follows the same strategy: a 1 bit if the submatrix is non-empty, and a 0 otherwise.
Figure3 shows an example of kd-trees with k = 2.

The navigation of the tree is analogous to the one in the k2-tree, the first children of a 1 bit at
the position p in T is found at the position p′ = rank1(T, p)×kd in T |L (the concatenation of
bitmaps T and L). To check whether a cell c = (c1, c2, c3, . . . , cd) exists in the input matrix,
we need to check which child node represents the submatrix where c falls. Starting from the
root node, this requires to compute for each dimension the value vi = ci

n/k , where n is the

size of the current submatrix. Then, the j th submatrix, with j = ∑d
i=1 vi × k(i−1), contains

the cell. If the j th bit is set to 1, it traverses down the kd-tree using the rank operation, but
updating the ci by c′

i = ci mod n/k to reflect the new position with respect to the smaller
submatrix in the j-child. This procedure continues until we find a leaf node or an empty
submatrix. The navigation time to check the existence of a cell is O(logkd n

d) = O(logk n),
which corresponds to the height of the tree h = �logk n�. Other range operations depend on

4 Other orders have been proposed, but they do not make any improvement on the space or the navigation
time [18].

123

562 D. Caro et al.

Level eert4^2eert2^2eert1^2

0

1

2

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0000001000000000

0001000000000000

0000000001000000

0000000000001000

1 0 0 1

1000

0101

0010

0101

1 1

1 0 0 1

0 1 1 0

2^3 tree

0 1 0 0 0 0 0 1

00100000

00010000

00000010

00000000

1d 2d 4d3dExample
Input

Fig. 3 Example of kd-trees for 1, 2, 3 and 4 dimensions with k = 2. We include an example of the input:
points in a line for 1D, cells in a square matrix for 2D, cells in a cube matrix 3D and cells in a tesseract for
4D

howmany components are fixed with a value, and howmany submatrices should be retrieved
at each level.

Following the same space analysis of the k2-tree in [10], in the worst case for a d-
dimensional binary matrix of size nd with m 1s uniformly distributed, the space used by

the kd-tree is kdm logkd
nd
m + O(kdm) bits. For k = 2, the space achieves its minimum, with

2dm log2d
nd
m + O(2dm) bits. This equation reveals one of the issues with kd-tree; its space

increases exponentially with the number of dimensions.
As the kd-tree is based on the k2-tree, the same optimization techniques of the k2-tree can

be applied to reduce its space and time performance, just adjusting the navigation pattern.

2.3.3 The Interleaved k2-tree

The Interleaved k2-tree [24,25] is a specialization of the k2-tree specially designed to deal
with 3D data. It is useful to represent ternary relations with a skewed distribution in one
of its dimensions. The main idea is to partition the ternary relations into m sets of binary
relations, where m is the number of different values in the skewed dimension. Then, the
ternary relations can be represented bym different binary relations, each of them represented
with a different k2-tree.

The partition works as follows: Let W be a set containing triples of the form (x, y, z) ∈
X × Y × Z . Assume that the set Z has a lower cardinality than X and Y and that |Z | is
the number of different items in Z . Then, the partition is defined as a set of |Z | different
binary relations of the form Zi = {(x, y)|(x, y, zi) ∈ W }. Finally, each of the Zi relations is
represented by a binary matrix in a k2-tree.

The Interleaved k2-tree (ik2-tree) corresponds to the merge of the |Z | different k2-trees
in one structure. The idea is to interleave the bits representing the same branches of the |Z |
k2-trees. As in the k2-tree, each node has k2 children, each of them representing a submatrix
with a variable number of bits. Each bit represents one item zi of the skewed dimension. At
the first level, each of the k2 nodes contains |Z | bits, one per item in Z . The i th bit of a node
is set to 1 if the Zi matrix contains at least one cell in the corresponding submatrix of the
node; otherwise, the bit is set to 0.

In the following levels, the number of bits of each internal node corresponds to the number
of ones in its parent node. For example, if a parent node has m ones, each of its k2 children
will contain m bits. The number of ones in the parent node indicates the number of items in
Z that have a cell in its corresponding submatrix. Following the example, the number of ones

123

Compressed kd-tree for temporal graphs 563

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

x:

y:

0

0

0

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

x:

y:

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

x:

y:

0100

0 1 0 0

1 1 0 0

0111 0100

0 0 1 0 1 0 0 0

1 0 0 1

0110 0110

0 0 1 0 1 1 0 0

1 0 0 1

0011

0 0 1 0

0001

z=0 2=z1=z

000 000 111 000

111 100 000 011

0 1 0 0

0 1 0 0000 011 111 111

11 01 00 00

00 11 01 00 0 0 0 1

T = 111 100 000 011 000 000 111 000 0 1 0 0 11 01 00 00
L = 000 011 111 111 0 1 0 0 00 11 01 00 0 0 0 1

Fig. 4 An ik2-tree representation of three binary matrices. Each binary matrix is encoded as a k2-tree, which
represents triples with a fixed value for the z component. The ik2-tree is composed by the interleaved bits of
the same branches of the three k2-tree

in the parent node indicates that there arem different Ri matrices with a cell in the submatrix
related to the parent node. Figure 4 shows an example of a ik2-tree with k = 2 and three zi
values.

The tree is also stored in two bit arrays: T stores all levels except the last one, which is
stored in the bitmap L . The structural properties of the original k2-tree hold for the ik2-tree,
a 1 bit in the level l will generate k2 bits at level l + 1. However, as each node has a variable
number of bits, and the number of bits of each node depends on the active bits of the parent,
the navigation strategy must be updated accordingly. Because we know that each of the k2

nodes in the first level contains |Z | bits, we must adjust the navigation by skipping the first
|Z | × k2 bits.

Assume a node starting at position p in T , with m > 0 active bits. Then, the first child
begins at position p′ = (rank1(T, p)+|Z |)×k2 and has a size ofm bits in T |L . The number
of active bits of the first child is m′ = rank1(T, p′ + m) − rank1(T, p′). Notice that the
factor |Z | × k2 skips the nodes in the first level.

Queries in the ik2-tree can be divided into queries retrieving tuples with a fixed value in
the Z component, and queries retrieving tuples within a range value in the Z component.
The formers only require to traverse down the tree by checking a specific bit of each node.
For example, to retrieve all cells with the value zi , we start from the k2 children of the root.
In each child, we verify if the zi bit is active. If it is active, we traverse down the tree using
the rank operation until the leaves. If the bit is inactive, it means that the current submatrix
is empty for zi . Queries retrieving a range value in the Z component require more work,
because we need to check all bits of the nodes involved in the query. The idea is to perform

123

564 D. Caro et al.

many queries by fixing the value of the third component. For example, if we want to recover
all tuples with the Z component between the values zi and zi+w , we need to perform a fixed
query for the values zi , zi+1, . . . , zi+w .

The space used by the ik2-tree corresponds to the combined space of the |Z | different
k2-trees. To achieve less space and navigation time, we can directly apply all the enhance-
ments designed for the k2-tree. The ik2-tree has been applied to RDF triples and temporal
graphs [24,25]. In some cases, like evolving raster data, the kd-tree outperforms in both space
and time the ik2-tree [18].

2.4 k2-trees for temporal graphs

The first approach to storing temporal graphs in k2-trees is the differential k2-tree [17]. It
is based on sampling the state of the temporal graph for some time instants, and storing
the differences between the current snapshot (i.e., the set of active edges) of the graph with
respect to the last sampling. The differences are composed by the edgeswhose states (active or
inactive) in the current time instant changed with respect to the last snapshot. Both sampling
and differences are represented using k2-trees. An edge is active at time tk if it appears
exclusively in the sampling or only in the differential k2-tree stored at tk ; otherwise, it is
inactive. The main problem with this representation is that the differences tend to be similar
in consecutive time instants; thus, they store the state change of an edge many times.

As temporal graphs are binary relations evolving over time, they can be represented as
triples of the form (u, v, tk), where tk indicates the time instant when the edge (u, v) has been
activated or deactivated. Indeed, each contact of the graph (u, v, ti , t j) generates two triples
(u, v, ti) and (u, v, t j), corresponding to the time points when the edge (u, v) is activated and
deactivated, respectively. Álvarez et al. [18,24,25] used this 3D encoding to store temporal
graphs using the Interleaved k2-tree. The triples are indexed by the temporal component.

By using the ik2-tree, the state of an edge (u, v) at time tk is active if there is an odd
number of triples (u, v, tm), where t ∈ [0, tk]. The retrieval of direct and reverse neighbors
and snapshot queries work in the same way, by counting howmany triples are related to each
neighbor. This representation is very compact because the state change is only stored once.
However, it requires to count each neighboring change to recover the state of an edge, which
can be expensive on edges with many contacts.

In the following sections, we will reveal how to deal with the exponential increasing of
the space when using the kd-tree and how to deal with the sparseness due the d-dimensional
space.

3 The Compressed kd-tree (ckd-tree)

A trivial approach to represent a temporal graph is to use a k4-tree where contacts are cells
in a four-dimensional binary matrix, with two dimensions encoding edges and the others
two encoding time intervals. This simple representation has the problem referred as curse
of dimensionality [40], which indicates that when the number of dimensions increases, the
available data become sparse.

A k4-tree has nodes with 16 bits (for k = 2), because there are 24 submatrices where
4D points can fall in each recursive space partition (i.e., space increases exponentially in
the number of dimensions). When a k4-tree represents a temporal graph, the time constraint
imposes that cells encoding values ts � te will never be used and, in consequence, the
maximum number of contacts stored in the same leaf is equal to 4. Therefore, the 4D points

123

Compressed kd-tree for temporal graphs 565

to represent contacts become very sparse, producing many unary paths where internal nodes
tend to have leaves storing a single cell. Therefore, the direct use of k4-trees for representing
temporal graphs does not compress as well as the k2-tree does for static graphs because the
self-similaritymechanism (on the paths) used by the k2-tree cannot be replicated for temporal
graphs.

Without considering any kind of regularity (i.e., self-similarity), the information-theoretic
lower bound on the number of bits needed to represent a 4D matrix is the logarithm of the
number of possible matrices of size n4, withm active cells. We call entropy to this value, and

it is expressed byH = log
(n4
m

)
. Using the Stirling’s approximation, one can get (see Lemma

8 in [36] and Section 2.1 in [11]):

H = log

(
n4

m

)

≤ m log
n4

m
+ O(m) (1)

The k4-tree representing the binarymatrix (for k = 2) requires 16m log16
n4
m +O(16m) =

4m log n4
m + O(m) bits, which is, asymptotically, four times the entropy H.

How can one achieve more compression taking into account the sparseness of the four-
dimensional space? We propose in this paper a variant of the kd-tree that is able to compress
unary paths on leaves representing one contact (a 1 cell) using the “entropy” H space. The
idea behind our proposal is to stop the decomposition of the d-dimensional binary matrix
when a submatrix with only one cell (contact) is found. This produces three kinds of nodes in
the kd-tree: white leaf nodes representing an empty submatrix, black leaf nodes representing
a submatrix with only one cell (representing only one contact) and gray internal nodes
representing a submatrix with many 1 cells (many contacts). The isolated cell in a black leaf
is stored as a relative position with respect to its submatrix in a separated array.

Unlike the k2-tree (and the kd-tree), where the whole tree itself encodes active cells, we
conveniently choose which portion of the root-to-leaf paths is encoded in the tree (as a gray
node) and which part is encoded outside the tree (an isolated cell in a black leaf).

Conceptually, the proposed strategy resembles the idea of the Point Region (PR) Quadtree
[40, pp. 42-46]. The main difference with the PR Quadtree is that we are reducing the total
space used by the whole data structure, by encoding the active cells as root-to-leaf paths over
a succinct representation of the tree, where pointers are replaced by bitmaps. The succinct
representation of the tree follows the generalized Jacobson’s level-order [7,30] encoding for
cardinal trees. We extend this representation to encode each kind of node (white, black and
gray) using only one extra bit per node. We also take advantage of the level-order encoding
to retrieve the path of a black leaf in constant time.

As the ckd-tree relies on the kd-tree, the tree can be traversed using minor modifications
of the original operations until a black node is found or the fixed depth is reached.

3.1 Encoding the tree

The first step to compress the kd-tree is to develop a strategy for encoding the three kinds
of nodes in the tree: white, black and gray nodes. Bits in T are 1 when the corresponding
submatrices have one ormore cells, corresponding to black leaves or gray nodes, respectively,
and 0 for empty submatrices (white leaves) as in the original kd-tree. To differentiate whether
the 1 bit belongs to a black leaf or gray node, we create a second bitmap B that stores one
bit for each 1 in T . Black leaves are marked with 1, while gray nodes are marked with 0.
Note that the size of B is the number of 1s in T . This encoding schema is based on the work
developed by de Bernardo et al. [16] to compress submatrices full of ones in a k2-tree.

123

566 D. Caro et al.

(2,1) (5,2) (1,5)

(4,5) (5,6)

(9,1)

(0,9)

(6,8) (7,8)

1 1 01

1 1 1 1 11 0 0

1 1 0 0

1 10 0 1 0 00

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

x:

y:

T = 1110 1111 1100 1010 0100 1100

B = 010 1110 10 11 0 11

A = [(1',1'), (2',1'), (1', 2'), (1',1'), (0',1'), (0', 1') , (1',0')]

p1

p2 p3 p4 p5

p6 p7

p8 p9

p1 p2 p3 p4 p5 p6 p7

Fig. 5 A compressed version of the k2-tree in Fig. 2 with a binary matrix of size n = 10 and k = 2

The navigational mechanism on the new kd-tree must be updated to take into account the
new codification in B of black and gray nodes. Now, the first children of an internal node
at position p in T will start at position p′ = (rank1(T, p) − rank1(B, rank1(T, p)) × kd ,
because we need to subtract the number of 1 bits in T that encode black leaves until the
current position p, as they do not generate new children. If a position p in T is set to 1,
B[rank1(T, p)] can take two values: 1 if p corresponds to a black leaf, or 0 if p corresponds
to a gray internal node.

3.2 Encoding isolated cells in black leaves

The unary path of an isolated cell (i.e., a black leaf) is represented as a relative position of
the cell with respect to the upper-left corner of its corresponding submatrix. If the upper-left
corner is located at position (u1, u2, . . . , ud) of the matrix, the isolated cell (p1, p2, . . . , pd)
is stored as (p1 − u1, p2 − u2, . . . , pd − ud). For example, the cell (9, 1) in Fig. 5 is stored
as (1, 1), because the upper-left corner of its submatrix starts at position (8, 0). The relative
positions of the cells are stored in level order, as black leaves appear in the tree, into a d-
dimensional array A. Each entry corresponds to a black leaf in the ckd-tree. The unary path
of a black node at position p is stored at the position A[rank1(B, rank1(T, p))]. Figure5
shows the compressed version of the k2-tree in Fig. 2.

Note here that black leaves at the last level of the tree do not require to store the relative
position with respect to its submatrix. This because, at the last level, the submatrices have a
size of kd , and the relative positions are already encoded by the position of the 1 bits in T.
Therefore, the bitmap B and the array A have no entries for black leaves occurring at the last
level of the ckd-tree.

The unary paths can be stored using d × log(n/k) bits per black leaf, where n/k corre-
sponds to the size of the largest submatrix that can be stored in the tree. But this option is
naive, because the size of the submatrices depends on the level where the black leaves occur.
Another alternative is to use a variable-length encoding such as DACs [9], but there is no
guarantee that space will be the minimum required by a uniform distribution of isolated cells.
Because the depth of the black leaf indicates the size of the submatrix and, therefore, the
maximum relative positions of isolated cells, we could reduce the space by partitioning A

123

Compressed kd-tree for temporal graphs 567

into Al different arrays, one per level of the kd-tree of height h = �logkd nd�. Then, a black
leaf at level l uses d × log(n/kl+1) bits. This guarantees an improvement of the space with
respect to the kd-tree. In the kd-tree, the isolated cell is a unary path stored as a leaf in the
last level, using kd × log(n/kl+1) bits in total.

The partition of A requires to be aware of the level of the node that we are visiting. In
order to simplify this, we also split the bitmaps T and B by level and the navigation of the
tree is updated accordingly. The first children of an internal node at position p at level l is
found at position p′ = (rank1(Tl , p−1)− rank1(Bl , rank1(Tl , p−1)))× kd at level l +1.
On the other hand, to check whether p at level l is a black leaf or a gray internal node, we
verify whether Bl [rank1(Tl , p)] is 1 (or 0, respectively). The unary path of a black node at
position p in Tl is found at position Al [rank1(Bl , rank1(Tl , p))].
3.3 Space analysis

Assume a d-dimensional binary matrix of size nd , storing m cells uniformly distributed.
Each cell is a 1 in the binary matrix, and in the worst case, this requires to store a node for
each level of the tree, requiring a total of h = �logkd nd� nodes. As each internal gray node
requires to store kd bits in the bitmap T , and another kd bits in B, this induces a total space of
2kdm�logkd nd� bits. However, not all nodes can be different in the upper levels of the tree.
In the worst case, all nodes exist up to level h′ =
logkd m� (that level contains m different
nodes). From that level, the worst case is that each of the m paths to leaves is unique, and
consequently, they are stored as a black leaf. Each black leaf at this level is storing a cell as
an offset with respect to a submatrix of size nd/(kd)h

′
. This offset is, indeed, the path to the

leaf of the traditional kd-tree. The total space to store all offsets of cells in black leaves is
m log(nd/m) bits. Thus, in the worst case, the total space in bits is:

2

logkd m�
∑

l=1

(kd)l + m log
nd

m
= m log

nd

m
+ O(kdm).

As in the kd-tree, the formula suggests that a smaller k will achieve less space. It also
depends exponentially on the number of dimensions, but only in one of their terms. For k = 2

and d = 4, the space ism log n2
m +O(16m) = m log n4

m +O(m) bits, which is asymptotically
the information-theoretic minimum space (Eq. 1) necessary to represent all binary matrices
of size n4 with m 1s (i.e., m contacts).

3.4 Construction

The construction algorithm for the ckd-tree is based on the inplace-construction algorithm
of the k2-tree and kd-tree [10, p. 158] [18]. It is based on an iterative selection of the cells
that are active for each submatrix in the tree. With this strategy, we can build the bitmaps T
and B, and the arrays A by level from left to right. We assume that the input binary matrix is
represented as an array P[1,m] of m points of the form (p1, p2, . . . , pd), with pi indicating
the position of the cell in each dimension. Notice that the maximum depth of the tree is
h = logkd n

d = logk n. Therefore, at the beginning of the construction algorithm, there are h
available empty bitmaps Tl and Bl , as well as, h arrays Al . Recall that Al is a d-dimensional
array, holding d × log n/kl+1 bits per entry.

The algorithm works by maintaining a queue of subproblems to be resolved, each of them
corresponding to a submatrix and a node in the tree. A subproblem is composed by the size
of the submatrix, the level l in the tree of the current node and the interval [a, b] of the array

123

568 D. Caro et al.

Algorithm: construct(P [1,m], n, k, d) builds the ckd-tree with the set of d-dimensional points in P .

Output: The bitmaps Tl and Bl and the array Al by level.

Q.enqueue(1,m, 0);
while Q is not empty do

a, b, l = Q.dequeue();
K[a,b] = ComputeKeys(P[a,b], l,n,k); /* Array of keys in P [a, b] */

I[0,kd-1] = CountingSort(P[a,b],K[a,b]); /* The interval holding each key in P [a, b] */

for i = 0 to kd − 1 do
ai, bi = I[i];
if ai = bi then /* case 1: white node */

Tl.append(0);
else if bi − ai = 1 then /* case 2: black leaf */

Tl.append(1); Bl.append(1);
Al.append(Path(P[ai])) ;

else if bi − ai > 1 then /* case 3: gray node */
Tl.append(1); Bl.append(0);
for j = 0 to kd − 1 do

Q.enqueue(ai, bi, l + 1)

Fig. 6 Algorithm for constructing the ckd-tree. The output is the bitmap Tl , Bl , and the arrays Al encoding
the unary paths. Function ComputeKeys returns the key for each cell (p1, p2, . . . , pd) in P[a, b] as in Eq. 2

P , which contains the points that fall into the submatrix. The initial step is to enqueue the
subproblem representing the root node at level l = 0 and the interval [1,m] representing the
whole matrix of size n. The following steps are based on setting the bits in T and B and
enqueue new subproblems, one for each child of the node. When the interval [a, b] contains
only one cell, we mark the bitmap B and set the array A encoding the corresponding unary
path.

For each subproblem, we generate at most kd new subproblems, each of them corresponds
to the submatrix of a child node at level l + 1. A subproblem at level l with an interval [a, b]
for a submatrix of size n is processed as follows. We subdivide the interval [a, b] into kd

subintervals and assign to each point in [a, b] a key i , with 0 ≤ i < kd . The key is defined
by

i =
d∑

j=1

(
p j

n/k
mod k

)

× k j−1, (2)

where the denominator n/k is the size of the submatrices of the child nodes.
As in the k2-tree, we sort the interval by the key using counting sort, generating kd

subintervals [ai , bi] of [a, b]. Then, we append to the bitmap Tl a 1 bit if ai < bi , and
a 0 otherwise. For each 1 in Tl , we append a 1 in bitmap Bl if the size of the interval
is bi − ai = 1 (i.e., it is a black leaf), and a 0 otherwise. For each 1 in Bl , we append
the codification of the unary path of the point in P[ai]. The unary path of p = P[ai]
is calculated as a relative position of the cell with respect to the current submatrix as (p0
mod n/k, p1 mod n/k, . . . , pd mod n/k). For each 0 in Bl (a non-black leaf), we enqueue
a new subproblem with the interval [ai , bi] with a submatrix size of n/k at level l + 1. See
Fig. 6 for the complete algorithm.

In the worst case, when the matrix is full of ones, the construction size requires to keep
at most m items in the queue. In the average case, assuming a uniform distribution of the m
cells, the construction time is O(m logkd m), because for each level of the tree we need the
counting sort for each interval.

123

Compressed kd-tree for temporal graphs 569

3.5 Orthogonal range search

The algorithm for range search in the ckd-tree is similar to the one in PR quadtrees, traversing
down all the child nodes whose submatrices intersect with the region to retrieve. The region is
also defined by two extreme cells, the upper-left and lower-right cells. As we are not storing
explicitly the boundaries (upper-left and lower-right cells) of the submatrices, we calculate
them as we traverse down the tree.

The search works as follows. We start from the root node representing the whole matrix,
this is the region between the upper-left cell at (0, 0, . . . , 0) and the lower-right cell at
(n, n, . . . , n). Then, we recursively traverse down all the kd children following the rank
operations defined in the last section. Let (u1, u2, . . . , ud) be the upper-left cell of a submatrix
of size n. The j th component of the upper-left cell of the i th child submatrix is defined by u′

j =
u j+(n/k)×((i/k j) mod k) and the lower-right cell by (u′

0+n/k, u′
1+n/k, . . . , u′

d+n/k).
We stop the recursion if the boundary of the submatrix does not intersect with the region, or
if the current node is a black leaf. In the case that we reach the last level of the tree, we return
(u0, u1, . . . , ud) because the upper-left cell corresponds to a 1d submatrix, i.e., a cell.

Figure7 presents the algorithm for the orthogonal range search, which retrieves the active
cells in a region R. The algorithm is invoked with parameters range(l, n, u, z = 0, R), where
l is the level of the tree to traverse, n is the size of the current submatrix, u is the d-dimensional
position of the upper-left cell of the submatrix, z is the position of the current node in Tl and
R is the query region. As the root node is virtual in the bitmap codification of the tree, we
set l = −1 to represent the level of the root node, u is (0, 0, . . . , 0) ∈ nd , and z = 0.

Note that by using range search, one can compute operations over temporal graphs in
similar way than the k2-tree does for static graphs. The next section shows how to obtain
these ranges and gives an upper bound of the time cost required to obtain some operations.

4 Using the Compressed kd-tree for representing temporal graphs
Aswe said at the beginning of last section, contacts of a temporal graph can be represented by
cells in a 4D binary matrix, two dimensions for representing the edges and two dimensions
for representing the time interval when the edge is active. Therefore, the entropy of a temporal
graph G = (V, E, T , C) represented in a 4D binary matrix can be expressed as:

Algorithm: range(l, n, u,R, z) returns the set of active cells in region R.

Output: Cells inside the region defined by R.

if region(u, u+ n) ∩ region(B) is empty then return
if Tl[z] = 1 then /* Black leaf or Gray node */

if l = depth-1 then /* Black leaf at last level */
output u;

else if Bl[rank(Tl, z)] = 1 then /* Black leaf */
p = rank(Bl, rank(Tl, z));
output Al[p];

if l = -1 then /* Root node */
z’ = 0;

else
z’ = (rank(Tl, z − 1) − rank(Bl, rank(Tl, z − 1))) × kd;

/* Searching in all children submatrices */
 for i = 0 to kd − 1 do

for j = 0 to d − 1 do
uj = uj + n/k × (i/kj mod k)

range(l + 1, n/k, u ,R, z + i)

Fig. 7 Algorithm for orthogonal range search in the ckd-tree

123

570 D. Caro et al.

H = log

(
n2 × τ(τ−1)

2
c

)

≤ c log
n2 × t2

c
+ O(c), (3)

where c = |C| is the number of contacts (4D cells), n = |V | is the number of vertices and
τ(τ−1)

2 is the maximum number of different time intervals in lifetime of size τ = |T |.
Refinements of this representation depend on the type of the temporal graph. For example,

we know that in a point-contact all contacts last for only one instant, and thus, they can be
represented as 3D cells, where the time interval is replaced by the time point when the edge
is active. In the same way, incremental (decremental) temporal graphs can be represented by
3D cells, because we know that the time intervals end at the end of the lifetime (or start at
the beginning of the lifetime). In this case, the third dimension is storing the time point when
the contacts start (or end).

In this section, we show how to obtain the active neighbors by performing a range search
over the matrix. This is the same mechanism used by the k2-tree to retrieve direct and reverse
neighbors.

4.1 Operations as range searches

Because we are storing contacts in 4D binary matrices, we can compute the adjacency oper-
ations of temporal graphs by doing orthogonal range searches. Indeed, this is the rationale
behind the successor (predecessor) algorithms of the k2-tree used to compute direct (reverse)
neighbors in static graphs. In that case, they recover the active cells in a row (column).

For interval-contact temporal graphs, the idea is to recover the active cells inside a 4D
region. For example, to obtain the active direct neighbors of vertex u at the time point t ,
i.e., DirectNeighbors(u, t), we need to recover the contacts (u, ·, ts, te), with the second
component unbounded and with the temporal constraint such that ts ≤ t < ts . This temporal
constraint can be translated into a range over the third and fourth component, such that
ts ∈ [0, t] and te ∈ (t, τ). This range defines the region between the cells (u, 0, 0, t + 1) and
(u+1, n, t+1, τ). Observe that we are fixing the first component, and the second component
is represented as a whole range [0, n) in the second dimension (representing target vertices).

The same idea can be extended to recover direct neighbors for point-contact temporal
graphs. In this case, we are converting a contact of the form (u, v, t, t + 1) into a 3D cell
of the form (u, v, t). Then, DirectNeighbors(u, t) just requires to recover the cells in the
range (u, 0, t) and (u + 1, n, t + 1), because we know that contacts only last one time point.
For incremental temporal graphs with contacts (u, v, t, τ), where τ is the graph’s lifetime,
contacts can be also stored as 3D cells. In this case, the cell is of the form (u, v, t). As we
know that all contacts end at the last time point, direct neighbors can be recovered by the
range (u, 0, 0) and (u + 1, n, t + 1). Operations for decremental temporal graphs can be
derived in the same way.

Interval queries over vertices and edges require to manage the weak and strong semantics.
The weak semantics retrieves all the contacts overlapping the interval query over [t, t ′), this
is, all contacts such that [ts, te) ∩ [t, t ′) = ∅. The constraint is equivalent to recovering
contacts such that t ≤ te and ts ≤ t ′. These inequalities define the corresponding range over
the third and fourth components as ts ∈ [0, t ′) and te ∈ (t, τ), respectively. Then, weak
DirectNeighbors operation over an interval can be computed by retrieving the cells inside
the region (u, 0, 0, t + 1) and (u + 1, n, t ′, τ).

As theweak semantics retrieves the overlapping contacts with respect to the query interval,
there can be duplicated edges in the output. We removed these duplicated items by adding

123

Compressed kd-tree for temporal graphs 571

Table 3 Application of orthogonal range search to compute temporal graphs operations

Operation Interval-contact (4D) Point-contact (3D) Incremental (3D)

Edge((u, v), t) (u, v, 0, t + 1) (u, v, t) (u, v, 0)

(u + 1, v + 1, t + 1, τ) (u + 1, v + 1, t + 1) (u + 1, v + 1, t + 1)

DirectNeighbors(u, t) (u, 0, 0, t + 1) (u, 0, t) (u, 0, 0)

(u + 1, n, t + 1, τ) (u + 1, n, t + 1) (u + 1, n, t + 1)

Weak DirectNeighbors(u, [t, t ′)) (u, 0, 0, t + 1) (u, 0, t) DirectNeighbors(u, t ′)
(u + 1, n, t ′, τ) (u + 1, n, t ′)

Strong DirectNeighbors(u, [t, t ′)) (u, 0, 0, t ′) – DirectNeighbors(u, t)

(u + 1, n, t + 1, τ)

Snapshot(t) (0, 0, 0, t + 1) (0, 0, t) (0, 0, 0)

(n, n, t + 1, τ) (n, n, t + 1) (n, n, t + 1)

ActivatedEdges(t) (0, 0, t, 0) Snapshot(t) (0, 0, t)

(n, n, t + 1, τ) (n, n, t + 1)

ActivatedEdges([t, t ′)) (0, 0, t, 0) (0, 0, t) (0, 0, t)

(n, n, t ′, τ) (n, n, t ′) (n, n, t ′)
DeactivatedEdges(t) (0, 0, 0, t) Snapshot(t − 1) –

(n, n, τ, t + 1)

DeactivatedEdges([t, t ′)) (0, 0, 0, t) (0, 0, t − 1) –

(n, n, τ, t ′) (n, n, t ′ − 1)

The search range is defined by the region between the upper-left and the lower-right cells in the first and
the second row of each operation. Ranges are provided for interval-contact, point-contact and Incremental
temporal graphs. We show operations that are equivalent to others

an extra step, sorting the target vertices of each edge.5 This extra step is not required inCAS
and CET [12], because they already return non-duplicated edges.

The strong semantics retrieves all the active contacts during the [t, t ′), this is, it retrieves all
contacts such that [t, t ′) ⊆ [ts, te). Therefore, the range for the third and fourth components
are ts ∈ [0, t) and te ∈ [t ′, τ), respectively. The strong DirectNeighbors operation is
computed by retrieving the cells inside the region (u, 0, 0, t ′) and (u + 1, n, t + 1, τ).

TheEdgeNext operation is computed by retrieving the first contact found in the output of
the Edge operation over the interval [t, τ), considering the weak semantics. As the interval
in a weak semantics contains the contacts of the edges that are active at time t (until the end
of the lifetime), the first contact in the output is the next activation of the edge.

Table 3 shows the upper-left and lower-right cells defining the boundaries to com-
pute operations for Interval-Contact, Point-Contact and Incremental temporal graphs. The
ReverseNeighbors operation can be computed as theDirectNeighbors operation by updat-
ing the unbounded range to the first component. The DeactivatedEdges operation can be
computed by updating the time constraint to the fourth component.

4.2 Time analysis

The time to compute the operations over temporal graphs depends on howmany components
are fixed in the search range. The search range used to recover direct neighbors (or reverse

5 When the input is small, the sorting method is faster than creating a hash table to remove duplicated items.

123

572 D. Caro et al.

neighbors) fixes one component. Thus, the worst-case scenario is to traverse down k3 subma-
trices per node until the leaves, where cells are of the form (u−1, ·, ·, ·). As we reported in the
space analysis in Sect. 3.3, the depth of the tree form 1s uniformly distributed in a 4D matrix
is h = logk4 c. Thus, in the worst case, this gives us an upper bound of (k3)h ∈ O(c3/4).
This, indeed, is not the ideal O(m/n) (average active neighbors for any time point, with m
the number of edges), but it is better than checking the state of all active cells in O(c).

Because the Edge operation fixes two components in the range search (the source and
target vertex), its upper bound is (k2)h ∈ O(

√
c). As a Snapshot query does not fix any

component, its upper bound is (k4)h ∈ O(c). Note that, because the contacts satisfy the tem-
poral constraint of the time interval (third and fourth components), the average performance
is, indeed, better than the time under a uniform distribution of ones. Operations retrieving
events at a time instant fix the third or the fourth component of each contact. Thus, its upper
bound time is O(m3/4).

The same analysis can be followed for 3D representations. As the incremental temporal
graphs fix one component forDirectNeighbors (ReverseNeighbors) operations, theworst-
case upper bound is (k2)h ∈ O(c2/3). TheEdge operation fixes two components, which gives
kh ∈ O(c1/3). The Snapshot operation is still O(c). Operations for point-contact temporal
graphs traverse down less matrices per node. The DirectNeighbors (ReverseNeighbors)
operation fixes two components and runs in (k)h ∈ O(c1/3). The Edge operation only tra-
verses down through one submatrix, and this is done in O(logk3 c). The Snapshot operation
is computed in (k2)h ∈ O(c2/3) because it fixes the time component. The operations regard-
ing events are also computed in O(c2/3), as they only fixes the time component of each
triple.

4.3 Hybrid representation of interval-contact graphs

In real temporal graphs, such as the Web, a great percent of links between pages remain
active for long periods of time, while others do not. Consider, for example, a newspaper
Web site that shows in its homepage a menu linking to different sections (e.g., sports and
politics), and a body that points to the articles of the day. As we can see, the homepage shares
properties of an incremental graph for the menu, because links remain active for long periods
of time, and it shares properties of an interval-contact graph for the body, which is constantly
updated. We propose here to take into account this type of cases by partitioning contacts of
a temporal graph into two sets of contacts represented by 4D and 3D tuples. In this way,
we take advantage of the space reduction in the 3D representation of contacts following an
incremental or point-contact graph.

The partition works by splitting contacts into three groups that satisfy properties of incre-
mental, point-contact or interval-contact graphs. If the contact ends at the end of the lifetime
graph, it belongs to the incremental class, and if the duration of the contact is a time point,
it belongs to the point-contact class, both contacts stored as 3D tuples. Otherwise, the con-
tact belongs to the interval-contact class and it is stored as a 4D tuple. To answer temporal
graph operations, it is necessary to perform the range search over both, the 4D and 3D rep-
resentations, and combine the answers. The combination step is straightforward, except for
interval operations. Using a weak semantics, we need to remove duplicated edges, while
using a strong semantics, we need to delete the edges that appear twice or more times. This
step is necessary to ensure the strong semantics constraint. Although this may suggest that
operations require twice the time of the original structure in the worst case (as we perform
the range search over two data structures), it works very well in practice, as we will show in

123

Compressed kd-tree for temporal graphs 573

the experimental section. Notice that this improvement only works when a great percentage
of contacts belongs to the incremental or point-contact class.

5 Improving the Compressed kd-tree

In this section, we provide two techniques to enhance the performance of the ckd-tree. The
first one, referred as node compression, compresses nodes that have more than one leaf but
with few direct children. This is done by encoding half of the dimensions as a new parent node
and the other half of dimensions as children of the parent node. The second strategy, referred
as black-leaves buckets, improves time by grouping black leaves into buckets of a fixed size.
Although the improvement techniques of the k2-tree seen in Sect. 2.3.1 are sensible, we must
recall that they only work due to specific characteristics found in Web (static) graphs and
raster data.

5.1 Node compression/dimensional partition

With a non-uniform distribution of data in d dimensions, most nodes of the kd-tree tend to
have few children. For example, in a k4-tree representing a four-dimensional matrix (with
k = 2), nodes are represented by 24 = 16 bits, even if they have only one child. Thus,
most of the nodes in the bitmap T store many 0s. Our proposal is to diminish even more
the space of the kd-tree by reducing the arity of internal nodes (representing the sparse ones
using less bits). This can be done by breaking down the assumption that children in a kd-tree
must represent exactly one of the kd multidimensional submatrices and by allowing that
internal (gray) nodes represent submatrices in fewer dimensions. In this way, a submatrix
represented by an internal node using kd bits can be redefined by a new node with at most
k�d/2� children, each of them using k
d/2� bits. This parent node represents k�d/2� submatrices
in �d/2� dimensions. The child nodes represent k
d/2� submatrices in the remaining
d/2�
dimensions. This allows a space reduction in nodes with few children because less bits are
necessary to represent empty submatrices.

To compress an internal node v, we require to divide its binary representation in k�d/2�
blocks. We create a new node vp with k�d/2� children. If the j th block of v is non-empty (i.e.,
it has at least one child), we set the j th child of vp pointing to the j th block. Therefore, the
space can be reduced if many blocks are empty. For example, a node in a k4-tree with k = 2
and only one child can be transformed into a new parent node with a child, both using k2 bits
each. This allows us to reduce the space up to 50% of the original node. In a 3D matrix, the
space can be reduced up to 75%, because nodes using 23 = 8 bits can be converted into a
parent node of 22 = 4 bits (to store the information of the first two dimensions) and a child
node of 21 bits to store the last dimension. Due to the level order used to represent the tree
in the Tl bitmaps, this node compression strategy works only in nodes of an entire level of
the kd-tree. Figure8 shows the compressed version of a sparse internal node with one child.

The tree navigation algorithms must be updated accordingly to be aware of the split used
to partition the dimensions of each submatrix.

When the node is sparse, there is also an improvement in time because less bits are
traversed to check which one is pointing to a child. For instance, consider a node in a 4D
space, with only one child (Fig. 8). In the traditional representation (Fig. 8a), a node uses 16
bits, thus, we need to check each of the 16 bits to see which one of its children exists. In
contrast, when using node compression (Fig. 8b), we only need to check 8 bits to find which

123

574 D. Caro et al.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0

0 0 1 0
block1 block2 block3 block4 block2

(a) (b)

Fig. 8 Compression for a sparse node with few children. a A sparse node in a k4-tree with k = 2 and one
child. b The compressed version of the node in a

one is the active child. Thus, while node compression reduces the space, it also reduces the
traverse time because the tree has less nodes.

Non-uniform matrices with more than two dimensions get best results. This is because
in two dimensions, with k = 2, a node will use 22 bits, which is exactly the same space of
a parent with a child using 21 bits each. Hence, neither space or time gain is expected for
d = 2.

When data are uniformly distributed (i.e., the worst-case scenario), the node compression
technique increases the space of the data structure. This is because each internal node has
all its kd children. Thus, internal nodes will require kd + kd/2 bits, as all blocks in node
compression will be used. This also increases the expected height of the tree to two times
the height h′ of the ckd-tree without node compression, because logkd/2 m = 2h′. Therefore,
the space required for bitmaps T and B and the time to traverse the tree will increase in this
case. In practice, however, temporal graphs are non-uniform. In the experimental section, we
will show that both space and time are improved in 4D representations using this technique.

5.2 Bucket black-leaves

As Samet claims in [40, p. 45], when data are clustered (i.e., not uniform) the PR Quadtree
may contain many empty nodes. Thus, the tree becomes unbalanced, which also happens in
the ckd-tree. To overcome this unbalance, Samet aggregated leaves into buckets, proposing
the Bucket PR Quadtree. Each bucket can store b cells, where b is the bucket capacity [34].
We follow the same strategy proposed by Samet and defined the Bucket ckd-tree (bckd-tree),
whose black leaves encode at most b cells. The main goal of this method is to speed up
the time to retrieve data in sparse submatrices with a non-uniform distribution of cells. This
structure requires to modify the construction of bitmaps Tl and Bl by stopping the recursive
decomposition until we find b or less cells in the current submatrix. The cells are also stored
in the array Al in level order (from left to right) using also an offset with respect to the
submatrix.

Because buckets can store b or less cells, we need to indicate how many cells are stored
in each bucket. We create a new bitmap Cl , one per each level, storing the size of the bucket
in each black leaf in unary coding. If the current submatrix has k ≤ b cells, we append
k − 1 zeroes followed by a 1 bit in Cl . This is done from left to right, for all black leaves
found at level l, and for all levels. The first cell of the black leaf at position p in Tl is found
at position p′ = select1(Cl , rank1(Bl , rank1(Tl , p))) in Al , and the last one at position
p′′ = select1(Cl , 1 + rank1(Bl , rank1(Tl , p))) in Al . The total length of the bitmap Cl is
m, because each cell is encoded with a 1 (if the bucket only holds one cell), or with a 0
otherwise. Figure 9 shows the bckd-tree of the ckd-tree in Fig. 5.

By grouping nodes into buckets, we expect to reduce the retrieval times, because the
average depth of the tree decreases with the size of the bucket. In a uniform matrix, the
expected depth of the tree is h′′ =
logkd (m/b)�, as each black leaf will hold at most b cells.

123

Compressed kd-tree for temporal graphs 575

(2,1) (5,2) (1,5) (4,5) (5,6)

(9,1)

(0,9) (6,8) (7,8)

1 1 01

1 1 1 1 0 0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

x:

y:

T = 1110 1111 1100

B = 010 1111 11

A = [(1',1'), (2',1'), (1', 2'), (1',1'), (0',1'), (1', 2'), (0',1'), (2',0'), (3',0')]

p1

p2 p3 p4
p5p6 p7 p8 p9

p1 p2 p3 p4 p6 p7 p5

11

C = 1 11101 101

p8 p9

Fig. 9 The bucket version of the ckd-tree in Fig. 5. Black leaves encode at most 2 cells (bucket size of b = 2).
Two circles mark black leaves that were merged into a bucket

This induces a space-time trade-off because, with a shorter tree, less space is used in bitmaps
Tl and Bl , but more space is required in the arrays Al and extra m bits are used in the Cl

bitmap. The space in Al increases because it depends on the level l where black leaves are.
As more entries will be stored in the first levels of the tree, more space will be used (i.e., the
space increases with b). Regarding the time performance, once we find a black leaf, we need
to check each of the b entries in the bucket to find a single cell. In the experimental section,
we will evaluate the trade-off using three different bucket sizes.

6 Experimental evaluation

In this section, we evaluate the performance of representative temporal graphs using the
ckd-tree and the bckd-tree against the kd-tree and the ik2-tree, which are considered the
baselines for comparison. The kd-tree represents the graphs using the 4D and 3D tuples
described in Sect. 4. For the ik2-tree, we generate the corresponding ternary relations repre-
senting the neighboring changes of each contact. We also evaluate the performance against
other compressed temporal graphs such asCAS,CET, EveLog, EdgeLog and the TGCSA.

6.1 Experimental framework

We ran several experiments on real and synthetic temporal graphs. Table 4 gives the main
characteristics of these graphs: name, type, number of vertices, edges and contacts, length
of lifetime, the number of contacts per edge, the space of a plain EdgeLog representation
(4-byte and 8-byte integer for pointers), and the space of the entropy H defined in Sect. 3.

The Comm.Net is a synthetic dataset simulating short communications between random
vertices. The Powerlaw dataset is also synthetic; it simulates a power-law degree graph, where
few vertices have many more connections than the other vertices, but with a short lifetime.
The Flickr-Day and Flickr-Sec datasets are incremental temporal graphs, both encoding the
time when persons became friends in the Flickr social network. The Flickr-Day [14] dataset
uses a granularity by day with a lifetime of 134 days, from 2006-11-02 to 2007-05-18.6 The

6 Available at http://socialnetworks.mpi-sws.org/data-www2009.html.

123

http://socialnetworks.mpi-sws.org/data-www2009.html

576 D. Caro et al.

Table 4 Description of temporal graphs used in the experimental evaluation

Dataset Type Vertices (n) Edges (m) Lifetime (τ) Contacts (c) c/m Size H

I-Comm.Net Interval 10,000 15,940,743 10,001 19,061,571 1.20 389 64

I-Powerlaw Interval 1,000,000 31,979,927 1001 32,280,816 1.01 750 136

I-Wiki-Links Interval 22,608,064 564,224,135 414,347,809 731,468,598 1.30 14,535 6724

I-Yahoo-Netflow Interval 103,661,224 321,011,861 114,193 955,033,901 3.21 14,339 6543

G-Flickr-Days Increm. 2,585,570 33,140,018 135 33,140,018 1.00 798 127

G-Flickr-Secs Increm. 6,204,134 71,345,977 167,943,898 71,345,977 1.00 1728 630

P-Wiki-Edit Point 21,504,192 122,075,170 304,002,801 266,720,840 2.18 4226 2465

P-Yahoo-Session Point 171,340,122 311,277,761 1,209,601 907,128,116 2.91 14,285 7116

Columns Size and H indicate the theoretical space (in MBytes) of the plain EdgeLog and the entropy H

Flickr-Second dataset captures the creation of a friendship with granularity by second, since
the creation of the social network. TheWiki-Links dataset is composed of the history of links
between articles of the English version of Wikipedia. It has a time granularity by second. It
corresponds to the history dump of Wikipedia.7 of 2014-03-04. Wiki-Edit [32] is a point-
contact temporal graph, indicating the time when a user edits a Wikipedia article8 Time
is stored in seconds since the creation of Wikipedia. The Yahoo-Netflow dataset contains
communication records between end users in the Internet and Yahoo! servers [42]. Finally,
the Yahoo-Session dataset is a point-contact temporal graph. It contains the time when a user
searches a set of query terms in the Yahoo! search engine.

The number of dimensions of the binary matrix encoding the temporal graphs depends on
the dynamic properties of the dataset. We used 4D matrices for interval (I) temporal graphs
and 3D matrices for incremental (G) and point-contact (P) graphs.

The time performance was measured at a query level (i.e., measuring the time that took
to run a neighboring operation). We divided the evaluation by class of operation suggested
in Sect. 2.1 (i.e., by operations about edges, vertices, state of the graph and events along
time). For each operation class, we run its time instant and time interval, considering the
weak and the strong semantics. Depending on the type of operation we evaluate the average
time per query or the average time per output contact (i.e., a direct/reverse neighbor, or an
active edge), details are explained in the section of each operation class.

The experiments ran on a machine with two quad-core processors Intel Xeon CPU
E5620@2.4 Ghz, and 64GB DDR3 RAM at 1067MHz. The operating system was Ubuntu
GNU/Linux 12.04, and the compiler was the GCC 4.8.3 with -O3 compile optimization. We
used the Succinct Data Structure Library9 (sdsl-lite) [26] to create the bitmaps in the kd-tree,
ckd-tree and bckd-tree, and the Compact Data Structure Library10 (libcds) [15] for managing
the arbitrary width arrays in ckd-tree and bckd-tree. For the k2-tree and the ik2-tree, we used
the implementation gently provided by their authors.11

7 Downloaded from http://dumps.wikimedia.org/enwiki/.
8 Downloaded from http://konect.uni-koblenz.de/.
9 Available at https://github.com/simongog/sdsl-lite.
10 Available at https://github.com/fclaude/libcds.
11 The structures were implemented by Susana Ladra (k2-tree), Guillermo de Bernardo and Sandra Álvarez
(ik2-tree).

123

http://dumps.wikimedia.org/enwiki/
http://konect.uni-koblenz.de/
https://github.com/simongog/sdsl-lite
https://github.com/fclaude/libcds

Compressed kd-tree for temporal graphs 577

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

WC HC FC B16 B16 FC B64 B64 FC
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S
pa

ce
 (

M
B

)

T
im

e
(m

s/
co

nt
ac

t)

Configuration

Wiki-Links - Time and space

T
B
C
A

time

 0

 500

 1000

 1500

 2000

WC HC FC B16 B16 FC B64 B64 FC
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

S
pa

ce
 (

M
B

)

T
im

e
(m

s/
co

nt
ac

t)

Configuration

Wiki-Edit - Time and space

T
B
C
A

time

Fig. 10 Time and space results for different configurations of the compressed kd-tree over the temporal graphs
I-Wiki-Links and P-Wiki-Edit.We include three variants of node compression:WC is the plain version,without
node compression; HC and FC use node compression for half and full levels of the tree, respectively; B16 and
B64 use a bucket size of 16 and 64 cells, respectively; and B16 FC and B64 FC use a bucket size of 16 and 64
with full node compression, respectively. We separate the space requirements of the different components of
the structure. We also report the time to retrieve direct neighbors in ms per output contact

All the experiments were conducted using k = 2 for the ckd-tree, the bckd-tree, the kd-tree
and the ik2-tree.

6.2 Influence of node compression and bucket size

Before comparing space and time against the baselines, we report how the node compression
and the size of buckets affect the representation of temporal graphs using 3D and 4Dmatrices.
We evaluated seven different configurations of the ckd-tree and bckd-tree for I-Wiki-Links
and P-Wiki-Edit graphs: WC is the plain version, without node compression; HC and FC use
node compression for Half and Full levels of the tree, respectively; B16 and B64 use a bucket
size of 16 and 64 cells,12 respectively, without node compression; and B16 FC and B64 FC
use a bucket size of 16 and 64 with full node compression, respectively. We considered the
space usage by the tree and black leaves (bitmaps Tl and Bl), the encoding of the isolated
cells (array A), and the space to store the bucket size of each black leaf (bitmaps Cl). All the
bitmaps in ckd-tree and bckd-tree use the interleaved bit-vector of the sdsl-lite with a block
size of 1024 bits. We also report here the time to retrieve direct neighbors in ms per output
contact.

Figure 10 shows the benefits of using node compression and buckets of black leaves in
3D and 4D matrices. Comparing WC against HC and FC, we can observe that effectively
the space is reduced when more levels of the tree use node compression. This is due to the
shrinking of the bitmap T in both 3D and 4D matrices. In 4D matrices, the improvement of
space also produces an improvement in time, achieving best results when all levels of the tree
use node compression. Conversely, the reduction in space in 3Dmatrices is at the expenses of
increasing the retrieval time. Comparing B16 and B64 configurations, we observe a slightly
increment in space, but an important improvement of time with respect to WC, HC and FC
variants. In 4D matrices, the retrieval time is improved 3.7 times over the FC configuration
and 1.5 times over the WC variant. The improvement is directly related to the bucket size,
with better time using a larger block size.

12 In this section, we will use B with a suffix to denote the size of the bucket in the bckd-tree and b (without
a suffix) to denote the block size in bitmaps.

123

578 D. Caro et al.

 0

 2000

 4000

 6000

 8000

 10000

 12000

b=15 b=63 b=255 ckd-tree bckd-tree
 0

 10

 20

 30

 40

 50

S
pa

ce
 (

M
B

)

T
im

e
(m

s/
co

nt
ac

t)

Configuration

Wiki-Links - Time and space

Space
time

 0

 500

 1000

 1500

 2000

 2500

b=15 b=63 b=255 ckd-tree bckd-tree
 0

 1

 2

 3

 4

 5

 6

 7

S
pa

ce
 (

M
B

)

T
im

e
(m

s/
co

nt
ac

t)

Configuration

Wiki-Edit - Time and space

Space
time

Fig. 11 Time and space results of the kd-tree using RRR compressed bitmaps with a block size of 15, 63 and
255 bits. The comparison use I-Wiki-Links and P-Wiki-Edit graphs. We include the space and time used by
the ckd-tree (FC variant) and the bckd-tree (B16 WC). WC is the plain version, without node compression,
while FC uses node compression for all levels of the tree. We also report the time to retrieve direct neighbors
in ms per output contact

When we combine the bucket variant with node compression (B16 FC and B64 FC), we
do not obtain the space reduction in node compression. This is because the bitmap T is
already small when using B16 and B64 configurations. However, in 4D matrices we inherit
the improvement in retrieval time due to node compression. In the same way, we inherit the
increase in retrieval time for 3D matrices.

In summary, when using ckd-tree, the node compression technique (Sect. 5.1) works better
in interval-contact temporal graphs (4D matrices) than in point-contact and incremental
graphs (3D matrices). This result also holds for bckd-tree if the bucket size is 2. When the
bucket size is greater than 16, node compression does not work as expected, because the
bitmap T already codifies a small tree.

Now we compare our proposals the baseline kd-tree against the ckd-tree and bckd-tree.
Figure11 shows the space of the kd-tree using RRR compressed bitmaps [38] with a block
size of 15, 63 and 255 bits over the I-Wiki-Links?and P-Wiki-Edit graphs. As expected, the
space of the kd-tree is reduced when the block size of the RRR bitmaps increases, but this is
as the expenses of increasing the retrieval time. With a block size of 63 bits, the kd-tree gets
its best configuration. In this case, ckd-tree and bckd-tree use 0.7 times the space of and are
several times faster than the kd-tree.

6.3 Space evaluation

We now compare our proposal against other structures. Space is measured in bits per contact
(bpc), by dividing the total space of the structure by the number of contacts in the graph. Table
5 compares the ik2-tree, the original kd-tree and the entropy H against our ckd-tree using
node compression and grouping leaves into buckets (bckd-tree). We also included the space
of the Snapshot k2-tree (denoted as Snap.k2-tree), which stores a k2-tree of the active edges
per each time instant, the TGCSA based on the compressed suffix array [5], the structures
CAS and CET based on sequences, and the structures EdgeLog and EveLog based on
events and adjacency lists, respectively [12].

In this experiment, and in the following sections, we report the best configurations for
each graph. The first two columns in Table 5 correspond to the space of our structures, the
ckd-tree and the bckd-tree. For both structures, we used uncompressed bitmapswith sampling

123

Compressed kd-tree for temporal graphs 579

Ta
bl

e
5

Sp
ac
e
us
ed

by
ou

rs
ck

d
-t
re
e
an
d
bc
kd

-t
re
e
ag
ai
ns
to

th
er

st
ru
ct
ur
es

fo
r
te
m
po
ra
lg

ra
ph
s

D
at
as
et

ck
d
-t
re
e

bc
kd

-t
re
e

kd
-t
re
e

ik
2
-t
re
e

Sn
ap
.k
2
-t
re
e

C
A
S

C
E
T

E
ve

Lo
g

E
dg

eL
og

T
G
C
SA

H

I-
C
om

m
.N
et

26
.0

26
.4

38
.4

60
.1

25
9.
4

49
.2

52
.3

45
.0

55
.0

61
.2

29
.4

I-
Po

w
er
la
w

31
.9

32
.6

48
.8

73
.0

20
12

.1
56

.4
68

.0
77

.5
96

.2
73

.8
35

.3

I-
W
ik
i-
L
in
ks

61
.2

63
.2

92
.0

–
–

34
.5

57
.7

84
.0

13
7.
1

66
.7

77
.1

I-
Y
ah
oo

-N
et
flo

w
34

.0
36

.1
47

.4
–

–
48

.6
62

.9
10

3.
7

15
0.
5

62
.7

57
.5

G
-F
lic
kr
-S
ec
s

46
.1

46
.8

71
.0

–
–

47
.1

49
.7

10
1.
0

14
8.
2

78
.3

74
.1

G
-F
lic

kr
-D

ay
s

23
.0

24
.3

28
.6

21
.7

17
24

.0
18

.8
31

.8
74

.2
13

4.
2

50
.6

32
.2

P-
W
ik
i-
E
di
t

41
.7

41
.9

56
.5

–
–

41
.2

38
.3

84
.8

12
9.
0

70
.5

77
.5

P-
Y
ah
oo

-S
es
si
on

47
.1

45
.2

46
.0

–
–

43
.1

49
.1

13
1.
8

20
0.
9

66
.6

65
.8

T
he

co
nfi

gu
ra
tio

ns
us
ed

fo
r
ea
ch

da
ta
se
ta
re

de
ta
ile
d
in

Se
ct
.6
.3

(s
iz
e
is
in

bi
ts
/c
on
ta
ct
(b
pc
))

B
ol
d
va
lu
es

in
di
ca
te
th
e
da
ta
st
ru
ct
ur
e
w
ith

be
st
sp
ac
e
fo
r
ea
ch

da
ta
se
t

123

580 D. Caro et al.

every 1024 bits. We used the FC variant for I-Comm.Net, I-Powerlaw, I-Wiki-Links and I-
Yahoo-Netflow, the HC variant for P-Yahoo-Sessions, and theWC variant forG-Flickr-Days,
G-Flickr-Secs and P-Wiki-Edit. For the bckd-tree, we report the bucket size B16 without
node compression (WC variant) for all datasets.

The third column denotes the space used by the baseline, the kd-tree using RRR com-
pressed bitmaps with a block size of 63 bits. The fourth column corresponds to the space of
the ik2-tree. The fifth column is the space used by the Snapshot k2-tree if we store the graph
as several static graphs (snapshots), each of them containing the active edges for each time
instant in the lifetime. The ik2-tree and the Snapshot k2-tree use uncompressed bitmaps with
sampling each 640 bits (i.e., using 5% of extra space). The creation of the ik2-tree and the
Snapshot k2-tree structures failed in some cases, which are marked with a dash.13

The following four columns correspond to the structures CAS and CET, using the libcds
implementation of RRR compressed bitmaps, with a block size of 15 bits, and the EveLog
and EdgeLog using the PForDelta integer compressor [43,44] with a block size of 128
elements and 32 elements, respectively. The last column is the space used by the TGCSA
using a sampling size each 64 items on the Ψ array.

As we can see, our proposals ckd-tree and bckd-tree obtain better space in half of the
graphs, and they are always better than the entropy H. The compression ratio is, in average,
74% of the kd-tree and several times better than the Snapshot k2-tree. The kd-tree has better
space than the ckd-tree in the P-Yahoo-Session graph; however, our bckd-tree gets better
space. The only case when ik2-tree achieves better space than ckd-tree is in the G-Flickr-
Days, because G-Flickr-Days has a short lifetime of 134 instants, which is the best case for
ik2-tree.

With respect to the sequence-based structures, CET obtains best space in P-Wiki-Edit,
while CAS does in I-Wiki-Links and G-Flickr-Days, with a compression ratio of 91, 68, and
82%of the space used by the ckd-tree, respectively.As I-Wiki-Links andG-Flickr-Days have a
growing number of active edges,CET andCAS do not need to store the neighboring changes
that deactivate edges at the end of the lifetime [12]. Also, as P-Wiki-Edit is a point-contact
temporal graph, the structures do not require to store the neighboring changes that deactivate
edges, since by definition, all contacts have a duration of one time point. Notice that, as it is
reported in [12] CAS and EveLog are slow for reporting ReverseNeighbors, which is not
a problem in our proposals.

The space used by the EdgeLog, EveLog and TGCSA is always greater than the entropy
H, regardless the type of the graph. The only exception is the P-Wiki-Edit graph on the
TGCSA, which uses 90% of the entropy space. As we will show in the time evaluation,
however, these structures are very fast for answering most of the operations.

6.4 Time evaluation

This section presents the time evaluation following the classification of operations defined
in Sect. 2.1. Each subsection includes an evaluation for time instants and for time intervals
under both weak and strong semantics. We also include a subsection to evaluate the hybrid
representation of the ckd-tree for interval-contact graphs. In addition, we report a sensitive
analysis to check how the number of contacts per edge and per vertex impact the time
evaluation of all the structures.

13 The program used to create the structures failed when the lifetime of the graph is greater than 10,000
instants.

123

Compressed kd-tree for temporal graphs 581

6.4.1 Active edge retrieval and next activation

In this section,we study the efficiency of checkingwhether an edge is active at a time point and
during a time interval, and the efficiency of obtaining the time instant of the next activation of
an edge (EdgeNext operation). In this experiment, and the following sections, we chose the
variant of the data structures reported in 6.3. We also added three different bucket sizes (i.e.,
2, 16 and 64) for the bckd-tree, and three block sizes (15, 63 and 255) of the RRR bitmaps
for the kd-tree.

For this experiment, we generated 2000 queries by a random selection of 2000 contacts
from the graphs. For each selected contact (u, v, ta, tb), we used the source and target vertices
(u, v), and the beginning of the time interval ta to perform the Edge and EdgeNext opera-
tions. The time performance is measured in μs per contact reported and space is measured
in bits per contact (bpc).

Figures12 and 13 show the performance of Edge and EdgeNext operations using the
best configuration for each graph. We selected graphs I-Powerlaw, I-Wiki-Links, I-Yahoo-
Netflow,G-Flickr-Days,G-Flickr-Secs andP-Wiki-Edit as the representative datasets because
they resume performance of all structures. In general, the time performance of Edge and
EdgeNext is similar for all structures. The ckd-tree and bckd-tree are faster than the original
kd-tree baseline, even in the slowest configurations. The effect of the bucket size works as
expected, decreasing the time to recover the state of an edge as the size of the bucket increases.
The ik2-tree has the best performance for the dataset that wewere able to create. The best case
of ik2-tree, the G-Flickr-Days graph, is 65% faster than our ckd-tree. The sequence-based
methods CET and CAS only have a good performance in graphs with a growing number
of active edges with a long lifetime (G-Flickr-Secs and I-Wiki-Links). This also occurs with
TGCSA, although with a heavy penalty on space. In the other temporal graphs, the ckd-tree
and bckd-tree show the best trade-off. TheEdgeLog is several times faster than theEveLog,
although both are almost four times heavier in space than ckd-tree. The bad performance of
EveLog is due to the traversal of the log of events.

We evaluated the time performance for Edge operations for time interval using weak and
strong semantics. The experiment includes four different interval sizes, corresponding to the
0.1, 1, 10 and 50% of the lifetime of the graph. We generated 2000 queries by selecting
the source and target vertices and a time instant (as in the beginning of this section). For
the interval size, we set the query interval by defining the end of the interval as the starting
time instant plus the percentage of the lifetime. With this method, we ran 2000 queries per
interval over the same set of vertices. Time performance is measured in μs per query. For
completeness, we also added the running time of the Edge operation over a time instant. We
omitted the EveLog structure because it is several times slower than any other structure.

The evaluation is made over I-Powerlaw and I-Wiki-Links graphs, as they resume the time
performance of graphs with a short and a large lifetime. Figure 14 shows the evaluation
for weak and strong semantics. The running time follows the same performance obtained
in time instant evaluation. In ckd-tree and bckd-tree, the time using strong semantics tends
to diminish when the interval size grows, but the opposite occurs using weak semantics.
This happens because all contacts that overlap the interval must be recover. The exception
to this rule is CAS, whose time performance increases with the interval size, regardless the
semantics.

123

582 D. Caro et al.

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Powerlaw - Edge

ckd-tree
bckd-tree

kd-tree
ik2-tree

CAS
CET

EveLog
EdgeLog

TGCSA

 10

 100

 1000

 10000

 100000

 16 32 64 128

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Powerlaw - EdgeNext

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Wiki-Links - Edge

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Wiki-Links - EdgeNext

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Yahoo-Netflow - Edge

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Yahoo-Netflow - EdgeNext

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

Fig. 12 Time and space performance of Edge and EdgeNext operations using the best configuration for
graphs I-Powerlaw, I-Wiki-Links and I-Yahoo-Netflow. Time performance is measured in µs per contact
reported and space in bits per contact (bpc)

6.4.2 Direct and reverse active neighbors

This section presents the evaluation of the time performance to retrieve the set of direct
and reverse neighbors that are active at a time instant and during a time interval. For this
experiment, we ran 2000 queries randomly chosen from the set of contacts, following the
same strategy used in the previous section, but only selecting the source vertex of each
contact. We measured the time performance in μs per contact reported and space in bits per
contact (bpc). Figures15 and 16 show the space-time trade-off for DirectNeighbors and
ReverseNeighbors using the best configuration for each graph (Sect. 6.3).

Our ckd-tree and bckd-tree always outperform the kd-tree for at least one order of magni-
tude. In the graphs where ckd-tree achieves the smallest space, it also achieves a good time
performance. The variation of the bucket size for the bckd-tree works as expected, reducing
the retrieval time with larger buckets at the expenses of increasing the size of the data struc-

123

Compressed kd-tree for temporal graphs 583

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

G-Flickr-Days - Edge

ckd-tree
bckd-tree

kd-tree
ik2-tree

CAS
CET

EveLog
EdgeLog

TGCSA

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

G-Flickr-Days - EdgeNext

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 1

 10

 100

 1000

 10000

 100000

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

G-Flickr-Secs - Edge

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 10

 100

 1000

 10000

 100000

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

G-Flickr-Secs - EdgeNext

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

P-Wiki-Edit - Edge

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

P-Wiki-Edit - EdgeNext

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

Fig. 13 Time and space performance of Edge and EdgeNext operations using the best configuration for
graphs G-Flickr-Days, G-Flickr-Secs and P-Wiki-Edit. Time performance is measured in µs per contact
reported and space in bits per contact (bpc)

ture. CAS and CET have a good performance in graphs with a growing number of active
edges with a long lifetime. However, CAS is very slow for answering ReverseNeighbors
operations. Themodificationsmade toCET for representing point-contact graphsworks very
well, achieving the best performance in these graphs. As we mentioned before, EdgeLog
has a good time performance, but it requires at least four times the space of the smallest
structure. The TGCSA structure has a good time performance for DirectNeighbors and
ReverseNeighbors on incremental graphs.

As the figures show, the time performances of ckd-tree, bckd-tree and CET are similar
for both DirectNeighbors and ReverseNeighbors operations. Small variations in time
performance are due to the number of contacts in the output. In I-Powerlaw and G-Flickr-
Days, the ckd-tree and bckd-tree are 3 to 9 times slower than storing the Snap.k2-tree in
fraction of the space. CET and TGCSA have similar time performance, but they use more
space than the ckd-tree.

123

584 D. Caro et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Instant 0.1 1 10 50

T
im

e
pe

r
qu

er
y

(m
s)

Interval size (percent of lifetime)

I-Powerlaw - Edge Strong

ckd-tree
bckd-tree

CAS
CET

EdgeLog
TGCSA

 0

 10

 20

 30

 40

 50

 60

 70

 80

Instant 0.1 1 10 50

T
im

e
pe

r
qu

er
y

(m
s)

Interval size (percent of lifetime)

I-Powerlaw - Edge Weak

ckd-tree
bckd-tree

CAS
CET

EdgeLog
TGCSA

 10

 100

 1000

 10000

 100000

Instant 0.1 1 10 50

T
im

e
pe

r
qu

er
y

(m
s)

Interval size (percent of lifetime)

I-Wiki-Links - Edge Strong

ckd-tree
bckd-tree

CAS
CET

EdgeLog
TGCSA

 10

 100

 1000

 10000

 100000

Instant 0.1 1 10 50

T
im

e
pe

r
qu

er
y

(m
s)

Interval size (percent of lifetime)

I-Wiki-Links - Edge Weak

ckd-tree
bckd-tree

CAS
CET

EdgeLog
TGCSA

Fig. 14 Time performance of the interval version of Edge over the I-Powerlaw and I-Wiki-Links graphs. The
image on the left shows the strong and on the right the weak semantics. Time performance is measured in µs
per query

Regarding time interval queries, we also evaluated the time performance under weak and
strong semantics. The experiment included four different interval sizes, corresponding to the
0.1, 1, 10 and 50% of the lifetime of the graph. We generated 2000 queries following the
same strategy for the interval evaluation in Sect. 6.4.1. Time performance is measured in ms
per query. To see the effect of the semantics, we also report the number contacts in the output
and the time per query for a time instant. We ran the experiments over the I-Powerlaw and
I-Wiki-Links graphs, as they reflect the performance of graphs with short and long lifetimes.

Notice that we are not evaluating the performance of interval queries on incremental
graphs, because they can be reduced to time instant queries (as we pointed out in Sect. 2.1).
We skipped the results of interval ReverseNeighbors operations because the time perfor-
mance of ckd-tree, bckd-tree and CET is similar to DirectNeighbors operations. The bad
performance of CAS in ReverseNeighbors remains poor for time interval queries.

Figure 17 shows the time comparison of ckd-tree, bckd-tree,CAS andCET. As expected,
the output size of the strong semantics decreases as the interval size increases. The opposite
occurs for the weak semantics, where the output size always increases or remains the same.

Like for time instant queries, the performance over the I-Powerlaw graph of our ckd-tree
and bckd-tree is better than CAS, but slower than CET in weak and strong semantics. In
the I-Wiki-Links graph, the time performance is similar to the obtained in the time instant,
except for large intervals. In strong semantics, the time performance of CAS and CET tends
to increase with the interval size. This is due to the nature of the data structures, based on
a counting method to retrieve the state of edges. Because ckd-tree and bckd-tree search for
contacts with a time interval greater or equal to the query, they do not suffer of this problem
and the time performance diminishes with the interval size.

123

Compressed kd-tree for temporal graphs 585

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Powerlaw - Direct Neighbors

ckd-tree
bckd-tree

kd-tree
ik2-tree

Snap.k2-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 1

 10

 100

 1000

 10000

 100000

 1x106

 16 32 64 128 256 512 1024 2048

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Powerlaw - Reverse Neighbors

ckd-tree
bckd-tree

kd-tree
ik2-tree

Snap.k2-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 1

 10

 100

 1000

 10000

 100000

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Wiki-Links - Direct Neighbors

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 1

 10

 100

 1000

 10000

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Wiki-Links - Reverse Neighbors

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 100

 1000

 10000

 100000

 1x106

 1x107

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Yahoo-Netflow - Direct Neighbors

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

I-Yahoo-Netflow - Reverse Neighbors

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

Fig. 15 Time and space performance ofDirectNeighbors andReverseNeighbors operations using the best
configuration for graphs I-Powerlaw, I-Wiki-Links and I-Yahoo-Netflow. Time performance is measured in µs
per contact reported and space in bits per contact (bpc)

Using theweak semantics, the time tends to increasewith the size of the interval in ckd-tree
and bckd-tree. At the largest query interval, the 50%of the lifetime, ckd-tree obtains theworst
performance. We checked that this increase is not related to the extra step used to remove
duplicated vertices by also running the query without the extra step and obtaining a similar
performance. In this case, the performance of CET and CAS does not change with the
size of the interval. The performance of EdgeLog and TGCSA does not change with both
the semantics and the size of the time interval. Indeed, they got the same performance of
DirectNeighbors over a time instant in both temporal graphs.

6.4.3 Snapshot retrieval

We studied the performance of retrieving the set of all active edges at a certain time point
(Snapshot operation). We compared the average retrieval time in four different instants: the
25, 50, 75 and the 100%of the lifetime of the temporal graphs. Figure19 provides the average

123

586 D. Caro et al.

 0.1

 1

 10

 100

 1000

 16 32 64 128 256 512 1024 2048

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

G-Flickr-Days - Direct Neighbors

ckd-tree
bckd-tree

kd-tree
ik2-tree

Snap.k2-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 0.1

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256 512 1024 2048

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

G-Flickr-Days - Reverse Neighbors

ckd-tree
bckd-tree

kd-tree
ik2-tree

Snap.k2-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 0.1

 1

 10

 100

 1000

 10000

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)
T

im
e

(µ
s/

co
nt

ac
t)

Space (bits/contact)

G-Flickr-Secs - Direct Neighbors

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 1

 10

 100

 1000

 10000

 100000

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

G-Flickr-Secs - Reverse Neighbors

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 32 64 128 256

Space (bits/contact)

P-Wiki-Edit - Direct Neighbors

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 32 64 128 256

T
im

e
(µ

s/
co

nt
ac

t)

Space (bits/contact)

P-Wiki-Edit - Reverse Neighbors

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

Fig. 16 Time and space performance ofDirectNeighbors andReverseNeighbors operations using the best
configuration for graphsG-Flickr-Days, G-Flickr-Secs and P-Wiki-Edit. Time performance is measured in µs
per contact reported and space in bits per contact (bpc)

number of active edges per time instant, that is, the expected output size. For the ik2-tree,
we computed the operation by retrieving the state of all cells that ever changed their status
active/inactive before the query time. The performance is measured as the time to perform
the query in seconds.

Figure18 shows the time performance over graphs I-Powerlaw, I-WikiLinks,G-FlickrDays
and P-WikiEdit. As it can be seen, the time performance of ckd-tree and bckd-tree is several
times faster than sequence-based structures over interval-contact and incremental graphs. In
point-contact graphs, CET outperforms our proposals. Taking into account the dynamism
of I-Powerlaw, which has a constant number of active edges per time instant (Fig. 19a), it is
clear that the counting method of the ik2-tree, CAS and CET does not scale well with the
lifetime of the graph. Nevertheless, this does not seem to be a real issue in graphs with a
growing number of active edges, such as I-WikiLinks and G-FlickrDays shown in Fig. 19b.

123

Compressed kd-tree for temporal graphs 587

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Instant 0.1 1 10 50
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

T
im

e
pe

r
qu

er
y

(m
s)

O
ut

pu
t s

iz
e

(x
 1

00
0)

Interval size (percent of lifetime)

I-Powerlaw - Direct Neighbors Strong

Output
ckd-tree

bckd-tree
CAS
CET

EdgeLog
TGCSA

 0

 5

 10

 15

 20

 25

Instant 0.1 1 10 50
 0

 100

 200

 300

 400

 500

 600

 700

 800

T
im

e
pe

r
qu

er
y

(m
s)

O
ut

pu
t s

iz
e

(x
 1

00
0)

Interval size (percent of lifetime)

I-Powerlaw - Direct Neighbors Weak

Output
ckd-tree

bckd-tree
CAS
CET

EdgeLog
TGCSA

 1

 10

 100

 1000

Instant 0.1 1 10 50
 0

 100

 200

 300

 400

 500

 600

T
im

e
pe

r
qu

er
y

(m
s)

O
ut

pu
t s

iz
e

(x
 1

00
0)

Interval size (percent of lifetime)

I-Wiki-Links - Direct Neighbors Strong

Output
ckd-tree

bckd-tree
CAS
CET

EdgeLog
TGCSA

 1

 10

 100

 1000

 10000

Instant 0.1 1 10 50
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

T
im

e
pe

r
qu

er
y

(m
s)

O
ut

pu
t s

iz
e

(x
 1

00
0)

Interval size (percent of lifetime)

I-Wiki-Links - Direct Neighbors Weak

Output
ckd-tree

bckd-tree
CAS
CET

EdgeLog
TGCSA

Fig. 17 Time performance of the interval version of the DirectNeighbors operation over the I-Powerlaw
and I-Wiki-Links graphs. The image on the left shows the strong and on the right the weak semantics. Time
performance is measured in ms per query

The performance of the ckd-trees follows the same tendency of the TGCSA, stable for I-
Powerlaw and growing for I-WikiLinks and G-FlickrDays graphs.

Regarding the nature of the P-WikiEdit graphs, with unit duration of contacts, it is not
surprising the poor results obtained by ckd-tree and bckd-tree, because few contacts are active
per time instant. However, the query time is very fast, requiring between 5-10μs to retrieve
these contacts.

6.4.4 Events on edges

This section shows the performance of ActivatedEdges queries, retrieving the set of edges
that have been activated at a time instant or during a time interval. For the evaluation, we
generated 2000 random time instants, uniformly distributed over the lifetime of the corre-
sponding graph. The experiments were performed for each time instant, and also over four
different sizes of time intervals, which corresponds to aminute, an hour, a day and aweek. The
performance is measured as the average time to perform a query in μs. The evaluation only
considered ckd-tree, bckd-tree andCET. In other data structures, such asCAS,EdgeLog and
EveLog, the performance is very poor for this type of query, while for TGCSA and ik2-tree
these queries have not been implemented.We are only reporting here the time performance of
the ActivatedEdges queries, because the strategy (the search range) is analogous to obtain
DeactivatedEdges and ChangedEdges queries.

Figure20 shows the performance over graphs with a time granularity of one second, i.e.,
over I-Wikipedia-Links, G-Flickr-Secs and P-Wiki-Edit graphs. As it can be seen, CET is

123

588 D. Caro et al.

 1

 10

 100

 1000

 25 50 75 100

T
im

e
pe

r
qu

er
y

(s
)

Percent of lifetime

I-Powerlaw - Snapshot

ckd-tree
bckd-tree

ik2-tree
CAS
CET

TGCSA

 1

 10

 100

 1000

 10000

 25 50 75 100

T
im

e
pe

r
qu

er
y

(s
)

Percent of lifetime

I-WikiLinks - Snapshot

ckd-tree
bckd-tree

CAS
CET

TGCSA

 1

 10

 100

 1000

 25 50 75 100

T
im

e
pe

r
qu

er
y

(s
)

Percent of lifetime

G-FlickrDays - Snapshot

ckd-tree
bckd-tree

ik2-tree
CAS
CET

TGCSA

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 25 50 75 100

T
im

e
pe

r
qu

er
y

(s
)

Percent of lifetime

P-WikiEdit - Snapshot

ckd-tree
bckd-tree

CAS
CET

TGCSA

Fig. 18 Time comparison of Snapshot at the 25, 50, 75, and 100% of the datasets’ lifetime (time in s per
query)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ct

iv
e

ed
ge

s
(A

vg
. p

er
 ti

m
e

in
st

an
t)

Percent of lifetime

Active edges

I-Comm.Net
I-Powerlaw
P-WikiEdit

P-Yahoo-Sessions

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1A
ct

iv
e

ed
ge

s
(A

vg
. p

er
 ti

m
e

in
st

an
t)

Percent of lifetime

Active edges

I-WikiLinks
I-Yahoo-Netflow

G-Flickr-Secs
G-Flickr-Days

Fig. 19 Average number of active edges per time instant in all datasets. Figure on the left shows results for
graphs I-Comm.Net, I-Powerlaw, P-WikiEdit and P-Yahoo-Sessions with a uniform number of active edges.
Figure on the right shows results for graphs I-WikiLinks, I-Yahoo-Netflow, G-Flickr-Secs and G-Flickr-Days
with an increasing number of active edges

the fastest structure for retrieving edges activated at time instants. These results hold for the
three types of temporal graphs: interval-contact, point-contact and incremental.

When the interval size is one hour, the time performance of CET is the same than of
ckd-tree and bckd-tree. In larger time intervals (for a day and a week), ckd-tree and bckd-tree
achieve the best performance. Although we only present the time interval results for I-
Wikipedia-Links, the same performance holds for G-Flickr-Secs and P-Wiki-Edit.

123

Compressed kd-tree for temporal graphs 589

 0.01

 0.1

 1

 10

 100

 1000

I-Wiki-Links G-Flickr-Secs P-Wiki-Edit

T
im

e
pe

r
qu

er
y

(m
s)

Temporal Graph

Activated Edges (time point)

ckd-tree
bckd-tree

CET

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

second minute hour day week

T
im

e
pe

r
qu

er
y

(m
s)

Interval query size

I-Wiki-Links - Activated edges (time interval)

ckd-tree
bckd-tree

CET

Fig. 20 Time performance of ActivatedEdges queries at time instants and during time intervals. Figure
on the left shows the performance for time instants using I-Wikipedia-Links, G-Flickr-Secs and P-Wiki-Edit
graphs. Figure on the right shows the performance of I-Wikipedia-Links over time intervals corresponding to
a second, an hour, a day and a week

6.4.5 Effect of partitioning contacts in interval-contact graphs

The similar growth of active edges of I-Wiki-Links and G-Flickr-Secs graphs (see Fig. 19)
made us think that I-Wiki-Links share some properties of incremental graphs. Similarly, the
I-Yahoo-Netflow graph has a low number of active edges per time instant, which also suggests
that some contacts are active by only one time instant as in point-contact graphs. This makes
the I-Wiki-Links and I-Yahoo-Netflow graphs be good candidates to test the usefulness of the
partition technique proposed in Sect. 4.3. Indeed, 42% of contacts in I-Wiki-Links belong
to the incremental class (i.e., there are 307,690,160 active edges at the end of the lifetime),
and 89% of contacts in I-Yahoo-Netflow are active during a time instant. Consequently,
we partitioned contacts of these graphs into a set of 3D tuples representing contacts in the
incremental and point-contact classes, and a set of 4D tuples representing other types of
contacts.

Table 6 shows the space and time performance of the 4D and the 3D+4D representation.
The time performance is measured as the average time per query to run theDirectNeighbors
operations as in Sect. 6.4.2. The space usage is in bits per contact (bpc). The improvement
ratio of the partitioning with respect to the 4D representation in I-Wiki-Links is 0.89 and
in I-Yahoo-Netflow is 0.8 in average. In I-Wiki-Links, the time also improves, between 0.90
and 0.95 times the performance of the 4D representation. Queries on the I-Yahoo-Netflow
graph using the ckd-tree with the partition of contacts run 10% slower than using the ckd-tree
with the 4D representation, but run in similar time with the bckd-tree. Although the idea of
dividing the contacts of a temporal graph by its temporal behavior sounds simple, it works
very well on practice.

6.4.6 Sensitivity analysis with respect to out degree and number of contacts

This section shows a sensitivity analysis in order to check how the time to answer queries
in the ckd-trees depends on the number of direct neighbors (out degree in the aggregated
graph) and the number of contacts per vertex. For this propose, we generated three synthetic
temporal graphs by selecting a degree distribution of the aggregated graph (i.e., the static
graph composed by the edges of the temporal graph) and assigning a number of contacts
to each edge. This strategy is the same used in [12] to evaluate the performance of the
sequence-based structures.

123

590 D. Caro et al.

Table 6 Improvement of using the partitioning of contacts in I-Wiki-Links and I-Yahoo-Netflow graphs

Dataset Structure Space (bpc) Time (ms/query)

4D 3D+4D Ratio 4D 3D+4D Ratio

I-Wiki-Links ckd-tree 61.2 54.8 0.89 742.7 702.0 0.95

bckd-tree 63.2 56.5 0.89 401.4 360.3 0.90

I-Yahoo-Netflow ckd-tree 33.0 26.6 0.81 90.0 99.1 1.10

bckd-tree 35.7 28.3 0.79 64.3 63.5 0.99

The interval-contact, incremental and point-contact graphs were represented by using a 4D, 3D+4D binary
matrices, respectively

Table 7 Description of temporal graphs used in the sensitivity analysis

Dataset Type Vertices (n) Edges (m) Lifetime (τ) Contacts (c) c/m Size (MB) H (MB)

BA.100k.U1000 Interval 100,000 941,408 100,000 941,408,000 1000 7198 4160

BA.100k.U100 Interval 100,000 941,408 100,000 94,140,800 100 734 453

ER.1M.P10 Interval 1,000,000 10,001,583 1,000,000 122,731,342 12.27 1104 780

Table 8 Space used by compressed data structures for temporal graphs in the sensitivity analysis (size is in
bits/contact (bpc))

Dataset ckd-tree bckd-tree kd-tree CAS CET EveLog EdgeLog TGCSA H

BA.100k.U1000 29.9 31.2 45.3 37.1 43.6 30.4 18.2 64.5 37.1

BA.100k.U100 36.6 37.6 57.5 46.5 46.6 36.7 26.5 67.1 40.4

ER.1M.P10 44.5 47.1 70.5 54.7 51.5 68.9 42.8 73.6 53.5

Bold values indicate the data structure with best space for each dataset

Table 7 shows the main characteristics of the synthetic graphs. In BA.100k.U1000 and
BA.100k.U100, the aggregated graph corresponds to a Powerlaw degree distribution created
from theBarabási–Albertmodel [1] and a uniform number of contacts per edge (1000 and 100
contacts per edge, respectively). The ER.1M.P10 graph follows a uniform degree distribution
on the aggregated graph generated from the Erdös-Rényi model [1]. The number of contacts
per edge follows a Pareto distribution with α = 1.0.

Before going further, we present the space used by structures in Table 8. The space of
ckd-trees is under the entropyH, but it is above the space used by EdgeLog. But, as we will
see in what follows, and as Caro et al. [12] pointed out, the main drawback of EdgeLog and
EveLog is the time to process the list of events and neighboring neighbors. Other structures
use more space than the ckd-tree structure.

In the first experiment, we evaluated the sensitivity of the structures with respect to the
number of contacts of each vertex. Figure 21 shows the average time per query to retrieve
DirectNeighbors and Edge operations, grouped by the number of contacts per vertex in
the ER.1M.P10 graph (which is a variable number of contacts per vertex). The ckd-tree and
bckd-tree, as well as CAS and CET, do not vary their time performance with respect to the
number of contacts of the vertex in the query. On the contrary, both EdgeLog and EveLog
increase their time to answer queries as the number of contacts grows. Notice that in this

123

Compressed kd-tree for temporal graphs 591

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

T
im

e
pe

r
qu

er
y

(m
s)

Contacts per vertex (x1000)

Direct Neighbors on ER.1M.P10

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 0.01

 0.1

 1

 10

 0 50 100 150 200 250

T
im

e
pe

r
qu

er
y

(m
s)

Contacts per vertex (x1000)

Active Edge on ER.1M.P10

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

Fig. 21 Sensitivity analysis of DirectNeighbors and Edge operations in the ER.1M.P10 synthetic graph.
Time per query (ms) v/s contacts per vertex

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

T
im

e
pe

r
qu

er
y

(m
s)

Out degree

Direct Neighbors on BA.100k.U100

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300

T
im

e
pe

r
qu

er
y

(m
s)

Out degree

Direct Neighbors on BA.100k.U1000

ckd-tree
bckd-tree

kd-tree
CAS
CET

EveLog
EdgeLog

TGCSA

Fig. 22 Sensitivity analysis of answering DirectNeighbors queries over the BA.100k.U1000 and
BA.100k.U100 synthetic graphs. Time per query (ms) v/s out-degree per vertex

evaluation, the TGCSA works much slower than the other structures, contrary as we got in
the time performance evaluation in Sect. 6.4.2.

In the second experiment, we evaluated the sensitivity with respect to the out degree of ver-
tices. Figure 22 shows the time to answerDirectNeighbors queries over the BA.100k.U1000
and BA.100k.U100 graphs, grouped by the out degree on vertices. The time of ckd-tree and
bckd-tree is stable on both graphs. The time increases for the BA.100k.U1000 graph because
this graph has ten times the number of contacts per vertex of BA.100k.U100, but it is still
stable on the out degree per vertex. As expected, the time to answer queries by the CAS and
CET effectively increases with the out degree. The results obtained in the first experiment
hold forEdgeLog andEveLog, and the time increaseswith the number of contacts per vertex
if we compare the slope in the curves of the BA.100k.U1000 and BA.100k.U100 graphs. As
before, the performance of the TGCSA is poor, several times slower than the other structures.

7 Conclusions and future work

This work proposed the Compressed kd-tree (ckd-tree), which is an improvement of the
original kd-tree. The main advantage of this structures is its efficient use of space, several
times better than the worst case of the kd-tree when input data are sparse and do not share any
clustering property. It also guarantees, without considering any regularity, an asymptotical
space equal to the lower bound on the number of bits needed to represent a 4D binary matrix

123

592 D. Caro et al.

with m active cells. Although this new structure can be used for any d-dimension space, it
was specially adapted to represent temporal graphs in 4D and 3D.

With the proposed structures, the computation of all temporal-graph graphs can be
defined in terms of only a orthogonal range search, a much simple mechanism than the
ad hoc programming of queries in CET, CAS, TGCSA, EdgeLog and EveLog structures.
This is possible because each dimension (i.e., vertices and time instants) is treated in the
same way. In addition, the performance for DirectNeighbors queries is the same than for
ReverseNeighbors queries, as in the CET and TGCSA structures. Experiments show that
the space of our data structure is near the 50% of the fastest version of the kd-tree using
compressed bitmaps. In addition, it can be several times faster than the previous proposals
CET and CAS for queries that recover the state of the graph at a given time instant. Also, it
is several times smaller than the TGCSA and is also capable of recovering all components
of a contact on all operations.

We also compared the space usage of the proposed structures against the space used by
the ik2-tree for temporal graphs. In this case, the ckd-tree uses up to 50% less space than
the ik2-tree, or the same space in the best case of the ik2-tree (G-Flickr-Days datasets with a
short lifetime). The same happens with respect to the time performance, where the ckd-tree
outperforms many times the ik2-tree for all datasets except the G-Flickr-Days dataset, in
which case both structures show the same time performance. In the sensitivity analysis, we
show that the time performance of the operations does not depend on the number of contacts
per vertices nor the out degree of the aggregated graph, as it happens in the other structures.

Notice that the ckd-tree can be used in other contexts where data are multidimensional
such as triples in RDF, non-clustered 3D regions, or even to store and query the evolution
of raster data. An extensive experimental evaluation in these contexts is left for future work.
Also as future work, we need to check whether we are able to compress the isolated cells
in the buckets. Nowadays this is a current technology in many industrial implementations
of B+-trees. Initial experiments reveal that the entropy of isolated cells in buckets could
improve if we store them using xor-encoding [29], but this is not enough because we need
to have a fast decompression schema to maintain the performance. With respect to temporal
graphs in 4D and 3D binary matrices, we believe that a node ordering considering the time
activation/deactivation of edges could be useful to improve the clustering of the cells in the
matrix. This mechanism has been useful for improving the compression and time for storing
static graphs in k2-tree. We also need to improve the partitioning method on temporal graphs
sharing characteristics of incremental graphs (such as the Wiki-Links dataset), because the
space is still far from the minimum obtained by other structures.

Acknowledgments Diego Caro andM. Andrea Rodríguez were partially funded by Fondef D09I1185. Diego
Caro was also funded by CONICYT PhD scholarship and M. Andrea Rodríguez by Fondecyt 1140428 and
MINECO (PGE and FEDER) Grant TIN2013-46801-C4-3-R. Nieves Brisaboa and Antonio Fariña are funded
by MINECO (PGE and FEDER) Grants TIN2013-46238-C4-3-R and TIN2013-47090-C3-3-P; CDTI, AGI
and MINECO Grant CDTI-00064563/ITC-20133062; ICT COST Action IC1302; and by Xunta de Galicia
(co-founded with FEDER) Grant GRC2013/053. We also thank to Diego Seco for his help in the preliminary
discussions of the structures, to Gonzalo Navarro and Simon Gog for their suggestions on the improvement
of the data structures and the experimental evaluation, and to Claudio Sanhueza from Yahoo! Labs who helps
us with the P-Yahoo-Session dataset.

References

1. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97
2. Apostolico A, Drovandi G (2009) Graph compression by BFS. Algorithms 2(3):1031–1044

123

Compressed kd-tree for temporal graphs 593

3. Álvarez-García S, Brisaboa NR, Fernández JD, Martínez-Prieto MA (2011) Compressed k2-triples
for full-in-memory rdf engines. In: Proceedings of the Americas conference on information systems
(AMCIS). Association for Information Systems

4. Aluru S, Sevilgen FE (1999) Dynamic compressed hypertoctrees with application to the N-body problem.
In: Proceedings of the 19th conference on foundations of software technology and theoretical computer
science. Springer, Berlin

5. Brisaboa NR, Caro D, Fariña A, Rodríguez A (2014) A compressed suffix-array strategy for temporal-
graph indexing. In: Moura E, Crochemore M (eds) String processing and information retrieval. Lecture
notes in computer science. Springer International Publishing, pp 77–88

6. Brisaboa NR, de Bernardo G, Navarro G (2012) Compressed dynamic binary relations. In: Data com-
pression conference (DCC). IEEE Computer Society, pp 52–61

7. Benoit D, Demaine ED, Ian Munro J, Raman R, Raman V, Srinivasa Rao S (2005) Representing trees of
higher degree. Algorithmica 43(4):275–292

8. Brisaboa NR, Ladra S, Navarro G (2009) k2-trees for compact web graph representation. In: International
symposium on string processing and information retrieval (SPIRE), vol 5721 of lecture notes in computer
science. Springer, Berlin, pp 18–30

9. Brisaboa NR, Ladra S, Navarro G (2013) DACs: bringing direct access to variable-length codes. Inf
Process Manag 49(1):392–404

10. Brisaboa NR, Ladra S, Navarro G (2014) Compact representation of web graphs with extended function-
ality. Inf Syst 39:152–174

11. BrodnikA, IanMunro J (1999)Membership in constant time and almost-minimum space. SIAMJComput
28(5):1627–1640

12. Caro D, Rodríguez MA, Brisaboa NR (2015) Data structures for temporal graphs based on compact
sequence representations. Inf Syst 51:1–26

13. Clarkson KL (1983) Fast algorithms for the all nearest neighbors problem. In: Proceedings of the 24th
annual symposium on foundations of computer science (sfcs 1983). IEEE, pp 226–232

14. Cha M, Mislove A, Gummadi PK (2009) A measurement-driven analysis of information propagation in
the flickr social network. In: International world wide web conference (WWW). ACM, pp 721–730

15. Claude F, Navarro G (2008) Practical rank/select queries over arbitrary sequences. In: International
symposium on string processing and information retrieval (SPIRE), vol 5280 of lecture notes in computer
science. Springer, pp 176–187

16. de Bernardo G, Álvarez-García S, Brisaboa NR, Navarro G, Pedreira O (2013) Compact querieable
representations of raster data. In: International symposium on string processing and information retrieval
(SPIRE), vol 8214 of lecture notes in computer science. Springer, pp 96–108

17. de BernardoG, BrisaboaNR, CaroD, RodríguezMA (2013) Compact data structures for temporal graphs.
In: Data compression conference (DCC). IEEE, p 477

18. de Bernardo Roca G (2014) New data structures and algorithms for the efficient managementof large
spatial datasets. PhD thesis, Universidade da Coruña

19. Demetrescu C, Eppstein D, Galil Z, Italiano GF (2010) Algorithms and theory of computation handbook,
chapter dynamic graph algorithms. Chapman & Hall/CRC, pp 9-1–9-27

20. Eppstein D, Goodrich MT, Sun JZ (2005) The skip quadtree: a simple dynamic data structure for mul-
tidimensional data. In: SCG ’05: proceedings of the twenty-first annual symposium on computational
geometry. ACM Request Permissions

21. Fariña A, Brisaboa N, Navarro G, Claude F, Places A, Rodríguez E (2012) Word-based self-indexes for
natural language text. ACM TOIS 30(1):1

22. Ferreira A, Viennot L (2002) A note on models, algorithms, and data structures for dynamic communi-
cation networks. Technical Report RR-4403, INRIA

23. Gargantini I (1982) An effective way to represent quadtrees. In: Communications of the ACM, pp 1–6
24. Garcia SA (2014) Compact and Efficient Representations of Graphs. PhD thesis, Universidade da Coruña
25. Garcia SA, Brisaboa NR, de Bernardo G, Navarro G (2014) Interleaved K2-tree: indexing and navigating

ternary relations. In: 2014 data compression conference (DCC). IEEE, pp 342–351
26. Gog S, Beller T, Moffat A, Petri M (2014) From theory to practice: plug and play with succinct data

structures. In: Proceedings of the 13th international symposium on experimental algorithms, (SEA 2014),
pp 326–337

27. Grossi R, Gupta A, Vitter JS (2003) High-order entropy-compressed text indexes. In: Proceedings of the
annual ACM-SIAM symposium on discrete algorithms (SODA). ACM/SIAM, pp 841–850

28. Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125
29. HudsonB (2009) Succinct representation ofwell-spaced point clouds. Technical Report. arXiv:0909.3137
30. Jacobson G (1989) Space-efficient static trees and graphs. In: Proceedings of the 30th annual symposium

on foundations of computer science (FOCS). IEEE Computer Society, pp 549–554

123

http://arxiv.org/abs/0909.3137

594 D. Caro et al.

31. Khurana U, Deshpande A (2013) Efficient snapshot retrieval over historical graph data. In: International
conference on data engineering (ICDE). IEEE Computer Society, pp 997–1008

32. Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd international
conference on world wide web companion, WWW ’13 Companion, pp 1343–1350, Republic and Canton
of Geneva, Switzerland, 2013. International World Wide Web Conferences Steering Committee

33. Labouseur AG, Birnbaum J, Olsen PW, Spillane SR, Vijayan J, Hwang J-H, Han W-S (2014) The G*
graph database: efficiently managing large distributed dynamic graphs. Distrib Parallel Databases

34. Matsuyama T, Hao LV, Nagao M (1984) A file organization for geographic information systems based
on spatial proximity. Comput Vis Graph Image Process 26(3):303–318

35. Nicosia V, Tang J, Mascolo C, Musolesi M, Russo G, Latora V (2013) Graph metrics for temporal
networks. In: Temporal networks, understanding complex systems. Springer Berlin Heidelberg, pp 15–40

36. Pagh R (1999) Low redundancy in static dictionaries with O(1) worst case lookup time. In: ICAL ’99:
proceedings of the 26th international colloquium on automata, languages and programming. Springer,
Berlin

37. Ren C, Lo E, Kao B, Zhu X, Cheng R (2011) On querying historical evolving graph sequences. Proc
VLDB Endow (PVLDB) 4(11):726–737

38. Raman R, RamanV, Srinivasa Rao S (2002) Succinct indexable dictionaries with applications to encoding
k-ary trees and multisets. In: Proceedings SODA’12, pp 233–242

39. Sadakane K (2003) New text indexing functionalities of the compressed suffix arrays. J Algorithms
48(2):294–313

40. Samet H (2006) Foundations ofmultidimensional andmetric data structures.MorganKaufmann, Burling-
ton, MA

41. Xuan BB, Ferreira A, Jarry A (2003) Computing shortest, fastest, and foremost journeys in dynamic
networks. Int J Found Comput Sci 14(02):267–285

42. Yahoo!Labs (2014)Yahoo! networkflowsdata, version 1.0. http://webscope.sandbox.yahoo.com/catalog.
php?datatype=g

43. Zukowski M, Héman S, Nes N, Boncz PA (2006) Super-scalar ram-cpu cache compression. In: Proceed-
ings ICDE’06, p 59

44. Zhang J, Long X, Suel T (2008) Performance of compressed inverted list caching in search engines. In:
Proceedings WWW’08, pp 387–396

Diego Caro received his bachelor degree in Computer Science and
Engineering in 2010 and his Ph.D. degree in 2015, both in the Depart-
ment of Computer Science of the University of Concepción (Chile). His
research interests include space-efficient data structures, compressed
graph databases, temporal network analytics, and information retrieval
for unstructured data.

123

http://webscope.sandbox.yahoo.com/catalog.php?datatype=g
http://webscope.sandbox.yahoo.com/catalog.php?datatype=g

Compressed kd-tree for temporal graphs 595

M. Andrea Rodríguez is a professor in Computer Science at the Uni-
versidad de Concepción, Chile. She received her bachelor degree in
Computer Science and Engineering from the University of Concep-
ción in 1989. In 1995 she was awarded with a Fulbright scholarship
and received her Master and Ph.D. degrees in Spatial Information
Science and Engineering from the University of Maine in 1997 and
2000, respectively. Her research interests include spatial and spatio-
temporal databases, data integration, and information retrieval. Andrea
Rodríguez has several refereed publications related to spatial databases
and spatial information retrieval.

Nieves R. Brisaboa is a full professor in the Computer Science Depart-
ment of the University of A Coruña. She created and is the chair of
the Database Laboratory of the University of A Coruña (http://lbd.
udc.es), which counts with more than 20 researchers. As director of
the laboratory, she was the main researcher of more than 30 national
and international projects, and also supervised ten Ph.D. theses. Her
research interests include digital libraries, text retrieval, compressed
text retrieval, deductive databases, and spatial databases. Nieves R.
Brisaboa has several scientific publications in first-level conferences
(SIGIR, ECDL, SPIRE, ECIR, ACM GIS, DCC, ADBIS, etc.) and ISI
Journals (ACM TOIS, IR, SP&E, IPM, Geoinformatica, etc).

Antonio Fariña received his M.S. degree in Computer Science in
2000, and he earned his PhD in Computer Science in 2005 from the
University of A Coruña. Today he is an associate professor in the Com-
puter Science Department; also, he is a member of Databases Labora-
tory where he has been involved in different research and development
projects. His research is mainly focused in text retrieval on natural lan-
guage text collections. Actually, his main contributions to this field
are related to text compression and compressed indexing structures.
Other areas of interest are algorithms, graph representations, and geo-
graphic information systems. He has been member of the Program
Committee of several Conferences (MDMM, ICEIS, JIDEE). He has
also been external reviewer of several international Journals (Computer
Journal, JRPIT, Kibernetica, JCSS, EJC, IJCSSE,...) and conferences
(ESA, DCC, ACM-SIGIR, CIKM, CCP, PSI).

123

http://lbd.udc.es
http://lbd.udc.es

	Compressed kd-tree for temporal graphs
	Abstract
	1 Introduction
	2 Preliminary concepts and related work
	2.1 Temporal graphs
	2.2 Existing structures for temporal graphs
	2.3 Multidimensional compact data structures
	2.3.1 The k2-tree
	2.3.2 The kd-tree
	2.3.3 The Interleaved k2-tree

	2.4 k2-trees for temporal graphs

	3 The Compressed kd-tree (ckd-tree)
	3.1 Encoding the tree
	3.2 Encoding isolated cells in black leaves
	3.3 Space analysis
	3.4 Construction
	3.5 Orthogonal range search

	4 Using the Compressed kd-tree for representing temporal graphs
	4.1 Operations as range searches
	4.2 Time analysis
	4.3 Hybrid representation of interval-contact graphs

	5 Improving the Compressed kd-tree
	5.1 Node compression/dimensional partition
	5.2 Bucket black-leaves

	6 Experimental evaluation
	6.1 Experimental framework
	6.2 Influence of node compression and bucket size
	6.3 Space evaluation
	6.4 Time evaluation
	6.4.1 Active edge retrieval and next activation
	6.4.2 Direct and reverse active neighbors
	6.4.3 Snapshot retrieval
	6.4.4 Events on edges
	6.4.5 Effect of partitioning contacts in interval-contact graphs
	6.4.6 Sensitivity analysis with respect to out degree and number of contacts

	7 Conclusions and future work
	Acknowledgments
	References

