Know! Inf Syst (2016) 48:741-762 @ CrossMark
DOI 10.1007/510115-015-0907-7

REGULAR PAPER

Top-K Miner: top-K identical frequent itemsets
discovery without user support threshold

Saif-Ur-Rehman! - Jawad Ashraf! . Asad Habib! .
Abdus Salam?

Received: 14 July 2014 / Revised: 12 September 2015 / Accepted: 24 November 2015 /
Published online: 31 December 2015
© Springer-Verlag London 2015

Abstract Frequent itemsets (FIs) mining is a prime research area in association rule mining.
The customary techniques find FIs or its variants on the basis of either support threshold
value or by setting two generic parameters, i.e., N (topmost itemsets) and Kmax (size of
the itemsets). However, users are unable to mine the absolute desired number of patterns
because they tune these approaches with their approximate parameters settings. We proposed
a novel technique, top-K Miner that does not require setting of support threshold, N and
Kmax values. Top-K Miner requires the user to specify only a single parameter, i.e., K
to find the desired number of frequent patterns called identical frequent itemsets (IFIs).
Top-K Miner uses a novel candidate production algorithm called join-FI algorithm. This
algorithm uses frequent 2-itemsets to yield one or more candidate itemsets of arbitrary size.
The join-FI algorithm follows bottom-up recursive technique to construct candidate-itemsets-
search tree. Finally, the generated candidate itemsets are manipulated by the Maintain-Top-
K_List algorithm to produce Top-K_List of the IFIs. The proposed top-K Miner algorithm
significantly outperforms the generic benchmark techniques even when they are running with
the ideal parameters settings.

Keywords Frequent itemsets - Association rules - Identical frequent itemsets (IFIs) -
Candidate- itemsets-search tree

B Saif-Ur-Rehman
saifeyabbas @yahoo.com

Jawad Ashraf
jawad.ashraf @kust.edu.pk

Asad Habib
asadsan @gmail.com

Abdus Salam
dr.salam @abasyn.edu.pk

Institute of Information Technology, Kohat University of Science and Technology, Kohat, Pakistan

Computer Science Department, Abasyn University, Peshawar, Pakistan

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-015-0907-7&domain=pdf

742 Saif-Ur-Rehman et al.

1 Introduction

Frequent itemsets (FIs) mining has been among the most challenging researched areas in
association rule mining (ARM) over the past decade. ARM is a two steps process; (1) finding
the FIs from the data sets on the basis of support followed by (2) deduction of association rules
from the already mined FIs [1]. The FIs discovery process is a NP-Complete problem that
demands extensive computational resources [2]. FIs generation is useful in many computing
problems such as consumer market basket analysis [1], network intrusion detection [3], Web
page access-log analysis [4], document analysis [5], telecom data analysis [6], and biological
data analysis [7].

Agrawal et al.[1] in his seminal work on ARM proposed Apriori algorithm to compute
the frequent itemsets (FIs). Apriori algorithm discovers set of all Fls that qualify a given
support threshold using bottom-up strategy. The promising feature of this algorithm is the
Apriori property, i.e., all subsets of FIs are also frequent. Thus resultant frequent itemset
search space includes all frequent itemsets including frequent sub-itemsets. The subsequent
research work introduced different variants of FIs to reduce the result set. The main categories
of these variants include maximal frequent itemsets (MFIs) [8§—10], closed frequent itemsets
(CFIs) [11-14], maximal length frequent itemsets (MLFIs) [15], and colossal patterns [16—
18].

A FI having support greater than the given support threshold value and is not subset of any
other Flis called MFI [8]. Max-Miner [8] performs breadth-first, bottom-up traversal of search
enumeration tree for mining MFIs. Burdick et al. introduced another MFIs mining algorithm
called maximal frequent itemsets algorithm (MAFIA) [9]. This method performs depth first
traversal of the search space with parent equivalence, look ahead, and superset frequency
pruning in order to enhance performance. Another method called GenMax discovers all MFIs
using backtrack search tree method [10]. It employ items reordering to minimize the size of
the combine set and to remove lower frequency nodes early in backtrack search tree. GenMax
also uses progressive focusing technique making superset checking practical on dense data
sets. The second variant of FI is CFIs mining technique [11-14]. The CFl is compressed form
of FIs. An itemset X is called CFI, if there is no proper superset Y of X such that X and Y
have the same support in transaction data set D [11]. Given a support threshold any CFI and
all its subsets have the same support. Hence, a user can find CFIs and all subsets of CFIs along
with its frequency on a given data set. CLOSET is one of the primary techniques proposed to
mine all CFIs on a given support threshold value [12]. It uses frequent pattern tree (FP-tree)
structure to represent all transactions in a given data set in RAM [19]. CLOSET is a partition-
based projection and divide-and-conquer strategy to determine all CFIs. CHARM enumerates
all CFIs by using a novel Itemset-Tidset tree (IT-tree) search space structure [13]. It avoids
computation of many levels of the IT-tree by applying efficient hybrid search approach.
CHARM also uses diffsets to efficiently store the transaction id’s (tid’s) of the itemsets
in memory while searching for CFIs. MLFI is another variant of FI representing maximum
number of items in an itemset [15]. LFIMiner and LFIMinerALL are MLFI finding techniques
using FP-growth algorithm [19]. LFIMiner finds a single MLFI, whereas LFIMinerAll finds
set of MLFIs based on support threshold. The basic FI mining methods [1, 19] and its variants
[8-14,16—18] mine traditional commercial data sets more efficiently as compared to high-
dimensional data sets. The commercial data sets have large number of transactions and
small average transaction length. Applying traditional mining methods (basic FI mining,
CFIL, MF]) to high-dimensional data sets is inefficient. Only long-sized patterns persisting in
high-dimensional data sets (such as gene expression data sets in bioinformatics and program

@ Springer

Top-K Miner: top-K identical frequent itemsets discovery... 743

trace data sets in software engineering etc.) represent complete and required information.
Thus different frequent pattern mining methodologies were introduced to mine very long-
sized patterns called colossal patterns [16—18]. The colossal pattern algorithms directly mine
high-dimensional data sets to produce only the colossal patterns, ignoring the small- and
mid-sized patterns.

FIs and its variants such as MFI, CFI, MLFI, and colossal patterns techniques require
tuning of support threshold parameter [1,8—14,16—19]. Regulating the right support threshold
parameter value to get the only required frequent itemsets is considered a challenging task
for the user [20]. It is difficult to determine the ideal value of the support threshold parameter
without having prior knowledge about the characteristics of data set. Failure to tune the
right support threshold parameter can cause the whole process of data mining worthless.
Inappropriate setting of the support threshold parameter may cause the following issues.

e Analysts have to assess the resultant patterns manually to decide whether these patterns
hold significant importance for decision-making. Exponential number of frequent pat-
terns may be generated due to setting low support threshold posses great challenge for
user while using them in decision-making process.

e The user may be naive and fail to understand role of support threshold in the mining
process. When user sets lower support threshold, it may cause an algorithm to produce
either exponential number of frequent patterns or may cause an algorithm to run out of
memory or reasonable disk space.

e The FIs mining process is used as a preliminary step for ARM. When the FIs mining
algorithm runs out of memory or disk space, then the association rule discovery step may
not be achieved.

e A very small value of support threshold may cause the FIs mining algorithm to produce
spurious patterns, not desired by the user.

e A very large value of support threshold may cause the FIs mining algorithm to skip the
desired patterns in the FIs result set.

e The generated frequent patterns may subsequently be used as input to other data mining
tasks such as clustering, classification, and outlier detection. The time and space com-
plexity of these data mining tasks may increase due to exponential number of frequent
patterns.

e The frequent itemset mining is an exploratory data mining task. The support threshold-
based FIs mining algorithm imposes our own presumptions and prejudices on the problem
and do not allow the data itself speak to us.

Several techniques of frequent itemsets mining have been proposed by the researchers to
avoid the support threshold parameter. For the first time Shen et al. [33] introduced Apriori-
inspired support threshold-free topmost frequent patterns mining. This algorithm finds the
N (number) of itemsets of highest frequency in a given data set. Fu et. al proposed another
Apriori-inspired support threshold-free Itemset-Loop/iLoop algorithms. These approaches
find the topmost N itemsets of highest frequency in each set of K-itemsets [22]. All the
Apriori-inspired approaches for topmost frequent itemsets mining have the same demerits as
that in Apriori approach [34]. There are other support threshold-free procedures to perform
top-K frequent itemsets mining using the classical FP-growth methodology (i.e., FP-tree)
[21,24,34-36]. Apart from the other demerits in every FP-growth inspired technique for top-
K frequent itemsets mining, they encompass two common issues. First, FP-growth-inspired
top-K frequent itemsets mining scan the given data set at least twice. Second, it transforms
the entire data set to FP-tree.

@ Springer

744 Saif-Ur-Rehman et al.

Our top-K Miner approach initiates the top-K frequent itemsets discovery process by
scanning the given data set only once. During this process top-K Miner creates a set of fre-
quent 2-itemsets. This set is sorted in descending support order. Top- K Miner then iteratively
selects frequent 2-itemset to create a CIS-tree using the join-FI procedure. This procedure
returns the set of possible candidate itemsets (along with their support count) C in CIS-tree
for a selected frequent 2-itemset. The set of candidate itemsets C is subsequently evaluated
by the Maintain-Top-K_List procedure to return the updated list of top-K FIs named Top-K-
List so far. This list is updated with the top-K FIs for every frequent 2-itemset with the set of
possible candidate itemsets C. The top-K FIs mining process is stopped when the minimum
support count of an itemset in the Top-K-List is greater than the maximum support count of
an itemset in the set of possible candidate itemsets C.

The rest of the paper is organized in the following manner. Related work is discussed in
the next section. Section 3 contains preliminaries for top-K frequent pattern mining. The
top-K Miner algorithmic description is given in Sect. 4. Experimental results are reported in
Sect. 5, also containing brief discussion over the performance trends of top-K Miner with
other benchmark techniques like BOMO [21] and FP-growth [19]. Conclusion and future
work is presented in Sect. 6.

2 Related work

Numerous algorithms have been presented in the last decade to eradicate the support threshold
parameter from frequent itemsets mining process. The support threshold-free techniques need
minimum two parameters to tune them, which is a mind-boggling exercise for the user. To
the best of our knowledge Itemset-Loop and Itemset-iLoop were the first algorithms, to
put limits on the number of frequent itemsets obtained rather than on support threshold
[22]. Itemsets-Loop and Itemsets-iLoop algorithms are used to produce N-most interesting
itemsets. The N-most interesting itemsets is the union of N-most interesting K -itemsets for
eachl < K < m[22], where N is the number of most interesting itemsets required by the user
and m is the upper bound on the size of interesting itemsets. Both parameters are required by
Itemsets-Loop and Itemsets-iLoop at the start. A Build-Once and Mine-Once approach named
as BOMO is used to find N-most interesting FIs. BOMO needs to tune two parameters N
and Kpnax [21]. BOMO represents all transactions in the given data set in compressed format
using FP-tree structure. In mining phase, it uses NFP-Mine algorithm to extract patterns
from the already constructed FP-tree. NFP-Mine mines the patterns for each element in the
header of the tree by constructing conditional pattern base and conditional FP-tree recursively
[21]. BOMO carry out lots of recursive calls while mining N-most interesting K -itemsets
from FP-tree. COFI+BOMO is an algorithm to mine N-most interesting itemsets without
support threshold value [23]. COFI+BOMO technique is inspired mainly from the BOMO and
uses co-occurrence frequent-item-trees (COFI-tree) structure [24]. COFI+BOMO technique
avoids large number of recursive call while performing mining but requires two parameters
[24]. COFI+BOMO algorithm consume more memory than BOMO at any particular instance
of time. Slam and Khayal proposed a technique to find out topmost maximal frequent itemset
(TMMEFI) and top-K maximal frequent itemsets (TKMFI) [25]. TMMFI is a FI of length
equal or >3 having maximum support than all other itemsets of length equal or >3 [25].
TKMEFI refers to the set of X number of maximal FIs having support greater or equal to the
other members of TKMFI set [25]. This technique mines TKMFI by adopting novel AS-
graph based approach [25]. Li et al. [26] proposed TGP algorithm to produce top-K frequent

@ Springer

Top-K Miner: top-K identical frequent itemsets discovery... 745

closed graph patterns without minimum support threshold. TGP uses a novel lexicographic
pattern net structure to store candidate graph patterns and their relation with other candidate
patterns. TGP needs two parameters, i.e., K representing number frequent closed graph
patterns and min_size representing the size of the patterns greater than the specified size
constraint. TGP is a NP-Complete problem and a graph based top-K frequent closed pattern
mining technique. TGP results significant performance degradation if applied to the data sets
with larger transaction length and produces huge graph search space [26]. Max-Clique is a
technique to find top- K maximal frequent patterns proposed by Xie and Yu [27]. Max-Clique
discovers the K number of maximal frequent patterns having largest length than the other
existing maximal frequent patterns. Max-Clique follows top-down search strategy for the
discovery of frequent patterns rather than conventional bottom-up frequent pattern discovery
approaches [27]. Okubo and Haraguchi [28] proposed branch-and-bound algorithm to mine
top-N colossal patterns. top-N colossal patterns are those maximal patterns having N (user
specified) largest length in the available maximal patterns. Candidate colossal patterns are
detected from the pattern graph as the maximum clique. These candidate colossal patterns
are subsequently evaluated using specified N and frequency threshold values to determine
top-N colossal patterns [28].

3 Ground work

The FIs computing without support threshold is the most feasible choice to find out the desired
number of patterns. Based on the discussion in the previous section, it is quite obvious that
all FIs mining techniques need two types of parameters. The primitive group of FIs mining
technique demands support threshold parameter. These FIs mining techniques make use of
the support threshold parameter to generate either lesser or redundant number of FIs. The
second class of technique requires parameter other than support threshold, to generate user
specified number of FlIs. But these techniques have tendency to miss some important FIs
because of user’s parameter settings. Therefore, we need to revisit user’s needed FIs finding
mechanism to produce only the user required number of patterns. For this purpose, important
definitions are given below.

Definition 1 Identical frequent itemset (IFI)
A set of frequent itemsets F = {Xi, X2, X3,...X,,,} is called IF1 if X; € F, Vi =
1,2,3..., mhave same support count where the length of X; is arbitrary.

Definition 2 Top-K identical frequent itemsets (Top-K IFIs)
Top-K IFIs is a set of IFIs of highest support to the K th support to be found from a given
data set D is stated as follows
{Fj|F; C 1and support (F;) > support (Fi1)}
vVj=1,2,3,...,K
AndVi=1,2,3,...,K—1

where [is the set of all IFIs and F; or F; is any IFl in 1. For the user desired number of K
the support (F1) > support(Fy) > support(F3) > --- > support(Fy).

Example 1 Consider the transaction data set given in Table 1 that contains six different items
A, B, C, D, E and F. The data set contains 10 transactions. For the given value of K =7, 6, 4
the data set is mined for top-7, top-6, or top-4 IFIs as shown in Table 2.

@ Springer

746 Saif-Ur-Rehman et al.

Table 1 Transactional data set TID Transactions

ABDF
ABF
ADF
BCDEF
BCDEF
ABF
ABDF
ABF
ABCDF
ABCEF

O 00 1 N L R W N =

—
(=]

Table 2 Generated top-7, top-6, and top-4 IFIs

Top-7 IFIs Top-6 IFIs Top-4 IFIs
)F=10 1)F=10)F=10
2)B=9,BF =9 2)B=9,BF =9 2)B=9,BF=9
3)A=8,AF =38 3)A=8,AF =38 3)A=8,AF =38
4)AB="T7,FBA =17 4)AB="T7,FBA =1 4)AB="7,FBA =1
5)D=6,DF =6 5)D=6,DF =6

6) BD =5,FBD =5 6)BD =5,FBD =5

7)C =4,AD =4,ADF =4

The Example 1 illustrates that the user only provide a parameter, i.e., K to find the required
number of IFIs.

It is clear from the Example 1 that the top-(K = i) are the subset of top-K IFIs for any
1 <i < K.Itcan be deduced from Example 1 that building top-K IFIs would automatically
result construction of all previous IFIs. The number of FIs produced by the FIs mining
methods [1,8-14,16-19] entirely depends upon the support threshold parameter by the user.
If the user sets a high value of the support threshold parameter, less number of FIs will qualify.
The FIs result set produced on high support threshold setting does not contain the FIs result
set that can be obtained on low support threshold as is the case for IFIs mining. The IFIs
mining with a parameter K, is simple and straight forward approach. The exact numbers of
IFIs are discovered by specifying the number of IFIs required by the user in the form of K.
The problem of mining top-K IFIs on a given data set can be defined as follows.

3.1 Problem definition

Given a transactional data set D, every transaction is associated with a distinct transaction
identifier (tid). A set X is called an itemset. The support of an itemset X is the number of
transactions in which an itemset X appears. Let F be the set of all such X itemsets having
similar support called IFL, and I is the set of all IFIs such that F C I. For the given value of
K, the problem of mining top-K IFIs is to find the Top-K_List containing all IFIs of highest
support to the Kth support.

@ Springer

Top-K Miner: top-K identical frequent itemsets discovery... 747

4 Top-K Miner approach to find top-K IFIS

To determine top-K patterns from the transactional data set containing large number of items
is not an easy task. Most of techniques mentioned in the related work one way or the other
check every item in the data set to discover topmost FIs. Our proposed technique uses such
methodology that once all frequent 2-itemsets are found, can easily deduce top-K IFIs by
only picking few frequent 2-itemsets. To eradicate the support threshold parameter, all the
topmost FIs mining techniques utilize two parameters, i.e., N for top most patterns and K pyax
to set the size of patterns. Although the support threshold is only one such parameter in
conventional FIs mining that the user has to predict, it is difficult for the user to guess its
optimum value [20]. The previous topmost FIs mining technique has made the life of the
user little easier but still the user has to tune them with one extra parameter, i.e., Knax hence
restricting the size of the patterns to be mined. Our top-K IFIs mining approach will not
demand for the Ky« from the user hence allowing the given data set to speak to us that what
relationship exists in the patterns at the top-K levels.

The working of the top-K Miner is based on seven steps as shown in Fig. 1. First, the
top-K Miner approach finds out all the frequent 2-itemsets that exist in the given data set D.
Secondly, the discovered frequent 2-itemsets are sorted in descending order as shown in step
2 of Fig. 1.

Example 2 Consider the transactional data set example in Table 1. For the given data set in
Table 1 with support greater than zero, all frequent 2-itemsets are as shown in Table 3.

The step 3 and rest of the steps in top-K Miner use candidate-itemsets-search tree (CIS-
tree). Before describing the remaining steps of the top-K Miner CIS-tree is defined in the
following.

Definition 3 Candidate-itemsets-search tree (CIS-tree)

A tree T is called CIS-tree if and only if every node N € T is an extension of its parent
node P € T with one of the item i € PTail-Items and supp (N.Head-Itemset) < supp
(P.Head-Itemset) excluding the root node of the tree 7. where Head-Itemset and Tail-Items
are two fields of a node.

All nodes in CIS-tree have identical node structure. A node in CIS-tree includes five fields
as shown in the Table 4. The first two fields are Head-Itemset and Tail-Items. The Head-
Itemset field of a node is actually a candidate itemset. The Tail-Items field of a node contains
the prospective items that can be combined with the Head-Itemset field of the corresponding
node, forming Head-Itemset field of a child node. An item having highest support count is
removed from the parent node 7ail-Items field. The removed item is joined to the parent node
Head-Itemset field forming Head-Itemset field of the child node. A Support-Count is the third
field of a node. It represents the support count of a candidate itemset (here as Head-Itemset).
Fourth field in every node of the CIS-tree is the list of pointers to the child nodes. Fifth field
in a node is Diff-Set. It represents the tids where Head-Itemset is not present.

Step 3 of the top-K Miner algorithm initializes the Top-K_List and Head-Itemset field
of the root node of the CIS-tree to empty (). The step 4 of the top-K Miner selects K
frequent 2-itemset to initialize the Tail-Items field of the root node from the set of an already
calculated frequent 2-itemsets F. The step 5 initially populates the Top-K_List with the
frequent 1-itemsets of higher support to the Kth support. The Top-K_List is subsequently
adjusted with the other candidate itemsets, if their support is ranked higher or equal to the
current top-K IFIs. The step 6 extends the root node of the CIS-tree with the child nodes.
The number of items in Tail-Items field of the root node of CIS-tree represents the number

@ Springer

748 Saif-Ur-Rehman et al.

Algorithm Top-K Miner

T : Candidate-Itemset-Search Tree

F : A set of all frequent 2-itemsets

Lnax : Frequent I-itemset of higher support in f

Lnin : Frequent I-itemset of support less than Ly, in f

: Candidate itemsets

Ff() : Any set of frequent 2-itemset in F
Xi X

f(xi,x;) A set of frequent 2-itemset
Input:

K: User desired number of IFls

D : Transactional data set
QOutput:

Top-K_List: Top-K list containing K-topmost IFIs
1) foreach transaction t € D

Sforeach item x; € t,Vi=1,23,.........[t| =1
Joreachitem x; € t ,Vj =j+1,........t]
F, F,
Tegoxp)= T () ¥ 1

2) Sort F in decreasing order of support
3) T.Head-Itemset = ®, Top-K_List =@
4) foreach frequent 2-itemset f;(x,y) € F Vi = 1,2,3,.....k { /loop start
Imax = MaxSupport_1Itemset(f;(x,y))
Imin = fi(x,¥) = Imax
T.Tail-Items =T.Tail-Items U Ipqy
T.Tail-Items =T.Tail-Items U L,
}// loop end
5) TopK List= Top-K List U T.Tail-Items
6) foreach item i € T.Tail — Items { //loop start
Create new node N
N.Head-Itemset = i
N.Tail-Items = T.Tail-Items —i
T.down_link = addressof (N)
} // loop end
7) foreach frequent 2-itemset € F { //loop start
Iinax= MaxSupport-11temset (f)
Imin=f- Imax;
C= 0
Call Join_FI (T, Ly , Lnin, C);// to find set of candidate itemsets
If (min _support(Top — K_List) < max_support(C))
Maintain-TopK_List(C, Top-K_List);
Else
Break;
}// loop end
8) Return Top-K_List;

Fig. 1 Top-K Miner algorithm

of child nodes created in step 6. The step 7 of the top-K Miner selects frequent 2-itemset
f having maximum support iteratively from a set of frequent 2-itemsets F. The maximum
support item I, and minimum support item I, are deduced from f. The top-K Miner
calls the join-FI algorithm with four parameters, CIS-tree 7', maximum support item Iy,
minimum support item /pyin, and an empty set of candidate itemsets C. The join-FI procedure

@ Springer

Top-K Miner: top-K identical frequent itemsets discovery... 749

Table 3 All frequent 2-itemsets

Sr. no Itemset Support

1 BF 9

2 AF 8

3 AB 7

4 DF 6

5 BD 5

6 AD 4

7 BC 4

8 CF 4

9 BE 3

10 CD 3

11 CE 3

12 EF 3

13 AC 2

14 DE 2

15 AE 1
Table 4 CIS-tree node structure St no. Field name

1 Head-Itemset

2 Tail-Items

3 Support-Count

4 Ptr-List

5 Diff-Set

is designed to return a set of candidate itemsets C for a frequent 2-itemset.The returned set
of candidate itemsets C contains all possible candidate itemset having /i, as the minimum
support item. The top-K Miner calls Maintain-TopK_List procedure if the minimum support
of the Kth IFI in Top-K_List is greater or equal to the maximum support of the itemsets in C.
The Maintain-TopK_List procedure is passed a set of candidate itemsets C and Top-K_List as
parameters. The Top-K_List contains the top-K IFIs mined so far. The Maintain-TopK_List
procedure fills in Top-K_List using a set of candidate itemsets C if the required condition is
true.

4.1 Candidate IFTs discovery using join-FI algorithm

Top-K Miner mines the candidate itemsets using join-FI approach as shown in Fig. 2. The
earliest support threshold-based FIs or topmost FIs mining techniques create lattice or tree
structure for all the itemset present in the given data set and then perform topmost FIs mining
on them [21,23]. The join-FI technique is designed to perform recursive construction of the
CIS-tree as shown in Fig. 2. The size of the CIS-tree is restricted to the selection of the
few numbers of frequent 2-itemsets until all the top-K IFIs are generated. Hence the join-FI
algorithm does not create the CIS-tree for all the items in the given data set.

@ Springer

750 Saif-Ur-Rehman et al.

Algorithm join_FI

Input T : CIS-tree
Lnax : A node with item to be searched in CIS-tree
Lnin : Item to append in new node of the CIS-tree
C : Candidate itemsets

Output C: Candidate itemsets
1) Foreverynode N €T
2) If (support(lastitem(N.Head — Itemset)) < support (Imax))
Continue; /* Backtrack from this path */

3) If (support(lastitem(N.Head — Itemset)) > support (Iyax)){
T = addressof (N)
Call join_FI(T, g, Imins €);

}
4) If (lastitem(N.Head — Itemset) == (I;yax)) {

Create new node ¢
¢.Head — Itemset = N.Head — Itemset U Ly,
¢.Tail —Item = N.Tail — Item — Iy,
¢.Support — Count= support(N.Head — Itemset U I,,;,,)
N.Ptr — List = N.Ptr — List U addressof(c)
C=CuU¢

S
5) Exit

Fig. 2 Join-FI algorithm

The CIS-tree is constructed by considering build-once-mine-many (BOMM) strategy. The
join_FT algorithm constructs CIS-tree by considering the K input. The same CIS-tree can
be reused again for other K values less than the initial K set by the user. The structure
of the CIS-tree remains the same for a data set used for mining process later on, because
the frequent 2-itemsets involved in CIS-tree construction are independent of the support
threshold parameter. Thus mining process can be performed over the existing CIS-tree without
constructing CIS-tree from scratch for different K values on a same data set. Therefore, top-K
Miner can be adopted to utilize BOMM approach.

The join-FI algorithm works with four parameters. The first parameter 7' points to root
node of every sub-CIS-tree. The second parameter I, is the least support item to be searched
in the Head-Itemset field of every node in CIS-tree. The Iy, is a third parameter. The Iy,
is least support item in the Head-Itemset field of every new node in CIS-tree. The join-FI
creates new nodes for the given frequent 2-itemset in CIS-tree. The Head-Itemset field of the
new node is parent node.Head-Itemset Ul yi,. The fourth parameter C is the set of candidate
itemsets. This set is updated with the Head-Itemset field of every new node as candidate
itemset. The join_FI recursively searches for the nodes having I« as the least support item
in Head-Itemset field of every node in a given CIS-tree. The join-FI procedure detects all
such nodes recursively as shown in the step 4 in Fig. 2. A new node is appended to the found
nodes. The support of Head-Itemset field of the new node is determined. The new node’s only
Head-Itemset field and its support are copied as candidate itemset to C. The biggest gain is
achieved while searching for the destination-parent node because of using step 2 in join-FI
procedure. If the least support of an item in Head-Itemset field of the current traverse node
is less than the support of the Iy, it means there is no chance that the given sub-CIS-tree
will contain a node having I as least support item. Hence the entire given sub-CIS-tree
is skipped as shown in step 2 of the Fig. 2. In step 3 if the least support of an item in the
Head-Itemset field of the current traversed node is greater than Iy, it is a clear indication
that the given sub-CIS-tree will contain a node having I, as the least support item. Hence

@ Springer

Top-K Miner: top-K identical frequent itemsets discovery... 751

(}{F.B,A.D.C.E}
(F=10} (B, A, D, C, E} {B=9}{A,D,C,E} {A=8}{D,C,E} {D=6}{C,E} {C=6}{E} {E=3}{}
l\ .
(FB=9}{A,D,C,E} {FA=8}{D,C,E} {FD=6}{C.E} {BA=7}{D,C,E} (BD=5} (C, E} {AD=4} (C, E}
l\‘ .
{FBA=T}{D, C, E} (FBD=5} {C, E} {FADﬁt}{C, E} (BAD=3}{C,E}
v
(FBAD=3} {C, E}

Fig. 3 Candidate itemsets production in CIS-tree

the join_FI is recursively called again with the given sub-CIS-tree as shown in step 3 of the
Fig. 2.

Theorem 1 join-FI algorithm returns at the most 2'X! candidate itemsets for every frequent
2-itemsets in a data set D containing n total number of items, where X is the set of items
arranged in descending support order.

Proof let T be a CIS-tree and R € T be aroot node of the CIS-tree where R. Head-Itemset =
0, R.Tail-Items = {i1, i2, i3, ..., ik} and all items in R.7ail-Items are in descending support
order. Any frequent 2-itemset f contains an item im,x € f having maximum support than
the next item ipi, € f of minimum support. Both the itemsets belong to R.Tail-Items,
i.e., imax € R.Tail-Items and inin € R.Tail-Items. Let X = {i1,i2,i3,...,i;} is a set of
1-itemset such that X C R.Tail-Items, support (i) > support (imax), Ym =1,2,3,...],
and support (i;) > support (ij+1), VI =1,2,3,...m — 1 where j < K < n .For an item
Imax in every f, the CIS-tree contain up to 2/X! nodes or itemsets (also shown in example
3). Every node in 2/X| nodes contains Iy as the least support item in their Head-Itemset
field. The join-FI algorithm finds all such nodes containing Inax as least support item in
their Head-Itemset field using depth first traversal. The found nodes are extended by the
join-FI algorithm with the child nodes, i.e., the Head-Itemset field of the parent nodes and
imin € R.tail are copied to the Head-Itemset field of the new nodes. Since all 21Xl nodes
are extended with child nodes, hence the join-FI returns 2!X| Head-Itemset field of the new
nodes as the candidate itemsets. O

@ Springer

752 Saif-Ur-Rehman et al.

Algorithm_Maintain-TopK_ List
Input :
Top-K_List: top-K IFIs
C: Candidate Itemsets

Output: Top-K_List

1) If ((min_support(C) < min_support (Top-K_List)){
c=C - Cmin,support(Tup—K,List)—min,suyyort(c)
Top-K_List = Top-K_List U C
return Top-K_List;
1

s
2) If ((min_support(C) > min_support(Top-K_List)){
TUP'K,LiSt:TUp'K,LiSt - Tap'KfLiStmin,suppart(C)—min,suyyart(Top—K,List)
Top-K_List = Top-K_List U C
return Top-K_List;

/
3) If{((max_support (Top-K_List)<max_support(C)) && (min_support(Top-K_List)< min_support(C))){
Top-K_List = Top-K_List U C
return Top-K_List

}

Fig. 4 Top-K_List management algorithm

Example 3 Consider a set of frequent 2-itemset in sorted form F = {AF, AB, DF, ... AC,
DE, AE}inTable 3. The CIS-tree constructed from F is presented in the Fig. 3. The produced
candidate itemset {FBAD, FAD, BAD, AD} are presented with the dotted line after positioning
the frequent 2-itemset AD in the CIS-tree as shown in Fig. 3.

4.2 Itemset support computation by join-FI

There are two most common data set representation formats, i.e., horizontal data set repre-
sentation and vertical data set representation. Horizontal data format consists of transactions.
Every transaction has associated transaction identifiers (tids) followed by list of items [29].
In vertical format every item in the data set is associated with a corresponding list of tids
representing the transactions where it appears [30]. Vertical database representation format
was proposed later. The algorithms using this format outperform the algorithms following
horizontal approach. The algorithm following vertical approach performs fast frequency
computation on sparse data sets but starts to suffer from serious demerits when applied to
dense data sets. Dense data sets have high items frequency and large number of patterns
resulting gigantic list of tids, require data compression and writing of intermediate results
to disk [31]. Therefore, the join-FI procedure in this paper follows another form of vertical
data set representation approach called diffsets avoiding the drawbacks present in the earlier
vertical data representation approach [31]. Diffsets only keeps track of the differences in
the tids of all the patterns. Diffsets not only drastically cut down the memory required for
large tids by the significant order of the magnitude but also allow extremely faster frequency
computation than tids based vertical representation approach [31].

4.3 Top-K _List management procedure

The Top-K_List management procedure is used to maintain updated list of the top-K IFIs
during mining process as shown in Fig. 4. When top- K Miner concludes the mining process,
the Top-K_List contains all the top- K IFIs in the given data set. The Top-K_List management
procedure is passed two parameters, the set of candidate itemsets C and the Top-K_List. The
candidate itemsets having support less than the minimum support of the IFIs in Top-K_List

@ Springer

Top-K Miner: top-K identical frequent itemsets discovery... 753

must be removed from C as shown in step 1 of the Fig. 4. The remaining candidate itemsets
in C are the IFIs of the current mining process, copied to the global Top-K_List as shown
in step 1 of the Fig. 4. If the support of one or more of the IFIs in the Top-K_List is less
than the minimum support of the candidate itemsets in C all such IFIs are removed from the
Top-K_List as shown in step 2 of the Fig. 4. In the next step C is copied to Top-K_List to return
the actual top-K IFIs in the Top-K_List shown in step 2 of the Fig. 4. If the maximum and
minimum support of the candidate itemsets in C is greater than the maximum and minimum
support of the IFIs in the Top-K_List respectively, in this case the set of C is copied to
Top-K_List and is returned to top-K Miner algorithm as shown in step 3 of the Fig. 4.

. 1 i —2lXI .
Theorem 2 Top-K Miner takes 2‘ Root-Taily time to find top-K IFIs. Where n is the
total number of items in a given data set, n' are the items not present in Tail-Items field of
the root node of CIS-tree, and X is the set of items in descending support order.

Proof For a frequent 2-itemset the join-FI algorithm perform depth first traversal of the CIS-
tree to find all the nodes containing Imax € f as the least support item in their Head-Itemset
fields. The CIS-tree is composed of the nodes representing all combinations (appear as Head-
Itemset field of the nodes) for the items in the Tail-Items field of the root node excluding
those combinations having I, as the least support item. For a given frequent 2-itemset f
the CIS-tree contains 2/*| nodes having Iax as the least support item in Head-Itemset field
as proved in theorem 1. The 21X1 nodes are extended with a child node containing Inip as the
least support item in their Head-Itemset field. The number of new nodes formed in a CIS-tree

for a frequent 2-itemset f are 2/X!. The total number of nodes traversed by the join-FI using
_olX|
depth first search approach for a frequent 2-itemset is 2 : excluding the newly

formed 2Xlin the worst case. O

I .
Root.Tallnin/

5 Comparative evaluation

Top-K Miner is tested on a machine with 1.8 GHZ Core 2 Duo processor running Windows
7 operating system. The data sets for the comparative evaluation are downloaded from the
FIs mining data set repository [32]. These data sets include real and synthetic data sets. The
performance of top-K Miner with other established algorithms is checked on both types of
these data sets. The specification of these data sets is given in the Table 5.

The experimental evaluation of the top-K Miner with other established techniques is
bifurcated into two phases. In the first phase we compare the results generated by top-K
Miner with FP-growth [19] and BOMO [21]. We conducted an experiment to mine different
real and synthetic data sets like chess, mushroom, connect, and T40110D100K. To justify our

Table 5 Data sets for

comparative analysis Database # Items Avg length # Transactions
Chess 75 37 3196
Mushroom 119 23 8124
Connect 129 43 67,557
Retail 16,469 10.3 88,162
T40I110D100K 1000 40 100,000
T10I14D100K 1000 10 100,000

@ Springer

Saif-Ur-Rehman et al.

754

690L9 = SL LTI ‘16 (6
€LOL9 = SL 601 ‘16 (8
€6TL9 = LTI ‘601 ‘16 (L
LLELY = LTI ‘601 (9
1869 = LTI ‘16 (S
S8€L9 =601 ‘16 (¥
S9¥LY = LTI (€

697L9 = 601 (T

LSTL9 = GL 601 (€
191L9=¢6L16(

LSTL9 = SL 60T (0T
191L9 = 6L 16 (6
€6TL9 = 16 LTI 601 (8
LLELY = LT1 601 (L
18€L9 = LTI 16 (9
S8€L9 = 16601 (S
SYCLO=GL (¥

SOvLY = LTI (€
69¥L9 = 601 (T

LSTL9 = 6L 601 (0T
191L9 = SL 16 (6
S¥TL9 = 6L (8

€6TL9 = LTI ‘601 ‘16 (L
LLELY = LTI '601 (9
18€L9 = LTI ‘16 (S
S8€L9 =601 ‘16 (¥
SO¥L9 = LTI (€

697L9 = 601 (T

P9 =6L (1 eLyL9 =16 (1 eLrL9 =16 (1 eLrL9 =16 (1 100UU0)) 4
8G1¢ = 8S 0¥ TS (TI

691¢€ =8S62TS (I1 SS1€ = 0% ‘62 (01

SS1€ = 0¥ 62 (01 8S1€ = 01 ‘TS 85 (6

¥S1€ = 0% ‘6T 85 (6 6S1E=0v2s (6 6S1€ =01 (8

8G1€ = 0t TS ‘8S (8 691€ = 0t 86 (8 691€ = 0v ‘8¢

691€ = 6T TS ‘8S (L 0LTE=62TS (L 691€ = 6T TS '8S (L

0L1E=6C2°CS (9 081¢ = 6285 (9 0LTE = 6T TS ‘0LIE =0t (9

081¢€ = 6 ‘85 (S ¥81€ =85S (S 081¢€ = 62 ‘85 (S

¥81€ =TS ‘8S (¥ 0L1E =0 (7 181¢ =62 (¥

6S1€ = 0% ‘TS 181¢ = 6C (€ 181¢€ =6C (€ ¥81€ =TS ‘8S (€

691€ = 0 ‘8¢ S81€ =15 (T S81€ =1 (T S81€=1s (T
0LIE = 0F S61¢€ =186 (1 S61€ =8¢ (1 S61€ =286 (I $saUD I
OWO4 £q paut 10U SL.i] ¢ = XeUly pue ¢ = N OINOH ST paseq yImoIs-d4 Tury y-doy £q sp1 01-dor, 198 BIRQQ ‘ou I§

(¢ =Xy

‘€ = N ym) OINOY pue 12Uty y-doj uo sff 01-doL, 9 dqeL,

pringer

as

755

Top-K Miner: top-K identical frequent itemsets discovery...

88TL = 06 98 (8
96TL = 06 ‘v€ (L

88TL =06 ‘98 ‘S8 (6
96TL = 06 S8 ‘¥€ (8
906L = ¥€ ‘98 ‘S8 (L

906L = € 98 (9

7099 = ¥£98 68 9¢ (€T
88TL = 98¢ 5806 (TC
2099 = ¥€689¢ (I
2099 = #£989¢ (0T
0299 = 9858 9¢ (61
887L = 986806 (81
88TL = 98+€06 (L1
96TL = ¥£5806 (91
906L = 98 S8 +¢€ (ST
7099 = ¥€9¢ (1
0299 = 989¢ (€1
7189 = 689¢ (TI
887L =9806 (11
96ZL = ¥£06 (01

88YL = $806 (6

906L = 98¢ (8

P16L = S8¥¢ (L

¥T6L = 6898 (9

7099 = $£98 68 9¢
7099 = € ‘68 ‘9¢
7099 = € ‘98 ‘9¢
7099 = ¥¢€ ‘9¢ (01
0299 = 98 ‘S8 ‘9¢

0299 =98 9¢ (6
7189 =68 °9¢
7189 =9¢ (8
887L = 98 ‘v€ ‘S8 06
887L = S8 ‘S8 '06
88CTL = 98 ‘€ ‘06
887L = 9806 (L
96TL = ¥€ ‘S8 06
96TL = £ ‘06 (9
88¥L = 6806
88¥L = 06 (S
906L = 98 ‘S8 ‘¥€
906L = 98 ‘¥¢ (¥

906L = 06 ‘€ ‘98 (9 YI6L = €68 (S 7189 =9¢ (S P16L = 68 ‘¥€
906L = 06 ‘€ ‘98 ‘S8 (S ¥T6L =98 ‘S8 (¥ 88¥L = 06 (¥ vI6L = € (€
v16L = ¥€ (€ Y16L = ¢ (€ v16L = ¥€ (€ $T6L =98 ‘S8
887L = 06 ‘S8 (T ¥26L =98 (T ¥T6L =98 (T ¥26L =98 (T

88%L = 06 (1 218 =68 (1 ve18 =68 (1 vCI8 =68 (1 wWooIysn €

OO4 £q paur 10U SL.i] ¢ = Xelly pue ¢ = N OINOE SId paseqd ymoID-dd Toury y-doy £q spq1 01-dor, 108 EIRQ "ou Ig

panunuod 9 Jqe],

pringer

Qs

Saif-Ur-Rehman et al.

756

€0TLT =769 (L
EPELT = ¥16 (9
LTYL1 =789 (S
12681 = 681 (7
9ze61 = LIT (€
9120T = 61+ (T
STI0T = 015 (1

88T = 678 ‘6T ‘89¢ (6
€LET = T69 ‘6TS ‘89¢€ (8
0TFT = 68 ‘89¢€ ‘789 (L
0€19 = 789 ‘89¢ (9
LS69 = 6T8 ‘89¢ (S
00SL = 626 ‘89¢€ (¥
121€C = 6T8 (€

Y8EET = 626 (T

8¢L8T = 89¢ (I

€0cLT = 269 (01
€PELT =16 (6
LTLT =789 (8
12681 = 68% (L
97e61 = L1T (9
9120T = 61% (S
STI0T = 01S (¥
1zIec = 6e8 (¢
¥8€€T = 626 (T
8€L8T = 89¢ (I

€0cLT = 269 (01
ereLl =16 (6
LTYLT =789 (8
12681 = 68% (L
97e61 = L1T (9
9120T = 61 (S
STI0T = 01S (¥
121€T =628 (¢
¥8€E€T = 626 (T
8¢L87 = 89¢ (I

200TdOII0¥L

14

OINOS £q pauru j0u ST

€ = XUy pue ¢ = N ONO4

S paseq yImoIs-d.q

JourA y-doy £q s[4 01-doL,

Jos ele(q

‘ou I§

panunuod

9 91qE.L

pringer

as

Top-K Miner: top-K identical frequent itemsets discovery... 757

experiment we set K=10 for top-K Miner and for BOMO N = 3 and Kpax = 3 as shown
in Table 6.

The parameters are tuned with the intention to highlight two issues. First, the FP-growth
method uses different support threshold parameter to mine top-K IFIs on different data
sets. Second, setting of N and Kp,x for BOMO is simple and similar on all data sets to
mine top-K IFIs but have the tendency to miss some of the IFIs. Top-K Miner does not
skip the information about patterns available in the data sets as done by topmost frequent
pattern mining techniques based on two parameters N, and Km,x [21,22]. The top-K Miner
mines more and absolute desired patterns than the existing topmost frequent pattern finding
techniques. Mostly topmost frequent pattern mining techniques varies N while keep Kmax
as constant parameter. Whatever the value of N is set by the user, it is only used to find the N
topmost patterns for V1, 2, 3, ... kmaxsizes. The parameter N also sets the upper bound and
lower bounds in terms of support for V1, 2, 3, ... kmax sizes patterns. The IFIs with greater
support are dropped because of the miss tuning N value as shown in the Table 6. The same or
greater support patterns having item sets size greater than Kp.x are also missed because of
K max. Now from the user’s perspective, few of the IFIs will definitely miss whatever the value
of N or Knax is adjusted by the user. While on the other hand top-K Miner will find every
pattern of greater support and of arbitrary size until K number of patterns are discovered.
Our top-K IFIs mining technique is superior enough in the context that it is free from Kpax
parameter setting. Top-K IFIs mining approach also does not need extra care to set top-K
parameter, as it is demanded for adjusting N and Kpax.

The results generated by the top-K Miner are also compared with that of the FP-growth
method [19]. The strength of the top-K Miner method is that it requires the only a value of
the parameter K to mine top-K IFIs on different data set. The FP-growth method requires
different support threshold parameter tuning on different data sets to get the same number
of FIs as shown in Table 6. The FP-growth technique requires support threshold parameter
tuning before FIs discovery. Setting a support threshold to get particular number of FIs is a
challenging task for user [20]. Setting support threshold greatly depends on the characteristics
(number of items, frequency of items, number of transactions, and average length of the
transaction) of the data set. The top-10 IFIs generated by the top-K Miner are equivalent to
the number of FIs produced by the FP-growth on connect and T40I10D100K data sets. The
FP-growth method produces large number of FIs than the IFIs on chess and mushroom data
sets as shown in Table 6.

In the second phase of evaluation top-K Miner is analyzed for time constraint with the
established benchmarks, i.e., BOMO [21] and, FP-growth [19]. BOMO is basically the same
class of algorithm constructed to mine topmost-N interesting itemsets with Kpax itemsets
constraint setting. The second technique also takes two parameters, i.e., supports threshold
and maximum size of patterns to find frequent itemsets. While experimenting on each data
set, the ideal support threshold value is provided to FP-growth [19]. Top-K Miner produces
same result by tuning the number of patterns required by the user without using support
threshold value. We carried out performance experiments on two types of data sets, i.e.,
real and synthetic data sets. Real data sets include chess, mushroom, connect and retail.
Synthetic data sets include T40I10D100K and T10I14D100K. Figures 5 and 6 demonstrate
the performance results of the top-K Miner with BOMO and FP-growth on both types of data
sets. The x-axis represents the top-K IFIs to be mined till K. size and y-axis represents
time taken by algorithm.

Real data sets are dense in nature and can produce longer patterns if lower support threshold
is provided. As illustrated in the Fig. 5a—d on real data sets which are smaller in terms of
the number of items like chess, mushroom, and connect, the top-K Miner execution time

@ Springer

758 Saif-Ur-Rehman et al.

(a) (b) 1800 - Connect
Chess
1600 |
1600 -
1400 |
1400
2 1200
_ 1200 | 2
H g 1000 |
1000 - 4
b E 800 m Top-k
]]
2 800 - = Top-k £ BOMO
£ 2 600 - M FP-Growth
g 600 1 BOMO o
% 400 - FP-Growth 400 -
200 - 200
0 - L 0 -
5 10 15 20 25 30 5 10 15 20 25
B K-ltemsets
K -itemsets
(©) 1400 Mushroom) .
Retail
1200 70
Z 1000 | __60
s 8 50
3 800 g
2 , 3 40
@ H Top-|
E 600 - gs_
€ BOMO g 30 mTop-k
é 400 - .g 20
M FP-Growth E] BOMO
200 1 10 ® FP-Growth
o - 0
4 8 12 16 20 1 2 3 4 5
K-ltemsets K-ltemsets
Fig. 5 Top-K Miner performance trends on real data sets
(a) T40110D100K (b) T1014D100K
1800 - 20 -
1600 - 70
1400 - o 1
% 1200 - =
2 € 50
8 1000 Top-k g u Top-K
" w
o Pl BOMO
£ 800 - BOMO £
€ £ 30
S | S 1 m FP-growth
& 600 ® FP-Growth «
400 20 +
200 - 10 -
0 - 0 -
1 2 3 4 5 1 2 3 4 5
K-ltems K-ltems

Fig. 6 Top-K Miner performance trends on synthetic data sets

is tantamount to BOMO and FP-growth for smaller K values. On chess, mushroom, and
connect data sets, when the pattern length is increased, the performance of BOMO and FP-
growth is significantly degraded because of the larger FP-tree size and subsequently mining
process on the FP-tree. Top-K Miner is least affected by the increase in pattern length size
as shown in Fig. 5a—c.

@ Springer

Top-K Miner: top-K identical frequent itemsets discovery... 759

The top-K Miner is less efficient than FP-growth for small K values on retail data set as
shown in Fig. 5d. The retail is a largest real data set in terms of the number items as shown
in Table 5. In case of retail data set, the dominating factor for the top-K Miner is sorting
of n (n — 1)/2 number of items. The time required for sorting n (n — 1) /2 number of items
remains constant for mining any number of top-K IFIs over the retail data set using top-K
Miner. For the FP-growth the dominating factor is the size of FP-tree (depends on the data
set having transaction containing unique set of items) and the subsequent FP-tree mining
process. The FP-tree mining process checks every combination of itemsets to be frequent or
not and accept 1-itemsets (are Checked before FP-tree construction). The time required to
mine FP-tree depends on the number of FIs to be mined using FP-growth algorithm. On a
retail data set the time required by the top-K Miner for sorting n (n — 1)/2 is greater than
the time taken by the FP-growth algorithm for mining small number of top-K patterns. The
FP-growth performance starts to degrade as compared to top-K Miner when K is increased.

The data set T40I110D100K and T10I14D100K are synthetic data sets shown in Fig. 6a, b.
The length of the patterns is short in these data sets but have 1000 number of items. Top-K
Miner takes extra amount of time in sorting large number of items as in the case of synthetic
data set. Still the total execution time (sorting time + pattern mining time) for the top-K
Miner is equivalent to FP-growth during the first few IFIs calculation as shown in the Fig. 6a,
b. Furthermore BOMO and FP-growth start to suffer from drastic increase in execution time
when IFI patterns of higher length are discovered.

There are few main reasons why top- K Miner showed significant performance over BOMO
and FP-growth algorithms. These algorithms build complete FP-tree in memory for the whole
data set. The BOMO and FP-growth algorithms scan the given data set twice. Top-K Miner
performs single scan of the data set. The size of the CIS-tree is practically limited to the
number of items selected for mining out of the total number of items in the data set.

BOMO and FP-growth algorithms perform mining of the frequent patterns from the entire
FP-tree. The performance of the FP-growth and BOMO algorithms degrade significantly
when provided small value of the support threshold parameter or mining large number of
frequent pattern over a dense data set or mining large number of patterns over a data set with
large number of items.

6 Conclusion

The top-K Miner is proposed in this paper to find top-K IFIs. To the best of our knowledge
top-K Miner is the first approach which finds all the absolute desired required number of
patterns and does not miss any pattern of highest support. Top- K Miner needs at the most only
one parameter, whereas other techniques which also find topmost frequent pattern demand
at least two parameters. Our proposed technique has shown improved performance than its
counter parts because it follows build-and-mine (BM) strategy for CIS-tree construction,
whereas other methods perform mining after building in-memory data structure for all the
items and hence take more time to find required IFIs. There is ample room for the future work
in the proposed technique. In future we plan to adapt this work to solve other data mining
tasks like text mining, subspace clustering, and stream mining.

References

1. Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large data-
bases. In: Proceedings of the 1993 ACM-SIGMOD international conference on management of data
(SIGMOD’93). Washington, DC, pp 207-216

@ Springer

760

Saif-Ur-Rehman et al.

20.

21.

22.

23.

24.

25.

26.

Grahne G, Zhu J (2003) High performance mining of maximal frequent itemsets. In: Proceeding of the
2003 SIAM international workshop on high performance data mining. pp 135-143

Lee W, Stolfo SJ, Mok KW (2000) Adaptive intrusion detection: a data mining approach. Artif Intell Rev
14(6):533-567

Pei J, Han J, Mortazavi-Asl B, Zhu H (2000) Mining access patterns efficiently from web logs. In:
Proceeding of the 2000 Pacific-Asia conference on knowledge discovery and data mining. Kyoto, Japan,
pp 396407

Holt JD, Chung SM (1999) Efficient mining of association rules in text databases. In: Proceeding of the
1999 international conference on Information and knowledge management. Kansas City, Missouri, pp
234-242

Klemettinen M (1999) A knowledge discovery methodology for telecommunication network alarm data-
bases. Ph.D. thesis, University of Helsinki

Satou K, Shibayama G, Ono T, Yamamura Y, Furuichi E, Kuhara S, Takagi T (1997) Finding associations
rules on heterogeneous genome data. In: Proceeding of the 1997 Pacific symposium on biocomputing
(PSB’97). Hawaii, pp 397-408

Bayardo RJ (1998) Efficiently mining long patterns from databases. In: Proceeding of the 1998 ACM-
SIGMOD international conference on management of data (SIGMOD’98). Seattle, WA, pp 85-93
Burdick D, Calimlim M, Flannick J, Gehrke J, Yiu T (2005) MAFIA: a maximal frequent itemset algo-
rithm. IEEE Trans Knowl Data Eng 17(11):1490-1504

Gouda K, Zaki MJ (2005) GenMax: an efficient algorithm for mining maximal frequent itemsets. Data
Min Knowl Discov 11(3):1-20

. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association

rules. In: Proceeding of the 7th international conference on database theory (ICDT’99). Jerusalem, Israel,
pp 398-416

Pei J, Han J, Mao R (2000) CLOSET: an efficient algorithm for mining frequent closed itemsets. In:
Proceeding of the 2000 ACM-SIGMOD international workshop data mining and knowledge discovery
(DMKD’00). Dallas, TX, pp 11-20

Zaki MJ, Hsiao CJ (2002) CHARM: an efficient algorithm for closed itemset mining. In: Proceeding of
the 2002 SIAM international conference on data mining (SDM’02). Arlington, VA, pp 457473

Borgelt C, Yang X, Nogales-Cadenas R, Carmona-Saez P, Pascual-Montano A (2011) Finding closed
frequent item sets by intersecting transactions. In: Proceedings of the 2011 international conference on
extending database technology (EDBT-11). Sweden, Uppsala, pp 367-376

. Hu T, Sung SY, Xiong H, Fu Q (2008) Discovery of maximum length frequent itemsets. Inf Sci Int J

178(1):69-87

Zhu F, Yan X, Han J, Yu PS, Cheng H (2007) Mining colossal frequent patterns by core pattern fusion.
In: Proceeding of the 2007 international conference on data engineering (ICDE’07). Istanbul, Turkey, pp
706-715

Dabbiru M, Shashi M (2010) An efficient approach to colossal pattern mining. Int J Comput Sci Netw
Secur (IJCSNS) 10(1):304-312

Sohrabi MK, Barforoush AA (2012) Efficient colossal pattern mining in high dimensional datasets. Knowl
Based Syst 33:41-52

Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceeding of the
2000 ACM-SIGMOD international conference on management of data (SIGMOD’00). Dallas, TX, pp
1-12

Han J, Cheng H, Xin D, Yan (2007) Frequent pattern mining—current status and future directions. Data
Min Knowl Discov 15(1):55-86

Cheung YL, Fu AWC (2004) Mining frequent itemsets without support threshold: with and without item
constraints. IEEE Trans Knowl Data Eng 16(9):1052-1069

Fu AWC, Kwong RWW, Tang J (2000) Mining N-most interesting itemsets. In: Proceedings of the 2000
international symposium on methodologies for intelligent systems. pp 59-67

Ngan SC, Lam T, Wong RCW, Fu AWC (2005) Mining N-most interesting itemsets without support
threshold by the COFI-tree. Int J Bus Intell Data Min 1(1):88-106

El-Hajj M, Zatane OR (2003) COFI-tree mining: a new approach to pattern growth with reduced candidacy
generation. In: Workshop on frequent itemset mining implementations (FIMI 2003) in conjunction with
IEEE-ICDM

Salam A, Khayal M (2011) Mining top-k frequent patterns without minimum support threshold. Knowl
Inf Syst 30(1):112-142

Li Y, Lin Q, Li R, Duan D (2010) TGP: mining top-K frequent closed graph pattern without minimum
support. In: Proceeding of the 2010 international conference on advanced data mining and applications
(ADMA °10). pp 537-548

@ Springer

Top-K Miner: top-K identical frequent itemsets discovery... 761

27.

28.

29.

30.

31.

32.
. ShenL, Shen H, Pritchard P, Topor R (1998) Finding the N largestitemsets. In: Proceedings of international
34.

35.

36.

Xie Y, Yu PS (2010) Max-Clique: a top-down graph-based approach to frequent pattern mining. In:
Proceeding of the 2010 IEEE international conference on data mining (ICDM °10). pp 1139-1144
Okubo Y, Haraguchi M (2012) Finding top-N colossal patterns based on clique search with dynamic update
of graph. In: Proceeding of the 2012 international conference on formal concept analysis (ICFCA’12).
Springer, pp 244-259

Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo A (1996) Fast discovery of association rules.
In: Fayyad UM, Piatetsky G, Smyth P, Uthurusamy R (eds) Advances in KDD. MIT press

Holsheimer M, Kersten M, Mannila H, Toivonen H (1995) A perspective on database and data mining.
In: Proceeding of the 1995 international conference on knowledge discovery and data mining (KDD’ 95).
pp 150-155

Zaki MJ, Gouda K (2003) Fast vertical mining using diffsets. In: Proceedings of the 2003 ACM-SIGKDD
international conference on knowledge discovery and data mining (SIGKDD’03). Washington, pp 326—
335

Frequent itemset mining implementations repository. http://fimi.cs.helsinki.fi/

conference on data mining. pp 211-222

Quang TM, Oyanagi S, Yamazaki K (2006) ExMiner: an efficient algorithm for mining top-K frequent
patterns, ADMA 2006, LNAI 4093. pp 436447

Wang J, Han J (2005) TFP: an efficient algorithm for mining top-K frequent closed itemsets. IEEE Trans
Knowl Data Eng 17(5):652-664

Hirate Y, Iwahashi E, Yamana H (2004) TF2P-growth: an efficient algorithm for mining frequent patterns
without any thresholds. In: Proceedings of ICDM

Saif-Ur-Rehman is a Ph.D. student in Institute of Information Tech-
nology (IIT), Kohat University of Science and Technology, Kohat, Pak-
istan. Currently, He is working as lecturer in University of Peshawar,
Peshawar, Pakistan. His main research interest includes data mining.

Jawad Ashraf has earned his Ph.D. in Computer Science from Leices-
ter University, UK, in 2012. His main research interest includes
scheduling scientific workflows in grid computing and data mining.
Currently, he is working as assistant professor in Institute of Informa-
tion Technology (IIT), Kohat University of Science and Technology,
Kohat, Pakistan.

@ Springer

http://fimi.cs.helsinki.fi/

Saif-Ur-Rehman et al.

@ Springer

Asad Habib has received Doctor of Engineering degree from Graduate
School of Information Science, NAIST (Nara Institute of Science and
Technology), Japan. His research interests include Big Data, Natural
Language Engineering and HCI. Currently, he is working as assistant
professor in Institute of Information Technology (IIT), Kohat Univer-
sity of Science and Technology, Kohat, Pakistan.

Abdus Salam has a distinguished career in the field of computer sci-
ence spanning over 27 years. This includes 14 years of professional
experience and 13 years of teaching experience. He earned his M.Sc.
in Computer Science from Quaid-e-Azam University in 1987. He also
earned his Ph.D. in Computer Science from International Islamic Uni-
versity, Islamabad, in 2011. Presently, he is working as Head of Depart-
ment of Computing & Technology, Abasyn University, Peshawar, Pak-
istan.

	Top-K Miner: top-K identical frequent itemsets discovery without user support threshold
	Abstract
	1 Introduction
	2 Related work
	3 Ground work
	3.1 Problem definition

	4 Top-K Miner approach to find top-K IFIS
	4.1 Candidate IFIs discovery using join-FI algorithm
	4.2 Itemset support computation by join-FI
	4.3 Top-K_List management procedure

	5 Comparative evaluation
	6 Conclusion
	References

