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Abstract Time-series classification is an important problem for the data mining community
due to the wide range of application domains involving time-series data. A recent paradigm,
called shapelets, represents patterns that are highly predictive for the target variable. Shapelets
are discovered bymeasuring the prediction accuracy of a set of potential (shapelet) candidates.
The candidates typically consist of all the segments of a dataset; therefore, the discovery
of shapelets is computationally expensive. This paper proposes a novel method that avoids
measuring the prediction accuracy of similar candidates in Euclidean distance space, through
an online clustering/pruning technique. In addition, our algorithm incorporates a supervised
shapelet selection that filters out only those candidates that improve classification accuracy.
Empirical evidence on 45 univariate datasets from the UCR collection demonstrates that
our method is 3–4 orders of magnitudes faster than the fastest existing shapelet discovery
method, while providing better prediction accuracy. In addition, we extended our method to
multivariate time-series data. Runtime results over four real-lifemultivariate datasets indicate
that our method can classify MB-scale data in a matter of seconds and GB-scale data in a
matter of minutes. The achievements do not compromise quality; on the contrary, our method
is even superior to the multivariate baseline in terms of classification accuracy.
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1 Introduction

Classification of time-series data has attracted considerable interest in the recent decades,
which is not surprising given the numerous domains where time series are collected. A
recent paradigm has emerged into the perspective of classifying time series, the notion of
shapelets. Shapelets are supervised segments of series that are highly descriptive of the
target variable [23]. In the recent years, shapelets have achieved a high momentum in terms
of research focus [17,18,23,25].

Distances of time series to shapelets can be perceived as new classification predictors, also
called “the shapelet-transformed data” [14]. It has been shown by various researchers that
shapelet-derived predictors boost the classification accuracy [17,24]. In particular, shapelets
are efficient in datasets where the class discrimination is attributed to local variations of the
series content, instead of the global structure [23]. Even though not explicitly mentioned by
the related work, the discovery of shapelets can be categorized as a supervised dimensionality
reduction technique. In addition, shapelets also provide interpretive features that help domain
experts understand the differences between the target classes.

In contrast to the high classification accuracy, discovering shapelets remains challenging
in terms of runtime. The current discovery methods need to search for the most predictive
shapelets from all the possible segments of a time-series dataset [17,23]. Since the number
of possible candidates is high, the required time for evaluating the prediction quality of each
candidate is prohibitive for large datasets. Therefore, the time-series research community
has proposed several speedup techniques [17,18,23], aiming at making shapelet discovery
feasible in terms of time.

This paper proposes a novel method that discovers time-series shapelets considerably
faster than the fastest existing method. Our method follows the knowledge that time-series
instances contain lots of similar segments. Often inter-class variations of time series depend
on differences within small segments, with the remaining parts of the series being similar.
Therefore, we hypothesize that the time needed to discover shapelets can be scaled up by
pruning candidate segments that are similar in Euclidean distance space. We introduce a fast
distance-based clustering approach to pruning future segments that result similar to previ-
ously considered ones. In addition, we propose a fast supervised selection of shapelets that
filters out the qualitative shapelets using an incremental nearest-neighbor classifier. Extensive
experiments conducted on real-life data demonstrate a large reduction (3–4 orders of mag-
nitude) in the discovery time, by even gaining prediction accuracy with respect to baselines.
The contributions of this paper can be short-listed as follows:

1. A fast pruning strategy for similar shapelets inEuclidean space involving a distance-based
clustering approach;

2. A fast supervised selection of qualitative shapelets using an incremental nearest-neighbor
classifier, conducted jointly with the pruning;

3. Extensive experimental results against the fastest existing univariate shapelet discovery
methods on a large set of 45 time-series datasets.

4. Extension tomultivariate time-series datasets showing that ourmethod scales toGB-sized
data.

2 Related work

Shapelets were introduced by Ye and Keogh [23] as a new primitive representation of time
series that is highly predictive of the target. A large pool of candidates from all segments of a
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dataset were assessed as potential shapelet candidates, while the minimum distance of series
to shapelets was used as a predictive feature. The best performing candidates were ranked
using the information gain criteria over the target. Successively, other prediction quality
metrics were also proposed such as the Kruskal–Wallis or Mood’s median [14], as well as F
stats [16]. The minimum distance of the time series to a set of shapelets can be understood
as a data transformation (dimensionality reduction) and is called shapelet-transformed data
[14]. Certain classifiers, such as SVMs or rotation forests, have been shown to perform
competitively over the shapelet-transformed predictors [14].

The excessive amount of potential candidates makes brute-force (exhaustive) shapelet
discovery intractable for large datasets. Therefore, researchers have come up with various
approaches for speeding up the search. Early abandoning of the Euclidean distance compu-
tation combined with an entropy pruning of the information gain metric is an early pioneer
in that context [23]. Additional papers emphasize the reuse of computations and the prun-
ing of the search space [17], while the projection of series to SAX representation was also
elaborated [18]. Furthermore, the discovery time of shapelets has been minimized by mining
infrequent shapelet candidates [13]. Speedups have also been attempted by using hardware-
based implementations, such as the usage of the processing power of GPUs for reducing
search time [7].

In terms of applicability, shapelets have been utilized in a battery of real-life domains.
Unsupervised shapelet discovery, for instance, has been shown useful in clustering time series
[25]. Shapelets have been used in classifying/identifying humans through their gait patterns
[19]. Gesture recognition is another application domain where the discovery of shapelets
has played an instrumental role in improving the prediction accuracy [11,12]. In the realm
of medical and health informatics, interpretable shapelets have been shown to help in early
classification of time series [21,22].

In contrast to the state-of-the-art methods, we propose a fast novel method that discovers
shapelets by combining a direct similarity-based pruning strategy of candidates with an
incremental classification technique.

3 Scalable shapelet discovery

3.1 Distances of shapelets to series as classification features

Throughout this paper, we denote a time-series dataset having N series of Q points each, as
T ∈ R

N×Q . While our method can work with series of arbitrary lengths, we define a single
length Q for ease of mathematical formalism. The distances of shapelets to series can be used
as classification features, also known as shapelet-transformed features [14]. The distance of a
candidate shapelet to the closest segment of a series can be perceived as a membership degree
for that particular shapelet. Equations 1 and 2 formalize the minimum distances between a
shapelet s and the dataset T as a vector of the Euclidean distances (D) between the shapelet
and the closest segment of each series. (The notation Va:b denotes a subsequence of vector
V from the ath element to the bth element.)

MinDist(s, T ) :=

⎡
⎢⎢⎢⎣

D(s, T1)
D(s, T2)

...

D(s, TN )

⎤
⎥⎥⎥⎦ (1)

D(s, Ti ) := min
j=1,...,Q−|s|+1

∥∥Ti, j : j+|s|−1 − s
∥∥2 (2)
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Fig. 1 TwoLeadECG dataset: aligning shapelets to the closest series segments, and in right the resulting
two-dimensional shapelet-transformed training data

Table 1 Summary of notations Symbol Domain Description

N N Number of time series

Q N Length of time series

T R
N×Q Time-series datasets

Φ R
R Set of shapelet lengths

s R
Φ∗ A shapelet candidate

D (RL × R
L ) → R Distance between a shapelet and a

segment

R N Number of different candidate lengths

p [1, . . . , 100] Pruning distance percentile

r
{
1, 1

2 , 1
4 , . . .

}
Dimensionality reduction ratio

X R
N×N Pairwise distances between series

Y N
N Labels of the series

A R
∗×∗ Accepted shapelet candidates

R R
∗×∗ Rejected shapelet candidates

V N Number of dimensions

|s| N Length (cardinality) of shapelet s

An illustration of the minimum distances between shapelets and series is shown in Fig. 1
for the TwoLeadECG dataset. Two shapelets (purple) are matched to four time series of two
different classes (red and blue). Following the principle that Eq. 2 states, the distance of a
shapelet is computed to the closest series segment. The distances between training time series
and the two shapelets can project the dataset to a two-dimensional shapelet-transformed
space, as shown in the right subplot. A nearest-neighbor classifier and the corresponding
classification decision boundary are also illustrated (Fig. 1). The notation conventions of this
paper are presented in Table 1.

3.2 Quantification of similarity using a distance threshold

A time-series dataset generally contains lots of similar patterns spread over various instances.
Since series from the same class generally follow a similar structure, similar patterns repeat
over time series of the same class. Similarities can also be observed among time series of
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Fig. 2 a Distribution of distances among random pairs of candidates. b Illustration of similar segments from
the SwedishLeaf dataset with pairwise distances <25th percentile of the distribution in a

different classes, because often classes are discriminated by differences in small subsequences
rather than the global structure. As a result, we raise the hypothesis that existing state-of-the-
art techniques, which exhaustively search all candidates, inefficiently consider lots of very
similar patterns.

Figure 2 illustrates the distribution of distances among arbitrary pairs of candidate seg-
ments from various time series of the UCR collection of datasets [15]. As can be seen from
subfigure a, the distribution of distances is highly skewed toward zero, which indicates that
most candidates are very similar to each other. However, a threshold separation on the sim-
ilarity distance is required to judge segments as being similar or not. We propose to use a
threshold over the percentile on the distribution of distances. For instance, Fig. 2b displays
pairs of similar segments whose pairwise distances are within the 25th percentile of the
distance distribution.

Algorithm1:ComputeThreshold: Compute the pruning similarity distance threshold ε

Data: Time-series data T ∈ R
N×Q , Percentile p ∈ [1, . . . , 100], Shapelet Lengths Φ ∈ N

R

Result: Threshold distance ε ∈ R

Z ← ∅;1
for 1, . . . , NQ do2

Draw random shapelet length Φr ∼ U(Φ1, . . . , ΦR);3
Draw segment indices (i, j) ∼ (U(1, . . . , N ),U(1, . . . , Q − Φr + 1));4

Draw segment indices (i ′, j ′) ∼ (U(1, . . . , N ),U(1, . . . , Q − Φr + 1));5

Z ← Z ∪
{

1
Φr

||Ti, j : j+Φr−1 − Ti ′, j ′: j ′+Φr−1||2
}
;

end6
Z ← sort(Z); ε ← Z
 p

100 N Q�; return ε7

The procedure of determining a distance threshold value, denoted as ε and belonging to the
pth percentile of the distance distribution, is described inAlgorithm1. The algorithm selects a
pair of random segments starting at indices (i, j), (i ′, j ′) and having random shapelet lengths
Φr . Then a distribution is built by accumulating the distances of random pairs of segments,
and the distance value that corresponds to the desired percentile p is computed from the
sorted list of distance values. For instance, in case all the distance values are sorted from
smallest to largest, then the 25th percentile is the value at the index that belongs to 25% of
the total indices.
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In total, there areO(NQR) segments in a time-series dataset, and the total number of pairs
is 1

2 (NQR)(NQR− 1). However, in order to estimate the distribution of a set of values (here
distances), one does not need to have access to the full population of values. On the contrary,
a sample of values are sufficient for estimating the distribution. In order to balance between
a fast and accurate compromise, we choose to select NQ-many random segment pairs for
estimating the distance distributions. The runtime speedup success in Sect. 4.3 indicates that
the distance threshold estimation is accurate.

3.3 Main method: scalable discovery of time-series shapelets

The scalable discovery of time-series shapelets follows the two primary principles of this
paper: (i) pruning of similar candidates and (ii) on-the-fly supervised selection of shapelets.
The rationale of these principles is based on the knowledge that the majority of patterns from
any specific time series are similar to patterns in other series of the same dataset. Therefore,
it is computationally non-optimal to measure the quality of lots of very similar candidates.
Instead, we aim at considering only a small nucleus of non-redundant candidates.

3.3.1 Taxonomy of the terms

The fate of any candidate shapeletwill be one of refused, considered, accepted and rejected.
The decision tree below helps clarifying those terms.

Algorithm 2: DiscoverShapelets: Scalable discovery of shapelets

Data: Time-series data T ∈ R
N×Q , Labels Y ∈ N

N Distance Threshold Percentile p ∈ [1, . . . , 100],

Piecewise Aggregate Approximation ratio r ∈
{
1
2 , 1

4 , . . .
}
, Shapelet lengths Φ ∈ N

R

Result: Accepted shapelets list A ∈ R
∗×∗, Minimum Distances D ∈ R

∗×∗
ε ← ComputeThreshold(T, p, Φ);1
A ← ∅,R ← ∅, D ← ∅, X ← 0N×N , prevAccuracy ← −∞;2
for 1, . . . , NML do3

Draw random series: i ∼ U{1, . . . , N };4
Draw random shapelet length: Φr ∼ U{Φ1, . . . , ΦR};5
Draw random segment start: j ∼ U{1, . . . , Q − Φr + 1};6
Selected random candidate: s ← Ti, j : j+Φr−1;7

if ¬LookUp(s,A0, ε) ∧ ¬LookUp(s,R, ε) then8
ds ← MinDist(s, T ); for i = 1, . . . , N ; m = i + 1, . . . , N do9

Xi,m ← Xi,m+ (
dsi − dsm

)2;10
end11
α ← Accuracy(X, Y );12
if α > prevAccuracy then13

A ← A ∪ {s};14
D ← D ∪ {ds };15
prevAccuracy ← α;16

else17
R ← R ∪ {s};18
for i = 1, . . . , N ; m = i + 1, . . . , N do19

Xi,m ← Xi,m− (
dsi − dsm

)2;20
end21

end22
end23

end24
return A, D25
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Is candidate similar to previously considered ones?

REFUSE candidate! Does candidate improve accuracy?

ACCEPT candidate! REJECT candidate!

Yes. No. Then CONSIDER candidate!

Yes. No.

The similarity of a candidate is first evaluated by looking up whether a close candidate has
been previously considered, i.e., has been previously flagged as either accepted or rejected.
The considered non-redundant (non-similar to previous) candidates are subsequently checked
on whether they improve the classification accuracy of previously selected candidates, and
are either marked as accepted or rejected.

Weare presentingourmethod asAlgorithm2and incrementallywalking the reader through
the steps. The algorithm is started by compressing the time series via the piecewise aggre-
gate approximation (PAA) technique, to be detailed in Sect. 3.4. In order to prune similar
candidates, the threshold distance ε is computed using Algorithm 1. Our method operates by
populating two lists of accepted and rejected shapelets, denoted as A and R, and storing a
distance matrix X for distances between series in the shapelet-transformed space.

3.3.2 Pruning similar candidates

Random shapelet candidates, denoted as s, are drawn from the training time series, and a
similarity search is conducted by looking upwhether similar candidates have been previously
considered (lines 4–8). Equation 3 formalizes the procedure as a similarity search over a list
L (e.g., A or R), considering candidates having same length [length()]. Please note that in
the concrete implementation, we use a pruning of the Euclidean distance computations, by
stopping comparisons exceeding the threshold ε.

LookUp(s,L, ε) := ∃q ∈ L | ||s − q||2 < ε ∧ |s| = |q| (3)

3.3.3 Incremental nearest-neighbor distances

In case a candidate is found to be novel (not similar to previously considered), then the
distance of the candidate to training series is computed using Eq. 1 and stored as ds . Our
approach evaluates the joint accuracy of accepted shapelets, so far, using a nearest-neighbor
classifier over the shapelet-transformed data, i.e., distances of series to accepted shapelets.

When checking how does a new (|A| + 1)st candidate influence the accuracy of |A|
currently accepted candidates, an important speedup trick can be used. We can pre-compute
the distances among shapelet-transformed features in an incremental fashion. The distances
among series in the shapelet-transformed space are stored in a distance matrix, denoted as
X , as shown in Eq. 4.

Xi,m (D) =
|A|∑
j=1

(
Di, j − Dm, j

)2
, ∀i ∈ {1, . . . , N }, ∀m ∈ {1, . . . , N } (4)

We propose a novel trick, which can add the distance contribution of a new candidate
to the distance matrix in an incremental manner. When adding one more attribute ds to
the shapelet-transformed data D, we can use the previously computed pairwise distances to
incrementally update the new pairwise distances as shown in Eq. 5.
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Xi,m
(
D ∪ ds

) =
|A|∑
j=1

(
Di, j − Dm, j

)2 + (
dsi − dsm

)2

= Xi,m (D) + (
dsi − dsm

)2 (5)

Those steps correspond to lines 10–12 and 19–21 in Algorithm 2. It is trivial to verify
that this technique can improve the runtime of a nearest neighbor fromO(N 2|A|) toO(N 2),

which means that we can avoid recomputing distances among previously accepted |A|-many
shapelets, yielding a speedup factor |A| for every considered shapelet candidate.

3.3.4 Supervised shapelet selection

In case the contribution of a unique candidate improves the classification accuracy of a
nearest-neighbor classifier, then the shapelet is added to the accepted list and the distance
vector is stored in a shapelet-transformed data representation D, in order to be later on used
for classifying the test instances. Otherwise, the shapelet is inserted to the rejected list and
the contribution of the candidate to the distance matrix X is rolled back. The classification
accuracy of the distances between series and a set of shapelets is measured by the nearest-
neighbor accuracy of the cumulative distance matrix X . The accuracy over the training data
is formalized in Eq. 6.

Accuracy(X, Y ) := 1

N

∣∣∣
{
i ∈ {1, . . . , N }|Yi = Yargminm,m �=i Xi,m

}∣∣∣ (6)

The mechanism described in Sects. 3.3.3 and 3.3.4 consists of a supervised variable
selection for shapelet-transformed features [10]. The strategy is a “Forward greedy selection”
where shapelets are Accepted incrementally if they improve the accuracy [10].

3.3.5 Number of sampled candidates

Algorithm2 samples shapelet candidates randomly, and however, the total number of sampled
candidates is NQR, which upper-bounds the total possible series segments of a dataset. Our
method could perform competitively even if we would sample a subset of the total possible
candidates, as indicated by Fig. 3c. That plot illustrates that the train and test accuracy on the
StarLightCurves dataset converges well before trying out all the candidates. However, since
the state-of-the-art methods try out all the series segments as candidates, we also opted for
the same approach. In that way, the runtime comparison against the baselines provides an
isolated hint on the impact of the pruning strategy.

3.3.6 An illustration of the process

We present the main idea of our method with the aid of Fig. 3. Subfigures a–c display the
progress of the method on the StarLightCurves dataset, the largest dataset from the UCR
collection [15]. The fraction of considered (accepted+ rejected) shapelets are shown in a
with respect to the total candidates in the X-axis. As can be seen, the first few candidates are
considered until the accepted and rejected lists are populated with patterns from the dataset.
Afterward, the algorithm starts refusing (pruning/not considering) previously considered
candidates within the 25th percentile threshold, while in the end, an impressive 99.97% of
candidates are pruned. In fact, this behavior is not special to the StarLightCurves dataset. We
ran the algorithm over all the 45 datasets of the UCR collection and measured the fraction
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Fig. 3 a–c Relations of refused, rejected and accepted candidate shapelets, and the resulting accuracy, for
the Starlight dataset; d–f histograms of refused, accepted and rejected candidate percentages over all 45 UCR
datasets

of refused candidates as displayed in the histogram of subfigure d. In average, 99.14% of
candidates can be pruned, with cross-validated values p, r on the training data for each
dataset.

Among the considered candidates, a supervised selection of shapelets is carried on by
accepting only those candidates that improve the classification accuracy. Subfigure b shows
that the number of rejections overcomes the number of acceptances as candidates are eval-
uated, which validates the current belief that very few shapelets can accurately classify a
dataset [23]. As a consequence of the accepted shapelets, the train and test accuracy of the
method on the dataset is improved as testified by subfigure c. With respect to all datasets
of the UCR collection, histograms of subfigures d, e show that on average, only 0.06% of
candidates are accepted and 0.81% are rejected.

3.3.7 A further intuition

The similarity-based pruning of candidates can be compared to a particular type of clustering
where the considered candidates represent centroids. In principle, the mechanism resembles
fast online clustering methods [1]. Figure 4 illustrates how the considered shapelets (blue)
can be perceived as an ε threshold clustering of the refused candidates (gray). Each cluster is
represented by a hyper-ball of radius ε in a Φr -dimensional space, for Φr being the shapelet
length. For the sake of illustration, we selected random points of the shapelets and printed
two-dimensional plots of the six considered candidates and 7036 refused candidates from
the MALLAT dataset.

The threshold distance used for pruning similar candidates has a significant effect on the
quantity of refused candidates. Figure 5 shows that an increase in the percentile parameter both
deteriorates the classification accuracy (subfigure a) and significantly shortens the running
time (subfigure b). The higher the distance threshold percentile, themore the distant segments
will be considered similar and subsequently the more the candidates will be refused. In order
to avoid a severe accuracy deterioration, the percentile parameter p needs to be fixed by
cross-validating over the training accuracy.
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Fig. 5 Impact of alternating the distance threshold’s percentile (p) value on accuracy, discovery time and
the fraction of refused candidates

3.4 Piecewise aggregate approximation (PAA)

The PAA is a dimensionality reduction technique that shortens time series by averaging con-
secutive values [6]. Algorithm 3 illustrates how the time series of a dataset can be compressed
by a ratio r . For instance, if r = 1

4 , then every four consecutive points are replaced by their
average values.

Algorithm 3: PiecewiseAggregateApproximation: Compress every series by a ratio
r .

Data: Time-series data T ∈ R
N×Q , PAA ratio r ∈

{
1
2 , 1

3 , 1
4 , . . .

}

Result: T PAA ∈ R
N×
Q r�

T ← 0N×
Q r�;1

for i = 1, . . . , N , j = 1, . . . , 
Q r� do2

for k = 
 1r ( j − 1) + 1�, . . . , 
 j
r � do3

T PAA
i, j ← T PAA

i, j + Ti,k ;4
end5

T PAA
i, j ← T PAA

i, j r ;6
end7

return TPAA8
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Fig. 6 a, b Consequence of PAA into accuracy and running time; c grid sensitivity of the impact of PAA and
the percentile distance threshold over accuracy

PAA significantly reduces the discovery time of shapelets as shown in Fig. 6b for selected
datasets. Moreover, subfigure a shows that the classification accuracy does not deteriorate
significantly because time-series data can be compressed without undermining the series
pattern.

The exact amount of PAA reduction and the percentile of the pruning similarity threshold
are hyper-parameters that need to be fixed per each dataset using the training data. For
instance, Fig. 6c illustrates the accuracy heatmap on the 50 words dataset as a result of
alternating both parameters. As shown, the best accuracy is achieved for moderate values
of percentile threshold and compression. In contrast, (i) excessive compression and (ii) high
threshold percentiles can deteriorate accuracy by (i) destroying informative local patterns by
compression and (ii) pruning qualitative variations of shapelet candidates.

3.5 Algorithmic analysis of the runtime speedup

The runtime of shapelet discovery algorithms, which explore candidates among series seg-
ments, is upper-bounded by the number of candidates in a dataset. Given N -many training
series of length Q, the total number of shapelet candidates has an order of O(NQ2), while
the time needed to find the best shapelet is O(N 2Q4). Please note that the discovery time
is quadratic in terms of the number of candidates. Applying PAA, in order to reduce the
length of time series by a ratio r ∈ { 1

2 ,
1
3 ,

1
4 , . . . ,

}
, does alter the runtime complexity

into O(N 2(r Q)4) translated to O(r4N 2Q4). In other words, PAA reduces the running
time by a factor of r4. Furthermore, similarity pruning of candidates has a determinant
role in reducing the runtime complexity. Let us denote the fraction of considered candi-

dates as f := #accepted+#rejected
NQ2 . Therefore, if executed after a PAA reduction, our algorithm

reduces the number of candidates toO(fN(rQ)2) and impacts the total runtime complexity by
O(fN(rQ)2 × (N (rQ)2 + 2N 2)), which is upper-bounded by O( f r4N 2Q4), since usually
(rQ)2 � 2N . Ultimately, the expected runtime reduction factor achieved by this paper is
upper-bounded by fr4.

There is an additional term that adds up into the runtime complexity: the time needed to
check whether any sampled candidate has been previously considered. Such a complexity is
O(N (rQ2) × f |rΦ∗|), in other words, all candidates times the time needed to search for ε

similarity on the accepted and rejected lists ( f -considered candidates having length |rΦ∗|).
Since |rΦ∗| ∼ O(rQ), then the whole operation has a final complexity of O( f r3NQ3).
Such a complexity is smaller than the time needed to evaluate the accuracy of the candidates
(O( f r4N 2Q4)), which, therefore, does not alter the big-O complexity.

Let us illustrate the theoretically expected speedup via an example. Assume that we
compress time series into a quarter of the original lengths, i.e., r = 1

4 . The average fraction
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Fig. 7 Comparing an incremental NN against a full NN in terms of accuracy, model complexity and classifi-
cation time on 45 datasets from the UCR collection

of considered shapelets in the UCR datasets is f = 0.0086, as previously displayed in
Fig. 3. Therefore, a runtime reduction factor of f r4 = (0.0086)(0.065) ≈ 5.3 × 10−4 is
expected. As shown, the expected theoretic runtime speedup can be four orders of magnitude
compared to the exhaustive shapelet discovery. A detailed analysis of the effects of the
dimensionality reduction (PAA compression) and pruning on the runtime performance is
provided in Sect. 4.6. Furthermore, in Sect. 4.3, we will empirically demonstrate that our
method is faster than existing shapelet discovery methods.

3.6 Effect analysis of supervised shapelet selection

In this subsection, we analyze the effects of the supervised shapelet selection mechanism.
In particular, one could ask whether the incremental nearest-neighbor (NN) method in
Sect. 3.3.3 is better than not pruning based on accuracy. Stated alternatively, would accept-
ing all considered candidates (no rejection as per the taxonomy in Sect. 3.3.1) be equally
preferable?

There are two primary reasons why an incremental NN is needed: interpretability and
classification time. Meanwhile, Fig. 7 helps clarifying both points. One of the motivations
for shapelets is interpretability; therefore, visual comprehension demands a small set of
shapelets [23]. As is seen in Fig. 7b), a full NN (no rejected candidates) ends up having
on average 1477% more accepted candidates than our incremental approach. As a form of
variable subset selection, our incremental NN is expected to achieve comparable accuracy
compared to an NN with a full set of features. As Fig. 7a) indicates, the full NN has slightly
higher accuracy values, and however, the differences are way insignificant according to a
Wilcoxon signed-rank test indicating a p value of p = 0.65272 with a significance level of
p ≤ 0.05. The last argument in favor of an incremental NN approach is the classification
time, which is a trivial consequence of having more features (i.e., more accepted shapelets).
Figure 7c) shows the comparisons of classification times between the two approaches, with
the full NN being on average 1566% slower.

4 Experimental results

4.1 Baselines

In order to evaluate the efficiencyof the proposedmethod scalable shapelet discovery (denoted
by SD), the fastest state-of-the-art shapelet discovery methods were selected, being:
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1. Logical shapelet [17] (denoted as LS) advances the original shapelet discovery method
[23] by one order of magnitude, via: (i) caching and reusing computations, and (ii)
applying an admissible pruning of the search space [17].

2. Fast shapelet [18] (denoted as FS) is a recent state-of-the-art method that proposes
a random projection technique on the SAX representation by filtering potential candi-
dates [18]. FS has been shown to reduce the shapelet discovery time of LS by two to
three orders of magnitude [18].

3. Improved fast shapelet (denoted as FS++) is a variation of FS that we created for
the sake of being fair to the FS baseline. The original FS paper iterates through all the
shapelet lengths from one to the length of the series. In comparison, our method SD
iterates through a subset of the possible lengths (Φ) as mentioned in Sect. 4.2. In order
to be fair (with respect to runtime), we created a variant of the FS, named FS++, that also
iterates through the same subsets of shapelet lengths that SD does.

The comparison against the listed state-of-the-art methods will testify the efficiency of
our method in terms of runtime scalability. When proposing a faster solution to a supervised
learning task, it is crucial to also demonstrate that the speedup does not deteriorate the predic-
tion accuracy. For this reason, we payed attention to additionally compare the classification
accuracy against the baselines.

4.2 Setup and reproducibility

In order to demonstrate the speedup achievements of the proposed shapelet discoverymethod,
we use the popular collection of time-series datasets from the UCR collection [15]. The col-
lection includes 45 univariate time-series datasets of different number of instances, different
number of classes and lengths, found on [15].

Our scalable shapelet discovery method, denoted as SD, requires the tuning of two para-
meters, the aggregation ratio r and the threshold percentile p. The parameters were searched
for each dataset via cross-validation using only the training data. The combination (r, p) that
yielded the highest accuracy on the training set was selected. A grid search was conducted
with parameter ranges being r ∈ {

1, 1
2 ,

1
4 ,

1
8

}
and p ∈ {15, 25, 35}. We start with the fastest

configuration r = 1
8 and p = 35. Subsequently we increase r and decrease p with the values

of the range, one at a time. The selection stops when there is no more increase in accuracy
as a result of relaxing the dimensionality reduction r and threshold p. Finally, the winning
combination of parameters was applied over the test data. We would like to note that we used
three shapelet lengths for all our experiments, i.e., L = 3 and Φ = {0.2Q, 0.4Q, 0.6Q}. In
order to neutralize the randomness effect, all the results of our method represent the averages
over five different repetitions.

We used the Java programming language to implement our method (SD), while the other
baselines (LS, FS, FS++) are implemented in C++. We decided to use the C++ source codes
provided and optimized by the respective baseline paper authors [17,18], in order to avoid
typical allegations on inefficient re-implementations. Finally, we are presenting the exact
number of accepted shapelets per each dataset and the respective percentages of the accepted,
rejected and refused candidates in the columns merged under “SD Performance.” All exper-
iments (both our method and the baselines) were conducted in a Sun Grid Engine distributed
cluster with 40 node processors, each being Intel Xeon E5-2670v2 with speed 2.50GHz and
64GB of shared RAM for all nodes. The operating system was Linux CentOS 6.3. All the
experiments were launched using the same cluster parameters.
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The authors are committed to promote experimental reproducibility. For this reason, the
source code, all the datasets, the executable file and instructions are provided uncondition-
ally.1

4.3 Highly qualitative runtime results

The empirical results include both the discovery time and the classification accuracy of our
method SD against baselines for 45 UCR datasets. Table 2 contains a list of results per
dataset, where the discovery time is measured in seconds. A time-out threshold of 24h was
set for the discovery of shapelets of a single dataset. As can be seen, the logical shapelet (LS)
exceeded the time-out threshold in a considerable number of datasets. The reader is invited
to notice that 24h (86,400s) is a very large threshold, given that our method SD often finds
the shapelets within a fraction of 1 s, as for instance in the 50 words dataset.

It can be clearly deduced that our method SD is faster than the fastest existing baselines
LS [17] and FS [18]. There is no dataset where any of the baselines is faster. Even, our modi-
fication of FS, i.e., the FS++, is considerably slower than SD. For instance, it took only 3.19 s
for our method to find the shapelets of the StarLightCurves dataset, which has 1000 training
instances each having 1024 points. The high-level conclusion from the discovery time results
is: “Since the introduction of shapelets in 2009, time-series community believed shapelets
are very useful classification patterns, but finding them is slow. This paper demonstrates that
shapelets can be discovered very fast.”

The discovery time measurements do not include the time needed by a practitioner to
tune the parameters of the methods. While our method has two parameters (p and r , totaling
3 × 4 = 12 combinations, see Sect. 4.2), the strongest baseline fast shapelet (FS) has more
parameters, concretely four: the reduced dimensionality and cardinality of SAX, the random
projection iterations and the number of SAX candidates (denoted as d, c, r, k in the original
paper [18]).

4.4 Competitive prediction accuracy

In addition, our results are atypical in another positive aspect.Most scalability papers propose
speedups of the learning time by sacrificing a certain fraction of the prediction accuracy. The
results of Table 3 show that our method is both faster and more accurate than the baselines.
The winning method that achieves the highest accuracy on each dataset (on each row) is
distinguished in bold. Our method has more wins than the baselines (21 wins against 13 of
the secondbestmethod) and also a better rank (1.889 against 2.178 of the secondbestmethod).
The accuracy improvement arises from the joint interaction of accepted shapelets as predictors
(distance matrix X in Algorithm 2), while the baselines measure the quality of each shapelet
separately, without considering their interactions during the discovery phase [17,18,23].
Incorporating the interactions among shapelets into the prediction model has been recently
shown to achieve high classification accuracy [9].

4.5 Speedup analysis

In order to show the speedup factor of our method with respect to the (former) state of the
art, we provide another presentation of the results in Fig. 8. The three plots on the left side
show the discovery time of SD in x-axis and the logarithm of the discovery time of each
baseline as the y-axis. As can be easily observed from the illustrative order lines, SD is 4–5

1 fs.ismll.de/publicspace/ScalableShapelets.

123

http://fs.ismll.de/publicspace/ScalableShapelets


Fast classification of univariate and multivariate time series. . . 443

Table 2 Parameters of SD and runtime results of SD and state-of-the-art baselines over 45 UCR datasets (n/a
denotes a 24-h time-out)

No. Dataset SD parameters Discovery time (s)

r p LS FS FS++ SD

1 50 words 0.250 35 n/a 2198.1 35.2 0.36

2 Adiac 0.500 15 12,683.2 332.6 6.4 0.25

3 Beef 0.125 35 242.3 194.9 1.9 0.03

4 CBF 0.500 35 66.9 10.9 0.4 0.03

5 Chlorine. 0.125 15 36,402.3 760.3 13.9 0.17

6 CinC_ECG. 0.125 25 2150.0 4398.9 9.9 0.34

7 Coffee 0.250 35 621.9 22.5 0.2 0.03

8 Cricket_X 0.250 35 n/a 3756.0 47.9 0.63

9 Cricket_Y 0.250 35 n/a 3605.7 45.7 0.52

10 Cricket_Z 0.250 35 n/a 4679.2 46.2 0.67

11 Diatom. 0.125 15 184.3 15.6 0.2 0.02

12 ECG200 0.125 15 618.8 16.3 0.9 0.04

13 ECGFive. 0.500 15 47.6 3.6 0.1 0.03

14 FaceAll 0.500 35 16,255.5 757.5 27.0 1.25

15 FaceFour 0.500 35 561.2 102.9 1.0 0.11

16 FacesUCR 0.500 35 2528.5 280.3 8.7 0.33

17 Fish 0.250 25 11,153.0 935.6 6.7 0.16

18 Gun_Point 0.500 25 266.1 9.5 0.3 0.04

19 Haptics 0.500 25 n/a 12,491.0 31.1 1.78

20 InlineSkate 0.125 15 n/a 22,677.2 42.6 0.61

21 ItalyPower. 1.000 25 4.9 0.4 0.1 0.02

22 Lighting2 0.500 35 5297.6 1131.3 5.0 1.89

23 Lighting7 0.500 35 8619.3 322.8 3.7 0.43

24 MALLAT 0.125 35 1254.9 1736.5 6.2 0.08

25 MedicalImages 0.500 35 19,325.2 371.5 8.5 0.60

26 MoteStrain 1.000 15 6.9 3.1 0.1 0.05

27 Non.Fat.ECG.1 0.250 25 n/a 70,970.6 254.2 7.03

28 Non.Fat.ECG.2 0.125 25 n/a 50,898.0 232.8 4.99

29 OliveOil 0.125 15 502.3 107.2 0.8 0.05

30 OSULeaf 0.125 25 14,186.5 1629.7 20.0 0.15

31 Sony.I 1.000 35 4.6 1.1 0.1 0.02

32 Sony.II 1.000 35 9.8 1.3 0.1 0.03

33 StarLight. 0.125 25 n/a 21,473.5 78.5 3.19

34 SwedishLeaf 0.500 25 11,953.6 451.7 12.9 0.36

35 Symbols 0.250 25 894.3 93.0 0.6 0.04

36 synthetic. 0.250 35 3667.4 63.9 3.6 0.07

37 Trace 0.500 35 4626.9 181.0 1.7 0.13

38 Two_Patterns 0.500 35 65,783.1 957.2 37.7 1.71

39 TwoLeadECG 1.000 25 14.3 1.3 0.03 0.02

40 uWave.X 0.250 25 n/a 4827.5 54.1 4.94
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Table 2 continued

No. Dataset SD parameters Discovery time (s)

r p LS FS FS++ SD

41 uWave.Y 0.250 25 n/a 4379.6 56.6 3.69

42 uWave.Z 0.125 25 n/a 5215.9 50.9 1.83

43 Wafer 0.500 35 34653.1 190.5 5.0 1.39

44 WordsS. 0.250 25 n/a 1140.0 18.7 0.31

45 Yoga 0.250 15 11,389.0 1711.6 11.2 0.34

Total wins 0 0 0 45

Average rank 0.000 0.000 0.000 1.000
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Fig. 8 Time and accuracy comparison of our method (denoted as SD) against state-of-the-art methods in
terms of both discovery time and classification accuracy for all the 45 UCR datasets

orders of magnitude faster than the LS and 3–4 orders of magnitude faster than the FS. The
datasets where LS exceeds the 24-h threshold are depicted in light blue. In addition, FS++
is faster than FS because it iterates over less shapelet length sizes, yet it is still 1–2 orders of
magnitude slower than SD (Fig. 8).

The plots on the right represent scatter plots of the classification accuracy of SD against
the baselines. While generally better than LS and FS, our method SD is largely superior to

123



Fast classification of univariate and multivariate time series. . . 445

Table 3 Parameters of SD and
classification accuracy results of
SD and SOTA baselines over 45
UCR datasets (n/a denotes a 24-h
time-out)

No. Dataset #Acc Classification accuracy

LS FS FS++ SD

1 50 words 39 n/a 0.511 0.446 0.680

2 Adiac 28 0.586 0.574 0.486 0.583

3 Beef 5 0.567 0.513 0.503 0.507

4 CBF 5 0.886 0.935 0.907 0.975

5 Chlorine. 13 0.618 0.579 0.558 0.553

6 CinC_ECG. 13 0.699 0.751 0.656 0.773

7 Coffee 4 0.964 0.921 0.907 0.961

8 Cricket_X 43 n/a 0.472 0.368 0.672

9 Cricket_Y 42 n/a 0.480 0.464 0.675

10 Cricket_Z 44 n/a 0.438 0.376 0.673

11 Diatom. 4 0.801 0.886 0.928 0.896

12 ECG200 10 0.870 0.766 0.786 0.818

13 ECGFive. 5 0.994 0.995 0.994 0.953

14 FaceAll 40 0.659 0.631 0.571 0.714

15 FaceFour 6 0.489 0.917 0.881 0.820

16 FacesUCR 31 0.662 0.703 0.654 0.847

17 Fish 14 0.777 0.809 0.785 0.755

18 Gun_Point 6 0.893 0.933 0.915 0.931

19 Haptics 13 n/a 0.376 0.347 0.356

20 InlineSkate 13 n/a 0.266 0.282 0.385

21 ItalyPower. 6 0.936 0.877 0.796 0.920

22 Lighting2 9 0.426 0.707 0.698 0.795

23 Lighting7 16 0.548 0.630 0.485 0.652

24 MALLAT 7 0.656 0.939 0.926 0.926

25 MedicalImages 34 0.587 0.596 0.494 0.676

26 MoteStrain 5 0.832 0.783 0.767 0.783

27 Non.Fat.ECG.1 41 n/a 0.766 0.622 0.814

28 Non.Fat.ECG.2 44 n/a 0.802 0.635 0.855

29 OliveOil 5 0.833 0.723 0.773 0.790

30 OSULeaf 21 0.686 0.680 0.555 0.566

31 Sony.I 4 0.860 0.686 0.802 0.850

32 Sony.II 5 0.846 0.792 0.945 0.780

33 StarLight. 20 n/a 0.942 0.932 0.933

34 SwedishLeaf 30 0.813 0.779 0.725 0.849

35 Symbols 4 0.643 0.933 0.756 0.865

36 Synthetic. 11 0.470 0.922 0.870 0.983

37 Trace 7 1.000 0.994 0.999 0.965

38 Two_Patterns 38 0.539 0.310 0.753 0.981

39 TwoLeadECG 4 0.856 0.928 0.798 0.867

40 uWave.X 44 n/a 0.707 0.580 0.761

41 uWave.Y 41 n/a 0.608 0.466 0.671

42 uWave.Z 37 n/a 0.627 0.565 0.676
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Table 3 continued No. Dataset #Acc Classification accuracy

LS FS FS++ SD

43 Wafer 10 0.999 0.998 0.949 0.993

44 WordsS. 35 n/a 0.437 0.389 0.625

45 Yoga 17 0.740 0.705 0.697 0.625

Total wins 13 9 2 21

Average rank 2.313 2.178 3.089 1.889

FS++. Such a finding indicates that the accuracy of the FS is dependent on trying shapelet
candidates from a fine-grained set of lengths, while our method is very accurate even though
it iterates over few shapelet lengths.

4.6 A modular decomposition of the performance

We have already seen that our proposed method, SD, outperforms significantly the state of
the art in terms of runtime and produces even better prediction accuracy. Nevertheless, there
are a couple of questions that can be addressed to our method, such as:

1. What fraction of SD’s runtime reduction is attributed to the novel candidate pruning and
what fraction to the PAA compression?

2. To what extent does pruning deteriorate the prediction accuracy?

In order to address those analytic questions, we will decompose our method in a modular
fashion. Our method, SD, conducts both a PAA approximation and a pruning by the parame-
ters r, p provided in Table 2. In order to isolate the effect of compression and pruning, we
are creating four variants of our method, namely all the permutations “With/Without PAA
compression” and “With/Without Pruning” (w.r.t. p, r from Table 2). All the decomposed
results of the SD variants are shown in Table 4. Note that “No pruning” means p = 0, while
“no PAA” means r = 1. The variant with both pruning and PAA is the same as SD from
Sect. 4.3, which already was shown to be superior to the state of the art.

Looking into the results in Table 4, it is important to observe that the variant with PAA
compression alone is significantly faster than the variant without compression (column 4 vs
column 3). However, using pruning without compression is much faster than the exhaustive
approach and also much faster than compression alone (column 5 vs. columns 3 and 4).
When pruning and compression are combined (column 6), then the runtime reduction effect
multiplies. More concretely, Fig. 9 analyzes the runtime reduction in SD variants: that use
pruning (X-axis) against variants without pruning (Y-axis) for both scenarios with PAA (plot
a) or without PAA (plot b) compression. As can be clearly deduced, pruning alone has a
significant effect on the runtime reduction by 3–4 orders of magnitude, compared to the
cases where no pruning is employed. While PAA helps our method to be even faster, it is
clear that the lion’s share of the speedup arises from the proposed pruning mechanism.

There is still a concern on how does pruning affect the classification accuracy. The pre-
diction accuracy results are demonstrated in Table 4 for all the datasets, with the winning
variant emphasized in bold. The total wins and the ranks of the variants indicate that the
best prediction performance is attributed to the exhaustive methods (no pruning, columns 7
and 8). Such a finding is natural because exhaustive approaches consider all the candidate
variants and can extract more qualitative minimum distance features. Yet, are the results of
the exhaustive variants better with a statistical significancemargin? Table 5 illustrates the p
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Table 4 Modular decomposition of the performance of our method (SD); n/a denotes a 24-h time-out

Dataset Discovery time (s) Classification accuracy

✘PAA ✔PAA ✘PAA ✔PAA ✘PAA ✔PAA ✘PAA ✔PAA
✘prun. ✘prun. ✔prun. ✔prun. ✘prun. ✘prun. ✔prun. ✔prun.

50 words 4028.85 154.74 5.24 0.36 0.684 0.701 0.679 0.680

Adiac 799.06 153.21 0.89 0.25 0.624 0.555 0.604 0.583

Beef 61.35 0.65 0.54 0.03 0.533 0.600 0.500 0.507

CBF 2.22 0.57 0.37 0.03 0.992 0.964 0.929 0.975

Chlorine. 1598.05 30.14 2.40 0.17 0.527 0.596 0.539 0.553

CinC_ECG. 3718.48 11.74 12.71 0.34 0.809 0.768 0.776 0.773

Coffee 11.79 1.27 0.39 0.03 0.964 0.893 0.893 0.961

Cricket_X 4218.58 141.80 23.63 0.63 0.697 0.697 0.669 0.672

Cricket_Y 3953.86 137.75 14.20 0.52 0.715 0.687 0.677 0.675

Cricket_Z 5313.96 132.06 40.17 0.67 0.700 0.682 0.726 0.673

Diatom. 5.00 0.50 0.50 0.02 0.915 0.948 0.827 0.896

ECG200 14.59 0.70 0.42 0.04 0.820 0.800 0.830 0.818

ECGFive. 1.41 0.40 0.36 0.03 0.999 0.945 0.981 0.953

FaceAll 1276.24 297.23 4.87 1.25 0.720 0.731 0.724 0.714

FaceFour 18.04 3.10 1.21 0.11 0.852 0.898 0.943 0.820

FacesUCR 107.35 24.74 2.70 0.33 0.871 0.868 0.841 0.847

Fish 1808.85 46.46 1.61 0.16 0.817 0.846 0.800 0.755

Gun_Point 7.69 1.55 0.60 0.04 0.900 0.913 0.953 0.931

Haptics 17,273.44 2634.99 6.59 1.78 0.354 0.373 0.321 0.356

InlineSkate 34,776.14 99.61 19.82 0.61 0.411 0.342 0.313 0.385

ItalyPower. 0.77 0.49 0.62 0.02 0.936 0.925 0.915 0.920

Lighting2 843.42 90.84 12.23 1.89 0.852 0.836 0.836 0.795

Lighting7 120.39 20.15 4.89 0.43 0.699 0.740 0.685 0.652

MALLAT 2295.97 6.25 1.99 0.08 0.909 0.938 0.941 0.926

MedicalI. 349.15 57.75 1.76 0.60 0.625 0.658 0.668 0.676

MoteStrain 0.91 0.62 0.21 0.05 0.734 0.815 0.777 0.783

Non.ECG.1 n/a 35,833.59 36.79 7.03 n/a 0.840 0.795 0.814

Non.ECG.2 n/a 11,086.13 58.18 4.99 n/a 0.852 0.858 0.855

OliveOil 75.17 0.90 1.12 0.05 0.900 0.800 0.700 0.790

OSULeaf 2379.27 16.64 3.18 0.15 0.570 0.541 0.583 0.566

Sony.I 1.28 0.62 0.76 0.02 0.829 0.902 0.792 0.850

Sony.II 0.46 0.47 0.86 0.03 0.727 0.774 0.742 0.780

StarLight. n/a 4673.16 74.14 3.19 n/a 0.933 0.929 0.933

SwedishLeaf 830.60 301.63 1.24 0.36 0.869 0.856 0.856 0.849

Symbols 27.58 1.64 0.58 0.04 0.805 0.787 0.819 0.865

Synthetic. 51.03 6.01 0.56 0.07 0.980 0.993 0.980 0.983

Trace 138.09 25.15 0.60 0.13 0.950 0.990 0.960 0.965

Two_Patterns 4572.63 1216.45 2.78 1.71 0.985 0.984 0.986 0.981

TwoLead. 0.54 0.88 0.41 0.02 0.932 0.774 0.932 0.867

uWave.X 27,142.53 1565.73 19.46 4.94 0.757 0.745 0.762 0.761
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Table 4 continued

Dataset Discovery time (s) Classification accuracy

✘PAA ✔PAA ✘PAA ✔PAA ✘PAA ✔PAA ✘PAA ✔PAA
✘prun. ✘prun. ✔prun. ✔prun. ✘prun. ✘prun. ✔prun. ✔prun.

uWave.Y 25,276.28 1385.23 16.74 3.69 0.647 0.643 0.671 0.671

uWave.Z 24,532.05 513.11 14.09 1.83 0.662 0.668 0.681 0.676

Wafer 6352.87 1750.96 3.31 1.39 0.994 0.994 0.995 0.993

WordsS. 1220.31 44.25 3.13 0.31 0.627 0.639 0.607 0.625

Yoga 5098.73 254.54 3.05 0.34 0.812 0.802 0.799 0.625

Total wins 14.0 15.0 12.0 4.0

Average ranks 2.2 2.3 2.5 2.7
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Fig. 9 Runtime comparison (s) plots among variants of SD with and without pruning

Table 5 Wilcoxon statistical
significance test: p values
(significance level 5%, two-tailed
hypothesis)

✘ PAA ✔ PAA ✘ PAA ✔ PAA
✘ prun. ✘ prun. ✔ prun. ✔ prun.

✘ PAA, ✘ prun. – 0.904 0.119 0.046

✔ PAA, ✘ prun. 0.904 – 0.153 0.112

✘ PAA, ✔ prun. 0.119 0.153 – 0.873

✔ PAA, ✔ prun. 0.046 0.112 0.873 –

values of a Wilcoxon signed-rank test of statistical significance, for a two-tailed hypothesis
with a significance level of 5% (α = 0.05).

The p values which compare variants that use pruning against variants that do not use
pruning are shown in bold and correspond to p = 0.119, p = 0.112. Therefore, the prediction
quality using pruning is not significantly (significance means p < 0.05) worse than the
exhaustive approach. The final message of this section is: “Pruning of candidates provides
3–4 orders of runtime speedup without any statistically significant deterioration in terms of
classification accuracy.”
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Table 6 Comparison of the proposed method SD against LTS and ST

Dataset Accuracies Running time (s)

LTS ST SD LTS ST SD

StarLightCurves 0.964 – 0.933 65,657.07 1,728,000.00* 3.19

Non.Fat.ECG.1 0.865 – 0.814 1,448,862.51 1,728,000.00* 7.03

Non.Fat.ECG.2 0.897 – 0.855 1,528,267.41 1,728,000.00* 4.99

4.7 Comparison to other state-of-the-art shapelet discovery methods

One would categorize the methods focusing on shapelet discovery into “speed-oriented” and
“accuracy-oriented” approaches. The method proposed in this paper SD and the baselines
LS and FS were focused on reducing the runtime of shapelet discovery. On the other hand,
there are other methods which prioritize on achieving the highest classification accuracy. The
most prominent methods on accurate shapelet discovery are “Shapelet Transformation” [14]
(denoted as ST) and the recently more accurate method “Learning Time-Series Shapelet” [9]
(denoted as LTS).

In this section,we aimat showing thatwhile thosemethods aremore accurate, their runtime
is much slower than the proposed method SD. For this reason, we selected the three largest
datasets of the UCR collection as shown in Table 6 and ran SD, ST and LTS on those datasets.
In order to be fair to the baselines, LTS and ST were also run on a subset of shapelet lengths
{0.2Q, 0.4Q, 0.6Q}. For both LTS and ST, we used the source code provided by the authors.
Since those methods are known to be slow, we violated the 24-h time-out in Sect. 4.2 and
instead gave the methods a very large time-out deadline of 20days to complete the execution
over the three datasets. The results in Table 6 indicate that LTS is more accurate than SD in
all the dataset; however, it took LTS from 18.2h to 17.7days to compute. Furthermore, ST
could not finish learning on any of the three datasets within 20days (time-out denoted by *).
On the other hand, SD needs 3.19–7.03 s to compute the shapelets of those datasets, for a
speedup of up to 346,293 times faster. On the other hand, the deterioration in accuracy varies
only between 3.3 and 6.2% worse than LTS.

5 Extension to multivariate time series

Multivariate time series has become increasingly popular in the data mining research com-
munity. Part of the popularity is attributed to the widespread of affordable motion sensor
devices. In fact, multivariate (synonym: multidimensional) time series are a generalization
of univariate series. In the multivariate case, a single time-series instance is composed of
different streams measured at the same time. An example of multivariate series is recordings
of wearable body sensors, where signal measuring devices are positioned at different parts
of the body [2,3].

We can formalize a time-series dataset having N instances and V many dimensions as
T ∈ R

N×V×Q∗, where each series has a different length Ti,:,: ∈ R
Qi ,∀i ∈ {1, . . . , N }.While

the lengths of different instances vary, we assume that the different dimensions within one
instance have the same length. In this section,wewill demonstrate that it is trivial to extend the
method proposed in this paper to multivariate time-series datasets. All is needed is to sample
shapelet candidates from random dimensions and accept them based on their joint accuracy.
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5.1 Addressing challenges of multivariate series

Different series lengths are a common reality for multivariate series. The time-series research
community has worked extensively on the UCR collection of datasets, where the time-
series instances were preprocessed to have the same lengths. In reality, this is rarely the
case; however, different lengths pose no concrete problem for shapelet-based methods. The
minimum distance between a candidate and various series segments is independent on the
number of segments. There is, however, a small problem, the case when a series is shorter
than a shapelet. In order to overcome this concern, we propose to slid the series over the
shapelet, i.e., to measure the minimum distance of a series to all the segments of the shapelet
candidate. Equation 7 formalizes the distance between the vth dimension of the i th series
Ti,v,: and a shapelet candidate s.

D(s, Ti,v,:) :=

⎧⎪⎨
⎪⎩

min
j=1,...,|Ti,v,:|−|s|+1

∥∥Ti,v, j : j+|s|−1 − s
∥∥2 |Ti,v,:| ≥ |s|

min
j=1,...,|s|−|Ti,v,:|+1

∥∥s j : j+|Ti,v,:|−1 − T
∥∥2 |s| > |Ti,v,:|

(7)

Features from different dimensions are known to improve the classification accuracy;
however, related works take diverse approaches in how series of different dimensions are
incorporated. In terms of shapelets, an early approach extended the concept of univariate
shapelets intomultivariate shapelets [8]. However, a labelmight not be associatedwith certain
dimensions, or there might be shifts of the starting time of a pattern across dimensions. As a
result, a recent work [5] proposed to learn a shapelet-based classifier on each dimension and
use a majority voting over the predictions of the per-dimension models.

In contrast, we propose a simple and novel technique to incorporate features from different
dimensions. The principle relies on sampling random candidates from random dimensions.
Roughly speaking, we will harvest accepted and rejected candidates per each dimensions.
Distance features from each dimensions will be jointly integrated into the same incremental
nearest neighbor and filtered by classification accuracy. This mechanism will allow to fuse
features of candidates from different dimensions into a joint feature set.

5.2 Algorithm for multivariate shapelet discovery

The concrete implementation of our multivariate method is described in Algorithm 4. Our
method selects NMLV-many random candidates, from random series i , random dimension v,
random length Φr and starting at random time index j (lines 4–8). Each random candidate is
looked up for similarity to previously considered (accepted or rejected) candidates within that
dimension (line 9). If a shapelet candidate is not found to be similar to previous candidates,
then its feature vector is computed (line 10) and the pairwise distance matrix X is updated
(line 11–13). In case the candidate improves the overall accuracy (line 14), then it is accepted
(lines 15–17), otherwise it is rejected (lines 19–23). In the end, we are going to have lists
of accepted shapelets for each dimension, such that the features of those accepted shapelets
achieve the highest classification accuracy.

5.3 Experimental results

In order to test our method, we compared against the most recent and relevant method
which elaborates shapelets for multivariate classification [5]. Furthermore, we are going to
experiment on four multivariate datasets, whose statistics are displayed in Table 7. Three
of them (“HMP,” “M-Health,” “REALDISP”) are related to human action recognition using
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Algorithm 4: DiscoverShapeletsMultivariate: Scalable discovery of shapelets from
multivariate series
Data: Multivariate time-series data T ∈ R

N×V×Q∗, Labels Y ∈ N
N Distance, Threshold Percentile

p ∈ [1, . . . , 100], Piecewise Aggregate Approximation ratio: r ∈
{
1, 1

2 , 1
4 , . . .

}
, Shapelet

lengths: Φ ∈ N
R

Result: Accepted shapelets list A ∈ R
V×∗×∗, Minimum Distances D ∈ R

∗×∗
εv ← ComputeThreshold(T:,v,:, p, Φ), v ∈ {1, . . . , V };1

A ← ∅V ,R ← ∅V , D ← ∅, X ← 0N×N , prevAccuracy ← −∞;2
for 1, . . . , NMLV do3

Draw random series: i ∼ U{1, . . . , N };4
Draw random dimension: v ∼ U{1, . . . , V };5
Draw random shapelet length: Φr ∼ U{Φ1, . . . , ΦR};6
Draw random segment start: j ∼ U{1, . . . , Qi − Φr + 1};7
Selected random candidate: s ← Ti,v, j : j+Φr−1;8

if ¬LookUp(s,Av, εv) ∧ ¬LookUp(s,Rv, εv) then9
ds ← MinDist(s, T:,v,:); for i = 1, . . . , N ; m = i + 1, . . . , N do10

Xi,m ← Xi,m+ (
dsi − dsm

)2;11
end12
α ← Accuracy(X, Y );13
if α > prevAccuracy then14

Av ← Av ∪ {s};15
D ← D ∪ {ds };16
prevAccuracy ← α;17

else18
Rv ← Rv ∪ {s};19
for i = 1, . . . , N ; m = i + 1, . . . , N do20

Xi,m ← Xi,m− (
dsi − dsm

)2;21
end22

end23
end24

end25
return A, D26

Table 7 Results of scalable shapelet discovery on multivariate datasets, n/a denotes a 24-h time-out

Dataset Data statistics Accuracy Runtime (s)

Train/Te. V Cls. Length Size LS SD LS SD

Characters 1429/1429 3 20 109–205 8.9MB 0.652 0.980 984.55 3.05

HMP 487/492 3 21 125–9318 11.5MB 0.474 0.707 5362.84 2.87

M-Health 63/63 23 12 513–3431 60.3MB 0.746 0.813 33,781.44 13.54

REALDISP 749/749 117 33 318–5643 1.75GB n/a 0.723 n/a 289.40

wearable sensors,while “Characters” represents pen tip trajectories of handwritten characters.
The instances of all datasets were randomly divided into train and test sets. It is interesting
to note that those datasets are diverse in terms of number of dimensions (V from 3 to 117),
number of instances (63–1429), number of classes (‘Cls.’ from 12 to 33) and lengths (109–
5643).

Another aspect worth consideration is the size of the datasets. For instance, REALDISP
has a training set size of 889MB and a total size of 1.75GB, which is considerably large
for labeled time-series data. As a comparison, the largest univariate dataset from the UCR
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collection is “StarLightCurves,” which has a train set of 16MB and a total size of 144MB. In
order to address this size challenge, we opted for the single fastest parameter configuration
for all datasets, with respect to the ranges in Sect. 4.2, concretely r = 1

8 , p = 35. In order to
aggregate the randomness effect, we present the average figures of five different executions
of our method. The runtimes in Table 7 include the classification time.Wewould like to point
out that dataset characters are retrieved from [20], HMP from [4] and M-Health from [2],
while REALDISP is retrieved from [3].

The results in Table 7 indicate great achievements in terms of runtime. Our method can
classify the MB-scale datasets in matters of seconds and the GB-scale dataset in matter of
minutes. Concretely, our method needs <5min to classify the 1.75GB dataset. Compared to
the baseline method [5], our method is 322.8× to 2494.93× faster on the MB-scale datasets.
Unfortunately, the baseline could not complete on the GB-scale dataset under the 24-h time-
out specified in Sect. 4.3. On the other hand, our method is more accurate than the baseline
on all the datasets. We believe that such a superiority comes from the joint interactions of
features from different dimensions, as opposed to learning isolated per-dimension classifiers.

6 Conclusion

Shapelets represent discriminative segments of a time-series dataset, and the distances of time
series to shapelets are shown to be successful features for classification. The discovery of
shapelets is currently conducted by trying out candidates from the segments (subsequences)
of the time series. Since the number of candidate segments is large, the time-series community
has spent efforts on speeding up the discovery time of shapelets. This paper proposed a novel
method that prunes the candidates basedon adistance threshold to previously consideredother
similar candidates. In a joint fashion, a novel supervised selection filters those shapelets that
boost classification accuracy.We empirically showed that our method is 3–4 orders of magni-
tude faster than the fastest existing shapelet discovery methods, while providing a better pre-
diction accuracy. In addition, we extended our method to multivariate datasets. Results indi-
cate that our approach is able to classifyMB-scale datasets in amatter of seconds andGB-scale
datasets in a matter of minutes, therefore transporting shapelet discovery to the Big Data era.
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