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Abstract Plagiarism cases are quite common in mobile applications ecosystems like the
Androidmarket. An application can be decompiled, modified and repackagedwith a different
author name. The modifications can affect the user’s privacy or even contain malicious logic.
If the original application is supported by advertisements, they are usually replaced so the ad
revenue will go to the repackager. Such events can cause the legitimate author damage both
in reputation and financially so they need to be detected. A plagiarism detection system is
proposed that can detect plagiarized applications based on the features extracted from code.
Two similarity functions are given along with techniques for finding similar applications in a
large collection. Themain issuewith this search is that it cannot be performed sequentially, by
comparing a given itemwith every other item in the collection. The built solutionwill improve
the search time by comparing the searched item only with those with a high probability of
being similar. The greatest advantage of our approach is scalability. The system’s database
can be built, updated and queried in reasonable time, even when large quantities of data are
involved. Our experiments were conducted on a large collection of over one million samples
and managed to identify a concerning number of plagiarism cases.
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1 Introduction

Smartphone sales experienced a spectacular growth, as they surpassed the sales of regular
phones in 2013 [11]. The largest market share belongs to the Android devices, with more
than 758 million units being sold last year. One of the causes for this success is the vast
applications ecosystem, where users can chose from more than over one million apps [30].

These Android applications are usually written in Java [6] and run in custom environments
[5] like Dalvik virtual machine or lately in Android Runtime (ART). The developers publish
them on various markets, the most popular currently being the Play Store. For an entity to
publish something in the Play Store it needs to perform a one-time payment of 25$. When
an application is published, the publisher has the following revenue methods:

– in-app payment (usually used for games to buy premium items)
– the application itself can have a price
– the application can contain different Adware SDKs [2] (the most popular option)

One problem experienced by the developers is that their applications are easy to decompile
and revert to the source code [19], just like any Java applications. There is currently no
mechanism to prevent an attacker to plagiarize an existing application. The usual workflow
for the attacker is depicted in Fig. 1:

(a) choose an application from the market. Usually a popular application is chosen (as this
increases the probability for somebody to download the repackaged version). Android
applications come as APK files, which are basically ZIP archives that contain the pro-
gram’s code, resources and manifest.

Fig. 1 App plagiarism workflow get binary
application
(APK)

decompile/
disassemble
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(b) decompile or disassemble the application [1]
(c) modify some components
(d) recompile and sign the application with the new vendor key
(e) publish the application

This technique has several advantages for the attacker:

– He/she does not have to deal with the tedious job of writing an app/testing it/creating the
graphics and so on, since all of these things are already done by somebody else.

– He does not need to promote the application—the vendors of the original app are already
doing this.

– The most important aspect: it does not take too long to create a repackaged app. An
experienced hacker could do it in less than an hour. This translates in small effort for a
great applications and good revenue.

If the attacker’s goal is to make profit from the plagiarized app, he will usually add new
advertisement SDKs to it and remove the existing ones. Sometimes things can be as simple
as replacing the author identification in the advertisement SDK in order to redirect the ad
revenue to the attacker. The attacker may also add new content to the plagiarized application,
but this content will not be for the user’s benefit. They can add spyware code that affects the
user’s privacy or even malicious logic.

Thedifficulty of detecting suchplagiarismcases consists in the fact that the newapplication
code is similar but not identical with the original one. Besides the modification performed
on the advertisement SDKs or code additions, the attacker may perform various obfuscation
techniques at the repacking stage. Simple tools like ProGuard [16] can “remove unused code
and rename classes, fields, and methods with semantically obscure names.” More advanced
obfuscation tools can perform code-level transformations, like adding garbage instructions
or modifying blocks of code with semantically equivalent ones.

Since the names of the classes, fields and methods are easily renamed into something
completely different, we will only consider the program’s code when checking for similarity.
We will use OpCodes n-grams here, as they proved robust enough to detect code similarities
on other platforms [20,27]. In the context of this paper, an OpCode or operation codewill be
the operator part of an assembly instruction, without the operands. An OpCode n-gram is a
sequence of n consecutive OpCodes extracted from a program’s code. Since the application’s
code is separated intomethods, wewill alsoworkwithmethods, by computing hash functions
on each method’s n-grams. We will use classic hashing for identifying identical methods
and locality-sensitive hashing [14,24] for identifying similar methods (methods with a high
percentage of common n-grams).

Unlike other platforms like Windows where most library code comes as external
dynamical link libraries, an Android APK contains the library packages in the same file
(classes.dex) as the application’s code. Since the size of library code can exceed the
size of application code, it is important to filter it out before computing the similarity score.
Otherwise, a pair of different applications that use the same library may be flagged as similar.

The paper proposes two methods for computing the similarity between Android applica-
tions: shallow similarity and deep similarity. Shallow similarity will work at methods level,
taking into account the common methods. Deep similarity will work at n-grams level and
will also consider the near-identical methods in the applications.

For each approach, we will propose an algorithm that retrieves the similar items in a
collection, without comparing the searched item with every other item. Although the two
similarity functions are based on the same principle, this search will be different because the
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number of n-grams has a greater order of magnitude than the number of methods so we will
need to do an approximate search for the deep similarity.

The database containing the relevant information about applications, methods and n-
grams will be constructed using aMap-Reduce approach [9]. This programming model takes
as input a set of key-value pair and produces another set of key-value pairs. The programmer
must supply a map function that requires an input pair and insures an intermediate key-value
pair. The framework feeds all the intermediate pairs with the same key to a reduce function
that produces the output. The biggest advantage of this model is the scalability, as it is able
to process large amounts of data on thousands computing nodes.

The following section will present other approaches for finding plagiarism cases in mobile
applications and is followedby a description of commonly used attack vectors for repackaging
apps. The two code similarity function will be detailed next, followed by the architecture
of a system that can store a continuously growing collection of applications and retrieve
plagiarism cases. The next section will present the experimental results obtained by our
system along with some of the practical issues that we have encountered. The paper ends
with conclusions and future work directions.

2 Related work

Plagiarism detection has been approached in other papers as well. Any kind of data can be
plagiarized, including documents, multimedia files or programs (both at source code level
or at binary level). We are not interested in verbatim copies, as they are easy to spot by
hashing an entire collection of documents and comparing the documents with the same hash.
Near-identical copies, where the plagiarizer makes some modifications are harder to detect.
Most approaches relied on the concept of n-grams (also called k-grams). An n-gram can be
considered as a group of n consecutive items from a sequence.

A tool called sif was presented in [18] and was able to find similar files in a large file
system. The authors considered two files to be similar if “they contain a significant number
of common substrings that are not too small.” It was one of the first attempts to apply
fingerprinting techniques in order to find matches in a large collection.

Heintze in [13] approached the scalability problem. The presented solution only takes into
account a fixed number of fingerprints, in order to preserve storage space.

The ideas behind Moss, a publicly available solution is presented in [26]. The system is
designed for plagiarism detection in programming assignments. The authors also host a web
server where users can upload a collection of source codes and receive a similarity report.
Moss also includes a visualization component that shows similar regions in the source code.

Mobile applications plagiarism detection is also an interesting research topic, as we iden-
tified several recent papers dealing with this subject.

In [22], the focus was on cases where the attacker added malicious code to existing
applications. The authors showed that 29.4% applications from a collection of 158,000 are
more likely to be plagiarized because they already have the permissions that an attacker
needs. For deciding whether two programs are similar or not, three schemes were proposed:
Symbol-Coverage,AST-Distance andAST-Coverage. The first one relies on the symbol names
extracted from the application and works only if no form of obfuscation has been involved.
The other two schemes are based on Abstract Syntax Trees, a model that considers for each
method only the number of arguments and the other invoked methods. Based on these trees,
feature vectors can be built for the entire application or at method level. AST-Distance finds
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plagiarism cases in a collection by comparing the feature vector extracted from a given
application with the feature vectors of the other applications in the collection, while AST-
Coverage matches the method-level feature vectors of two applications and searches for the
maximum coverage. All these schemes work by comparing a given application with all the
others in the collection. The tested collection was small, containing only 7600 samples.

The authors in [8] attempted to eliminate the pairwise similarity computations by cluster-
ing the applications in the first phase. The clustering is performed based on the application’s
attributes. Only the applications situated in the same cluster will then be pairwise verified for
plagiarism by comparing the Program Dependence Graphs [10]. The graphs are compared in
two phases. The first phase tries to filter out the pairs that are too different while the second
one performs the more costly operation of finding subgraph isomorphisms. The paper also
addresses the problem of eliminating the library code and the author identification so that
two programs belonging to the same author won’t be flagged as plagiarism. The framework
was tested on a collection of 75,000 free Android applications and managed to check for
plagiarism an average of 0.71 application pairs per minute.

Juxtapp is another system proposed by Hanna et al. [12] that detects vulnerable code
reuse, malicious samples and piracy (plagiarism) cases. This system uses OpCode n-grams
like ours but doesn’t split the code into methods. Since the number of n-grams extracted
from an application is quite large, a feature hash is produced, represented as a bit vector.
Two such bit vectors can be compared using the Jaccard distance. Finding all cases of similar
applications is still a quadratic problem, as each pair must be checked. The system was tested
on a collection of 58,000 applications from the Android official market and from the Anzhi
third party market.

The three systems above employ various methods for detecting whether two applications
are similar but are working on small samples collections (less than 100,000). The focus of our
system is scalability, as it manages to deal with a collection bigger than one million samples,
while still correctly identifying plagiarism cases. Also, our paper presents some practical
considerations when dealing with the applications ecosystem. One such consideration is that
inmanyAndroid applications, the quantity of library code exceeds the quantity of application-
specific code, making library code identification a top priority.

3 Attack vectors for plagiarizing mobile applications

This section will summarize the attack techniques used for plagiarizing Android applica-
tions. We will take into account the entire applications market environment, since a simple
comparison between applications is not enough. For instance, we will assume that the goal of
the attacker is to make profit. If the cost and effort for plagiarizing and publishing the cloned
application is comparable to the cost and effort for developing a new legitimate one, the attack
is not likely to happen. Even if this cost is a fraction (like 10%) of the development cost for a
new app, it is still more profitable to develop than to plagiarize, since cloned apps are usually
short-lived (they are soon reported and taken down from the market). For instance, the case
study in Sect. 6.2 shows that plagiarized applications managed to stay on the market up to
10–14 days. During this time, most of them got between 1000 and 5000 installs by users.
However, the original application had between 1 and 5 million users (Google Play doesn’t
report exact numbers, only intervals), which is 1000 times better.

Another valid reason for reusing the code of an existing application is to spread malware.
According to [31], 86% of the malware samples are “repackaged versions of legitimate
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applications with malicious payloads.” This means that detecting repackaged applications
will help discover new malware.

In 2007, Roy andCordywrote a comprehensive survey [25] on software cloning. Although
their scope goes beyond Android and mobile applications, their taxonomy can successfully
be applied in our case. The authors of the survey identified four types of cloning, the first
three being based on textual similarity, while the last one considers functional similarity:

– Type I: “Identical code fragments except for variations in whitespace and comments.”
Since whitespace and comments are not considered when producing bytecode, no plagia-
rism detection system that relies on already compiled applications will be affected by this
type.

– Type II: “Structurally/syntactically identical fragments except for variations in identifiers,
literals, types, layout and comments.” Some plagiarism detectors take into account the
name of methods, classes or packages (like the Symbol-Coverage technique from [22]).
Official tools like ProGuard [16] allow developers to eliminate these types of literals from
their applications in order to make them smaller andmore resistant to reverse engineering.
Our proposed system will not take into account the literal names, so it is unaffected by
this type of cloning.

– Type III: “Copied fragments with further modifications.” Besides cloning, code-level
modifications are introduced manually or automatically. PANDORA [23] is a proof-of-
concept tool designed to apply obfuscation techniques to the Android bytecode in order
to make it different from a syntactic point of view. Depending on the obfuscation level,
similarity functions based on n-grams or Abstract Syntax Tree are still able to detect
common elements between the original and the plagiarized application. The difficulty
mainly consists in balancing the true-positive and the false-positive rates. A small simi-
larity threshold will detect more plagiarism cases but will also flag some legitimate apps
as being plagiarized. A high similarity threshold will avoid most of the false positives but
will also miss some of the clones.

– Type IV: “Two or more code fragments that perform the same computation but imple-
mented through different syntactic variants.” It is generally undecidable [29] if two
programs produce the same output on any given input. Even human experts will not
always agree if a pair of samples is a plagiarism case or just a reuse of the same idea.

Since the approach in this paper is based on the binary code found in the classes.dex file,
it is not affected by Type I and Type II cloning. Sometimes the delimitation between Type IV
and Type III clones might not be clear, as one would need to decide whether a piece of code
is re-implemented or simply obfuscated. In what follows, we will consider Type IV changes
only those changes performed by humans, while code-level changes performed by automated
system will be classified as Type III, regardless of their sophistication. Type IV clones are
difficult to detect using only statical analysis and difficult to prove. Although the general
problem of identifying Type IV clones is equivalent to the halting problem [29], there are
particular cases where automated analysis can still give valuable insights. If only some parts
of the code are re-written, while the others are left intact or simply obfuscated, the remaining
parts can still trigger a high similarity score. The quantity of manually re-written code is also
correlated with the development cost for the attacker: Making few changes would be cheap,
but the risk of being detected is high, while making too many manual changes would be
impractical. Even if all the methods of an application are re-implemented, the clone can still
be detected using structural features, if the classes structure and hierarchy are left unchanged.

In a 2012 paper [22], the authors also described two levels of obfuscation: level 1 only
addresses changes to the symbol table (this corresponds to a type II cloning fromRoy’s taxon-
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omy), while level 2 considers a number of added methods with no functionality (this partially
covers type III). According to the authors, only level 1 obfuscation has been encountered in
practice.

Detecting type III clones depends on the nature and the number of changes applied to the
original code. The approach in this paper is based on OpCodes n-grams, a method robust to
most of these changes. Bellow, we will enumerate the type III cloning approaches from [25]
and see how the current approach handles them.

– near-miss clones non-identical code fragments that keep the syntactical structure. Since
theOpCode includes only the operation to be performed, not the operands, a code fragment
will be abstracted as a sequence of operations, that will remain identical, in this case.

– gapped clones and non-contiguous clones some code segments are inserted or deleted.
The success of the n-grams approach is highly dependent on the amount of changes. If
enough segments of at least n consecutive instructions are preserved, the clone will still be
detected. If a significant amount of code is altered this way, the clone will evade detection,
but the effort for the attacker will also be higher. A clone with a large number of changed
code fragments may also be categorized as type IV clone, which is out of our scope.

– structural clones and function clones the syntactic structure of the program is modified.
In the Android case, some classes can be moved from one package to another, or some
methods can be moved from one class to another. Also, package and classes can be split
or joined. Since our abstraction considers an application to be a set of methods, such
structural changes do not modify the abstract view. The only change that can affect our
approach is to move blocks of code between methods.

– reordered clones the order of some code segments is changed, such that the code semantics
is preserved. Two methods will be compared as unordered sets of n-grams. The only n-
grams that will differ will be the ones that cross the border between two segments. For
instance, if the sequence of operations ABCDEFGH is changed into EFGH ABCD
(the two halves are swapped), and we extract 2-grams (n = 2), the only different 2-g will
be DE that will be replaced by H A, while the remaining 2-g (AB, BC , CD, EF , FG
and GH ) will remain the same.

The applications similarity functions in the next sectionwill output a similarity score, based
on the amount of common code, between two applications. Since type I and II clones produce
identical features, the similarity score will be 100%, so there will be no issue in detecting
them. For type III clones, however, the similarity threshold (the lower bound, above which
a pair of applications will be suspected as plagiarism) must be chosen such to maximize
detection while avoiding false positives. The problem is that many Android applications
contain a large amount of library code. It is not uncommon for an Android application to be
comprised of more than 90% (sometimes even more than 99%) library code. Two different
applications may look very similar because they are using the same library, so even if we set
the threshold at 90%, we can’t avoid the false positives.

Our approach will try to identify library code and disregard it while computing the simi-
larity score. Some library code was labeled manually, while most of it was identified because
it appeared in multiple applications from different developers. A possible attack against this
method is to publish multiple plagiarized versions of the same application under different
developer IDs. If enough different versions will be found in the market, an automated system
will automatically label the entire application code as library and will not identify further
plagiarism cases. This attack is viable, since creating a new developer account is relatively
inexpensive (25$). Amitigation to this attack is to assign a reputation score to each developer,
based on the number of application he published, the user ratings for those applications and
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the amount of time he has been in the market. A code fragment will only be flagged as library
if the sum of the reputation values for the developers that use it exceeds a threshold. This
will not make the attack impossible, but will increase the cost for the attacker enough for the
plagiarism not to be profitable.

4 Applications similarity functions

This section deals with the similarity issue and proposes two methods for computing the
similarity between applications: shallow similarity and deep similarity. Both methods are
based on the applications code and use the concept of n-grams discussed in the introductory
section.

A similarity function is a function that takes as input two applications and outputs a real
number between 0 and 1, as in Eq. 1. If sim(A1, A2) = 1 it means that the two applications
have the same non-library code, while a similarity of 0 means that they are completely
different (except for library code).

sim : A × A → [0, 1] (1)

Definition 1 We will say that two applications A1, A2 ∈ A represent a plagiarism case iff
sim(A1, A2) ≥ θp . θp ∈ [0, 1] is a constant called plagiarism threshold.

The set A is the set of all applications in a collection. An application is represented as
a set of methods: A = {M1, M2, . . . , Mk} Mi ∈ M,∀i ∈ 1, k. The set M is the set of
all the unique methods found in the collection’s applications. We will also represent each
method as a set of n-grams. An n-gram, as discussed in the first section, is a sequence of n
consecutive OpCodes from a method. The set of all n-grams from the collection’s methods
will be denoted by G.

4.1 Publishers identification and library code

In order to publish an application in the Android market developers need to create an account
[3]. Currently, there is a one-time fee of 25$ for creating a new account, “to encourage higher
quality products on Google Play (i.e., less products with SPAM).” A developer may publish
asmany applications as hewants from the same account. An application is uniquely identified
by a package name and is self-signed with a “certificate whose private key is held by the
developer” [4]. In order to update an existing application, the new version must have the
same package name and be signed with the same certificate.

Since the publisher name can be easily changed in the developer’s account, we will rely
on the following two facts when identifying the publishers:

– If two applications have the same package name, they belong to the same publisher.
– If two applications are signed with the same certificate, it means that the signers had the

same private key so they must be the same entity.

The above assumptions don’t hold if the private key of a publisher is leaked or if the cer-
tificate’s algorithm is insecure. On this matter, we have identified several applications that
are still signed using the MD4 hash algorithm that was already proved to be insecure [17].
However, most applications use MD5 or SHA for hash in their certificate.

In what follows, we will consider pub : A → N, a function that assigns a publisher id to
each application. If pub(A1) = pub(A2), it means that the applications A1 and A2 have the
same publisher.
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We will now give the definition for library code. Informally, we will consider library code
a piece of code that is widely used, usually by many publishers. To improve the system’s
accuracy, some n-grams andmethodsmay bemanuallymarked as library code. The following
definitions will formally illustrate the concepts of library n-grams and library methods.

Definition 2 The set of library n-grams is a set GL ⊂ G that contains all the n-grams found
in at least θGL different methods and the n-grams manually marked as library code, as in
Eq. 2. The set of non-library n-grams will be denoted by G� = G\GL .

GL = {g ∈ G | |{M ∈ M | g ∈ M}| ≥ θGL} ∪ LG (2)

θGL is a chosen threshold for library n-grams and LG is the set of manually chosen library
n-grams. For performance reasons, we won’t associate the n-grams with publishers and will
relay only on the number of methods they appear into.

Definition 3 The set of library methods is a set ML ⊂ M that contains all the methods
found in at least θML1 different applications or used by at least θML2 publishers and the
methods manually marked as library code, as in Eq. 3. The set of non-library methods will
be denoted by M� = M\ML .

ML ={M ∈ M | |{A ∈ A | M ∈ A}| ≥ θML1}
∪ {M ∈ M | |{pub(A) | A ∈ A ∧ M ∈ A}| ≥ θML2}
∪ LM (3)

θML1 and θML2 are a chosen thresholds for librarymethods and LM is the set ofmanually
chosen library methods.

In order to mitigate the attack described in the previous section, where a plagiarized
application can be re-published usingmultiple accounts so that the entire code will be flagged
as library code, we can alter Eq. 3 in the following way:

ML = {M ∈ M | |{A ∈ A | M ∈ A}| ≥ θML1}

∪
⎧
⎨

⎩
M ∈ M

∣
∣
∣
∣
∣
∣

∑

P∈{pub(A)|A∈A∧M∈A}
reputation(P) ≥ θML2

⎫
⎬

⎭

∪ LM (4)

Basically, in Eq. 4, instead of counting the number of distinct publishers, we add their
reputation values. The reputation function is computed for a given publisher based on the user
ratings and the number of downloads for their published apps. The cost for creating a large
number of high-rated user accounts is high enough to discourage this attack. The threshold
θML1 is larger than the highest number of applications published by a single developer. This
way, an attacker cannot force our system to flag all the application’s methods as library code
by publishing θML1 versions of it using a single account. In theory, it is possible to get
beyond this threshold using several accounts and publish a large number of clones with all
of them, but this kind of behavior may raise other suspicions.

In the rest of this paper we will consider that each application in our collection has a
reasonable number of non-library methods. An application with too few non-library methods
(less than a given threshold) will be excluded from the collectionA as we cannot find similar
applications based on its extracted code.
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4.2 Shallow similarity

After formally defining the concept of library code in the previous subsection, we can now
define the shallow similarity between two applications in Eq. 5.

ssim : A × A → [0, 1]
ssim(A1, A2) = |{M ∈ M� | M ∈ A1 ∧ M ∈ A2}|

|{M ∈ M� | M ∈ A1 ∨ M ∈ A2}|
(5)

In other words, the shallow similarity is the Jaccard similarity between the sets where the
library methods have been filtered out. It computes the ratio between common non-library
methods and total non-library methods.

Let A ∈ A be an application. If we denote by A� ⊂ A the subset of non-library methods
from A, A� = {M ∈ A | M ∈ M�}, Eq. 5 can be rewritten in a simpler way, in Eq. 6.

ssim(A1, A2) = |A�
1 ∩ A�

2|
|A�

1 ∪ A�
2|

(6)

One disadvantage of this similarity function is that it assumes the attacker will leave
most of the application’s code unaltered. If the attacker uses an obfuscation tool that slightly
modifies the code of each method so at least an n-gram will be altered, the shallow similarity
will fail to recognize the plagiarism. Internally, a method is stored as a hash on the sorted list
of n-grams, so the method hashes won’t be the same.

In [22] it is argued that although advanced obfuscation methods exist, “their applicability
to mobile applications remains unknown due to the specific byte-code format and the tight
resource and energy constraints.” Their model allows the attacker to add or remove some
methods but not to perform modifications at the method level.

For the cases where method-level modifications are performed, our system is still able to
detect the plagiarism cases, by using the deep similarity presented in the next subsection.

If the average number of non-library methods in an application is m (we have already
denoted with n the number of consecutive OpCodes in the n-grams) and the applications are
represented as sorted lists, the computation complexity is O(m).

4.3 Deep similarity

Deep similarity goes beyond method level and tries to match the non-identical methods
between the applications based on their n-grams.

First of all, we will define the similarity between twomethods in the sameway the shallow
similarity between two applications was defined.

msim : M� × M� → [0, 1]

msim(M1, M2) =
⎧
⎨

⎩

0, if |{g ∈ G� | g ∈ M1 ∩ M2}| = 0
|{g ∈ G� | g ∈ M1 ∩ M2}|
|{g ∈ G� | g ∈ M1 ∪ M2}| , otherwise

(7)

The msim function in Eq. 7 computes the similarity between two methods using the
Jaccard similarity function on the non-library n-grams. Notice that a method may have all
the n-grams in GL (library n-grams) yet not be a library method. If we need to compute
the similarity between two such methods, the denominator of the fraction would be 0. For
this reason, the first branch of the equation states that if the two methods have no common
n-grams, their similarity is be 0.
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For practical purposes, we may consider the similarity between two methods only if it is
above a certain threshold (θm). In this case, we will use msim′ instead of msim:

msim′(M1, M2) =
{
msim(M1, M2), if msim(M1, M2) ≥ θm
0, otherwise

(8)

If we take a closer look at Eqs. 5 and 6, we observe that the difference between the
numerator and the denominator of the fractions consists in the non-common methods from
both A1 and A2. Equation 6 can be further rewritten as:

ssim(A1, A2) = |A�
1 ∩ A�

2|
|A�

1 ∩ A�
2| + |A�

1\A�
2| + |A�

2\A�
1|

(9)

Because shallow similarity works at method level, it won’t take into account matches
between methods from A�

1\A�
2 and methods from A�

2 \ A�
1 that have common n-grams.

Given two sets of methods X, Y ∈ M�, with X ∩ Y = ∅, we can associate each pair
(x, y) with x ∈ X , y ∈ Y with a weight, w(x, y) = msim(x, y). At this point, we can find
a matching between the two sets of methods by solving the maximum weighted bipartite
matching problem (also called the assignment problem). Several polynomial algorithms
exist for this task, the most notable one being the Hungarian algorithm [15].

The best match value between the sets X and Y will be denoted by bm(X, Y ) and is
expressed in Eq. 10.

bm : M� × M� → R+

bm(X, Y ) = max
min(|X |,|Y |)∑

i=1
msim′(xi , yi ),

xi ∈ X, yi ∈ Y,

xi = x j , yi = y j ,∀i = j

(10)

The best match value between the non-common methods of the two applications A1 and
A2 can be added to the fraction’s numerator in Eq. 6 to compensate for the non-identical
function matches. This new similarity function will be called deep similarity and will be
expressed in Eq. 11.

dsim : A × A → [0, 1]
dsim(A1, A2) = |A�

1 ∩ A�
2| + 2 · bm(A�

1\A�
2, A

�
2\A�

1)

|A�
1 ∪ A�

2|
(11)

The best match value at the numerator is scaled by 2, because each pair of non-common
methods M1 ∈ A1, M2 ∈ A2 contributes with 2 to the denominator while their match can
contribute to the numerator with less than 1.

Unlike the shallow similarity, deep similarity is able to identify plagiarism cases even if
the attacker performs changes in the code of each method. The drawback is that the deep
similarity function is harder to compute. If the average number of non-library methods in
an application is m, the complexity of the Hungarian algorithm that finds the best match
is O(m3), which is considerably higher than O(m), the cost for computing the shallow
similarity.

5 System’s architecture and algorithms

The previous section presented the two similarity functions forAndroid applications. Shallow
similarity is faster to computewhile deep similarity ismore robust to obfuscations and both of
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them work well when they need to check a pair of applications for plagiarism. Unfortunately,
the real-world problems are more difficult than this. One common use-case is to add a
new application to the system and search for all similar applications belonging to different
publishers. Another one would be to output all the plagiarism cases found in the collection.
The system also need to scale well and deal with a collection of millions of applications.

5.1 Data model

In order to satisfy the scalability requirement we have used a NoSQL database. Our choice
was MongoDB [7]. The data are stored into four main collections:

– ApkToMet maps the relation between applications and methods. Each item is a document
that stores the application id and the sorted list of method hashes in the application. The
application’s publisher id is also stored here.

– MetToNgr maps the relation between methods and n-grams. For each method, we will
store a sorted list with all the method’s n-grams.

– MetToApk is the reversed index for the ApkToMet collection. If a method is non-library,
the collection will hold all the applications that contain it. Otherwise, a boolean field of
the document will store the fact that this is a library method.

– NgrCount is a simple collection that counts how many times each n-gram appears in
methods.

The reversed index (MetToApk collection) is used for finding similar applications without
checking every item in the ApkToMet collection.

Instead of storing a mapping form n-grams to methods, the last collection will store a
simple count for each n-gram. Storing an entire list of methods for each n-gram would take
up too much space.We will show that we can still find methods similar to a given one without
using a reversed index, by employing the locality-sensitive hashing technique.

The ER (Entity-Relationship) diagram is presented in Fig. 2.

5.2 Database construction

Building the database presented in the previous subsection from a raw collection of applica-
tions is no easy task, due to the size of the data. We will use the Map-Reduce model [9] for
dividing this task into smaller tasks.

This model involves two functions: map and reduce. map takes as input a raw data item
and produces key-value pairs, through the function emit. TheMap-Reduce framework groups
all these pairs by the key and then passes to each reducer a key and the list of values that
were emitted for that key. The reduce function should implement the processing of these
value lists for each key. After the reduce phase, the algorithm may finish or use the results
for another map-reduce stage.

Our implementation uses two map-reduce stages for building the entire database, as in
Fig. 3.

In the first stage, each application is processed by the function map-1 described in Algo-
rithm 1.

map-1 processes an application and extracts the methods. For each method, a hash on the
sorted list of n-grams is computed by the hash function and added to the methodHashes
list (line 3). Each method is also emitted along with the id of the current application (line
4). After the list of method hashes has been constructed, it is inserted into the ApkToMet
collection with the application’s id as primary key.
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Fig. 2 Data model ER diagram
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Algorithm 1 map-1(A)

Require: An application A ∈ A
Ensure: A will be stored in the ApkToMet collection
Ensure: All methods will be emitted.

1: methodHashes ← {}
2: for all M ∈ A
3: methodHashes ← methodHashes ∪ {hash(M)}
4: emit(M, A.id)

5: end for
6: ApkToMet.insert(A.id,methodHashes)

The Map-Reduce framework groups together all the application ids emitted for the same
method. The reducers from the first stage, implemented by the function reduce-1 in Algo-
rithm 2, will receive a method with all the emitted application ids for it.

Algorithm 2 reduce-1(M, Apps)
Require: A method M ∈ M
Require: A list of application ids Apps
Ensure: The method’s n-grams will be stored in the MetToNgr collection.
Ensure: The method M will be stored inMetToApk collection.

1: MetT oNgr.insert(hash(M), M, band- hashes(M))

2: if |Apps| ≥ θML1 or |unique- pubs(Apps)| ≥ θML2 then
3: MetToApk.insert(hash(M), I sLibrary = 1)
4: else
5: MetToApk.insert(hash(M), Apps = Apps)
6: end if
7: for all g ∈ M
8: emit(g, 1)
9: end for

Algorithm 2 starts by inserting the method’s n-grams in theMetToNgr collection, with the
method hash as primary key. The reason we perform the insertion at this point and not in the
map-1 function is that the same method may belong to several applications. A unique index
would ensure it won’t be inserted more than once, but the search would still be performed
every time. The band hashes computed on the method’s n-grams are also inserted in the
database at this point, in order to ensure that similar methods can be retrieved given a set of
n-grams. The locality-sensitive hashing approach will be detailed in Sect. 5.3.3.

Next, the method is inserted in theMetToApk collection. If the method is a library method
(M ∈ ML ), according to Definition 3 and Eq. 3, the list of application ids won’t be stored
into the collection, just the information that it’s a library method (line 3).

According to Fig. 3, the reduce phase in the first stage (reduce-1) is immediately followed
by the map phase from the second map-reduce stage (map-2). Since both operations work at
the method level, they have been joined in Algorithm 2. Themap-2 operation is performed in
the lines 7–9, and for each n-gram g ∈ M , the value 1 is emitted for the key g. This ensures
that the reducers from the second stage will count the number of containing methods for each
n-gram.

The second-stage reducers are described by the function reduce-2 from Algorithm 3 and
perform a single operation: count how many times an n-gram was emitted and insert this
information into the NgrCount collection. Since each time an n-gram is emitted the value 1
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Algorithm 3 reduce-2(g, Lst)
Require: An n-gram g ∈ G
Require: A list of 1s Lst
Ensure: g will be stored in NgrCount collection.

1: NgrCount.insert(g, |Lst |)

is used, the parameter Lst of reduce-2 will be a list containing as many values of 1 as the
number of methods the n-gram g was found in.

5.3 Searching for similar items

We have established in the previous section that both shallow and deep similarity are easy to
compute when a pair of samples needs to be checked for plagiarism. The problem gets more
difficult when we are searching for all the applications in the collection that are similar to a
given one or when we are searching for all the pairs of similar applications. We would like
to avoid the naive algorithms where we have to compare the searched application with every
other application in the first case or check every pair of applications in the second case. This
subsection will propose three new algorithms for:

– finding similar items based on shallow similarity
– finding all pairs of similar items based on shallow similarity
– finding similar items based on deep similarity

Each of the following algorithms is based on the Map-Reduce model. Local map and
reduce procedures will be implemented in each one of them. As discussed above, map
will receive a raw item and emit key-value pairs, while reduce will be called for each key
and the associate list of values and optionally return an output. The perform- map- reduce
function puts it all together by calling map on each item from the input list and return a list
with all the outputs returned by the reducers. Unlike classical Map-Reduce frameworks, we
have designed our system to perform fast similarity queries so fault tolerance was not an
issue. This gives a better performance, since there is no need to store intermediary results on
permanent storage and more flexibility, since the map and reduce functions need not to be
stateless.

5.3.1 Finding similar apps based on shallow similarity

Algorithm4 receives an application A ∈ A and produces a list with all the similar applications
that have different publishers than A, based on shallow similarity.

The map function is called for each method M ∈ A. The method is searched in the
MetToApk collection (line 2). If M is a non-library method, then each application B in its
list of apps is a candidate for similarity so it will be emitted (line 5).

A candidate B will be emitted once for each non-librarymethod that is commonwith A, so
the number of elements in the list Lst , the second parameter of reduce will be equal to this
number: |Lst | = |A� ∩ B�|. To compute the shallow similarity as in Eq. 6, we will also need
the size of the union, for the fraction’s denominator. By applying the inclusion–exclusion
principle, we have:

|A� ∪ B�| = |A�| + |B�| − |A� ∩ B�|
= |A�| + |B�| − |Lst |
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Algorithm 4 find- similars- shallow(A)

Require: An application A ∈ A
Ensure: A list of applications similar with A

1: procedure map(M)

2: Rec ← MetT oApk.query(M)

3: if not Rec.I sLibrary then
4: for all B ∈ Rec.Apps
5: emit(B, 1)
6: end for
7: end if
8: end procedure

9: procedure reduce(B, Lst)

10: s ← |Lst |
|A�| + |B�| − |Lst |

11: if s ≥ θp and pub(A) = pub(B) then
12: return B
13: end if
14: end procedure

15: return perform- map- reduce(A)

This means that the equation in line 10 correctly computes the shallow similarity between
A and B (s = ssim(A, B)). All we have to do now is to check whether this similarity is
above the plagiarism threshold and that A and B have different publishers. If both conditions
hold, B will be added to the list of applications similar with A.

To compute the complexity of Algorithm 4, we will assume that a database query takes
constant time (if it is indexed properly) and that an average application has m methods. If
M ∈ M�, the maximum number of applications in a MetToApk record is θML1, so the
map function will emit at most θML1 values. Since map is called for each method, the
number of operations performed by the first phase of Map-Reduce is O(m × θML1). In
the reduce phase, we need to compute |B�|, or how many non-library methods have the set
B (|A�| can be computed once then cached), so m database queries will be performed. In
the worst-case scenario, the reduce function is called for each emitted pair, so it will be
called O(m × θML1) times. Assuming that θML1 is constant, the final complexity will be
O(m2).

5.3.2 Finding all pairs of similar apps based on shallow similarity

Algorithm 5 builds a list with all the plagiarism cases found in the database and is very
similar to Algorithm 4. It also has a map phase that processes methods, but the inputs won’t
belong to a single application but will be the entireMetToApk collection (or the setM). For
a non-library method M ∈ M�, each pair of applications that contain it will be emitted with
the value 1, for counting (line 5).

The reduce function is identical with the one from Algorithm 4, with the exception that
the key input is a pair, not a single application and the output list will also contain pairs.

In order to speed-up, the computations, |A�| and |B�|,won’t be computed for every reducer.
Instead, the number of non-library methods for each application can be precomputed (also
with a Map-Reduce algorithm) and accessed in O(1). The map function now considers all
the pairs of apps that contain the non-library method M ∈ M�, which number is at most
θML1(θML1 − 1)

2
or O(θ2ML1). The map phase that needs to call map |M| times is the

123



A scalable approach for detecting plagiarized mobile… 159

Algorithm 5 find- all- similars- shallow()

Require: The database described in the previous subsection
Ensure: AllSims, a list of plagiarism cases

1: procedure map(M)

2: Rec ← MetT oApk.query(M)

3: if not Rec.I sLibrary then
4: for all A, B ∈ Rec.Apps, A.id < B.id
5: emit((A, B), 1)
6: end for
7: end if
8: end procedure

9: procedure reduce((A, B), Lst)

10: s ← |Lst |
|A�| + |B�| − |Lst |

11: if s ≥ θp and pub(A) = pub(B) then
12: return (A, B)

13: end if
14: end procedure

15: return perform- map- reduce(M)

most costly part of the algorithm, since both the reduce phase and the counting of non-library
methods for all applications take less operations. The complexity for Algorithm 5 is then
O(|M| × θ2ML1) or O(|M|) if we consider θML1 to be a constant.

5.3.3 Finding similar apps based on deep similarity

This algorithm is split into three parts. Algorithm 6 finds similar methods with a given one,
while Algorithm 7 and Algorithm 8 implement the map and reduce phases for finding similar
applications based on deep similarity.

The function find- similars- methods from Algorithm 6 receives a method M and out-
puts a list of methods whose similarity with M is above the threshold θm (from Eq. 8). Each
item in the list is a pair that contains the similar method and the actual similarity score. The
list is sorted by this similarity in descending order (the method with the highest similarity
being the first).

The idea for finding similar methods is different fromfinding similar applications, because
we don’t have a reverse index for the MetToNgr collection. We will use locality-sensitive
hashing [14] instead. Informally speaking, a locality-sensitive hash is a hash function where
the collision probability for similar items is higher than the collision probability for dissimilar
ones.

In [24] it is proved that the collision probability for a minhash is equal to the Jaccard
similarity. A minhash is a function that retrieves the minimum element from a set, according
to a permutation σ : h(X) = minx∈X σ(x). A permutation σ on the set {0, 1, 2, . . . p−1} can
be approximated by σ(x) = (a · x + b) mod p. The collision probability can be augmented
with the banding technique: We will use b × r different minhash functions, grouped on b
bands, each containing r rows. On each band, a band hash is computed on the results of the
r minhash functions. If the Jaccard similarity between two applications is s, the probability
that at least one band hash has the same value is 1 − (1 − sr )b. Guidelines for choosing the
parameters b and r were given in [21].
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Let θm = 0.8. If we pick r = 4 and b = 10, the probability for two methods with
similarity θm to have at least one common band hash is 99.48%. If the similarity between
the two methods is 0.3, the probability drops to 7.81%.

In order to be able to find similar methods with a given one, wewill augment the collection
MetToNgr with the b band hashes computed on the non-library n-grams. These band hashes
need to be updated periodically, because an n-gram can move from G� to GL after adding
new applications to the collection. If we keep indexes on all these b band hashes, we can
find similar candidates by querying the collection for items with the same band hash on each
band.

Algorithm 6 find- similars- methods(M, A)

Require: A method M ∈ A
Ensure: A list of methods similar with M that don’t belong to A and the associated similarities

1: candidates ← ∅
2: MRec ← MetToNgr.query(M)

3: for i = 1 → b
4: rs ← MetToNgr.query(bandi = MRec.bandi )
5: candidates ← candidates ∪ rs
6: end for
7: results ← ∅
8: for all C ∈ candidates \ A
9: s ← msim(M,C)

10: if s ≥ θm then
11: results ← results ∪ {(C, s)}
12: end if
13: end for
14: sort(results)
15: return results

Algorithm 6 begins by querying the database for the current method record. A list of
candidate similar methods is produced, by querying the collection MetToNgr for records
with the same band hashes (lines 2–6). Each candidate except for the actual queried method
is checked for similarity with M and if the similarity is at least θm , the candidate and the
similarity scores are added to the results list. Finally, the result list is sorted in descending
order on the similarity field (line 14) and returned (line 15).

The function find- similars- methods that finds methods similar to the given parameter
M is a useful tool for finding similar applications. The function that performs this task
find- similars- deep is split between Algorithm 7 where we can find the map phase and
Algorithm 8 that contains the reduce code.

The map function from Algorithm 7 receives one of the application’s methods (M ∈ A)
as a parameter and emits applications that are likely to be similar to A, along with a similarity
weight and the information that the method is common with A or is just similar to one of A’s
methods.

If the method M is not a library method, each application B that contains it is emitted with
the weight w = 1 and the information that the method is common to A and B, common =
true (line 5). For each method similar to M that doesn’t belong to A and is not a library
method, all applications that haven’t been used so far for this method are emitted with the
weight w = 2 · s and the information that the method is not common to A, common = false.

The reason for choosing the weight to be twice the similarity is because the best match
value is also multiplied by two in Eq. 11. The common field will be used by the reduce
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function to treat differently the fact that an emit operation was performed from a common
method or a similar method.

Algorithm 7 find- similars- deep(A)—part 1
Require: An application A ∈ A
Ensure: A list of applications similar with A

1: procedure map(M)

2: Rec ← MetT oApk.query(M)

3: if not Rec.I sLibrary then
4: for all B ∈ Rec.Apps \ {A}
5: emit(B, (w = 1, common = true))
6: end for
7: used Apps ← Rec.Apps
8: sims ← find- similars- methods(M, A)

9: for all (M ′, s) ∈ sims
10: Rec ← MetToApk.query(M ′)
11: if not Rec.I sLibrary then
12: for all B ∈ Rec.Apps
13: if B /∈ used Apps then
14: emit(B, (w = 2 · s, common = false))
15: used Apps ← used Apps ∪ {B}
16: end if
17: end for
18: end if
19: end for
20: end if
21: end procedure

Algorithm 8 find- similars- deep(A)—part 2
1: procedure reduce(B, Lst)
2: num ← 0, common ← 0
3: for all val ∈ Lst
4: num ← num + val.w
5: if val.common then
6: common ← common + 1
7: end if
8: end for
9: s ← num

|A�| + |B�| − common
10: if s ≥ θp and pub(A) = pub(B) then
11: s′ ← dsim(A, B)

12: if s′ ≥ θp then
13: return B
14: end if
15: end if
16: end procedure

17: return perform- map- reduce(A)

Algorithm8describes the second phase of the find- similars- deep function, the reducers
code. The inner reduce function is called for each application B that has a chance of being
similar to A and also receives all the emitted values for it. At this point we could compute
the value dsim(A, B) and decide whether the applications are indeed similar or not. The
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problem is that this computation is costly, so we want to perform it only for applications that
are very likely to be similar to A.

The denominator of the fraction in Eq. 11 is easy to compute using the inclusion–exclusion
principle like we did in Algorithm 4 because we can count exactly how many common
methods were emitted from the common filed of each emitted value (lines 5–7). Next, we
will prove the following lemma:

Lemma 1 The sum of all the emitted weights for a key B in Algorithm 7 is greater or equal
than the fraction’s numerator in Eq. 11.

Proof Each time the application B is emitted as potentially similar to A, we either have
a common method (Algorithm 7, line 5), in which case the weight is 1, the method either
belongs only to B and is similar to one of the A’s methods (Algorithm 7, line 14).

num =
∑

key=B

w =
∑

key=B
common=true

w +
∑

key=B
common=false

w

= |A� ∩ B�| +
∑

M∈A�\B�

∑

M ′∈B�\A�

2 · msim′(M, M ′)

≥ |A� ∩ B�| + 2
∑

M∈A�\B�

max
M ′∈B�\A�

msim′(M, M ′)

≥ |A� ∩ B�| + 2 · bm(A�\B�, B�\A�)

From Lemma 1 we have that the variable s computed at line 9 in Algorithm 8 is greater
or equal than dsim(A, B). This means that if s < θp , B cannot be similar to A. We will only
compute the real deep similarity only if s ≥ θp .

6 Experimental results

6.1 Algorithms running times

We have created the database described in the previous section for a collection of 1,165,942
Android samples from the Google Play market. The collection comprised mostly of free
apps, but we also had a small budget (a couple of hundreds US dollars) in order to purchase
the most popular paid apps.

The database was created from an initial collection of 1,065,000 samples that grew as new
applications were added. The initial construction took 4days and 15h. After that, several
thousands new samples were added daily.

Table 1 shows the total running times of the three functions used for the database con-
struction. The map-1 function took 76.7h or 69% of the total time. From this time, 94%

Table 1 Running times for
database construction

Operation Running time (h)

map-1 76.7

reduce-1 27.7

reduce-2 6.46

123



A scalable approach for detecting plagiarized mobile… 163

or 72.1h were spent parsing the binary applications in order to extract the methods and the
n-grams. Both reduce-1 and reduce-2 times also contain the time spent by the framework
to build the list of values for each key.

Having the database built, the average running time for finding all pairs of similar appli-
cations based on the shallow similarity (Algorithm 5) takes 2h and 37min.

Both searches for similar applications with a given one vary with the number of methods
of the searched sample. If we use the shallow similarity algorithm, the running time takes
from less than a second to a couple of seconds. Deep similarity is more costly, varying from
a few seconds for small applications to a few minutes on average and more than 10min for
large applications.

6.2 Similarity cases found by the system

Before discussing the results found by the system, we must point out that the similarity of
two application could indicate different things:

– they both may be using the same framework but with a slightly change configuration (e.g.,
a framework for on-line radio but with different addresses fromwhere the application uses
the radio-stream).

– one could be an re-branded version of the other (e.g., the vendor of the first application is
willingly selling it’s code to another vendor; the other vendor usually only applies some
UI changes to the original app (colors, skin, images, icon, texts, etc).

– finally, one could be a copy of the other one, without any previous agreement between
the two vendors (plagiarism).

Although our goal is to find only plagiarism cases (the third case), the system will also
output some pairs that belong to the first two cases.

The first case should be ruled out by the library code identification that was previously
discussed. In practice, a popular framework that is used by enough different developers or
by many different applications will be marked as library code automatically. The methods
extracted from other frameworks/libraries can be manually set as library code. However,
the system may still have some false alarms for different applications that use the same
uncommon framework.

Unfortunately the second case is almost impossible to rule out automatically. The dif-
ference between a re-branding and a plagiarism case can consist only in some agreement
between the vendors that cannot be inferred by an automatic system and sometimes not even
by a human.

For the plagiarism cases we will also be interested in the monetization techniques used by
the attacker. We have established in the introductory section that 1h could suffice to create a
repackaged app. The 25$ payment is still needed for publication so there must be methods
for getting more money out of a repackaged app. The answer lies in the third step from Fig. 1,
the modifications performed to the original application. The most common changes that can
easily be applied are:

– if an Adware SDK is used, change the ad sdk unique identifier. This identifier tells the
server where to put the virtual money that is earned by clicking an add. In many cases this
is merely a string that can be easily replaced with another one (for example, the following
string represents an add id for Google AdMob SDK: “UA-99999999-9”)

– add another Adware SDK preferable one that can offer more money through advertising.
This is a little bit more difficult than the first approach as it requires an integration with the
application. However, several Ad SDK offers push notification a technique that does not
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Table 2 Example of application that was plagiarized

Package Vendor Installs Price

com.vectorunit.red Vector unit 1,000,000 5,000,000 ∼2.3 Euro

com.vectorunit.red.bdroid.a12b2f30 Jennifer Nelson 100–500 Free

com.vectorunit.redbbzf50 Laura Stone 1000–5000 Free

com.vectorunit.red.bdroid.a12b2102 Janet Stofkoper 1000–5000 Free

com.vectorunit.red.bdroid.a12b2100 Joshua Parker 1000–5000 Free

require a special integration with the host app, but only a separate thread that from time to
time will alert the user about different promotional offers. Furthermore, push notifications
do not require the app that is hosting the SDK to be active for them to work. This actually
makes this technique more expensive (e.g., having push notification usually means more
money for the one that is hosting them) as the user can be spammed continuously with
promotional messages.

– remove some components that are not required (remove some adSDKor different payment
methods that the app is using).

Table 2 shows an example of such a case. The first line represents the original application.
The next ones are different copies of it. In this case the original app was not free. The copies,
however, were free and bundled with the following Adware SDK: AirPush, StartApp. Even
if all of the copies had different vendors they all share the same Ad identifier for the two
adware SDK; this is a clear indicator that the same entity was behind this action. Furthermore,
additional permissions was added to the repackaged forms:

– android.permission.VIBRATE
– android.permission. ACCESS_COARSE_LOCATION
– android.permission. ACCESS_FINE_LOCATION
– android.permission.ACCESS_WIFI_STATE
– android.permission.READ_PHONE_STATE
– com.android.launcher.permission. INSTALL_SHORTCUT
– com.android.launcher.permission. UNINSTALL_SHORTCUT

All of these permissions were required by the AdSDK. For example, INSTALL_SHORTCUT
offers the AdSDK the possibility of adding icons to the main desktop (each added icon gives
the vendor some money).

To make it even more convincing, the repackaged app had a similar icon with the original
one (actually the mirror image of the original icon). The two icons are depicted in Fig. 4.

These results represent the state of the market on May 2013. The fake applications were
removed (they usually managed to stay up to 10–14days in the market). Also the number
of installs and/or price of the original application may have changed during this time. The
names used by the repackaged apps for the vendors are obviously fake (most likely were
chosen randomly).

It’s not clear how much money the ones that created these fake apps gain; however, it’s
likely that is more than 25$ per app. Furthermore, assuming that the users that installed the
fake apps would have bought the original one, then the original vendor would have gain from
10,000 to 50,000 Euros.

Algorithm 5 ran on the entire collection of 1,165,942 Android samples and found 214,818
pairs of applications whose shallow similarity was above θp = 50%. The total number of
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Fig. 4 Example of icon modifications in a repackaged app

Table 3 Statistics on the similar
pairs found in the collection

Interval (%) Nr. pairs Nr. samples

100 18,709 5587

[90–100) 38,920 14,949

[80–90) 38,182 13,807

[70–80) 32,177 15,486

[60–70) 40,063 17,599

[50–60) 46,767 20,117

unique samples involved was 44,675. The involved samples were also grouped into 4047
clusters using the single linkage approach [28].

We have split the similar pairs by the similarity score as in Table 3. The first category
contains the pairs with a perfect match (100% similarity on non-library methods), while the
subsequent categories contain the 10% length intervals starting from 50%. The values are
also illustrated in the chart from Fig. 5.

For each interval, we have counted the number of pairs with the similarity in that interval,
along with the number of unique samples involved. Since an application A can be 95%
similar to an application B and 75% similar to an application C , the sum on the Nr. samples
column is greater than the total number of unique samples involved in the pairs.

The involved samples were also analyzed dynamically for behavior that affects the user’s
privacy. The following undesired actions were found:

– id Sending the device unique identifier on the Internet.
– e-mail Sending the user’s e-mail address.
– pass Different user’s passwords are sent in plain text.
– location Sending the user’s GPS location.
– phone Sending the phone number.
– contacts Sending the contacts from the user’s phone agenda.
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Fig. 5 Statistics on the similar pairs found in the collection

Table 4 Statistics on the similar pairs found in the collection

Interval (%) id e-mail pass location phone contacts

100 777 24 21 74 18 0

[90–100) 2451 157 88 152 69 1

[80–90) 2291 157 85 133 79 1

[70–80) 2702 186 75 171 92 1

[60–70) 3169 192 97 178 103 1

[50–60) 3643 194 102 240 102 1

For each similarity interval, we have counted how many involved applications perform
the actions above in Table 4.

Most of the actions from Table 4 are attributed to aggressive Adware SDKs that were
introduced by the attacker to gain more financial revenue.

7 Conclusions and future work

We have proposed a new approach for finding plagiarism cases in the Android applications
market. Since the number of current applications is over one million, the main concern was
scalability.

Two similarity metrics, shallow similarity and deep similarity, can be used to compute
how similar two applications are. They are both based on feature extracted from the code, but
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the shallow similarity works with methods hashes while the deep similarity also considers
similar but non-identical methods based on their OpCode n-grams.

Although deep similarity is slower to compute, the performance is not an issue when
checking a single pair of applications. Our solution solves the problem of searching for
applications similar to a given one in the entire collection, or even finding all the pairs of
similar items.

A database was designed to store all the collection’s data in a manner that allows fast
retrieval of similar applications. The search is based on the concepts of reversed index and
locality-sensitive hashing and is performed using Map-Reduce algorithms. For shallow sim-
ilarity, we can find all pairs similar to a given one or all similar pairs. For deep similarity, we
can perform an approximate search in order to retrieve even heavily obfuscated clones for a
given application.

The designed system was able to handle a large collection of 1,165,942 Android samples,
fromwhich44,675unique oneswere involved in 214,818 similarity cases.Adynamic analysis
on the involved applications showed that plagiarism not only affects developers but also the
users, by performing actions that affect the user’s privacy.

As future development, we will continue to work on library code identification, in order
to obtain more accurate results.
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Iaşi, where he received his Ph.D. in 2012, with the thesis entitled
“Meta-heuristics for Anti-Malware Systems.” He received his B.Sc.
and M.Sc. in Computer Science from the same university, in 2004
and 2006, respectively. He is also an Antimalware Research Manager
at Bitdefender, managing team of 60+ people that develops heuristic
detections, cloud-based services, system testing services, disinfection
routines, Android and iOS analysis, event correlation algorithms, data
mining, IoT and cyber security analysis.
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