
Knowl Inf Syst (2016) 49:375–402
DOI 10.1007/s10115-015-0895-7

REGULAR PAPER

Set containment join revisited

Panagiotis Bouros1 · Nikos Mamoulis2 · Shen Ge2 ·
Manolis Terrovitis3

Received: 28 January 2015/Revised: 28 July 2015/Accepted: 3 October 2015 /
Published online: 26 October 2015
© Springer-Verlag London 2015

Abstract Given two collections of set objects R and S, the R ��⊆ S set containment join
returns all object pairs (r, s) ∈ R × S such that r ⊆ s. Besides being a basic operator in
all modern data management systems with a wide range of applications, the join can be
used to evaluate complex SQL queries based on relational division and as a module of data
mining algorithms. The state-of-the-art algorithm for set containment joins (PRETTI) builds
an inverted index on the right-hand collection S and a prefix tree on the left-hand collection R
that groups set objects with common prefixes and thus, avoids redundant processing. In this
paper, we present a framework which improves PRETTI in two directions. First, we limit
the prefix tree construction by proposing an adaptive methodology based on a cost model;
this way, we can greatly reduce the space and time cost of the join. Second, we partition the
objects of each collection based on their first contained item, assuming that the set objects
are internally sorted. We show that we can process the partitions and evaluate the join while
building the prefix tree and the inverted index progressively. This allows us to significantly
reduce not only the join cost, but also the maximum memory requirements during the join.

This work was conducted while P. Bouros was with The University of Hong Kong.

B Panagiotis Bouros
pbour@cs.au.dk

Nikos Mamoulis
nikos@cs.hku.hk

Shen Ge
sge@cs.hku.hk

Manolis Terrovitis
mter@imis.athena-innovation.gr

1 Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark

2 Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong,
SAR, China

3 Institute for the Management of Information Systems, Research Center “Athena”,
Artemidos 6 & Epidavrou, 15125 Marousi, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-015-0895-7&domain=pdf

376 P. Bouros et al.

An experimental evaluation using both real and synthetic datasets shows that our framework
outperforms PRETTI by a wide margin.

Keywords Set-valued data · Containment join · Query processing · Inverted index · Prefix
tree

1 Introduction

Sets are ubiquitous in computer science andmost importantly in the field of datamanagement;
they model among others transactions and scientific data, click streams andWeb search data,
text. Contemporary data management systems allow the definition of set-valued (or multi-
valued) data attributes and support operations such as containment queries [1,23,37,38,42].
Joins are also extended to include predicates on sets (containment, similarity, equality, etc.)
[21]. In this paper, we focus on the efficient evaluation of an important join operator: the
set containment join. Formally, let R, S be two collections of set objects, the R ��⊆ S set
containment join returns all pairs of objects (r, s) ∈ R × S such that r ⊆ s.

Application examples/scenarios Set containment joins find application in a wide range of
domains for knowledge and data management. In decision support scenarios, the join is
employed to identify resources that match a set of preferences or qualifications, e.g., on real
estate or job agencies. Consider a recruitment agency which besides publishing job-offers
also performs a first level filtering of the candidates. The agency retains a collection of job-
offers R where an object r contains the set of required skills for each job, and a collection
of job-seekers S with s capturing the skills of each candidate. The R ��⊆ S join returns
all pairs of jobs and qualifying candidates for them which the agency then forwards to job-
offerers for making the final decision. Containment joins can also support critical operations
in data warehousing. For instance, the join can be used to compare different versions of
set-valued records for entities that evolve over time (e.g., sets of products in the inventories
of all departments in a company). By identifying records that subsume each other (i.e., a set
containment join between two versions), the evolution of the data is monitored and possibly
hidden correlations and anomalies are discovered.

In the core of traditional database systems and data engineering, set containment joins
can be employed to evaluate complex SQL queries based on division [13,32]. Consider for
example Table 1 which shows two relations. The first relation shows students and the courses
they have passed, while the second relation shows the required courses to be taken and passed
in order for a student to acquire a skill. For example, Maria has passed Operating systems
and Programming. As the courses required for a Systems Programming skill are Operating
systems and Programming, it can be said that Maria has acquired this skill. Consider the
query “for each student find the skills s/he has acquired” expressed in SQL below:

select P1.Student, R1.Skill
from Passes as P1, Requires as R1
where not exists (select R2.Course

from Requires as R2
where R1.Skill = R2.Skill
and not exists (select P2.Course

from Passes as P2
where P2.Student=P1.Student
and P2.Course=R2.Course));

123

Set containment join revisited 377

Table 1 Example of relational
division based on set containment
join: “for each student find the
skills s/he has acquired”

Student Course

(a) Relation passes

John Algorithms

Peter Databases

Maria Op. systems

Peter Programming

John Databases

Maria Programming

Peter Op. systems

Skill Course

(b) Relation requires

DBA Databases

DBWeb Databases

DBWeb Programming

Sys. Prog. Programming

Sys. Prog. Op. systems

It is not hard to see that this query is in fact a set containment join between relations
Requires and Passes, considering each skill and student as the set of courses they require or
have passed, respectively. This example demonstrates the usefulness of set containment joins
even in classic databases with relations in 1NF.

In the context of datamining, containment join can act as amodule during frequent itemset
mining [31]. Consider the classic Apriori algorithm [2] which is well known for its generality
and adaptiveness to mining problems in most data domains; besides, studies like [43] report
that Apriori can be faster than FP-growth-like algorithms for certain support threshold ranges
and datasets. At each level, the Apriori algorithm (i) generates a set of candidate frequent
itemsets (having specific cardinality) and (ii) counts their support in the database. Candidates
verification (i.e., step (ii)), which is typically more expensive than candidates generation
(i.e., step (i)), can be enhanced by applying a set containment join between the collection of
candidates and the collection of database transactions. The difference is that we do not output
the qualifying pairs, but instead count the number of pairs where each candidate participates
(i.e., a join followed by aggregation).

Motivation The above examples highlight not only the range of applications for set contain-
ment join but also the importance of optimizing its evaluation. Even though this operation
received significant attention in the past with a number of algorithms proposed being either
signature [21,28–30] or inverted index based [24,27], to our knowledge, since then, there
have not been any new techniques that improve the state-of-the-art algorithm PRETTI [24].
PRETTI evaluates the join by employing an inverted index IS on the right-hand collection
S and a prefix tree TR on the left-hand collection R that groups set objects with common
prefixes in order to avoid redundant processing. The experiment analysis in [24] showed
that PRETTI outperforms previous inverted index-based [27] and signature-based methods
[29,30], but as we discuss in this paper, there is still a lot of room for improvement pri-
marily due to the following two shortcomings of PRETTI. First, the prefix tree can be too

123

378 P. Bouros et al.

expensive to build and store, especially if R contains sets of high cardinality or very long.
Second, PRETTI completely traverses the prefix tree during join evaluation, which may be
unnecessary, especially if the set of remaining candidates is small.

Contributions Initially, we tackle the aforementioned shortcomings ofPRETTI by proposing
an adaptive evaluation methodology. In brief, we avoid building the entire prefix tree TR
on left-hand collection R which significantly reduces the requirements in both space and
indexing time.Under this limited prefix tree denoted by �TR , the evaluation of set containment
join becomes a two-phase procedure that involves (i) candidates generation by traversing the
prefix tree and (ii) candidates verification. Then, we propose a cost model to switch on-the-
fly to candidates verification if the cost of verifying the remaining join candidates in current
subtree is expected to be lower than prefix tree-based evaluation, i.e., candidates generation.

Next, we propose theOrder and Partition Join (OPJ) paradigm which considers the items
of each set object in a particular order (e.g., in decreasing order of their frequency in the
objects of R ∪ S). Collection R and S are divided into partitions such that Ri (Si) contains
all objects in R (S) for which the first item is i . Then, for each item i in order, OPJ processes
partitions Ri and Si by (i) updating inverted index IS to include all objects in Si and (ii)
creating prefix tree TRi for partition Ri and joining it with IS . As the inverted index is
incrementally built, its lists are initially shorter and the join is faster. Further, the overall
memory requirements are reduced since each TRi is constructed and processed separately,
but most importantly, it can be discarded right after joining it with IS .

As an additional contribution of our study, we reveal that ordering the set items in increas-
ing order of their frequency (in contrast with decreasing frequency proposed in [24]) in
fact improves query performance. Although such an ordering may lead to a larger prefix
tree (compared to PRETTI), it dramatically reduces the number of candidates during query
processing and enables our adaptive technique to achieve high performance gains.

We focus on main-memory evaluation of set containment joins (i.e., we optimize the
main module of PRETTI, which joins two in-memory partitions); note that our solution is
easily integrated in the block-based approaches of [24,27]. The fact that we limit the size
of the prefix tree and that we use the OPJ paradigm, allows our method to operate with
larger partitions compared to PRETTI in an external-memory problem, thus making our
overall improvements even higher. Our thorough experimental evaluation using real datasets
of different characteristics shows that our framework always outperforms PRETTI, being
up to more than one order of magnitude times faster and saving at least 50% of memory.

OutlineThe rest of the paper is organized as follows. Section 2 describes in detail the state-of-
the-art set containment join algorithm PRETTI. Our adaptive evaluation methodology and
the OPJ novel join paradigm are presented in Sects. 3 and 4, respectively. Section 5 presents
our experimental evaluation. Finally, Sect. 6 reviews related work, and Sect. 7 concludes the
paper.

2 Background on set containment join: the PRETTI algorithm

In this section, we describe in detail the state-of-the-art method PRETTI [24] for computing
the R ��⊆ S set containment join of two collections R and S. The method has the following
key features:

(i) The left-hand collection R is indexed by a prefix tree TR and the right-hand collection
S by an inverted index IS . Both index structures are built on-the-fly, which enables the

123

Set containment join revisited 379

generality of the algorithm (for example, it can be applied for arbitrary data partitions
instead of entire collections, and/or on data produced by underlying operators without
interesting orders).

(ii) PRETTI traverses the prefix tree TR in a depth-first manner. While following a path on
the tree, the algorithm intersects the corresponding lists of inverted index IS . The join
algorithm is identical to the one proposed in [27] (see Sect. 6); however, due to grouping
the objects under TR ,PRETTI performs the intersections for all sets in R with a common
prefix only once.

Algorithm 1: PRETTI(R, S)

input : Collections R and S; every object r ∈ R is internally sorted such that the most frequent item
appears first

output: the set J of all object pairs (r, s) such that r ∈ R, s ∈ S and r ⊆ s

11 TR ← ContructPrefixTree(R);
22 IS ← ConstructInvertedIndex(S);
3 foreach child node c of the root in TR do
4 CL ← {s|s ∈ S}; // Candidates list
5 ProcessNode(c,CL , IS , J);

6 return J ;

7 Function ProcessNode(n,CL , IS , J)

8 CL ′ ← CL ∩ IS [n.i tem]; // List intersection
9 foreach object r ∈ n.RL do

10 foreach object s ∈ CL ′ do
11 J ← J ∪ (r, s);

12 foreach child node c of n do
13 ProcessNode(c,CL ′, IS , J); // Recursion

Algorithm 1 illustrates the pseudocode of PRETTI. During the initialization phase (Lines
1–2), PRETTI builds prefix tree TR and inverted index IS for input collections R and S,
respectively. To construct TR , every object r in R is internally sorted, so that its items appear
in decreasing order of their frequency in R (this ordering is expected to achieve the highest
path compression for TR).1 Each node n of prefix tree TR is a triple (i tem, path, RL) where
n.i tem is an item, n.path is the sequence of the items in the nodes from the root of TR to
n (including n.i tem), and finally, n.RL is the set of objects in R whose content is equal to
n.path. For example, Fig. 1a depicts prefix tree TR for collection R in Table 2a. Set n.RL is
shown next to every node n unless it is empty. The inverted index IS on collection S associates
each item i in the domain of S to a postings list denoted by IS[i]. The IS[i] postings list has
an entry for every object s ∈ S that contains item i . Figure 1b pictures inverted index IS for
collection S in Table 2b.

The second phase of the algorithm involves the computation of the join result set J (lines
3–5). PRETTI traverses the subtree rooted at every child node c of TR’s root by recursively
calling the ProcessNode function. For a node n, ProcessNode receives as input from
its parent node p in TR , a candidates list CL . List CL includes all objects s ∈ S that contain
every item in p.path, i.e., p.path ⊆ s. Note that for every child of the root in TR , CL = S.

1 Our experiments show that an increasing frequency order is in practice more beneficial. Yet, for the sake of
readability, we present both PRETTI and our methodology considering a decreasing order.

123

380 P. Bouros et al.

Table 2 Example of two
collections R and S

(a) Left-hand collection R (b) Right-hand collection S

r1: {G, F, E,C, B} s1: {D,C, A}
r2: {G, F, D, B} s2: {G, F, E, D,C, A}
r3: {G, D, A} s3: {D, B}
r4: {F, D,C, B} s4: {G, F,C, B}
r5: {G, F, E} s5: {G, F, E, B}
r6: {E,C} s6: {F, E, D,C, B}
r7: {G, F, E} s7: {G, E, D,C, B}

s8: {G, E, D,C, B}
s9: {G, F, E, D}
s10: {G, F, E, D}
s11: {G, F}
s12: {G, F, E}

�

�

A: {s1,s2}
B: {s3, s4,s5,s6,s7,s8}
C: {s1,s2,s4,s6,s7,s8}
D: {s1,s2,s3,s6,s7,s8,s9,s10}
E: {s2,s5,s6,s7,s8,s9,s10,s12}
F : {s2,s4,s5,s6,s9,s10,s11,s12}
G: {s2,s4,s5,s7,s8,s9,s10,s11,s12}

(a) (b)

Fig. 1 Indices of PRETTI for the collections in Table 2. a Prefix tree TR , b inverted index IS

Next, ProcessNode intersects CL with inverted list IS[n.i tem] to find the objects in S
that contain n.path and stores them in CL ′ (Line 8). At this point, every pair of objects
in n.RL × CL ′ is guaranteed to be a join result (lines 9–11). Finally, the algorithm calls
ProcessNode for every child node of n (lines 12–13).

Example 1 We demonstrate PRETTI for the set containment join of collections R and S in
Table 2. The algorithm constructs prefix tree TR and inverted index IS shown in Fig. 1a and
b, respectively. To construct TR note that the items inside every object r ∈ R are internally
sorted in decreasing order of global item frequency in R (this is not necessary for the objects
in S). First, PRETTI traverses the leftmost subtree of TR under the node labeled by item G.
Considering paths 〈/,G〉 and 〈/,G, F〉, the algorithm intersects candidates list CL (initially
containing every object in S, i.e., {s1, . . . , s12}) first with IS[G] and then with IS[F], and
produces candidates list {s2, s4, s5, s9, s10, s11, s12}, i.e., the objects in S that contain both
G and F . The RL lists of the nodes examined so far are empty and thus, no result pair is
reported. Next, path 〈/,G, F, E〉 is consideredwhereCL is intersectedwith IS[E] producing
CL ′ = {s2, s5, s9, s10, s12}. At current node, RL = {r5, r7}, and thus, PRETTI reports result
pairs (r5, s2), (r5, s5), (r5, s9), (r5, s10), (r5, s12), (r7, s2), (r7, s5), (r7, s9), (r7, s10), (r7, s12).
The algorithm proceeds in this manner to examine the rest of the prefix tree nodes performing
in total 15 list intersections. The result of the join contains 16 pairs of objects.

123

Set containment join revisited 381

Finally, to deal with the case where the available main memory is not sufficient for com-
puting the entire set containment join of the input collections, a partition-based join strategy
was also proposed in [24]. Particularly, the input collections R and S are horizontally parti-
tioned so that the prefix tree and the inverted index for each pair of partitions (Ri , S j) from R
and S, respectively, fit in memory. Then, in a nested-loop fashion, each partition Ri is joined
in memory with every partition S j in S invoking PRETTI(Ri , S j).

3 An adaptive methodology

By employing a prefix tree on the left-hand collection R, PRETTI avoids redundant inter-
sections and thus outperforms previous methods that used only inverted indices, e.g., [27].
However, we observe two important shortcomings of the PRETTI algorithm. First, the cost
of building and storing the prefix tree on R can be high especially if R contains sets of
high cardinality. This raises a challenge when the available memory is limited which is only
partially addressed by the partition-based join strategy in [24]. Second, after a candidates list
CL becomes short, continuing the traversal of the prefix tree to obtain the join results forCL
may incur many unnecessary in practice inverted list intersections. This section presents an
adaptive methodology which builds upon and improves PRETTI. In Sect. 3.1 we primarily
target the first shortcoming of PRETTI proposing the LIMIT algorithm, while in Sect. 3.2
we propose an extension to LIMIT, termed LIMIT+, that additionally deals with the second
shortcoming.

3.1 The LIMIT algorithm

To deal with the high building and storage cost of the prefix tree TR , [24] suggests to partition
R, as discussed in the previous section. Instead,we propose to build TR only up to a predefined
maximum depth �, called limit. Hence, computing set containment join becomes a two-phase
process that involves a candidate generation and a verification stage; for every candidate pair
(r, s) with |r | > �, we need to compare the suffixes of objects r and s beyond � in order to
determine whether r ⊆ s. This approach is adopted by the LIMIT algorithm.

Algorithm 2 illustrates the pseudocode of LIMIT . Compared to PRETTI (Algorithm 1),
LIMIT differs in two ways. First in Line 1, LIMIT constructs limited prefix tree �TR on
the left-hand collection R w.r.t. limit �. The �TR prefix tree has almost identical structure to
unlimited TR built by PRETTI except that the n.RL list of a leaf node n contains every object
r ∈ R with r ⊇ n.path instead of r = n.path. Figure 2a, b illustrates the limited versions
of the prefix tree in Fig. 1b for � = 2 and � = 3, respectively. Second, the ProcessNode
function distinguishes between two cases of objects in n.RL (lines 11–14). If, for a object
r ∈ n.RL , |r | ≤ � holds, then r = n.path and, similar to PRETTI, pair (r, s) is guaranteed
to be part of the join result J (Line 12). Otherwise, r ⊃ n.path holds and ProcessNode
invokes the Verify function which compares the suffixes of objects r and s beyond � (Line
14). Intuitively, the latter case arises only for leaf nodes according to the definition of the
limited prefix tree. To achieve a low verification cost, the objects of both R and S collections
are internally sorted, i.e., the items appear in decreasing order of their frequency in R ∪ S,
which enables Verify to operate in a merge-sort manner.

Example 2 We demonstrate LIMIT using collections R and S in Table 2; in contrast to
PRETTI and Example 1, the objects of both collections are internally sorted. Consider first
the case of � = 2. LIMIT constructs limited prefix tree �TR shown in Fig. 2a for collection

123

382 P. Bouros et al.

Algorithm 2: LIMIT(R, S, �)

input : Collections R and S, limit �; every object r ∈ R and s∈ S is internally sorted such that the most
frequent item in R ∪ S appears first

output: the set J of all object pairs (r, s) such that r ∈ R, s ∈ S and r ⊆ s

11 �TR ← ContructPrefixTree(R, �);
22 IS ← ConstructInvertedIndex(S);
3 foreach child node c of the root in TR do
4 CL ← {s|s ∈ S}; // Candidates list
5 ProcessNode(c, �,CL , IS , J);

6 return J ;

7 Function ProcessNode(n, �,CL , IS , J)

8 CL ′ ← CL ∩ IS [n.i tem]; // List intersection
9 foreach object s ∈ CL ′ do

10 foreach object r ∈ n.RL do
11 if |r | ≤ � then
12 J ← J ∪ (r, s);

13 else
14 Verify(r, s, �, J); // Compare object suffixes

15 foreach child node c of n do
16 ProcessNode(c, �,CL ′, IS , J); // Recursion

�

�

�

�(a) (b)

Fig. 2 Limited prefix tree �TR for collection R in Table 2. a � = 2. b � = 3

R in Table 2a, and inverted index IS in Fig. 1b. Then, similar to PRETTI, it traverses
�TR . When considering path 〈/,G, F〉, candidates list CL ′ = {s2, s4, s5, s9, s10, s11, s12}
is produced. The RL = {r1, r2, r5, r7} set of current node (F) is non-empty, and thus, the
algorithm examines every pair of objects from RL×CL ′ to report join results. As all objects
in RL are of length larger than limit � = 2, LIMIT compares the suffixes beyond length
� = 2 of all candidates by calling Verify, and finally, reports results (r5, s2), (r5, s5),
(r5, s9), (r5, s10), (r5, s12), (r7, s2), (r7, s5), (r7, s9), (r7, s10), (r7, s12). At the next steps, the
algorithm proceeds in a similar way to examine the rest of the prefix tree nodes performing
4 list intersections and verifying 37 candidate pairs by comparing their suffixes. Finally,
if � = 3 LIMIT traverses similarly prefix tree �TR in Fig. 2b performing 8 this time list
intersections but verifying only 10 candidate object pairs by comparing their suffixes.

The advantage of LIMIT over PRETTI and the partition-based join strategy of [24] is
twofold. First, building the prefix tree up to � is faster than building the entire tree, but most
importantly, with �, the space needed to store the tree in main memory is reduced. If the
unlimited TR does not fit in memory, PRETTI would partition R and construct a separate
(memory-based) TRi for each partition Ri ; therefore, two objects ri , r j of R that have the

123

Set containment join revisited 383

same �-prefix but belong to different partitions Ri and R j , would be considered separately,
which increases the evaluation cost of the join. In other words, reducing the size of TR to fit
in memory can have high impact on performance. In contrast, LIMIT guarantees that, for
every path of length up to � on limited �TR , all redundant intersections are avoided similar
to utilizing the unlimited prefix tree. Finally, an interesting aftermath of employing � for set
containment joins is related to the second shortcoming of PRETTI. For instance, with � = 3
and prefix tree �TR in Fig. 1b, LIMITwill verify object r1 againstCL = {s2, s5, s9, s10, s12}
and quickly determine that it is not part of the join result without performing two additional
inverted list intersections.

An issue still open involves how limit � is defined and most importantly, whether there is
an optimal value of � that balances the benefits of using the limited prefix tree over the cost
of including a verification stage. Determining the optimal value for � is a time-consuming
task which involves more than an extra pass over the input collections. In specific, it requires
computing expensive statistics with a process reminiscent to frequent itemsets mining; note
that this process must take place online before building �TR . Instead, in Sect. 5.4, we discuss
and evaluate four strategies for estimating a good � value based on simple and cheap-to-
compute statistics. Our analysis shows that typically these strategies tend to overestimate
the optimal �. Besides, we also observe that the optimal � value may in fact vary between
different subtrees of �TR depending on the number of objects stored inside the nodes. In view
of this, we next propose an adaptive extension to LIMIT which employs an ad hoc limit �

for each path of �TR by dynamically choosing between list intersection and verification of
the objects under the current subtree.

3.2 The LIMIT+ algorithm

As Example 2 shows, using limit � for set containment joins introduces an interesting
trade-off between list intersection and candidates verification which is directly related to
the second shortcoming of the PRETTI algorithm. Specifically, as � increases and LIMIT
traverses longer paths of �TR , candidates lists CL shorten due to the additional list inter-
sections performed. Consequently, the number of object pairs to be verified by accessing
their suffixes also reduces. However, from some point on, the number of candidates in
CL no longer significantly reduces or, even worst, it remains unchanged; therefore, per-
forming additional list intersections becomes a bottleneck. Similarly, if for a node n, CL
is already too short, verifying the candidate pairs between the contents of CL and the
objects contained under the subtree rooted at n can be faster than performing additional list
intersections.

The LIMIT algorithm addresses only a few of the cases when candidates verification is
preferred over list intersection, for instance the case of object r1 in Table 2a with limit � = 3.
Due to global limit �, the “blind” approach of LIMIT processes every path of the prefix tree
in the same manner. To tackle this problem, we devise an adaptive strategy of processing
�TR adopted by the LIMIT+ algorithm. Apart from global limit �, LIMIT+ also employs
a dynamically determined local limit �p for each path p of the prefix tree. The basic idea
behind this process is to decide on-the-fly for every node n of the prefix tree between:

(A) performing theCL ′ = CL∩ IS[n.i tem] intersection, reporting the pairs in n.RL×CL ′,
and then, processing the descendant nodes of n in a similar way, or

(B) stopping the traversal of the current path and verifying the candidates between the
objects of R contained in the subtree rooted at n denoted by �T n

R and those in CL , i.e.,
all candidate pairs in �T n

R × CL .

123

384 P. Bouros et al.

Algorithm 3: LIMIT+(R, S, �)

input : Collections R and S, limit �; every object r ∈ R and s∈ S is internally sorted such that the most
frequent item in R ∪ S appears first

output: the set J of all object pairs (r, s) such that r ∈ R, s ∈ S and r ⊆ s

11 �TR ← ContructPrefixTree(R, �);
22 IS ← ConstructInvertedIndex(S);
3 foreach child node c of the root in TR do
4 CL ← {s|s ∈ S}; // Candidates list
5 ProcessNode(c, �,CL , IS , J);

6 return J ;

7 Function ProcessNode(n, �,CL , IS , J)

8 if ContinueAsLIMIT(n,CL , IS) then
9 CL ′ ← CL ∩ IS [n.i tem]; // List intersection

10 foreach object s ∈ CL ′ do
11 foreach object r ∈ n.RL do
12 if |r | ≤ � then
13 J ← J ∪ (r, s);

14 else
15 Verify(r, s, �, J); // Compare object suffixes

16 foreach child node c of n do
17 ProcessNode(c, �,CL ′, IS , J); // Recursion

18 else
19 foreach object s ∈ CL do
20 foreach object r ∈ �T n

R do // �T n
R:subtree under n

21 Verify(r, s, �−1, J); // Compare object suffixes

In the first case, LIMIT+ would operate exactly as LIMIT does for the internal nodes of
�TR , while in the second case, it would treat node n as a leaf node but without performing the
corresponding list intersection. Therefore, in practice, a local limit for current path n.path
is employed by LIMIT+.

Algorithm 3 illustrates the pseudocode of LIMIT+. Compared to LIMIT (Algorithm 2),
LIMIT+ only differs on how a node of �TR is processed. Specifically, given a node n,
ProcessNode calls the ContinueAsLIMIT function (Line 8) to determine whether the
algorithmwill continue processing n similar toLIMIT (lines 10–17), or it will stop traversing
current path n.path and start verifying all candidates in �T n

R × CL invoking the Verify
function (lines 18–21). In the latter case, notice that for every verifying pair (r, s) with
r ∈ �T n

R × CL and s ∈ CL , the algorithm accesses the suffixes of r and s beyond length
� − 1 and not � as the CL ∩ IS[n.i tem] intersection has not taken place for current node n
(Line 21).

Next, we elaborate on ContinueAsLIMIT. Intuitively, in order to determine how
LIMIT+ will process current node n the function has to first estimate and then compare
the computational costs CA and CB of the two alternative strategies: (A) processing current
node and its descendants in the subtree �T n

R similar to LIMIT, or (B) verifying candidates
in �T n

R × CL . In practice, it is not possible to estimate the cost of processing current node
n and its descendants in �T n

R similar to LIMIT since the involved intersections are not
known in advance with the exception of CL ∩ IS[n.i tem]. Therefore, we estimate CA as
the cost of computing the list intersection at current node n and, verifying, for each child

123

Set containment join revisited 385

Fig. 3 The two strategies
considered by LIMIT+.
a Strategy for CA, b strategy for
CB

(a) (b)

node ci of n, the candidate pairs between all objects under subtree �T ci
R and the objects in

CL ′. Figure 3 illustrates the two alternative strategies, the costs of which are compared by
ContinueAsLIMIT.

We now discuss how costs CA and CB can be estimated. For this purpose, we first break
n.RL set into two parts: n.RL = n.RL= ∪ n.RL⊃, where n.RL= denotes the objects r in
n.RL with r = n.path, while n.RL⊃ the objects with r ⊃ n.path. Note that according to
the definition of limited prefix tree �TR , n.RL = n.RL= holds for every internal node n, as
n.RL⊃ = ∅. Second, we introduce the following cost functions to capture the computational
cost of the three tasks involved in strategies (A) and (B):

(i) List intersection The cost of computing CL ′ = CL ∩ IS[n.i tem] in current node n,
denoted by C∩, depends on the lengths of the involved lists and it is also related to
the way list intersection is actually implemented. For instance, if list intersection is
performed in a merge-sort manner, then C∩ is linear to the sum of the lists’ length, i.e.,
C∩ = α1 ·|CL|+β1 ·|IS[n.i tem]|+γ1. On the other hand, if the intersection is based on a
binary search over the IS[n.i tem] list then C∩ = α2 ·|CL|·log2(|IS[n.i tem]|)+β2. Note
that constantsα1,α2,β1,β2 and γ1 can be approximated by executing list intersection for
several inputs and then employing regression analysis over the collected measurements.

(ii) Direct output of results Similar to PRETTI and LIMIT, after list intersection CL ′ =
CL ∩ IS[n.i tem], every pair (r, s) with r ∈ n.RL and s ∈ CL ′ such that r = n.path,
i.e., r ∈ n.RL=, is guaranteed to be among the join results and it would be directly
reported. The cost of this task, denoted by Cd, is linear to the number of object pairs
to be reported, and thus, Cd = α3 · |CL ′| · |n.RL=| + β3. Constants α3 and β3 can be
approximated by regression analysis.

(iii) Verification To determine whether an (r, s) pair is part of the join result Verifywould
compare their suffixes in a merge-sort manner. Under this, the verification cost for each
candidate pair is linear to the sum of their suffixes’ length. Both alternative strategies
considered by ContinueAsLIMIT involve verifying all candidate pairs between a
subset of objects in R and a subset in S (candidates list CL or CL ′). Without loss of
generality, consider the case of strategy (A). In total, |�T n

R � n.RL=| · |CL ′| candidates
would be verified. Considering the length sum of the objects in �T n

R and of the objects
in CL ′, the total verification cost for (A) is

Cv = α4 · |CL ′| ·
∑

r∈{�T n
R�n.RL=}

(|r | − �)

+ β4 · |�T n
R � n.RL=| ·

∑

s∈CL ′
(|s| − �) + γ4

123

386 P. Bouros et al.

where |r | − � (|s| − �) equals the length of the suffix for a object r (s) with respect to
limit �. Similar to the previous tasks, constants α4, β4 and γ4 can be approximated by
regression analysis. On the other hand, to approximate |CL ′| = |CL ∩ IS[n.i tem]| and∑

s∈CL ′ (|s| − �),we adopt an independent assumption approachbasedon the frequency
of the item contained in current node n. Under this, |CL ′| ≈ |CL| · |IS [n.i tem]|

|S| while the

length sum of the objects inCL ′ can be estimated with respect to the |CL ′|
|CL| ≈ |IS [n.i tem]|

|S|
decrease ratio, hence,wehave

∑
s∈CL ′ (|s| − �) ≈ |IS [n.i tem]|

|S| ·∑s∈CL (|s| − �). Finally,
note that

∑
r∈{�T n

R�n.RL=} (|r | − �) can be computed using statistics gathered while

building prefix tree �TR and that
∑

s∈CL (|s| − �) can be computed while performing
the list intersection at the parent of current node n.

With C∩, Cd, and Cv, the computational costs of the (A) and (B) strategies considered by
ContinueAsLIMIT are estimated by:

CA = C∩(CL , IS[n.i tem]) + Cd(n.RL=,CL ′) + Cv({�T n
R � n.RL=},CL ′, �)

CB = Cv(�T n
R ,CL , � − 1)

As intersection CL ′ = CL ∩ IS[n.i tem] is not computed in (B), candidates list CL and
object suffixes beyond � − 1 are considered by CB in place of CL ′ and suffixes beyond �

considered by CA.
Example 3 We illustrate the functionality of LIMIT+ using Example 2. Assuming � = 3,
LIMIT+ constructs prefix tree �TR of Fig. 2b and inverted index IS of Fig. 1b. First, the
algorithm traverses the subtree of �TR under the node labeled by item G. The computational
cost of the alternative strategies for this node are as follows. CA involves the cost of computing
CL ′ = {s1, . . . , s12}∩ IS[G] = {s2, s4, s5, s7, s8, s9, s10, s11, s12} and based on the two child
nodes, the cost of verifying all candidates in {r1, r2, r5, r7} ×CL ′ and {r3} ×CL ′; note that
no direct join results exist as RL for current node is empty. On the other hand, CB captures
the cost of verifying all candidates in {r1, r2, r3, r5, r7} × CL . Without loss of generality,
assume CA < CB. Hence, LIMIT+ processes current node (G) similar to LIMIT: path
〈/,G, F〉 and the node labeled by F are next considered. Assuming CA > CB for this node,
LIMIT+ imposes a local limit equal to 2 and verifies all candidates in {r1, r2, r5, r7} × CL
with CL = {s2, s4, s5, s7, s8, s9, s10, s11, s12} (objects in S containing item G). Notice the
resemblance to Example 2 for � = 2 with the exception that {s2, s4, s5, s7, s8, s9, s10, s11,
s12} ∩ IS[F] is not computed.

4 A novel join paradigm

As discussed in Sect. 2, the join paradigm of PRETTI [24], which is also followed by
LIMIT and LIMIT+, constructs the entire prefix tree TR (or �TR) and the entire inverted
index IS before joining them. However, we observe that the construction of TR and IS can be
interleaved with the join process since for joining a set of objects from R that lie in a subtree
of TR it is not necessary to have constructed the entire IS . For example, consider again the
TR and IS indices of Fig. 1. When performing the join for the nodes in the subtree rooted
at node G, obviously, we need not have constructed the subtrees rooted at nodes F and E
already. At the same time, only the objects from S that contain item G can be joined with
each object in that subtree. Therefore, we only need a partially built IS which includes just
these objects. In this section, we propose a new paradigm, termed Order and Partition Join
(OPJ), which is based on this observation. OPJ operates as follows:

123

Set containment join revisited 387

Algorithm 4: OPJ(R, S, �)

input : Collections R and S, limit �; every Object r ∈ R and s∈ S is internally sorted such that the most
frequent item in R ∪ S appears first

output: the set J of all Object pairs (r, s) such that r ∈ R, s ∈ S and r ⊆ s

11 Partition(S); Partition(R); // w.r.t. the first item in each Object
22 IS ← ∅;
3 foreach item i in decreasing frequency order do
4 �TRi ← ContructPrefixTree(Ri , �);
5 IS ← UpdateInvertedIndex(IS , Si);
6 c ← child node of �TRi ’s root; // �TRi ’s root has a single child c with

c.i tem = i
7 CL ← Objects in S seen so far; // Candidates list
8 ProcessNode(c,CL , IS , J, �); // PRETTI,LIMIT,LIMIT+
9 delete �TRi ;

10 return J ;

(i) Assume that for each object (in either R or S), the items are considered in a certain order
(i.e., in decreasing order of their frequency in R ∪ S). OPJ partitions the objects of each
collection into groups based on their first item.2 Thus, for each item i , there is a partition
Ri (Si) of R (S) that includes all objects r ∈ R (s ∈ S), for which the first item is i .
For example, partition RG of collection R in Table 2a includes {r1, r2, r3, r5, r7}, while
partition RE includes just r6. Due to the internal sorting of the objects, an object in Ri

or Si includes i but does not include any item j , which comes before i in the order (e.g.,
r6 ∈ RE cannot contain G or F). Then, OPJ initializes an empty inverted index IS for
S.

(ii) For each item i in order, OPJ creates a prefix tree TRi for partition Ri and updates IS to
include all objects from partition Si . Then, TRi is joined with IS using PRETTI (or our
algorithms LIMIT and LIMIT+). After the join, TRi is dumped from the memory and
OPJ proceeds with the next item i + 1 in order to construct TRi+1 using Ri+1, update IS
using Si+1 and join TRi+1 with IS .

OPJ has several advantages over the PRETTI join paradigm. First, the entire TR needs
not be constructed and held in memory. For each item i , the subtree of TR rooted at i
(i.e., TRi) is built, joined, and then removed from memory. Second, the inverted index IS is
incrementally constructed; therefore, TRi for each item i in order is joined with a smaller
IS which (correctly) excludes objects of S having only items that come after i . Thus, the
inverted lists of the partially constructed IS are shorter, and the join is faster.3 Finally, the
overall memory requirements of OPJ are much lower compared to PRETTI join paradigm
as OPJ only keeps one TRi in memory at a time (instead of the entire TR).

Algorithm 4 illustrates a high-level sketch of the OPJ paradigm. OPJ receives as input
collections R and S, and limit �; for PRETTI � = ∞ (i.e., �TRi becomes TRi). Initially,
collections R and S are partitioned to put all objects having i as their first item inside
partitions Ri and Si , respectively (Line 1). Also, IS (the inverted index of S) is initialized
(Line 2). Then, for each item i , OPJ computes the join results between objects from R having
i as their first item and objects from S having i or a previous item in order as their first item

2 This is different than the external-memory partitioning of the PRETTI paradigm, discussed at the end of
Sect. 2.
3 Note that OPJ and PRETTI perform the same number of list intersections; i.e., OPJ does not save list
intersections, but makes them cheaper.

123

388 P. Bouros et al.

Table 3 Employing the OPJ
join paradigm

(a) Partitions of S (b) Updates in IS

SG s2: {G, F, E, D,C, A} A: {s2}
s4: {G, F,C, B} B: {s4,s5,s7,s8}
s5: {G, F, E, B} C: {s2,s4,s7,s8}
s7: {G, E, D,C, B} D: {s2,s7,s8,s9,s10}
s8: {G, E, D,C, B} E: {s2,s5,s7,s8,s9,s10,s12}
s9: {G, F, E, D} F: {s2,s4,s5,s9,s10,s11,s12}
s10: {G, F, E, D} G: {s2,s4,s5,s7,s8,s9,s10,s11,s12}
s11: {G, F}
s12: {G, F, E}

SF s6: {F, E, D,C, B} B: {s4,s5,s6,s7,s8}
C: {s2,s4,s6,s7,s8}
D: {s2,s6,s7,s8,s9,s10}
E: {s2,s5,s6,s7,s8,s9,s10,s12}
F: {s2,s4,s5,s6,s9,s10,s11,s12}

SD s1: {D,C, A} A: {s1,s2}
s3: {D, B} B: {s3,s4,s5,s6,s7,s8}

C: {s1,s2,s4,s6,s7,s8}
D: {s1,s2,s3,s6,s7,s8,s9,s10}

(lines 3–9). Specifically, for each item i in order, OPJ builds a (limited) prefix tree �TRi using
partition Ri , adds all objects of partition Si into IS , and finally joins �TRi with IS using the
methodology of PRETTI, LIMIT, or LIMIT+. Note that for each �TRi the root has a single
child c with c.i tem = i , because all objects in Ri have i as their first item. Thus, OPJ has to
invoke the ProcessNode function (of either PRETTI, LIMIT or LIMIT+) only for c. In
addition, note that candidates list CL is initialized with only the objects in S accessed so far
instead of all objects in S according to the PRETTI join paradigm; the examination order
guarantees that the rest of the objects in S cannot be joined with the objects in R under node
c.

Example 4 We demonstrate OPJ on collections R and S in Table 2. The items in decreasing
frequency order over R∪ S are G(14), F(13), E(12), D(11),C(9), B(9), A(3), resulting in
the internally sorted objects shown in the figure. Without loss of generality, assume that the
PRETTI algorithm is used to perform the join between each �TRi and IS (i.e., � = ∞ and
�TRi = TRi). Initially, the objects are partitioned according to their first item. The partitions
for R are RG = {r1, r2, r3, r5, r7}, RF = {r4}, and RE = {r6}; the partitions for S are shown
in Table 3a. OPJ first accesses partition RG and builds TRG , which is identical to the leftmost
subtree of the unlimited TR in Fig. 1a. Then, OPJ updates the (initially empty) inverted index
IS to include the objects of SG ; the resulting IS is shown on the right of SG , at the top of
Table 3b. After joining TRG with IS , TRG is deleted from memory, and the next item F in
order is processed. OPJ builds TRF (which is identical to the second subtree of TR in Fig. 1a)
and updates IS to include the objects in SF ; these updates are shown on the right of SF in
Table 3b. Then, TRF is joined with IS , and OPJ proceeds to the next item E . In this case, TRE

is built (the rightmost subtree of TR in Fig. 1a), but IS is not updated as SE is empty. Still,

123

Set containment join revisited 389

Table 4 Characteristics of real datasets

Characteristic BMS FLICKR KOSARAK NETFLIX

Cardinality 515K 1.7M 990K 480K

Domain size 1.6K 810K 41K 18K

Avg object length 63 52 398 1,557

Weighted avg object length 7 10 9 210

Max object length 164 102 2497 17,653

File size (Mb) 11 76 31 407

TRE is joined with current IS . In the next round (item D), there is no join to be performed,
because RD is empty. If there were additional partitions Ri to be processed, IS would have
to be updated to include the objects in SD , as shown on the right of SD in Table 3b. However,
since all objects from R have been processed, OPJ can terminate without processing SD .

5 Experimental evaluation

In this section, we present an experimental evaluation of ourmethodology for set containment
joins. Section 5.1 details the setup of our analysis. Section 5.2 investigates the preferred global
ordering of the items, while Sect. 5.3 demonstrates the advantage of the OPJ join paradigm.
Sect. 5.4 shows how limit � affects the efficiency of our methodology and presents four
strategies for estimating its optimal value. Finally, Sect. 5.5 conducts a performance analysis
of our methods against the state-of-the-art PRETTI [24].

5.1 Setup

Our experimental analysis involves both real and synthetic collections. Particularly, we use
the following real datasets:

– BMS is a collection of click-stream data from Blue Martini Software and KDD 2000 cup
[43].

– FLICKR is a collection of photographs from Flickr Web site for the city of London [10].
Each object contains the union of “tags” and “title” elements.

– KOSARAK is a collection of click-stream data from a Hungarian online news portal
available at http://fimi.ua.ac.be/data/.

– NETFLIX is a collection of user ratings on movie titles over a period of 7years from the
Netflix Prize and KDD 2007 cup.

Table 4 summarizes the characteristics of the real datasets. BMS covers the case of small
domain collections, while FLICKR the case of datasets with very large domains. NETFLIX
is a collection of extremely long objects. In addition, to study the scalability of the methods,
we generated synthetic datasets with respect to (i) the collection cardinality, (ii) the domain
size, (iii) the weighted average object length and (iv) the order of the Zipfian distribution for
the item frequency. Table 5 summarizes the characteristics of the synthetic collections. On
each test, we vary one of the above parameters while the rest are set to their default values.

Similar to [24] for set containment joins (and other works on set similarity joins [9,41]),
our experiments involve only self-joins, i.e., R = S (note, however, that our methods operate

123

http://fimi.ua.ac.be/data/

390 P. Bouros et al.

Table 5 Characteristics of synthetic datasets

Characteristic Values Default value File size (Gb)

Cardinality 1M, 3M, 5M, 7M, 10M 5M 0.3, 0.8, 1.4, 1.9, 2.7

Domain size 10K, 50K, 100K, 500K, 1M 100K 1.1, 1.3, 1.4, 1.6, 1.6

Weighted avg object length 10, 30, 50, 70, 100 50 0.3, 0.8, 1.4, 1.9, 2.7

Zipfian distribution 0, 0.3, 0.5, 0.7, 1 0.5 1.4, 1.4, 1.4, 1.3, 1.1

exactly as in case of non-self-joins, i.e., they take as input two copies of the same dataset).
The collections and the indexing structures used by all join methods are stored entirely
in main memory; as discussed in the introduction, we focus on the main module of the
evaluation methods which joins two in-memory partitions, but our proposed methodology is
easily integrated in the block-based approaches of [24,27]. Further, we do not consider any
compression techniques, as they are orthogonal to our methodology.

To assess the performance of each method, wemeasure its response time, the total number
of intersections performed and the total number of candidates; note that the response time
includes both the indexing and joining cost of the method, and in case of the OPJ paradigm,
also the cost of sorting and partitioning the inputs. Finally, all tested methods are written in
C++ and the evaluation is carried out on an 3.6GHz Intel Core i7 CPU with 64GB RAM
running Debian Linux.

5.2 Items global ordering

The goal of the first experiment is to determine the most appropriate ordering for the items
inside an object. In practice, only the characteristics of prefix tree TR and how it is utilized are
affected by howwe order the items inside each object (neither the size of inverted index IS nor
the number of objects accessed from S depend on this ordering). Therefore, in this experiment,
we only focus on the PRETTI join paradigm. In [24], to construct a compact prefix tree TR ,
the items inside an object are arranged in decreasing order of their frequency. On the other
hand, arranging the items in increasing frequency order allows for faster candidate pruning
as the candidates list CL rapidly shrinks after a small number of list intersections. In other
words, the ordering of the items affects not only the building cost and the storage requirements
of TR , but most importantly, the response time of the join method. In practice, we observe that
the best ordering is also related to how the CL ∩ IS[n.i tem] list intersection is implemented.
Although the problem of list intersection is out of scope of this paper per se, we implemented:
(i) a merge-sort based approach, and (ii) a hybrid approach based on [4] that either adopts the
merge-sort approach or binary searches every object ofCL inside the IS[n.i tem] postings list.
Table 6 confirms our claim regarding the correlation between the global ordering of the items
and the response time of the PRETTI join algorithm (note that the reported time involves
both the indexing and the join phase of the method). Arranging the items in decreasing order
of their frequency is generally better only if the merge-sort based approach is adopted for
the list intersections, while in case of the hybrid approach, the objects should be arranged in
increasing order; an exception arises for NETFLIXwhere adopting the increasing ordering is
always more beneficial because of its extremely long objects. In summary, the combination
of the hybrid approach and the increasing frequency global ordering minimizes the response
time of the PRETTI algorithm in all cases. Thus, for the rest of this analysis, we employ the
hybrid approach for list intersection and arrange the items inside an object in the increasing

123

Set containment join revisited 391

Table 6 Determining items
global ordering, response time (s)
of the PRETTI algorithm

Dataset Increasing Decreasing

Merge-sort Hybrid Merge-sort Hybrid

BMS 407 42 106 71

FLICKR 1606 30 187 108

KOSARAK 1606 73 282 136

NETFLIX 18,399 504 35,169 14,051

Table 7 Employing the OPJ join paradigm, response time (s)

Dataset orgPRETTI PRETTI PRETTI∗ Improvement ratio over

orgPRETTI PRETTI

BMS 71 42 28 2.5× 1.5×
FLICKR 108 30 20 5.4× 1.5×
KOSARAK 136 73 54 2.5× 1.4×
NETFLIX 14,051 504 391 38.5× 1.3×

order of their frequency. Note that for matters of reference and completion, we also include
the original version of [24] denoted byorgPRETTI corresponding to theDecreasing-Hybrid
combination of Table 6.

5.3 Employing the OPJ join paradigm

Next, we investigate the advantage of OPJ (Sect. 4) over the PRETTI join paradigm of [24].
For this purpose, we devise an extension to the PRETTI algorithm that follows OPJ, denoted
by PRETTI∗. Table 7 reports the response time of the algorithms. The results experimentally
prove the superiority of the OPJ paradigm; PRETTI∗ is from 1.3 to 1.5 times faster than
PRETTI. Recall at this point that compared to the algorithm discussed in [24], our version of
PRETTI arranges the items in increasing order of their frequency as discussed in Sect. 5.2;
thus, the overall improvement of PRETTI∗ (which follows OPJ) over the original method
of [24] orgPRETTI is even greater: 2.5× for BMS-POS, 5.4× for FLICKR, 2.5× for
KOSARAKand38.5× forNETFLIX.For the rest of our analysis,we adopt theOPJ paradigm
for all tested methods.

5.4 The effect of limit �

As discussed in Sect. 3, employing limit � for set containment joins introduces a trade-off
between list intersection and candidates verification. To demonstrate this effect, we run the
LIMIT algorithm (adoptingOPJ) while varying limit � from 1 to the average object length in
R, and then plot its response time (Fig. 4), the number of list intersections performed (Fig. 5)
and the total number of candidates (Fig. 6). The total number of candidates includes both
(r, s) pairs which are directly reported as results, i.e., with |r | ≤ �, and those that are verified
by comparing their prefixes beyond �, i.e., with |r | > �. To have a better understanding of
this experiment, we also include the measurements for PRETTI∗ which uses an unlimited
TR . The figures clearly show the trade-off introduced by limit � and confirm the existence

123

392 P. Bouros et al.

 10

 20

 30

 40

 50

 60

 70

1 2 4 7 63

R
es

po
ns

e
tim

e
(s

ec
) PRETTI*

LIMIT

 10

 12

 14

 16

 18

 20

1 2 3 8 10 52

R
es

po
ns

e
tim

e
(s

ec
)

PRETTI*
LIMIT

� (log scale) � (log scale)

 100

1 3 4 5 9 398

R
es

po
ns

e
tim

e
(s

ec
) PRETTI*

LIMIT

 240
 260
 280
 300
 320
 340
 360
 380
 400
 420
 440
 460

1 6 96 210 1557

R
es

po
ns

e
tim

e
(s

ec
) PRETTI*

LIMIT

� (log scale) � (log scale)

(a) (b)

(c) (d)

Fig. 4 Vary limit �, response time. a BMS, b FLICKR, c KOSARAK, d NETFLIX

of an optimal value that balances the benefits of using the limited prefix tree over the cost of
including a verification stage. According to Figs. 5 and 6, as � increases, LIMIT naturally
performs more list intersections, and thus, the number of candidate pairs decreases until it
becomes equal to the join results, i.e., the number of candidates for PRETTI∗. However,
regarding its performance shown in Fig. 4, although LIMIT initially benefits from having to
verify fewer candidate pairs, when � increases beyond a specific value, performing additional
list intersections becomes a bottleneck and the algorithm slows down until its response time
becomes almost equal to the time of PRETTI∗.

Apart from the trade-off introduced by limit �, Figs. 4, 5 and 6 also show that the LIMIT
algorithm can be faster than PRETTI∗ as long as � is properly set, i.e., close to its optimal
value. However, as discussed in Sect. 3, determining the optimal � value is a time-consuming
procedure, reminiscent to frequent itemsets mining which cannot be employed in practice;
recall that � must be determined online. For this purpose, we propose the following simple
strategies to select a good � value based on cheap-to-compute statistics that require no more
than a pass over the input collection R. First, strategies AVG and W–AVG set � equal to
the average and the weighted average object length in R, respectively. Similarly, strategy
MDN sets � to the median value of the object length in R. Last, we also devise a frequency-
based strategy termed FRQ. The idea behind FRQ is to estimate when paths greater than �

would only be contained in very few objects. We start with a path p that contains the most
frequent item in R and progressively add the next items in decreasing frequency order. We
estimate the probability that this path appears in a object by considering only the support of
the items.When this probability falls under a threshold, which makes the expected cost of list
intersection greater than the cost of verification (according to our analysis in Sect. 3.2), we
stop adding items in p and set � = |p|. Note that this probability serves as an upper bound for
all paths of length � (assuming item independence), since p includes the most frequent items.

123

Set containment join revisited 393

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 7 63#
of

 in
te

rs
ec

tio
ns

 (i
n

m
ill

io
ns

)

PRETTI*
LIMIT 0

 2

 4

 6

 8

 10

 12

1 2 3 8 10 52#
of

 in
te

rs
ec

tio
ns

 (i
n

m
ill

io
ns

)

PRETTI*
LIMIT

� (log scale) � (log scale)

 0
 1
 2
 3
 4
 5
 6
 7

1 3 4 5 9 398#
of

 in
te

rs
ec

tio
ns

 (i
n

m
ill

io
ns

)

PRETTI*
LIMIT

 0

 20

 40

 60

 80

 100

1 6 96 210 1557#
of

 in
te

rs
ec

tio
ns

 (i
n

m
ill

io
ns

)
PRETTI*

LIMIT

� (log scale) � (log scale)

(a) (b)

(c) (d)

Fig. 5 Vary limit �, number of intersections. a BMS, b FLICKR, c KOSARAK, d NETFLIX

 3000

 3500

 4000

 4500

 5000

 5500

 6000

1 2 4 7 63#
of

 c
an

di
da

te
s (

in
 m

ill
io

ns
)

LIMIT
PRETTI*

 1500
 1600
 1700
 1800
 1900
 2000
 2100
 2200

1 2 3 8 10 52#
of

 c
an

di
da

te
s (

in
 m

ill
io

ns
)

LIMIT
PRETTI*

� (log scale) � (log scale)

 54000
 56000
 58000
 60000
 62000
 64000
 66000
 68000

1 34 5 9 398#
of

 c
an

di
da

te
s (

in
 m

ill
io

ns
)

LIMIT
PRETTI*

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 6 96 210 1557#
of

 c
an

di
da

te
s (

in
 m

ill
io

ns
)

LIMIT
PRETTI*

� (log scale) � (log scale)

(a) (b)

(c) (d)

Fig. 6 Vary limit �, number of candidates (for PRETTI∗ equals the number of results). a BMS, b FLICKR,
c KOSARAK, d NETFLIX

123

394 P. Bouros et al.

Table 8 Limit � determined by
each estimation strategy

Dataset Optimal AVG W–AVG MDN FRQ

BMS 2 63 7 4 4

FLICKR 2 52 10 8 3

KOSARAK 4 398 9 3 5

NETFLIX 6 1,557 210 96 6

 0

 20

 40

 60

 80

PRETTI

PRETTI*

LIMIT
LIMIT+

R
es

po
ns

e
tim

e
(s

ec
)

Prefix tree
Inverted index

Join

 0
 20
 40
 60
 80

 100
 120

PRETTI

PRETTI*

LIMIT
LIMIT+

R
es

po
ns

e
tim

e
(s

ec
)

Prefix tree
Inverted index

Join

 0
 20
 40
 60
 80

 100
 120
 140

orgPRETTI

PRETTI

PRETTI*

LIMIT
LIMIT+

L-ORACLE

T-ORACLE

L-ORACLE

T-ORACLE

L-ORACLE

T-ORACLE

R
es

po
ns

e
tim

e
(s

ec
)

Prefix tree
Inverted index

Join

0
500

1000
1500
2000

14000

orgPRETTI

orgPRETTI

orgPRETTI

PRETTI

PRETTI*

LIMIT
LIMIT+

L-ORACLE

T-ORACLE

R
es

po
ns

e
tim

e
(s

ec
)

Prefix tree
Inverted index

Join

(a) (b)

(c) (d)

Fig. 7 Comparison of the set containment join methods on real datasets (limit � set by FRQ according to
Table 8). a BMS, b FLICKR, c KOSARAK, d NETFLIX

Table 8 summarizes the values of � determined by each strategy for the experimental datasets.
Overall, FRQ provides the best estimation of optimal �; in fact, for NETFLIX it identifies
the actual optimal value. Figures 4, 5 and 6 confirm this observation as the performance of
LIMIT with a limit set by FRQ is very close to its performance for the optimal �. Thus, for
the rest of our analysis we adopt FRQ to set limit � value.

5.5 Comparison of the join methods

In Sect. 5.4, we showed that by properly selecting limit � (FRQ strategy),LIMIT outperforms
PRETTI∗ and, based on Sects. 5.3 and 5.2, also PRETTI and orgPRETTI. Next, we
experiment with LIMIT+ which (like LIMIT) employs FRQ. Figure 7 reports the response
time of orgPRETTI, PRETTI, PRETTI∗, LIMIT and LIMIT+ on all four real datasets.
To further investigate the properties of LIMIT+, we also include the response time of two
oracle methods4: (i) L−ORACLE corresponds to LIMIT with � set to its optimal value (see
Table 8), (ii) T−ORACLE is a version of LIMIT+ which compares the actual execution
time of the two alternative strategies for current prefix tree node instead of utilizing the cost

4 These are infeasible methods using apriori knowledge which is not known at runtime and it is extremely
expensive to compute before the join.

123

Set containment join revisited 395

Dataset memory ratio
�TR/TR

BMS 50%
FLICKR 44%
KOSARAK 46%
NETFLIX 3%

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100R
at

io
 o

f t
ot

al
 m

em
or

y
(%

)

% of partitions processed

BMS
FLICKR

KOSARAK
NETFLIX

(a) (b)

Fig. 8 Memory requirements (LIMIT+ using FRQ). a LIMIT+ (not OPJ) versus orgPRETTI. b LIMIT+
(OPJ) versus orgPRETTI

model of Sect. 3.2; note that for this purpose, we run offline both alternative strategies for
every prefix tree node and store their execution time.With the exception of orgPRETTI and
PRETTI, the rest of the algorithms follow the OPJ join paradigm. We break the response
time of all methods into three parts, (i) building prefix tree TR , (ii) building inverted index
IS and (iii) computing the join results. Note that for PRETTI+, LIMIT, LIMIT+ and the
oracles, the indexing time additionally includes the sorting and partitioning cost of the input
objects. As expected, the total indexing time is negligible compared to the joining time; an
exception arises for FLICKR due its large number of objects.

Figure 7 shows that LIMIT+ is the most efficient method for set containment joins. It
is at least two times faster than PRETTI. LIMIT+ also outperforms LIMIT for the BMS,
FLICKR and KOSARAK datasets, while for NETFLIX, both algorithms perform similarly
as (i) theFRQ strategy sets limit � to its optimal value and (ii) the TR prefix tree for NETFLIX
is quite balanced. The adaptive approach of LIMIT+ that dynamically chooses between list
intersection and candidates verification, copes better with (i) overestimated � values and (ii)
cases where TR is unbalanced. Specifically, due to employing an ad hoc limit for each path
of the prefix tree, LIMIT+ can be faster than LIMIT even with optimal �, i.e., faster than
L−ORACLE (see Fig. 7b, c). For these datasets, TR is quite unbalanced, and thus, there is no
fixed value of � to outperform the adaptive strategy. Note that even if � is overestimated, e.g.,
using strategy W–AVG, the performance of LIMIT+ is almost the same as when an optimal
(or close to optimal) � is used. Note also that the response time of LIMIT+ is very close
to that of T−ORACLEwhich proves the accuracy of our cost model proposed in Sect. 3.2.
We would like to stress at this point that the overall performance improvement achieved
by LIMIT+ over the original method of [24] which arranges the items inside an object in
decreasing frequency order is as expected even larger compared to our version of PRETTI;
LIMIT+ is 5 times faster than orgPRETTI for BMS, 11 times for FLICKR, 3.5 times for
KOSARAK and 70 times for NETFLIX.

Next, we analyze the advantage of LIMIT+ (using FRQ) over orgPRETTI of [24] that
arranges the items in decreasing frequency order, with respect to their memory requirements.
Figure 8a shows the space for indexing only the left-hand collection R when neither method
follows the OPJ paradigm.We observe that by constructing limited prefix tree �TR instead of
unlimited TR ,LIMIT+ saves at least 50%of space compared toorgPRETTI; forNETFLIX,
where TR has the highest storing cost due to its extremely long objects, the savings are over
90%. Then, in Fig. 8b we consider LIMIT+ adopting OPJ and report the space for indexing
both input collections while evaluating the join, compared to orgPRETTI which does not
follow the OPJ paradigm. We observe that by incrementally building �TR and IS , LIMIT+
uses at least 50% less space than orgPRETTI. Naturally, the amount of space used by

123

396 P. Bouros et al.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 3 5 7 10

R
es

po
ns

e
tim

e
(s

ec
)

of objects (in millions)

orgPRETTI
PRETTI
LIMIT+

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

10 50 100 500 1000

R
es

po
ns

e
tim

e
(s

ec
)

of items (log scale, in thousands)

orgPRETTI
PRETTI
LIMIT+

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

10 30 50 70 100

R
es

po
ns

e
tim

e
(s

ec
)

of items

orgPRETTI
PRETTI
LIMIT+

 100

 1000

 10000

 100000

0 0.3 0.5 0.7 1

R
es

po
ns

e
tim

e
(s

ec
)

order

orgPRETTI
PRETTI
LIMIT+

(a) (b)

(c) (d)

Fig. 9 Scalability tests on synthetic datasets (limit � set by FRQ), default parameter values: cardinality 5M
objects, domain size 100K items, weighted avg object length 50 items, order of Zipfian distribution 0.5.
a Cardinality, b domain size, c weighted avg object length, d Zipfian distribution

LIMIT+ increases while examining the collection partitions, but it is always lower than the
space for orgPRETTI due to never actually building and storing the entire prefix tree; only
one subtree of �TR is kept inmemory at a time. Finally, notice the different trend forNETFLIX
as its partitions have balanced sizes; in contrast for BMS, FLICKR and KOSARAK, the first
partitions contain very few objects while the last ones are very large.

Finally, we present the results of our scalability tests on the synthetic datasets of Table 5.
Figure 9 reports the response time of our best method LIMIT+ and the orgPRETTI and
PRETTI competitors. The purpose of these tests is twofold: (i) to demonstrate how the
characteristics of a dataset affect the performance of the methods, and (ii) to determine
their “breaking point.” First, we notice that all methods are affected in a similar manner;
their response time increases as the input contains more or longer objects and decreases
while the domain size becomes larger. An exception arises in Fig. 9d. The performance of
orgPRETTI is severely affected when increasing the order of the Zipfian distribution; recall
that orgPRETTI arranges the items inside an object, in decreasing frequency order. As
expected, LIMIT+ outperforms orgPRETTI and PRETTI under all setups, similar to the
case of real datasets. Second, we also observe that bothorgPRETTI andPRETTI are unable
to cope with the increase in the cardinality and weighted average object length of the datasets.
These two factors directly affect the size of the TR prefix tree and the memory requirements.
In practice, orgPRETTI and PRETTI failed to run for inputs with more than 5M objects
and/or when their weighted average length is larger than 50, because the unlimited prefix
tree cannot fit inside the available memory; in these cases, the methods would have to adopt
a block-based evaluation approach similar [24,27]. In contrast, LIMIT+ is able to index
left-hand relation R due to employing limit � and following OPJ, and hence, compute the
join results.

123

Set containment join revisited 397

6 Related work

Our work is related to query operators on sets. In this section, we summarize previous work
done for set containment queries, set containment joins, and set similarity joins. In addition,
we review previous work on efficient computation of list intersection, which is a core module
of our algorithms.

6.1 Set containment queries

Signatures and inverted files are two alternative indexing structures for set-valued data. Sig-
natures are bitmaps used to exactly or approximately represent sets. With |D| being the
cardinality of the items domain, a set x is represented by a |D|-length signature sig(x). The
i th bit of sig(x) is set to 1 iff the i th item of domain D is present in x . If the sets are very small
compared to |D|, exact signatures are expensive to store, and therefore, approximations of
fixed length l < |D| are typically used. Experimental studies [22,44] showed that inverted
files outperform signature-based indices for set containment queries on datasets with low
cardinality set objects, e.g., typical text databases.

In [37,38], the authors proposed extensions of the classic inverted file data structure, which
optimize the indexing set-valued data with skewed item distributions. In [14], the authors
proposed an indexing scheme for text documents, which includes inverted lists for frequent
word combinations. A main-memory method for addressing error-tolerant set containment
queries was proposed in [1]. In [42], Zhang et al. addressed the problem of probabilistic set
containment, where the contents of the sets are uncertain. The proposed solution relies on
an inverted file where postings are populated with the item’s probability of belonging to a
certain object. The study in [23] focused on containment queries on nested sets, and proposes
an evaluation mechanism that relies on an inverted file which is populated with information
for the placement of an element in the tree of nested sets. The above methods use classic
inverted files or extend them either by trading update and creation costs for response time
[1,14,37,38] or by adding information that is needed for more complex queries [23,42].
Employing these extended inverted files for set containment joins (i.e., in place of our IS) is
orthogonal to our work.

6.2 Set containment joins

In [21], the Signature Nested Loops (SNL) Join and the Signature Hash Join (SHJ) algorithm
for set containment joins were proposed, with SHJ shown to be the fastest. For each set
object r in the left-hand collection R, both algorithms compare signatures to identify every
object s in the right-hand collection S with sig(r)&¬sig(s) = 0 and |r | ≤ |s| (filter phase),
and then, perform explicit set comparison to discard false drops (verification phase). Later,
the hash-based algorithms Partitioned Set Join (PSJ) in [30] and Divide-and-Conquer Set
Join (DCJ) in [28] aimed at reducing the quadratic cost of the algorithms in [21]. In these
approaches, the input collections are partitioned based on hash functions such that object
pairs of the join result fall in the same partition. Finally, Melnik and Molina [29] proposed
adaptive extensions to PSJ and DCJ, termed APSJ and ADCJ, respectively, to overcome the
problem of a potentially poor partitioning quality.

Inverted files were employed by [24,27] for set containment joins. Specifically, in [27],
Mamoulis proposed a Block Nested Loops (BNL) Join algorithm that indexes the right-hand
collection S by an inverted file IS . The algorithm iterates through each object r in the left-
hand collection R and intersects the corresponding postings lists of IS to identify the objects

123

398 P. Bouros et al.

in S that contain r . The experimental analysis in [27] showed that BNL is significantly
faster than previous signature-based methods [21,30]. In [24], Jampani and Pudi targeted
the major weakness of BNL; the fact that the overlaps between set objects are not taken into
account. The proposed algorithm PRETTI employs a prefix tree on the left-hand collection,
allowing list intersections for multiple objects with a common prefix to be performed just
once. Experiments in [24] showed that PRETTI outperforms BNL and previous signature-
based methods of [29,30]. Our work first identifies and tackles the shortcomings of the
PRETTI algorithm and then proposes a new join paradigm.

6.3 Set similarity joins

The set similarity join finds object pairs (r, s) from input collections R and S, such that
sim(r, s) ≥ θ , where sim(·, ·) is a similarity function (e.g., Jaccard coefficient) and θ is a
given threshold. Computing set similarity joins based on inverted files was first proposed
in [34]: For each object in one input, e.g., r ∈ R, the inverted lists that correspond to r ’s
elements on the other collection are scanned to accumulate the overlap between r and all
objects s ∈ S. Among the optimization techniques on top of this baseline, Chaudhuri et al.
[15] proposed a filter-refinement framework based on prefix filtering; for two internally sorted
set objects r and s to satisfy sim(r, s) ≥ θ , their prefixes should have at least some minimum
overlap. Later, [3,9,33,41] built upon prefix filtering to reduce the number of candidates
generated. Recently, Bouros et al. [10] proposed a grouping optimization technique to boost
the performance of themethod in [41], andWang et al. [40] devised a costmodel to judiciously
select the appropriate prefix for a set object. An experimental comparison of set similarity
join methods can be found in [25]. In theory, the above methods can be employed for set
containment joins, considering for instance the asymmetric containment Jaccard measure,
sim(r, s) = |r∩s|

|r | and threshold θ = 1. In practice, however, this approach is not efficient as
it generates a large number of candidates. For each object r ∈ R, prefix filtering can only
prune objects in S that do not contain r ’s first item while the rest of the candidates need to be
verified by comparing the actual set objects. Therefore, the ideas proposed in previous work
on set similarity joins are not applicable to set containment joins.

6.4 List intersection

In [19,20], Demaine et al. presented an adaptive algorithm for computing set intersections,
unions and differences. Specifically, the algorithm in [19] (ameliorated in [20] and extended in
[7]) polls each list in a round-robin fashion. Baeza-Yates [4] proposed an algorithm that adapts
to the input values and performs quite well in average. It can be seen as a natural hybrid of the
binary search and the merge-sort approach. Experimental comparison of the above, among
others, methods of list intersection, with respect to their CPU cost, can be found in [5,6,8].
The trade-off between the way sets is stored, and the way they are accessed in the context of
the intersection operator was studied in [18]. Finally, recent work [35,36,39] considered list
intersection with respect to the characteristics of modern hardware and focused on balancing
the load between multiple cores. In [35,36], Tatikonda et al. proposed inter-query parallelism
and intra-query parallelism. The former exploits parallelism between different queries, while
the latter parallelizes the processing within a single query. On the other hand, the algorithm
in [39] probes the lists in order to gather statistics that would allow efficient exploration of
the multi-level cache hierarchy. Efficient list intersection is orthogonal to our set containment
join problem. Yet, in Sect. 5.2, we employ a hybrid list intersection method based on [4] to
determine the preferred ordering of the items inside the objects.

123

Set containment join revisited 399

6.5 Estimating set intersection size

Estimating the intersection size of two sets has received a lot of attention in the area of
information retrieval [11,12,16,17,26], to determine the similarity between two documents
modeled as sets of terms. Given sets A and B, the basic idea is to compute via sampling
small sketches S(A) and S(B), respectively. Then, |S(A)∩S(B)| is used as an estimation of
|A∩ B|. Our adaptive methodology for set containment joins (Sect. 3.2) involves estimating
the size of a list intersection. Yet, the methods discussed above are not applicable as they
require an expensive preprocessing step, i.e., precomputing and indexing the sketches for
every list of the inverted index at the right-hand collection. In addition, one of the two lists
at each intersection (i.e., candidates list CL) is the result of previous intersections. Thus,
computing the sketch of CL should be done on-the-fly, i.e., the overall cost of the sketch-
based intersection would exceed the cost of performing the exact list intersection (especially
since CL becomes shorter every time it is intersected with an inverted list of the right-hand
collection).

7 Conclusion

In this paper, we revisited the set containment join R ��⊆ S between two collections R and
S of set objects r and s, respectively. We presented a framework which improves the state-
the-art method PRETTI, greatly reducing the space requirements and time cost of the join.
Particularly, we first proposed an adaptive methodology (algorithms LIMIT and LIMIT+)
that limits the prefix tree constructed for the left-hand collection R. Second, we proposed a
novel join paradigm termed OPJ that partitions the objects of each collection based on their
first contained item, and then examines these partitions to evaluate the joinwhile progressively
building the indices on R and S. Finally, we conducted extensive experiments on real datasets
to demonstrate the advantage of our methodology.

Besides the fact that the OPJ paradigm significantly reduces both the join cost and the
maximum memory requirements, it can be applied in a parallel processing environment. For
instance, by assigning each partition Ri of the left-hand collection to a single computer node
vi while replicating the partitions of the right-hand collection such that node vi gets every
object in S which starts either by item i or an item before i according to the global item
ordering, our method runs at each node and there is no need for communication among the
nodes, since join results are independent and there are no duplicates. In the future, we plan
to investigate the potential of such an implementation.

Acknowledgments This work was supported by the HKU 714212E Grant from Hong Kong RGC and the
MEDA project within GSRTs KRIPIS action, funded by Greece and the European Regional Development
Fund of the European Union under the O.P. Competitiveness and Entrepreneurship, NSRF 2007–2013 and the
Regional Operational Program of ATTIKI.

References

1. Agrawal P, Arasu A, Kaushik R (2010) On indexing error-tolerant set containment. In: SIGMOD confer-
ence, pp 927–938

2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: VLDB,
pp 487–499

3. Arasu A, Ganti V, Kaushik R (2006) Efficient exact set-similarity joins. In: VLDB, pp 918–929

123

400 P. Bouros et al.

4. Baeza-Yates RA (2004) A fast set intersection algorithm for sorted sequences. In: CPM, pp 400–408
5. Baeza-Yates RA, Salinger A (2005) Experimental analysis of a fast intersection algorithm for sorted

sequences. In: SPIRE, pp 13–24
6. Baeza-Yates RA, Salinger A (2010) Fast intersection algorithms for sorted sequences. In: Algorithms and

applications. Springer, Berlin Heidelberg, pp 45–61
7. Barbay J, Kenyon C (2002) Adaptive intersection and t-threshold problems. In: SODA, pp 390–399
8. Barbay J, López-Ortiz A, Lu T, Salinger A (2009) An experimental investigation of set intersection

algorithms for text searching. ACM J Exp Algorithmics 14:7:3.7–7:3.24
9. Bayardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs similarity search. In: WWW

10. Bouros P, Ge S, Mamoulis N (2012) Spatio-textual similarity joins. PVLDB 6(1):1–12
11. Broder A (1997) On the resemblance and containment of documents. In: SEQUENCES, pp 21–29
12. Broder AZ (2000) Identifying and filtering near-duplicate documents. In: CPM, pp 1–10
13. Cao B, Badia A (2005) A nested relational approach to processing SQL subqueries. In: SIGMOD con-

ference, pp 191–202
14. Chaudhuri S, Church KW, König AC, Sui L (2007) Heavy-tailed distributions andmulti-keyword queries.

In: SIGIR, pp 663–670
15. Chaudhuri S, Ganti V, Kaushik R (2006) A primitive operator for similarity joins in data cleaning. In

ICDE, p 5
16. Chen Z, Korn F, Koudas N,Muthukrishnan S (2000) Selectivity estimation for boolean queries. In: PODS,

pp 216–225
17. Chen Z, Korn F, Koudas N, Muthukrishnan S (2003) Generalized substring selectivity estimation.

J Comput Syst Sci 66(1):98–132
18. Culpepper JS,MoffatA (2010) Efficient set intersection for inverted indexing.ACMTrans Inf Syst 29(1):1
19. Demaine ED, López-Ortiz A, Munro JI (2000) Adaptive set intersections, unions, and differences. In:

SODA, pp 743–752
20. Demaine ED, López-Ortiz A, Munro JI (2001) Experiments on adaptive set intersections for text retrieval

systems. In: ALENEX, pp 91–104
21. Helmer S, Moerkotte G (1997) Evaluation of main memory join algorithms for joins with set comparison

join predicates. In: VLDB, pp 386–395
22. Helmer S, Moerkotte G (2003) A performance study of four index structures for set-valued attributes of

low cardinality. VLDBJ 12(3):244–261
23. Ibrahim A, Fletcher GHL (2013) Efficient processing of containment queries on nested sets. In: EDBT,

pp 227–238
24. Jampani R, Pudi V (2005) Using prefix-trees for efficiently computing set joins. In: DASFAA, pp 761–772
25. Jiang Y, Li G, Feng J, Li W (2014) String similarity joins: an experimental evaluation. PVLDB 7(8):625–

636
26. Köhler H (2010) Estimating set intersection using small samples. In: ACSC, pp 71–78
27. Mamoulis N (2003) Efficient processing of joins on set-valued attributes. In: SIGMOD conference,

pp 157–168
28. Melnik S, Garcia-Molina H (2002) Divide-and-conquer algorithm for computing set containment joins.

In: EDBT, pp 427–444
29. Melnik S, Garcia-Molina H (2003) Adaptive algorithms for set containment joins. ACM Trans Database

Syst 28:56–99
30. Ramasamy K, Patel JM, Naughton JF, Kaushik R (2000) Set containment joins: The good, the bad and

the ugly. In: VLDB, pp 351–362
31. Rantzau R (2003) Processing frequent itemset discovery queries by division and set containment join

operators. In: DMKD, pp 20–27
32. Rantzau R, Shapiro LD, Mitschang B, Wang Q (2003) Algorithms and applications for universal quan-

tification in relational databases. Inf Syst 28(1–2):3–32
33. Ribeiro L, Härder T (2009) Efficient set similarity joins using min-prefixes. In: Advances in databases

and information systems, 13th East European conference, ADBIS 2009, Riga, Latvia, September 7–10,
2009. Proceedings, pp 88–102

34. Sarawagi S, Kirpal A (2004) Efficient set joins on similarity predicates. In: SIGMOD conference,
pp 743–754

35. Tatikonda S, Cambazoglu BB, Junqueira FP (2011) Posting list intersection on multicore architectures.
In: SIGIR, pp 963–972

36. Tatikonda S, Junqueira F, Cambazoglu BB, Plachouras V (2009) On efficient posting list intersection with
multicore processors. In: SIGIR, pp 738–739

37. TerrovitisM,Bouros P,Vassiliadis P, Sellis TK,MamoulisN (2011)Efficient answering of set containment
queries for skewed item distributions. In: EDBT, pp 225–236

123

Set containment join revisited 401

38. Terrovitis M, Passas S, Vassiliadis P, Sellis TK (2006) A combination of trie-trees and inverted files for
the indexing of set-valued attributes. In: CIKM, pp 728–737

39. Tsirogiannis D, Guha S, Koudas N (2009) Improving the performance of list intersection. PVLDB
2(1):838–849

40. Wang J, Li G, Feng J (2012) Can we beat the prefix filtering? An adaptive framework for similarity join
and search. In: SIGMOD conference, pp 85–96

41. Xiao C, Wang W, Lin X, Yu JX (2008) Efficient similarity joins for near duplicate detection. In: WWW,
pp 131–140

42. Zhang X, Chen K, Shou L, Chen G, Gao Y, Tan K-L (2012) Efficient processing of probabilistic set-
containment queries on uncertain set-valued data. Inf Sci 196:97–117

43. Zheng Z, Kohavi R, Mason L (2001) Real world performance of association rule algorithms. In: KDD,
pp 401–406

44. Zobel J, Moffat A, Ramamohanarao K (1998) Inverted files versus signature files for text indexing. TOIS
23(4):453–490

Panagiotis Bouros received his diploma and Ph.D. degree from the
School of Electrical and Computer Engineering at the National Tech-
nical University of Athens, Greece, in 2003 and 2011, respectively.
He is currently a postdoctoral researcher for the Department of Com-
puter Science at Aarhus University, Denmark. Prior to that he was with
Humboldt-Universität zu Berlin, Germany, and the University of Hong
Kong, Hong Kong SAR, China. His research focuses on managing and
querying complex data types including spatial, temporal and text, and
on routing optimization problems.

Nikos Mamoulis received a diploma in Computer Engineering and
Informatics in 1995 from the University of Patras, Greece, and a Ph.D.
in Computer Science in 2000 from the Hong Kong University of Sci-
ence and Technology. He is currently a professor at the Department
of Computer Science, University of Hong Kong, which he joined in
2001. His research focuses on management and mining of complex
data types, including spatial, spatiotemporal, object-relational, multi-
media, text and semi-structured data. He has served on the program
committee of over 80 international conferences on data management
and mining. He is an associate editor for IEEE TKDE and the VLDB
Journal.

123

402 P. Bouros et al.

Shen Ge received his Ph.D. degree from the Department of Computer
Science, University of Hong Kong in 2012, and bachelors and mas-
ters degrees in computer science from the Department of Computer
Science and Technology in Nanjing University, China, in 2005 and
2008, respectively. His research focuses on query processing on multi-
dimensional and spatial–textual data.

Manolis Terrovitis is an associate researcher at the Institute for the
Management of Information Systems (IMIS) of the Research and Inno-
vation Centre in Information, Communication and Knowledge Tech-
nologies “Athena.” He received his Ph.D. in 2007 from the National
Technical University of Athens. His main research interests lie in the
areas of data privacy, indexing and query evaluation.

123

	Set containment join revisited
	Abstract
	1 Introduction
	2 Background on set containment join: the PRETTI algorithm
	3 An adaptive methodology
	3.1 The LIMIT algorithm
	3.2 The LIMIT+ algorithm

	4 A novel join paradigm
	5 Experimental evaluation
	5.1 Setup
	5.2 Items global ordering
	5.3 Employing the OPJ join paradigm
	5.4 The effect of limit ell
	5.5 Comparison of the join methods

	6 Related work
	6.1 Set containment queries
	6.2 Set containment joins
	6.3 Set similarity joins
	6.4 List intersection
	6.5 Estimating set intersection size

	7 Conclusion
	Acknowledgments
	References

