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Abstract Coordinated sequential decision making of a team of cooperative agents can be
described by principles of multiagent planning. Provided that the mechanics of the environ-
ment the agents act in is described as a deterministic transitions system, an appropriate
planning model is MA-Strips. Multiagent planning modeled as MA-Strips prescribes
exactly what information has to be kept private and which information can be communicated
in order to coordinate toward shared or individual goals. We propose a multiagent planning
approach which combines compilation for a classical state-of-the-art planner together with
a compact representation of local plans in the form of finite-state machines. Proving sound-
ness and completeness of the approach, the planner efficiency is further boosted up using
distributed delete-relaxation heuristics and using an approximative local plan analysis. We
experimentally evaluate applicability of our approach in full privacy settingwhere only public
information can be communicated.We analyze properties of standardmultiagent benchmarks
from the perspective of classification of private and public information. We show that our
approach can be used with different privacy settings and that it outperforms state-of-the-art
planners designed directly for particular privacy classification.
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1 Introduction

A team of intelligent agents acting in a shared environment has to coordinate its steps in order
to achieve common goals. Multiagent planning with a deterministic model describes such
problems and proposes techniques to solve them. Provided that the agents are obliged to keep
information about their individual abilities private, they are not allowed to communicate it
with other agents. Consider an application domain in which several logistic companies have
to cooperate to fulfill complex transportation tasks, which cannot be managed by any of the
companies on its own. Although the companies have to cooperate, still they need to keep their
know-how secret, being it their modes of transportation or local routes. In such a situation, the
companies represented by planning agents would not benefit from any competitive behavior
as the objective is common for all the companies, but they still have to keep parts of their
knowledge private because of their local competition.

The concept of private knowledge is not new in multiagent planning because it can factor
a planning problem and thus positively affect the complexity of the planning process [6].
Nevertheless, multiagent planners usually do not target this particular facet of the problem.
Some multiagent state-space search algorithms avoid this problem by obfuscating or aggre-
gating private information on interconnecting states. In contrast, our coordination-centric
approach completely preserves private knowledge as only public projections of agent plans
are exchanged. Moreover, our algorithm benefits from decrease of required communication
among the agents when compared to state-space search algorithms.

The most used multiagent planning model MA-Strips [6] prescribes a scheme which
information has to stay public. Although the original motivation was not to jeopardize com-
pleteness of the planning process required for complexity assurances, most of the planners
in the literature stick to this particular definition. The most notable exception is the FMAP
planner [33] which allows to mark public information in the planning problem description.
Besides representation of local plans as totally or partially ordered sequences of actions, a
compact representation of set of local plans utilizing various types of finite-state machines
was proposed in [12] and our recent work [36]. In [35], we have proposed notions of exter-
nal actions and public plan extensibility. When planning with external actions, agents are
informed about public actions of other agents. Hence, they are able to plan actions for other
agents. However, external actions are striped of private information, and thus, it can happen
that an agent plans an external action inappropriately. The notion of extensibility allows to
recognize plans where external actions are used correctly. In [36], we have used extensibility
with finite-state machines to outline a generic scheme of multiagent planners further elab-
orated in this work. In [17], we have improved an extensibility-based planner with a type
system checker for process calculi utilized to efficiently approximate plan extensibility.

In this article, we present an extensibility-based multiagent planning algorithm which
utilizes finite-state machines to compactly represent sets of plans. We call this representation
planning state machines (PSM). Although the main idea of PSMs was briefly sketched
previously [36], the formal development including proofs of soundness and completeness is
first presented here. PSMsnot only allowus to compactly represent (even infinite) sets of plans
by a finite structure but mainly allow us to effectively implement operations crucial for our
planning algorithms. Furthermore, we combine a previous extensibility approximation [17]
with a method of a distributed relaxed heuristic used, for example, in MADLA planner [32].
This gives rise to a multiagent planner outperforming the state-of-the-art FMAP planner.

We use classical multiagent benchmark domains found in the literature to evaluate our
planner. We provide a comprehensive domains description, and we compare experimental
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results with other state-of-the-art planners. Finally, we analyze the benchmark domains from
the point of view of different privacy classifications. Different privacy classifications differ
in facts explicitly revealed to other agents. While other planners are usually designed with a
fixed privacy classification in mind, we show that our planner can be easily adjusted to work
with various privacy classifications. Hence, we provide a user the freedom to choose what is
public, and we can directly compare our planner with other planners. Furthermore, we show
that a restricted public knowledge can even improve planner performance.

2 Related work

In classical planning, the plan synthesis process is typically a systematic search in either
space of states, plans, or a combination of both. First multiagent planner for MA-Strips
called planning first [28] used a global plan-space search and local forward state-space
search. FMAP [34] is a representative of a multiagent partial ordered planner using heuristic
search to locally improve efficiency and global distributed search in the space of the partial
plans. A representative planners of the coordination-centric planning are distributed planning
by graph merging (DPGM) [11,30], best response planning [21], and μ-SATPLAN [10]. A
planner Distoplan [12] and following A# planner [20] pioneered the idea of planning by
means of finite-state machines (FSM). However, the A# planner was evaluated only on one
planning domain. Our approach represents agent plans as FSMs as well. Additionally, we use
a principle of intersection of the FSMs effectively acting as filter for unfeasible combination
of plans of different agents. Moreover, our motivation was to provide a practical planning
system; thus, we aimed at an efficient implementation and thorough experimental evaluation
of our planner.

Distributed MA-Strips multiagent planners in the literature can be roughly separated
to three groups by privacy preservation. Most of the planners follows concept of privacy
by information obfuscation [4,27] or information aggregation [32,33]. With information
obfuscation, agents are allowed to communicate private information with other agents as far
as the information is obfuscated such that only the owning agent can understand it (e.g., the
name of an action is replaced by a hash code). With information aggregation, the information
is aggregated such that only the owning agent knows all details (e.g., a summed up cost of
private actions can be send to other agents). An exception is theGPPP planner [26] providing
full privacy by communicating only public information. Our approach also provides full
privacy. Especially in the contrast to the obfuscation principle, we can reduce the size of plan
space because privacy preservation act as natural abstraction of the problem from perspective
of particular agents. Our principle thus allows lower requirements on the communicated data.

Multiagent planning can also be seen as a specific form of factored planning [1]. Factored
planning tries to decompose a planning problem into possibly independent subproblems.
Solving these subproblems scales linearly with the size of the domain and in the worst
case exponentially with the size only of the largest subproblem and interactions among
subproblems. Obviously, the catch is that not all planning problems can be factored enough
to benefit from such efficiency gain. In [7], causal graphs [2] of the planning domains are used
to identify when factorization is computationally beneficial. A practical algorithm based on
this result and on principle of decomposition trees [9] was proposed in [22]. This principle
can be also seen as a variation on localized planning [24]. The difference between multiagent
planning and factored planning is that in multiagent planning the factorization is fixed and
given by agent abilities.
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3 Multiagent planning

Similarly as in classical planning, we assume a planning model based on extension of
Strips [13] compactly representing a deterministic transition system. The multiagent exten-
sion follows the principles proposed inMA-Strips by Brafman and Domshlak in [6]. Agent
capabilities are described as a finite repertoire of agent’s Strips actions. The agent actions
possibly affect only parts of the environment, thus inducing local planning problems of the
particular agent. Aptly, this (partial) “separation of concerns” of the agents keeps the private
information local. Also it helps to increase efficiency of the planning process by hiding parts
irrelevant for other agents.

The agents are cooperative and coordinated and concurrently plan and execute their local
plans in order to achieve a joint goal. The environment wherein the agents act is classicalwith
deterministic actions. The following formal preliminaries restate theMA-Strips problem [6]
and define local planning problems and plan extensibility [35] required for the following
sections.

3.1 Planning problem

An MA-Strips planning problem Π is a quadruple Π = 〈P, {αi }ni=1, I,G〉, where P is a
set of facts, αi is the set of actions of i th agent, I ⊆ P is an initial state, and G ⊆ P is a set
of goal facts. Selector functions facts(Π),agents(Π), init(Π), and goal(Π) are defined so
that Π = 〈facts(Π),agents(Π), init(Π),goal(Π)〉 holds for any problem Π .

An action an agent can perform is a quadruple containing unique action id and three
subsets of facts(Π) which in turn denote the set of preconditions, the set of add effects, and
the set of delete effects. Action ids are arbitrary atomic objects, and we always consider ids
to be unique within a given problem. Selector functions id(a),pre(a),add(a), and del(a)

are defined so that a = 〈id(a),pre(a),add(a),del(a)〉 holds for any action a. Moreover, let
eff(a) = add(a) ∪ del(a).

An agent is identified with its capabilities; in other words, the i th agent αi = {a1, . . . , am}
is determined by a finite set of actions it can preform in the environment.We usemetavariable
α to range over agents from Π . A planning state s is a finite set of facts, and we say that fact
p holds in s, or that p is valid in s, iff p ∈ s. When pre(a) ⊆ s, state progression function
γ is defined classically as γ (s, a) = (s \ del(a)) ∪ add(a).

Example 1 Throughout the paper, we shall use the following running example concerning
a small logistic company. The company owns two transport vehicles (plane and truck)
and operates three locations (prague,brno, and ostrava). A plane can travel from
prague to brno and back, while a truck provides connection between brno and
ostrava. The company receives a delivery job to transport the crown from prague
to ostrava. The company manager needs to plan tasks for the vehicle operators so that the
delivery job is done.

This delivery problem can be expressed using MA-Strips as follows. Actions
fly(loc1,loc2) and drive(loc1,loc2) describe movement of plane and truck,
respectively. Actions load(veh,loc) and unload(veh,loc) describe loading and
unloading of crown by a given vehicle at a given location.

We define two agents Plane and Truck. The agents are defined by sets of executable
actions as follows.
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Privacy-concerned multiagent planning 585

Plane = { fly(prague,brno),load(plane,prague),unload(plane,prague),

fly(brno,prague),load(plane,brno),unload(plane,brno) }
Truck = { drive(brno,ostrava),load(truck,brno),unload(truck,brno),

drive(ostrava,brno),load(truck,ostrava),unload(truck,ostrava) }

Aforementioned actions are definedusing factsat(veh,loc) to describe possible vehicle
locations and facts in(crown,loc) and in(crown,veh) to describe positions of crown.
We omit action ids in examples when no confusion can arise. For example, we have the
following.

fly(loc1,loc2) = 〈{at(plane,loc1)}, {at(plane,loc2)}, {at(plane,loc1)}〉
load(veh,loc) = 〈{at(veh,loc),in(crown,loc)}, {in(crown,veh)}, {in(crown,loc)}〉

The initial state and the goal are given as follows.

I = {at(plane,prague),at(truck,brno),in(crown,prague)}
G = {in(crown,ostrava)}

The goal reflects the delivery requirement. ��
3.2 Privacy classification of facts and actions

In MA-Strips multiagent planning, each fact is classified either as public or as internal out
of computational or privacy concerns. MA-Strips specifies this classification as follows. A
fact is publicwhen it is mentioned by actions of at least two different agents. A fact is internal
for agent α when it is not public but mentioned by some action of α. A fact is relevant for
α when it is either public or internal for α. Relevant facts contain all the facts which agent
α needs to understand, because other facts are internal for other agents and thus not directly
concern α. Formal definitions and notations used throughout the paper are presented in the
upper parts of Fig. 1.

It is possible to extend the set of public facts to contain additionally some facts that would
be internal by the above definition. This is important for our experimental evaluation because
some multiagent planners use different facts classification. It is an advantage of our planner
that it can be usedwith different facts classification because (1) we provide a user the freedom
to choose what is public and (2) we can directly compare our planner with planners that use
different classifications. The only requirement for our planner is that every fact shared by at
least two agents is public. Furthermore, it is common in the literature [27] to require that all
the goals are public. An MA-Strips problem with internal goals can be easily transformed
to an equivalent problem without internal goals (see Sect. 7.3), and thus, we omit internal
goals in formal presentation. Then pub-facts(Π) is defined as the minimal superset of the

facts(a) = pre(a) ∪ add(a) ∪ del(a) facts of action a

facts(α) = a∈α facts(a) facts of agent α

pub-facts(Π) = α=β(facts(α) ∩ facts(β)) public facts of Π(α, β ∈ agents(Π))
int-facts(α) = facts(α) \ pub-facts(Π) facts internal for agent α

rel-facts(α) = facts(α) ∪ pub-facts(Π) facts relevant for agent α

pub-actions(α) = {a ∈ α : eff(a) ∩ pub-facts(Π) = ∅} public actions of agent α

int-actions(α) = α \ pub-actions(α) internal actions of agent α

Fig. 1 MA-Strips privacy classification of facts and actions
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intersection from the definition that satisfies G ⊆ pub-facts(Π). In the rest of this paper,
we suppose G ⊆ pub-facts(Π) and also another simplification common in the literature [6]
which says that αi are pairwise disjoint.1

Example 2 In our running example, the only fact shared by the two agents is in(crown,

brno). As we require G ⊆ pub-facts(Π), we have the following facts classification.

pub-facts(Π) = { in(crown,brno),in(crown,ostrava)}
int-facts(Plane)={ at(plane,prague),at(plane,brno),in(crown,prague),in(crown,plane)}

��
MA-Strips further extends this classification of facts to actions as follows. An action

is public when it has a public effect, otherwise it is internal. Strictly speaking, MA-Strips
defines an action as public whenever it mentions a public fact even in a precondition (i.e.,
when facts(a)∩pub-facts(Π) 
= ∅). However, our method of multiagent planning does not
rely on synchronization of public preconditions, and hence, we can allow actions with only
public preconditions to be internal. For our planner, it is enough to know that internal actions
do not modify public state. Formal definitions and notations are presented in the lower part
of Fig. 1.

3.3 Local planning problems

In MA-Strips problems, agent actions are supposed to manipulate a shared global state
when executed. In multiagent planning with external actions, a local planning problem is
constructed for every agent α. Each local planning problem of α is a classical Strips problem
containing α’s own actions together with information about public actions of other agents.
These local planning problems allow us to divide an MA-Strips problem to several Strips
problems which can be solved separately by a classical planner. This paper describes a way
how to find a solution of an MA-Strips problem, but it does not address the question of
execution of a plan in some real-world environment.

The projection F � α of set of facts F to agent α is the restriction of F to the facts relevant
for α. Hence, projection removes from F facts not relevant for α, and thus, it represents F
as understood by agent α. The projection a � α of action a to agent α removes from a facts
not relevant for α, again representing a as seen by α. The projections are formally defined
as follows.

Definition 1 GivenΠ , let F be an arbitrary set F ⊆ facts(Π) of facts and let a be an action
from Π . The projection F � α of F to α ∈ agents(Π) and the projection a � α of action a
to α are defined as follows.

F �α = F ∩ rel-facts(α) a � α = 〈id(a),pre(a) � α, add(a) � α, del(a) � α〉
The action projection is extended to sets of actions element-wise. ��
Note that a � α = a when a ∈ α. Hence, projection to α alters only actions of agents other
than α. Also note that action ids are preserved under projection.

1 This rules out joint actions. Any MA-Strips problem with joint actions can be translated to an equivalent
problem without joint actions. However, a solution that would take advantage joint actions is left for future
research.
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Example 3 In our example, we have the following.

fly(prague,brno) �Plane = fly(prague,brno)

fly(prague,brno) �Truck = 〈∅, ∅, ∅〉
load(truck,brno) �Plane = 〈{in(crown,brno)}, ∅, {in(crown,brno)}〉

unload(truck,ostrava) �Plane = 〈∅, {in(crown,ostrava)}, ∅〉
��

Inmultiagent planningwith external actions, every agentα is from the beginning equipped
with projections of public actions of other agents. These projections, which we call external
actions, describe how agent α sees effects of public actions of other agents. In a local planning
problem, an agent needs external actions so that he can create a plan which contains also
public actions of other agents. The set of actions in a local planning problem of agentα simply
contains actions of agent α together with external actions of α. Now it is easy to define a local
planning problem Π �α of agent α also called projection of Π to α as a classical Strips
problem. The set of facts P and the initial state I are restricted to those facts relevant for α.
There is no need to restrict the goal G because all the goal facts are public and thus relevant
for all the agents. A formal definition follows.

Definition 2 Given an MA-Strips problem Π , the local planning problem Π � α of agent
α is defined for every α ∈ agents(Π) as the classical Strips problem

Π � α = 〈facts(Π) � α, α ∪ ext-actions(α), init(Π) �α, G〉
where the set ext-actions(α) of external actions of agent α is defined as follows.

ext-actions(α) = ⋃
β 
=α(pub-actions(β) � α) (for all β ∈ agents(Π))

��
Example 4 In our example, all the actions arranging vehicle movements are internal. Public
are only the actions providing package treatment at public locations (brno,ostrava).
Hence, the set pub-actions(Plane) contains only actions load(plane,brno) and
unload(plane,brno), while pub-actions(Truck) is as follows.

{ load(truck,brno),unload(truck,brno),load(truck,ostrava),unload(truck,ostrava) }

Hence, ext-actions(Truck) has two actions andext-actions(Plane) has four actions. This
yields the local problemΠ �Planewith 10 actions and the problemΠ �Truckwith eight
actions. ��
3.4 Planning with external actions

We would like to solve agent local problems separately and compose local solutions to a
global solution of Π . However, not all local solutions can be easily composed to a solution
of Π . Concepts of public plans and their extensibility help us to recognize local solutions
which are conductive to this aim.

A plan π is a sequence of actions 〈a1, . . . , ak〉. A plan π defines an order in which the
actions are executed by their unique owner agents. It is supposed that independent actions
can be executed in parallel. A solution ofΠ is a plan π whose execution transforms the initial
state I to the state s such that G ⊆ s. A local solution of agent α is a solution of the local
planning problem Π � α. Let sols(Π) and sols(Π � α) denote the sets of all the solutions
of MA-Strips problem Π and all the local solutions of α, respectively.
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Example 5 Let us consider the following plans.

π0 = 〈 load(plane,prague), fly(prague,brno), unload(plane,brno),

load(truck,brno), drive(brno,ostrava), unload(truck,ostrava) 〉
π1 = 〈 unload(truck,ostrava) �Plane 〉
π2 = 〈 unload(plane,brno) �Truck, load(truck,brno),

drive(brno,ostrava), unload(truck,ostrava) 〉
It is easy to check thatπ0 is a solutionof our exampleMA-StripsproblemΠ . Planπ1 is a solu-
tion of Π �Plane because projection unload(truck,ostrava) �Plane of Truck’s
public action simply produces the goal state out of the blue. Finally, π2 ∈ sols(Π �Truck).

��

A public plan σ is a plan that contains only public actions. A public plan can be seen
as a solution outline that captures execution order of public actions while ignoring agents
internal actions. A public plan can be safely sent to any agent because it contains only public
information. In order to avoid confusions between public and external versions of the same
action, we formally define public plans to contain only public action ids. For a plan π of
Π (or a plan of Π � α), we define the public projection π � � of π as the sequence of all
public action ids from π preserving their order. Public projection of a plan thus removes any
internal actions from π . Formal definition follows.

Definition 3 A public plan σ is a sequence of public action ids. Given a plan π of Π (or of
Π � α), the public projection π � � of π is defined to be the public plan π � � = 〈id(a) : a ∈
π and a ∈ pub-actions(Π)〉. Public projection is extended to sets of plans element-wise. ��

Example 6 In our example, we know that π0 ∈ sols(Π) and π1 ∈ sols(Π �Plane) and
π2 ∈ sols(Π �Truck). Thus, we can construct the following public solutions.

π0 � � = 〈 id(unload(plane,brno)), id(load(truck,brno)), id(unload(truck,ostrava))〉
π1 � � = 〈 id(unload(truck,ostrava))〉
π2 � � = 〈 id(unload(plane,brno)), id(load(truck,brno)), id(unload(truck,ostrava))〉

Note that π0 � � = π2 � � and also note that we have omitted the projection operator (�)
because ids are preserved under projection. ��

From every solution π of Π (or of Π � α), we can construct a uniquely determined public
plan σ = π � �. On the other hand, for a single public plan σ there might be more than one,
or none, solutions with public projection σ . A public plan σ is called extensible when there
is a solution of Π with public projection σ . Similarly, when there is a solution of Π � α with
public projection σ , then σ is called α-extensible. Extensible public plans give us an order of
public actions which is acceptable for all the agents. Thus, extensible public plans are very
close to solutions of Π , and it is relatively easy to construct a solution of Π once we have
an extensible public plan. Hence, our algorithms will aim at finding extensible public plans.
The following formally defines public plan extensibility.

Definition 4 Let σ be a public plan of Π .

σ is extensible iff ∃π ∈ sols(Π) : π � � = σ

σ is α-extensible iff ∃π ∈ sols(Π � α) : π � � = σ

��
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Example 7 In our example, we can see that π0 � � is extensible because it was constructed
from the solution of Π . For the same reason, we see that π1 � � is Plane-extensible and
π2 � � is Truck-extensible. It is easy to see that π2 � � is also Plane-extensible. However,
π1 � � is not Truck-extensible because Truck needs to execute other public actions prior
to unload(truck,ostrava). ��

The following proposition states the correctness of the multiagent planning with exter-
nal actions. It establishes the relationship between extensible and α-extensible plans. Its
direct consequence is that to find a solution of Π it is enough to find a local solution
πα ∈ sols(Π � α) which is β-extensible for every other agent β. A constructive proof
follows.

Theorem 1 ([35]) Public plan σ of Π is extensible if and only if σ is α-extensible for every
agent α ∈ agents(Π).

Example 8 We have seen previously that π2 � � is Truck-extensible and also Plane-
extensible. Hence, we know that there is some solution of Π even without knowing π0.
Furthermore, the proof of Theorem 1 shows how to reconstruct the solution. On the other
hand, we know that π1 � � is not Truck-extensible and thus π1 � � is not extensible. ��

4 Planning state machines (PSM)

The basic idea behind the multiagent planning algorithm described in this paper is based on
Theorem 1, and it can be described briefly as follows. Every agent α keeps generating new
solutions of its local planning problem Π � α and announces their public projections to all
the other agents. Hence, the set Δα of public plans generated so far by α is known by all
the agents. Once there is a single public plan σ generated by all the agents, we can stop the
algorithm yielding σ as the public solution of Π . This is because every plan generated by
agent β is automatically β-extensible and hence σ is extensible by Theorem 1.

In this section, we utilize finite-state machines to effectively represent sets of plans (or
public plans) of a Strips problemmentioned in the above algorithm description. These finite-
state machines, which we call planning state machines (PSM), are described in Sect. 4.1.
PSMs allow us to effectively implement operations which are crucial for our multiagent
planning algorithm. These operations are (1) adding a new solution to an existing PSM
(Sect. 4.2), (2) computing a public projection of a PSM (Sect. 4.3), and (3) intersecting
public projections of PSMs (Sect. 4.4).

4.1 Basics of planning state machines

Finite-state machines [16] are widely used in computer science for manifold purposes. In
this section, we utilize state machines to recognize and compute solutions of Strips and
MA-Strips planning problems. To achieve this, we use the set of planning actions A as an
alphabet while planning states (sets of facts) become states of our planning state machine
(PSM). PSM state-transition δ simply resembles planning state progression function γ .
Hence, a PSM accepts words over A, that is, plans.

For our purposes, a deterministic finite-state machine (DFS) is a tuple 〈�, S, s0, δ, F〉
where � is a finite alphabet, S is a finite set of states, s0 ∈ S is an initial state, δ is a
complete state-transition function (δ : S × � → S), and F ⊆ S is a set of accepting states.
A non-deterministic finite-state machine (NFS) is a tuple 〈�, S, s0, δ, F〉 much like a DFS,
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but the state-transition function is non-deterministic, that is, δ : S × � → P(S). For a
DFS (for an NFS respectively), the state-transition function δ can be naturally extended to
δ� : S × �� → S (respectively to δ� : S × �� → P(S)) where �� is the set of all finite
words over alphabet �. A word w ∈ �� is accepted by a DFS when δ�(s0, w) ∈ F . A word
w ∈ �� is accepted by an NFS when δ�(s0, w) ∩ F 
= ∅.
Definition 5 A planning state machine (PSM) of a Strips problem Π = 〈P, A, I,G〉 is a
DFS Γ = 〈�, S, I, δ, F〉 where
(1) alphabet � is the set action ids � = {id(a) : a ∈ A},
(2) states are sets of facts (S ⊆ P(P)) with I ∈ S,
(3) transitions satisfy that δ(s, id(a)) = s′ implies γ (s, a) = s′,
(4) and accepting states are F = {s ∈ S : G ⊆ s}.
Let accept(Γ ) denote the set of all plans accepted by Γ . ��

In general, a PSM does not need to contain all possible planning states of Π because S
is only required to be a subset of P(P) which contains I . However, the following soundness
result can be trivially proved for any PSM.

Lemma 1 Let Γ be a PSM of a Strips problem Π . Then accept(Γ ) ⊆ sols(Π).

Proof Follows directly from Definition 5 and definition of γ . ��
The opposite inclusion does not necessarily hold. However, for a given Strips problemΠ

we can easily construct a complete PSM Γ which accepts all the solutions of Π . A complete
PSM needs to contain all the possible transitions and all (reachable) planning states. A
complete PSM can be constructed by a breadth-first search starting from the initial state and
by adding all reachable planning states together with all possible transitions. Of course, this
construction is highly ineffective, but it shall be used below to demonstrate basic operations
on PSMs. The following defines a complete PSM.

Definition 6 A PSM Γ = 〈�, S, I, δ, F〉 of Π = 〈P, A, I,G〉 is complete when
(1) S = P(P), and
(2) transitions additionally satisfy that γ (s, a) = s′ implies δ(s, id(a)) = s′ whenever

γ (s, a) is defined. ��
Hence, a complete PSM accepts every solution of Π , formally as follows.

Lemma 2 For a complete PSM Γ of Π , it holds that accept(Γ ) = sols(Π).

Proof Follows directly from Lemma 1 and the definition of γ . ��
4.2 Extending a PSM with solutions

The first operation we define on PSMs is extending an existing PSM with a new solution
π . The operation is denoted Γ ⊕π , and its result is an extended PSM which accepts all the
plans as Γ and additionally π . The operation is implemented simply by traversing π and
by adding corresponding states and transitions to Γ . The following constructive definition
suggests an implementation linear in the size of the added solution. Note that in the definition
we consider δ to be a set of triples, writing 〈s, a, s′〉 ∈ δ instead of s′ ∈ δ(s, a).
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Definition 7 Let a PSM Γ = 〈�, S, I, δ, F〉 of Π and a solution π = 〈a1, . . . , an〉 of Π be
given. Denote s0 = I and si = γ (si−1, ai−1) for 0 < i ≤ n. The PSM Γ ⊕π is defined as
follows.

Γ ⊕π = 〈�, S ∪ {s0, . . . , sn}, I, δ ∪ {〈si−1, id(ai−1), si 〉 : 0 < i ≤ n}, F ∪ {sn}〉
��

The operation⊕ can extend the set of accepted plans bymore than π . However, the following
lemma states that the PSM Γ ⊕ π accepts all the plans as Γ , and additionally other plans
including π . Additionally accepted plans other than π do not cause any problem because
Lemma 1 ensures that every additionally accepted plan is a solution of Π . Important is that
accept(Γ ⊕π) ⊆ sols(Π) holds.

Lemma 3 Let Π be a classical Strips problem, let Γ be a PSM ofΠ , and let π ∈ sols(Π).
Then Γ ⊕π is correctly defined and accept(Γ ) ∪ {π} ⊆ accept(Γ ⊕ π).

Proof Follows from Definition 7. ��
4.3 Public planning state machines

Previous sections define a planning state machine Γ which represents the set accept(Γ ) of
plans. FromΓ , we would like to compute the corresponding set of public plans, that is, the set
accept(Γ ) � � = {π � � : π ∈ accept(Γ )}. In this section, we achieve this by transforming
PSM Γ to a public planning state machine which (1) accepts exactly the aforementioned set
of public plans and (2) contains only public information. We call this operation the public
projection of PSM Γ , and we denote it Γ � �.

Public PSMs will be exchanged among agents during our multiagent planning algorithm.
Therefore, out of privacy concerns, it is essential that public PSMs contain only public
information. A first attempt to construct a public PSM from PSM Γ would be to treat internal
actions as ε-transitions and eliminate them from Γ using standard algorithm. The standard
algorithm to eliminate ε-closures simply “bridges” ε-transitions with new transitions. As
for internal facts contained within states, a first attempt is simply to delete them. Let us
consider the example PSM Γ1 from Fig. 2 (left). After eliminating internal transitions and

Fig. 2 A motivation example for computing PSM public projection. We suppose a context where pn are
public and in internal actions and where a,b, c are public and x, y internal facts. Accepting states are marked
bold. The initial state is {}
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after deleting internal facts from states, we obtain the PSMΓ2 (Fig. 2, middle). Unfortunately,
Γ2 also accepts the plan 〈p1,p2,p3,p4〉which is not a public projection of any plan accepted
by Γ1. The problem is that two different states of Γ1, namely {a, x} and {a, y}, were merged
in Γ2 after removing internal facts x and y. To solve this problem, we introduce integer marks
to distinguish states which would otherwise became equal after removing internal facts. This
is demonstrated by PSM Γ3 (Fig. 2, right). It is easy to check that Γ3 accepts exactly public
projections of the plans accepted by Γ1. Also note that Γ3 is non-deterministic because of the
non-deterministic transitions from the initial state. Hence, public projection can introduce
non-determinism.

In order to formally define public PSMs, we need to define public projections of states and
actions. The public projection F � � of a set of facts F is simply the restriction of F to public
facts. The public projection a � � of action a restricts facts in a to public facts preserving
action id.

Definition 8 Let Π be anMA-Strips problem. Let F be an arbitrary set F ⊆ facts(Π) and
let a be an action from Π . The public projection F � � of F and the public projection a � �

of action a are defined as follows.

F � � = F ∩ pub-facts(Π) a � � = 〈id(a),pre(a) � �, add(a) � �, del(a) � �〉
Public projection is extended to sets of actions element-wise. ��

The previous discussion explainedwhy public PSMs need to contain integer-labeled states
and why public PSMs need to be non-deterministic. Hence a public PSM of an MA-Strips
problem Π is an NFS with the following properties.

Definition 9 A public PSM of an MA-Strips problem Π is an NFS Δ = 〈�, S, I0, δ, F〉
where

(1) the alphabet is � = {id(a) : a ∈ pub-actions(Π)},
(2) states are integer-labeled sets of public facts (S ⊆ P(pub-facts(Π)) × N),
(3) the initial state is I0 = 〈init(Π) � �, 0〉 and I0 ∈ S,
(4) transitions satisfy that 〈s′, i ′〉 ∈ δ(〈s, i〉, id(a)) implies γ (s, a � �) = s′,
(5) and 〈s, i〉 ∈ F implies goal(Π) ⊆ s.

Let accept(Δ) denote the set of all plans accepted by Δ. ��
Now we describe the public projection algorithm to compute Γ � � from Γ . It is moti-

vated by the standard ε-elimination algorithm [16, Chapter2.5] extended with integer-mark
introduction and public projection of states. For every state s, the internal closure set
int-closureΓ (s) contains all the states reachable from s by internal transitions only. The
set int-closureΓ (s) can be computed by a DFS, and the following definition gives its seman-
tics. We omit the index Γ when no confusion can arise.

Definition 10 Given PSMΓ of agent local problemΠ � α, an internal closure of s0, denoted
int-closure(s0), is the least set of states such that

(1) s0 ∈ int-closure(s0), and
(2) whenever s ∈ int-closure(s0) for some s then for all a ∈ int-actions(α) it holds that

δ(s, id(a)) ∈ int-closure(s0).

In other words, the set int-closure(s0) contains s0 and all the states reachable from s0 by
transitions corresponding to internal actions. ��
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Algorithm 1: Algorithm to compute the public projection Γ � � of PSM Γ .

1 Function PublicProjection(Γ ) is
2 〈�, S, I, δ, F〉 ← Γ ;
3 �0 ← {id(a) : a ∈ pub-actions(Π)};
4 I0 ← 〈I � �, 0〉;
5 S0 ← {I0};
6 ρ ← ∅; // initialize state renaming, ρ : S → P(pub-facts(Π)) × N

7 ρ(I ) ← I0; // set value of ρ(I ) to I0
8 foreach s ∈ (S \ {I }) do
9 ρ(s) ← 〈s � �, |S0|〉; // |S0| increases with every iteration

10 S0 ← S0 ∪ ρ(s);
11 end
12 δ0 ← ∅; // initialize new transitions, δ0 : S0 × �0 → P(S0)
13 F0 ← ∅;
14 foreach s ∈ S do // for every original state of Γ
15 {r1, . . . , rk} ← int-closure(s);
16 foreach id ∈ �0 do
17 δ0(ρ(s), id) ← {ρ(δ(ri , id)) : 0 < i ≤ k};
18 end
19 if int-closure(s) ∩ F 
= ∅ then
20 F0 ← F0 ∪ {ρ(s)}; // mark ρ(s) as an accepting state
21 end
22 end
23 Δ ← 〈�0, S0, I0, δ0, F0〉;
24 return Δ;
25 end

Once internal closures are computed for every state of Γ , the public projection algorithm
proceeds as described by Algorithm 1. The role of the state renaming ρ is to translate states of
Γ to states of the public projection. For every state s of Γ , the renaming defines the state ρ(s)
in the constructed public PSM consisting of the public projection of s and a unique integer
mark. The second foreach cycle which starts at line 14 takes care of “bridging” of internal
transitions. When state s′ is reachable from s in Γ by (zero or more) internal transitions
followed by one public transition id(a), Γ � � will contain a transition from ρ(s) to ρ(s′)
labeled with id(a). Finally, the condition at line 19 marks accepting states.

The PSM public projection algorithm can be alternatively explained on the example from
Fig. 3. PSM Γ1 (Fig. 3, left) is the input PSM. PSM Γ2 (Fig. 3, middle) is obtained from
Γ1 by eliminating internal transitions. PSM Γ3 (Fig. 3, right) is obtained from Γ2 by public
projection of states and by marks introduction. Note that Γ3 additionally compresses Γ2 by
unifying states with equal public projection which has equal sets of outgoing transitions.
This is an optimization implemented in our planner but omitted from formal presentation.
Another optimization is to remove states unreachable from the initial state and to remove
states from which no accepting state is reachable. None of the above optimizations affects
the semantics.

The following definition defines Γ � � as the result of Algorithm 1 and formally states
algorithm correctness.
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Fig. 3 Example of computing PSM public projection. We suppose a context where pn are public and in
internal actions and where a,b, c are public and x, y internal facts. Accepting states are marked bold. The
initial state is {}

Definition 11 Let Π � α be a local problem of agent α and let Γ be a PSM of Π � α. The
public projection of Γ , denoted Γ � �, is the result of Algorithm 1. ��
Lemma 4 LetΠ � α be a local problem of agent α and let Γ be a PSM ofΠ � α. Then Γ � �

is a public PSM of Π and accept(Γ � �) = accept(Γ ) � �.

Proof The inclusion (⊆) is proved by extending a public solution σ ∈ accept(Γ � �) with
internal actions to a solution π ∈ accept(Γ ). The opposite inclusion (⊇) is proved by
simulating a planπ ∈ accept(Γ ) in the state space ofΓ and by constructing a corresponding
simulation of π � � in the state space of Γ � �. ��
4.4 Intersection of public PSMs

The previous section describes how to compute the public projection of a PSM. Suppose we
have two public PSMs of anMA-Strips problem Π . This section describes how to compute
an intersection of two public PSMs which is a public PSM which accepts the plans accepted
by both the original PSMs.

There is a standard algorithm [16, Theorem4.8] to compute an intersection of two arbitrary
NFSs. The standard algorithm defines an intersection of NFS Δ1 and NSF Δ2 as a new NFS
whose set of states is the Cartesian product of states of Δ1 and Δ2. The intersection of NFSs
contains a transition between two states when there are corresponding transitions in both the
original NFSs Δ1 and Δ2. This standard algorithm, however, needs to be adjusted because
the standard algorithm applied to public PSMs would not yield a correctly defined public
PSM. The reason is that the structure of states in a public PSM is fixed.

Wewant to compute an intersection of two public PSMs (of the sameMA-Strips problem
Π). We can take advantage of the fact that both public PSMs are defined on the same set of
states. Moreover, a transition from state 〈s, i〉 labeled by action a uniquely determines s′ in
the destination state 〈s′, i ′〉. Hence, we do not need to define the set of states in an intersection
as a Cartesian product, but we can use integer-labeled public states and only adjust integer
marks appropriately. Thus, an intersection of two public PSMs will be a public PSM. To
combine integer marks, we can use arbitrary but fixed injective function from N × N to N

such that 0 · 0 = 0. A classical example is the Cantor pairing function.2

2 i · j = (i+ j)(i+ j+1)
2 + j .
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The following defines intersection of public PSMs Δ1 and Δ2 and proves its correctness.
The set of states of an intersection PSM is constructed using the Cantor pairing function as
follows.Whenever there is a state 〈s, i〉 inΔ1 and also a state 〈s, j〉 inΔ2, then the intersection
PSM contains the state 〈s, i · j〉. Hence, every state of the intersection PSM corresponds to
uniquely determined states in Δ1 and Δ2. The state transition function of an intersection
PSM emulates transition functions of both input public PSMs. A state in the intersection
PSM is accepting when both the corresponding states are accepting in Δ1 and Δ2. Finally,
note that the Cantor pairing function is not commutative and thus the intersection operation
is commutative up to the integer marks. Nevertheless, all possible resulting public PSMs are
equal with respect to the set of accepted plans.

Definition 12 Let Δ1 = 〈�, S1, I, δ1, F1〉 and Δ2 = 〈�, S2, I, δ2, F2〉 be two public PSMs
of an MA-Strips problem Π . Let · be the Cantor pairing function. The intersection of Δ1

and Δ2 is a public PSM Δ0 = 〈�, S0, I, δ0, F0〉 of problem Π where

(1) S0 = {〈s, i · j〉 : 〈s, i〉 ∈ S1 and 〈s, j〉 ∈ S2}, and
(2) 〈s′, i ′ · j ′〉 ∈ δ0(〈s, i · j〉, id) iff 〈s′, i ′〉 ∈ δ1(〈s, i〉, id) and 〈s′, j ′〉 ∈ δ2(〈s, j〉, id),
(3) and F0 = {〈s, i · j〉 : 〈s, i〉 ∈ F1 and 〈s, j〉 ∈ F2}.
The intersection of Δ1 and Δ2 is denoted Δ1 ∩ Δ2. ��
Lemma 5 The intersection Δ1 ∩ Δ2 of two public PSMs Δ1 and Δ2 of Π is a correctly
defined public PSM of Π and the following holds.

accept(Δ1 ∩ Δ2) = accept(Δ1) ∩ accept(Δ2)

Proof Follows from Definitions 9 and 12. ��
4.5 Multiagent planning with complete PSMs

The results from the previous sections nowmake it easy to introduce Algorithm 2 to compute
all public solutions of a given MA-Strips problem Π . For every agent α, the algorithm
computes the complete PSM ofΠ � α and its public projection. All the public PSMs are then
intersected, and their intersection is returned as a result. Theorem 2 states that the intersection
contains exactly all public solutions of Π .

Algorithm 2: Multiagent planning algorithm with complete PSMs

1 Function PsmPlanComplete(Π) is
2 foreach α ∈ agents(Π) do
3 Γα ← complete PSM of Π � α; // BFS or DFS search
4 Δα ← Γα � �;
5 end
6 return

⋂
α∈agents(Π) Δα;

7 end

Theorem 2 Let Π be anMA-Strips problem and Δ = PsmPlanComplete(Π). It holds
that accept(Δ) = sols(Π) � �.

Proof Follows from Lemmas 2, 4, 5, and Theorem 1. ��
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Fig. 4 The complete PSM of agent Truck (Example 9)
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Fig. 5 Public projections of complete PSMs of agents from Example 9

Example 9 In this example, we demonstrate complete PSMs, public projection, and PSM’s
intersection on our running Example 1. The complete PSM of agent Truck is presented
in Fig. 4. The black node represents the initial state, and the gray nodes are goal states.
Dotted edges represent internal actions, dashed edges public actions, and solid edges external
actions. To improve clarity, we shorten action labels by the first letters of involved objects, for
example, the action fly(prague,brno) is shortened as “fpb”, and so on. We also remove
edges outgoing goal states, and we omit state labels which can be easily filled in using state
progression function γ .

The complete PSM of agent Plane is too large for presentation (containing 32 states and
72 transitions). However, its public projection is shown together with the public projection of
Truck’s public PSM in Fig. 5. Note how public projection decreases number of states and
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Fig. 6 Intersection of public PSMs from Fig. 5 representing all possible public solutions

transitions. The intersection of both public PSMs is shown in Fig. 6. Note that the intersection
PSM represents infinite set of all possible public solutions by a finite structure. ��

5 Distributed PSM planner

This section describes how to use planning state machines to effectively solve multiagent
MA-Strips problems. Section 4.5 already introduced planning algorithmwhich is correct and
complete, and its advantage is that it computes all the public solutions of a givenMA-Strips
problem. However, its time and space complexity renders it unusable for more complex
problems. In this section, we introduce an iterative algorithm based on the idea of PSMs
which is designed to be usable in practice. The rest of this section describes the algorithm.

The basic idea can be described as follows. Every agent from theMA-Strips problem Π

executes its own planning loop perhaps on a different machine. Every agent α starts with an
empty PSM Γα . In every iteration, every agent generates a new plan solving its local problem
Π � α and it adds this plan to Γα . Then public projection Δα = Γα � � is computed, and
public PSMs are exchanged among the agents. This process continues until the intersection
Δ = ⋂

β∈agents(Π) Δβ is not empty (meaning accept(Δ) 
= ∅). A non-empty intersection
of public PSMs is thus guaranteed to contain at least one public solution of Π .

Algorithm 3: Distributed multiagent planning algorithm.

1 Function PsmPlanDistributed(Π � α) is
2 Γα ← empty PSM of problem Π � α;
3 loop
4 generate new πα ∈ sols(Π � α); // Section 5.1
5 Γα ← Γα ⊕ πα;
6 Δα ← Γα � �;
7 announce public PSM Δα to other agents;
8 receive/update public PSMs of other agents;
9 Δ ← ⋂

β∈agents(Π) Δβ ; // intersection of public PSMs of all agents

10 if accept(Δ) 
= ∅ then
11 return Δ;
12 end
13 incorporate other agents Δβ into local Π � α; // Section 5.1
14 end
15 end

The multiagent planning algorithm is described in Algorithm 3. By one iteration of the
algorithm, we mean one execution of the loop (lines 3–14). By a new plan in the first step
inside the loop,wemean a plan thatwas not generated in any of the previous loop iterations. To
achieve this, we propose a technique based on known diverse planning techniques. Details are
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provided in Sect. 5.1. The variableΓα keeps a PSM representing all the plans generated so far.
The new plan πα is added to Γα and public PSMΔα is computed using Algorithm 1. Then all
public PSMs are exchanged among the agents. In our implementation, this is synchronization
step when the executing agent might need to wait for other agents to finish their computations
of public PSMs. However, an alternative non-blocking implementation where the executing
agent only updates public PSMs currently available is also possible. Then the intersection Δ

of public PSMs of all the agents is computed and possibly returned as a result. The intersection
is computed by every agent to avoid a centralized component. In the last step of the loop,
public PSMs of other agents are incorporated into the local planning problem Π � α using
landmarks and action costs. This step, described in details in Sect. 5.2, is optional and can
be skipped. Theorem 3 states the soundness and completeness of the algorithm.

Theorem 3 (Completeness and soundness) Let Π be an MA-Strips problem such that
sols(Π) 
= ∅. Let Δ be a result of PsmPlanDistributed(Π � α) for an arbitrary agent
α. Then accept(Δ) 
= ∅ and accept(Δ) ⊆ sols(Π) � �. Moreover, if the underlying planner
(1) is complete, (2) is optimal (with respect to length of generated plan), and (3) allows to
generate different plans, then the algorithm always terminates.

Proof Let π be a solution of Π . As a result of completeness and optimality and of the
underlying planner, agent α will generate, in the worst case, all the solutions of Π � α up
to the length of π . These must include a solution with the public projection π � �. As this
hold for every agent α, the intersection of their respective public PSMs must be non-empty
and the algorithm terminates. This ensures algorithm completeness and termination. The
soundness of the algorithm directly follows from the properties of intersection, Theorem 1,
and Lemma 1. ��
5.1 Generating new plans

This section describes how to generate a plan of a classical Strips problem which differs
from a set of plans provided as an input. This extension is inspired by diverse planning with
homotopy class constraints [3]. In our setting, homotopy classes of plans are naturally defined
by plan public projections. That is, two plans π1 and π2 belong to same homotopy class iff
π1 � � = π2 � �.

In our implementation, we have extended the FastDownward planner, but the same tech-
nique can be used to extend any planner based on a state-space search. The technique is
based on the idea of augmented graphs [3]. Every state is extended by a vector of numbers
where each vector field corresponds to one of the forbidden plans. The i th vector field value
indicates whether the plan ending at this state is different from the i th forbidden plan. Value
−1 indicates that current plan differs, while a nonnegative number denotes the position in
the corresponding forbidden plan. During action application at some state, we check whether
the applied action equals the expected action at the next position in the forbidden plan. The
initial state corresponds to the vector of zeros. During the state search, a plan is accepted as
a solution only when the plan ends in a state with only −1 values.

Algorithm 3 starts with an empty set of forbidden plans. In every iteration, the generated
plan is added to this set. This ensures that the algorithm generates a different plan in every
iteration.

As an optimization, we use action costs to force the underlying planner to prefer internal
action to public actions, and public actions to external actions. These action costs3 correspond

3 We have chosen costs 10 for internal actions, 100 for public actions, and 1000 for external action. Never-
theless, the exact values are not important.
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to the knowledge an agent has about these actions. An agent has full information about its
internal actions, and as they do not affect other agents, they should be usedwhenever possible.
The agent also has full information about its public actions, but because they can affect other
agents they should be used more carefully. Finally, the agent has only a limited information
about external actions of other agents because some information can be pruned of by public
projection. Hence, external actions are the most expensive.

5.2 Guiding plan search using public PSMs

In every iteration of Algorithm 3, the agent receives public PSMs of all other agents. These
PSMs contain information about plans found by other agents. Information in these PSMs
can be used to guide a new plan generation so that the algorithm finds a solution faster. We
incorporate information from public PSMs into the local planning problem by extending the
problem with soft-landmark actions and by adjusting action costs. This problem extension
influences plan search in the desired way. When agent α receives public PSM Δβ of another
agentβ, wewould like the local plan generator to prefer sequences of public actions suggested
by Δβ . This is because Algorithm 3 terminates only when all the agents generate the same
public solution. Hence, it is preferable to find a local solution πα ∈ sols(Π � α) such that
the public projection πα � � is contained in accept(Δβ). We achieve this by extendingΠ � α

with special landmark actions without affecting the set of solutions ofΠ � α. These landmark
actions basically duplicate actions fromΠ � α but have decreased action costs. The landmark
actions have additional preconditions to ensure that landmark actions are used in the order
given by Δβ .

The process of extending local problem Π � α with Δβ is sketched as follows. We extend
the local problem with a set of fresh facts Pmarks distinct from facts of Π � α where each
fresh fact corresponds to a state of Δβ . Hence, we have bijection μ from states of Δβ to
Pmarks. Let Δβ contain a transition from s to s′ labeled by action a. We then extend the local
problem with a duplicate of a which (1) can be applied only in states where μ(s) is valid and
(2) additionally transforms fact μ(s) to μ(s′). In this way, landmark actions can be applied
only in the order given by Δβ . The following defines a landmark action.

Definition 13 Let a be an action and let from and to be two facts. The landmark action
lm-act(a, from, to) is defined as follows.

lm-act(a, from, to) = 〈id(a),pre(a) ∪ {from},add(a) ∪ {to},del(a) ∪ {from}〉
For action id id, the landmark action (w.r.t. agent α) is defined as

lm-actα(id, from, to) = lm-act(a, from, to)

where a is the uniquely determined action of Π � α with id(a) = id . ��

Once we have added landmark facts and actions, we just extend the initial state of the
local problem with μ(I0) where I0 is the initial state of Δβ . A complete extension of the
local problem is formally defined as follows.

Definition 14 Let Π be an MA-Strips problem and α ∈ agents(Π). Let Δ =
〈�, S, I ′, δ, F〉 be a public PSM of Π . Let Pmarks be a set of facts distinct from facts(Π)

such that |Pmarks| = |S| and let μ be a bijection from S to Pmarks. The problem Π ⊗α Δ is
defined as the Strips problem 〈P0, A0, I0,G〉 where
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(1) P0 = facts(Π �α) ∪ Pmarks, and
(2) A0 = actions(Π � α) ∪ {lm-actα(id, μ(s), μ(s′)) : s′ ∈ δ(s, id)}, and
(3) I0 = init(Π � α) ∪ {μ(I ′)}.
The problem Π ⊗α Δ is called the local problem of α extended with Δ. ��

Note that the extension does not affect the goal state condition. There is a straightforward
relationship between solutions of Π � α and solutions of Π ⊗α Δβ . Clearly every solution
of Π � α is a solution of the extended problem Π ⊗α Δβ . On the other hand, every solution
of Π ⊗α Δβ can be translated to the solution of Π � α by replacing landmark actions with
original actions of Π � α.

The crucial point is that landmark actions are assigned significantly decreased action
costs so that the underlying planner prefers landmark actions to original actions. In our
implementation, the costs are set as follows. Suppose that Π � α is being extended with Δβ .
The cost of lm-act(a, from, to) is set to 1 if a is owned by α (the receiver of Δβ ) or if a is
owned by β (the sender). Otherwise, the cost 10 is used.

The reasoning behind this choice is that the owner (either α or β) of the action has full
information about it and thus it is more likely to be used correctly.

Definition 14 can be easily adjusted so that it allows repeated extension of Π � α. During
planning, problemΠ � α is extendedwith everyΔβi received fromother agents in the previous
loop iteration, one by one. Hence, the underlaying planner is launched with the problem

Π ⊗α Δβ1 ⊗α Δβ2 ⊗α · · · ⊗α Δβm

provided ⊗α is left associative. In the first iteration, the local problem Π � α is used without
any extension.

Practical experiments revealed that the actions costs and landmark actions described in
this section are crucial for a practical usage of Algorithm 3. For experimental evaluation, see
Sect. 8.

6 Improving PSM planner performance

In this section, we propose two methods to improve performance of multiagent planning
Algorithm 3. The first method, which we call Psm-v, is based on plan verification, and it
is described in Sect. 6.1. The second method, which we call Psm-r, computes a relaxed
solution π of a givenMA-Strips problem, and its public projection π � � is used as an initial
landmark by all the agents. Details are provided in Sect. 6.2. Both the methods can also be
combined and used together. The combination of the methods is denoted Psm-rv. Section 8
evaluates the impact of the methods both when used separately and when used together.

6.1 Plan verification and analysis

Distributed PSM planner from Algorithm 3 uses public plans generated by other agents as
landmarks to guide future plan search (see Sect. 5.2). However, it is desirable to use only
extensible plans to guide plan search because non-extensible plans cannot lead to a non-empty
public PSMs intersection. Every generated plan should be verified by other agents in order to
determine its extensibility. However, extensibility (or α-extensibility) checking is expensive,
and thus, we propose only an approximative method of plan verification. An extension of a
PSM planner with a method of plan verification has already been proposed with promising
results [17]. The rest of this section describes the method.

123



Privacy-concerned multiagent planning 601

First we describe how to approximate α-extensibility of public plan σ . Given a public
plan σ = 〈id1, . . . , idn〉, we create a problemΠ �α σ which is solvable iff σ is α-extensible.
We extend the set of facts with fresh facts Pmarks = {m0, . . . ,mn}. We add the action
lm-act(ai ,mi−1,mi ) for all 0 < i ≤ n to the actions of Π �α σ (see Definition 13). The
initial state of Π �α σ is extended with m0, but, this time, the last mark fact mn is added
to the goal of Π �α σ . This ensures that any solution of Π �α σ contains all actions from
σ in the right order, possibly interleaved with α’s internal actions. Hence, every solution of
Π �α σ can be translated to a solution of Π � α (but not necessarily the other way round).
The following formalizes construction of Π �α σ and proves its correctness.

Definition 15 LetΠ be aMA-Strips problem and α ∈ agents(Π). Let σ = 〈id1, . . . , idn〉
be a public plan of Π . Let Pmarks = {m0, . . . ,mn} be a set of facts distinct from facts(Π).
The α-extensibility check problem of σ , denoted Π �α σ , is the Strips problem 〈Pmarks ∪
(facts(Π) � α), A, (init(Π) � α) ∪ {m0},goal(Π) ∪ {mn}〉 where A = int-actions(α) ∪
{lm-actα(id,mi−1,mi ) : 0 < i ≤ n}. ��
Theorem 4 ([35]) Let Π be anMA-Strips problem, let α be an agent of Π , and let σ be a
public plan of Π . Then σ is α-extensible iff sols(Π �α σ ) 
= ∅.
Proof Both the implications are proved similarly by replacing public actions with their
respective landmark actions (⇒) or the other way round (⇐). ��

A previous attempt to use the above construction of Π �α σ can be found [35]. It tries
to centrally generate public solutions σ and to verify that σ is α-extensible by every agent
α. A roadblock of this attempt is that it is relatively hard for agent α to find out that σ is
not α-extensible. Then sols(Π �α σ ) = ∅, and it usually requires the underlaying planner
used to solve Π �α σ to traverse the whole search space. That is because the state-of-the-
art planners are optimized to find a solution of a given problem and not to determine that
the problem is not solvable. That is why we have proposed [17] an approximate method to
determine problem solvability.

Previously proposed approximation of Π �α σ solvability [17] is done using generic
process calculi type system scheme Poly✶ [18,25]. The same result can be achieved using
planning graphs [14, Chapter 6] which we briefly describe here. We construct a complete
relaxed planning graph of Π �α σ , that is, the planning graph of Π �α σ with action delete
effects removed. A planning graph with k layers can be constructed in time polynomial in k.
Then we examine the last fact layer of the constructed planning graph. Recall that Π �α σ

contains fresh mark facts Pmarks = {m0, . . . ,mn}. When mark mi is valid in some planning
state, it means that (1) public actions a1, . . . , ai from σ were already correctly used in the
current plan and that (2) the next public action to be used is ai+1. The result of the analysis
is the maximum j such that m j is in the last fact layer of the relaxed planning graph. This
resulting j is interpreted as follows. When j < n, clearly Π �α σ is unsolvable because mn

is a goal fact. Moreover, the result j tells us that there is no way for an agent to follow the
public plan σ up to the point where a j+1 can be applied. This gives us an approximation of a
valid prefix of σ . On the other hand, j = n does not necessarily implies that σ is α-extensible
because the proposed method is only an approximation of Π �α σ solvability.

The aboveα-extensibility approximation allows the following plan verification procedure.
When agent α generates a new plan πα , it sends its public projection πα � � to all the other
agents. Once other agent β receives πα � �, it runs the above β-extensibility check and sends
its result back to agent α (just after line 4 of Algorithm 3). Agent α collects analysis results
from all the other agents and computes their minimum l. Plan πα is then stripped so that
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only the first l public actions remain in it. This stripped plan is then used to extend PSM
Γα in Algorithm 3. Hence, only the stripped plan is used as a landmark to guide future plan
search. In the next iteration, a plan with public projection different from πα is required to
be computed. When πα � � = 〈id1, . . . , idn〉, we can even further speed up convergence of
Algorithm 3 by forbidding any plan with public prefix 〈id1, . . . , idl , idl+1〉 to be generated
in the future. This does not affect completeness of Algorithm 3 (Theorem 3) because only
provably non-extensible plans are forbidden.

Example 10 In this example, we demonstrate planning with plan analysis on our run-
ning Example 1. The first iteration is as follows. All the agents use an optimal planner
in order to solve their local problems and thus agent Plane creates the simplest plan
where the goal is reached by agent Truck alone. That is, Plane generates the plan
〈unload(truck,ostrava)〉 (see also Example 5). This plan does not pass through the
verification process of agent Truck because Truck needs to execute additional public
actions prior to the last goal-reaching action. In the meanwhile, agent Truck generates a
plan with following public projection.

σ = 〈unload(plane,brno), load(truck,brno), unload(truck,ostrava) 〉
This public plan is extensible and thus passes through the verification check. Landmark

actions created from σ are added to Plane’s local problem. The intersection of public PSMs
after the first iteration is empty because Plane’s PSM is empty.

In the second iteration, Plane follows the landmarks from the above public plan σ and
it succeeds by generating a plan with the public projection σ . At this point, public PSMs
of both the agents contain σ and hence the algorithm terminates after the second iteration
independently on the plan generated by Truck. ��
6.2 Initial relaxed plan landmark

The delete effect relaxation, where delete effects of actions are ignored, has proved its rele-
vance both in Strips planning [15] and recently also inMA-Strips planning [32]. It is known
that to find a solution of a relaxed problem is an easier task than to find a solution of the
original problem. There are distributed algorithms to find a solution of a relaxedMA-Strips
problem using distributed planning graphs [31]. Effective implementation using exploration
queues can also be found in the literature [32]. All these algorithms respect privacy, that is,
they do not reveal internal facts and actions to other agents.

We use a relaxed solution of MA-Strips problem Π to improve Algorithm 3 as follows.
At first we compute some solution π of the relaxation ofΠ . We compute its public projection
π � � which is a sequence of public action ids. We use this id sequence as an initial landmark
in the first loop iteration of Algorithm 3. The sequence is integrated into Π �α in the same
way as in Definition 14 (the public projection π � � can be seen as a public PSM which
contains only π � �). The same initial landmark is used by all the agents. When π � � is
extensible, every agent α is likely to generate local solution πα such that πα � � = π � � in
the first iteration. In that case, the algorithm terminates directly in the first iteration causing
a dramatic speedup. Otherwise, the initial landmark is forgotten by all the agents and the
algorithm continues by the second iteration as before. Practical impact of initial relaxed plan
landmarks is experimentally evaluated in Sect. 8.

Example 11 In our running Example 1, we can find a relaxed solution and compute its public
projection. The shortest solution has the following public projection.

σ = 〈 unload(plane,brno), load(truck,brno), unload(truck,ostrava) 〉
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We can see that this public plan σ is extensible. When the agents uses σ as landmarks in the
first iterations, both of them succeed to generate a plan with public projection σ . Hence, the
intersection of public PSMs is not empty and the algorithm terminates after the first iteration.

��

7 From theory to implementation

In this section, we describe several interesting problems encountered when implementing a
PSM-based planner. Firstly, the theory is based onMA-Strips formalism which is based on
Strips. Just like Strips, MA-Strips requires grounded problem specification which is not
appropriate for real-world problems. Section 7.1 describes how to move toward more conve-
nient PDDL-like planning language which allows a compact representation by introduction
of parametric actions. Then, in Sect. 7.2, we look on formalisms extending single-agent
PDDL to multiagent planning problems focusing mainly on definition of privacy of agent
knowledge. Finally, in Sect. 7.3, we describe how to handle internal goals without the need
to publish them.

7.1 From STRIPS to PDDL, and back again

Strips language is a formal language often used in automated planning theory. Strips also
provides a formal base for MA-Strips. Nevertheless, it is not very practical for real-world
problems because it supports only grounded representation. Therefore, in practice and in
benchmark tests, planning domain definition language (PDDL) is typically used. PDDL
supports predicates with typed parameters which allow to describe a full range of facts
or actions by parametric statements. When we convert our running Example 1 into PDDL
language, we can have only one parametric action drive(from,to) instead of multiple
actions for different locations. But backward grounding of this parametric action can create
instances which were not in the original domain. To get rid of these instances, new predicate
isRoad(from,to) can be introduced. Such a predicate is never part of action effects, and
thus, it is constant during execution of any plan. When we ground a PDDL problem, we can
evaluate these predicates and we can omit action instances where the predicate evaluates to
false because these instances can never be used. Using the same definition of public facts for
PDDL as we described inMA-Strips, these constants would be public, because they appear
as precondition of actions of different agents.Nevertheless, it is not necessary to communicate
them because their evaluation never changes and thus every agent can has its own copy.

A conversion from PDDL to Strips, that is, grounding, is needed in two places. Firstly,
we use it to compute the size of a problem because number of predicates and actions of the
grounded problem better describes real complexity of the problem. More importantly, it is
needed to compute MA-Strips representation of input problems because Fmap problems,
which we use as benchmarks (see Sect. 8), are defined in the PDDL format. Hence, input
PDDL problem needs to be grounded so that we can useMA-Strips definition of fact privacy
classification. Fmap benchmark problems define a separate domain and problem PDDL file
for every agent. Firstly, we create a single-agent problem by merging all agent domains and
problems. Secondly, we use grounding algorithm implemented in FastDownward planner4

to ground it. Then we take all the facts used in the grounded problem and ground the original
agents’ problems to these facts.

4 See http://www.fast-downward.org/. Script translate.py creates an SAS representation of an input
PDDL problem.
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7.2 Multiagent PDDL extensions

Strips and PDDL are two standard languages to describe deterministic single-agent planning
problems. Nevertheless, there is no similar standard in the multiagent planning. There are
several attempts to create such a standard: NADL [19], concurrent interacting actions in
Strips [5],MAPL [8],Fmap [34],MA-PDDL [23], concurrent STRIPS [29], andMA-Strips
[6].

In our work, we focus on PDDL which allows to describe agent actions and a state of the
world more naturally. PDDL is also used as a standard in international planning competition
whose planning problems are used as standard banchmarks in planning community. PDDL
extensions which we have considered in our work are as follows.

Fmap—each agent has its own domain and problemfile. PDDL language is extendedwith
shared − data field which allows to specify which predicates are shared with which
agents. However, this approach does not always allow to define fact privacy classification
as defined by MA-Strips.
MA-PDDL—extension of PDDL 3.1 which allows to specify the owner of each action
using field agent. Nevertheless, it does not allow to manually specify what facts are
public/internal.

None of the existing PDDL extensions allow to express both Fmap (public facts specified
by a list of public predicate names) or MA-Strips (see Sect. 3) privacy definitions. Hence,
we propose our extension which allows us to finely tune the amount of knowledge shared
among the agents up to the level of single facts.

7.3 Problems with internal goals

So far we have considered MA-Strips problems where all goal facts are public. This can
always be achieved by publishing of internal goal facts. Nevertheless, in some cases, agents
can have different internal goals and agentsmight not bewilling to share these facts with other
agents out of privacy concerns. We still consider cooperating agents. This section describes
how to transform anMA-Strips problem with internal goals to an equivalent problem where
the original internal goals can be kept internal.

The transformation extends each agent α with a public confirmation action which can
be executed when all the goals of α are satisfied. The confirmation actions can be executed
only at the end of a plan. The goal of the transformed problem expresses that all the agents
confirmed their goals.

More formally, let Π be an MA-Strips problem where some or all goals are internal.
Firstly, we introduce a fresh fact planning with the meaning that planning is in progress,
that is, that no confirmation action (of any agent) has been used so far. Fact planning shall
be initially valid in the initial state of the transformed problem and shall be deleted by the first
confirmation action. Every action from Π shall be extended with precondition planning.
Next we introduce fresh virtual goal facts done1, . . . ,donen . Fact donei means that the
confirmation action of the i th agent was used. The confirmation action confirm(α, i) of agent
the i th agent α can be used when all the goals relevant for α (i.e., public goals and α’s internal
goals) are satisfied. Its add effect is the virtual goal donei , and it deletes planning, for-
mally, confirm(α, i) = 〈goal(Π) �α, {donei }, {planning}〉. The goal of the transformed
MA-Strips problem is set to {done1, . . . ,donen}.

There is a direct correspondence between solutions of the original and of the transformed
problem. Every solution of the transformed problem can be translated to a solution of the orig-
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inal problem by removing confirmation actions. Moreover, the goal facts of the transformed
problem can be freely published because they do not carry any confidential information.

8 Experimental results

We have performed a set of experiments to compare our planners with another state-of-the-
art multiagent planners5 and also to evaluate the impact of plan verification on planning
times. We have decided to compare our planners with Fmap [34], RDFF [32], and GPPP
[26]. All planners are compared on well-defined problems taken from international planning
competition (IPC) problems as published by Fmap authors. Fmap classifies facts as public
or internal using a manual selection of public predicate names. On the other hand, RDFF
and GPPP use privacy classification as defined byMA-Strips. In practice, Fmap public facts
are a superset of MA-Strips public facts, and our PSM-based algorithms can handle both
privacy classification. In our experiments, we use exactly the same input files as the authors
of Fmap used during its evaluation,6 and we also use the same time limit of 30min for each
problem.

The above-mentioned state-of-the-art multiagent planners are compared with several vari-
ants of our PSM-based planner. Variant Psm is the basic version described by Algorithm 3
in Sect. 5. Then we have two extensions of this basic algorithm. Variant Psm-r uses initial
relaxed plan landmarks described in Sect. 6.2. Variant Psm-v is the basic algorithm extended
with the plan verification as described in Sect. 6.1. Finally, there is Psm-rv which combines
both extensions into a solid planner that benefits from of all these features.

The experiments are organized as follows. Firstly, we describe benchmark domains in
Sect. 8.1. Then, in Sect. 8.2, we compare the variants of our algorithm and compare it
with Fmap planner which has currently the highest coverage between multiagent planners.
In Sect. 8.3, we further analyze the communication of the Psm variants and explore its
connection with the number of iteration needed to solve a problem. The experiments are
concluded in next Sect. 9 where we focus on different privacy classifications. We compare
our algorithm withMA-Strips-based planners and show how the increase of privacy of facts
and goals affects performance of our planner.

8.1 Benchmark domains

Wehave performed experiments on 244PDDL problems from10 domains described in Fig. 7.
These problems, published by the authors of Fmap, are inspired by traditional benchmark
problems of international planning competition (IPC).7 The privacy classification is defined
as a list of predicates shared with other agent. It is therefore possible to specify that some
knowledge is shared between two agents only. However, in these problems all knowledge is
always shared among all the agents. Goals are always public. Let us call this set of problems
Fmap problems and refer to this level of privacy as Fmap privacy.

In Fmap problems, constants known to all agents are often considered to be internal.
For example, every agent knows that there is a road between two cities, but the agents do
not know that other agents know it. Thus, for example in Driverlog domain, every truck

5 All the tests were performed on a single PC, CPU Intel i7 3.40 GHz with 8 cores, and memory limited to 8
GB RAM.
6 We would like to thank the authors of Fmap for a kind support with their planner.
7 http://ipc.icaps-conference.org/.
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Blocksworld is a multia-
gent version of the classical
planning problem where each
of 4 agents represents one
robotic arm that can move
and stack blocks. All informa-
tion in this domain is public.
Depots problems contain
two types of agents. Trucks
transport crates between
hoists located in depots.
These depots move crates
to correct pallets. Depots
problems contain from 5 to
12 agents. All information is
public.
Driverlog problems contain
from 2 to 8 agents represent-
ing drivers that operate sev-
eral trucks to transport pack-
ages to required locations.
All information is known by
all agents. Nevertheless, some
constants are internal (link
and path representing roads
and paths connecting differ-
ent locations).
Elevators contain two types
of agents representing slow
and fast elevators. The goal
is to transport passengers be-
tween floors. Elevators prob-
lems contain from 3 to 5
agents. Positions of passen-
gers are always public, while
elevator positions and the
number of passengers in each

elevator are internal. Passen-
ger positions are changed by
actions board and leave with
natural meaning.
Logistics domain contains
two types of agents, trucks
and planes, transporting
packages between cities.
Loading and unloading of
packages is performed by
actions load and unload, re-
spectively. A goal specifies
only the final location of
packages. A transportation
task often requires coopera-
tion of several agents. Logis-
tics problems contain from
3 to 10 agents. The location
of an agent is internal but
the location of a package is
public.
Openstacks problems con-
tain a manager agent who
handles product orders, and
manufacturer agents who
produce these products. This
problem is based on mini-
mum maximum simultaneous
open stacks combinatorial
optimization problem. All
information is public includ-
ing goals specifying that the
orders have been shipped.
Rovers problems contain
from 1 to 8 rovers, each rep-
resented by one agent. The
goal is to collect samples

and communicate acquired
data. Every rover is capable
of fulfilling of an arbitrary
goal but an agent has lim-
ited resources and thus it
is necessary to decide which
goal will be fulfilled by which
agent. Sample locations and
information about whether
the data have been communi-
cated is public.
Satellites problems contain
from 1 to 12 satellite agents
taking images in space. The
pointing of a satellite and
whether an image has been
taken is public. Both can be
included in a goal. Predicate
pointing is also occasionally
part of the goal.
Woodworking domain con-
tains 4 agents representing
7 machines in a production
chain. All information is pub-
lic.
Zenotravel domain con-
tains from 2 to 8 agents
representing planes with a
limited fuel. The goal is to
transport passengers between
cities but it can also spec-
ify positions of some planes.
Positions of passengers and
planes are public. A fuel level
is internal. Thus, all fly ac-
tions are public and only
refuel actions are internal.

Fig. 7 Fmap benchmark domains description

publishes its drive action without precondition that there is a road connecting two cities.
In the descriptions bellow, when it is stated that “All information is public,” the problem can
contain these internal constants.

8.2 Overall benchmark results

Table 1 shows an overall coverage of solved problems. We can see that the Fmap has better
results in most of the domains and also in the overall coverage when compared with basic
Psm, Psm-r and Psm-v variants. Nevertheless, we can see that both Psm-r and Psm-v excel
in few domains (Psm-r in Elevators and Logistics, and Psm-v in Rovers). Psm extended with
both features—Psm-rv—keeps the benefits of these features and outperforms Fmap in the
overall score.

A relaxed plan helps especially in Elevators and Logistics domains. In both domains, the
relaxed plan well captures the coordination points, that is, where the passenger (or package)
will be transported by which agent (elevator or truck). The relaxed plan thus represents a
solution outline which is then extended by each agent with internal actions. This allows to
solve the task in a single iteration.
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Table 1 Number of problems
solved by the compared planners

Privacy classification follows
Fmap and thus the results are not
directly comparable with
MA-Strips planners

Domain Fmap Psm Psm-r Psm-v Psm-rv

Blocksworld (34) 19 27 26 26 26

Depots (20) 6 0 0 0 3

Driverlog (20) 15 10 13 14 14

Elevators (30) 30 1 30 4 30

Logistics (20) 10 0 20 0 20

Openstacks (30) 23 30 30 30 30

Rovers (20) 19 7 6 14 16

Satellite (20) 16 6 6 9 9

Woodworking (30) 22 27 27 27 27

Zenotravel (20) 18 17 18 17 18

Total (244) 178 125 176 141 193

Plan verification, represented by Psm-v variant, helped inDriverlog and Rovers problems
where many solutions generated by an agent were unacceptable by some other agent. In
Driverlog, this is caused by the privacy of constants defining the topology of the world (the
predicates link and path describing connected locations). The convergence is improved
by trimming out parts of plans which are impossible to fulfill, that is, a drive action
between locations which are not connected by a road. In Rovers, the situation is similar—
private constants describe abilities of each rover. When an agent requires some action from
another agent which cannot be performed, the verification allows to remove such a plan from
landmarks so that other agents are not confused by it.

Table 2 compares run times needed to solve selected tasks solvable by all the Psm variants.
We can see that all the Psm variants scalemuch better than Fmap, especially in theOpenstacks
problems which are all solved in the first iteration. Psm performs best in most domains. This
is a result of the requirement that the selected problems have to be solvable by all the variants
and the basic Psm does not need to spend time on relaxed plan creation or on verification.

Left graph of Fig. 8 shows how much time it is needed to solve different problems by
Psm-rv as a function of problem size. The problem size is calculated as a number of actions
and facts of the grounded problem (described in Sect. 7.1). Right graph of Fig. 8 shows the
time spent during the verification of other agents’ plans. It shows that an agent spends less
than one-third of its computation time on verification. In average, it is approximately 14%
of agent computation time. The relative time needed for verification is independent on the
problem size, and its grow/descent depends on a particular domain.

8.3 Communication overhead evaluation

Figure 9 shows an average number of iterations required to solve problems of selected
domains (left), and the amount of communication among the agents (right). The averages are
taken only for the problems solved by all three variants: Psm-r, Psm-v, and Psm-rv. The
numbers in parenthesis show how many problems is in this intersection (note that no Depot
nor Logistic problem is solvable by Psm-r and thus the domains are not included). The per-
formance measured by the number of iterations does not differ much over the domains (with
the exception of elevators where the number of iterations of one problem is significantly
decreased). The amount of communication is measured as the total number of actions sent
among all agents. This includes the exchange of public plan projections used as landmarks
and also queries for plan verification. As expected, we can see that verification requires addi-
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Table 2 Comparison of run
times on selected problems
solved by all the planners

Times are in seconds; PSM
variants have number of
iterations in parenthesis

Fmap Psm Psm-v Psm-r Psm-rv

Driverlog

p-01 0.6 2.2 (2) 2.3 (2) 1.1 (1) 1.2 (1)

p-05 1.8 33.8 (9) 6.5 (3) 3.2 (2) 4.1 (2)

p-08 11.9 9.6 (3) 6.0 (2) 4.2 (2) 5.4 (2)

p-10 2.1 3.0 (2) 4.3 (2) 3.5 (2) 4.8 (2)

p-13 16.2 13.7 (3) 14.6 (3) 8.2 (2) 8.3 (2)

Openstacks

p-01 1.4 1.7 (1) 1.2 (1) 1.2 (1) 1.4 (1)

p-06 9.7 1.8 (1) 1.7 (1) 1.8 (1) 3.1 (1)

p-11 51.0 1.8 (1) 2.3 (1) 3.3 (1) 5.7 (1)

p-16 171.0 2.2 (1) 4.4 (1) 5.5 (1) 9.1 (1)

p-21 497.0 2.4 (1) 6.4 (1) 8.7 (1) 14.1 (1)

p-26 N/A 2.9 (1) 12.5 (1) 13.3 (1) 22.6 (1)

Woodworking

p-01 2.7 1.2 (1) 2.0 (1) 1.2 (1) 2.1 (1)

p-06 200.3 4.0 (2) 10.2 (2) 3.5 (2) 7.4 (2)

p-11 1.9 1.2 (1) 1.4 (1) 1.2 (1) 1.5 (1)

p-16 N/A 3.2 (2) 5.7 (2) 3.3 (2) 5.7 (2)

p-21 0.4 1.2 (1) 1.3 (1) 1.2 (1) 1.5 (1)

p-26 N/A 1.4 (1) 2.1 (1) 1.5 (1) 2.7 (1)

Fig. 8 Left time needed to solve task as a function of problem size (log axis; time 2000 means not solved).
Right portion of time an agent spends on verification of other agents’ plans

tional communication, but in several domains this increase is outweighed by the decrease in
number of iterations needed to solve the task.

9 Privacy analysis of planning problems

In this section, we analyze different privacy classifications (Sect. 9.1) andwe compare bench-
mark domains with respect to the privacy classifications (Sect. 9.2). We experimentally
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Fig. 9 Number of iterations and amount of communication of different methods—always taken as average
over problems solved by all methods in the graph (number of problems is appended to the domain name)

evaluate the impact of privacy classifications on the performance of our best PSM-based plan-
ner Psm-rv.We compare Psm-rvwith other state-of-the-artMA-Strips planners (Sect. 9.3).

9.1 Privacy classifications

In Sect. 3 above, we have described MA-Strips privacy classification which defines the
minimal amount of public information needed to be shared by different agents. MA-Strips
requires facts used by actions of at least two different agents to be public. We have con-
verted Fmap problems to MA-Strips problems (as described in Sect. 7.1) which reduces
the amount of public information. Moreover, we allow agents to have internal goals which
further increases privacy.

We now have four different privacy classifications for our benchmark problem set. First
is the original Fmap privacy setting. Second, denoted Fmap�, is a variant of Fmap where
those facts mentioned only by a single agent are made internal (which can make some goals
internal). Third, denoted MA-Strips, is the MA-Strips privacy classification with public
goals. Fourth, denoted MA-Strips�, is the MA-Strips classification which allows internal
goals.

Let Fmap(Π) denote the percentage of private facts in problem Π with respect to Fmap
classification, and similarly for the other three privacy classifications. It certainly holds that
Fmap(Π) ≤ Fmap�(Π) andMA-Strips(Π) ≤ MA-Strips�

(Π), and finally Fmap(Π) ≤
MA-Strips(Π).

9.2 Privacy in benchmark domains

Privacy of agent knowledge in different domains is in details described in Fig. 10.
Privacy classifications on benchmark domains, measured as a relative ratio of internal

facts and actions, are demonstrated in Table 3.

9.3 Privacy benchmarks

In Sect. 8 above, we have compared our PSM-based planners with Fmap on problems with
Fmap privacy classification. Nowwe compare our best Psm-rvwithMA-Strips-based algo-
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Fig. 10 Description of domains with extended privacy
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Table 3 Percentage of internal facts (left) and actions (right) in benchmark domains with respect to different
privacy classifications

Fmap (%) Fmap� (%) MA-Strips (%) MA-Strips� (%)

Blocksworld 0 0 16 0 26 0 26 0

Depots 0 0 5 6 39 6 39 6

Driverlog 0 0 38 10 36 8 38 10

Elevators 33 18 33 18 74 37 74 37

Logistics 9 10 9 10 70 32 70 32

Openstacks 0 0 34 0 17 0 34 0

Rovers 70 54 70 54 77 59 77 59

Satellite 19 3 46 79 48 76 48 79

Woodworking 3 0 4 0 29 2 29 2

Zenotravel 19 8 35 83 60 77 61 83

Values are averages over problems in each domain

Table 4 Number of MA-Strips
problems solved by the compared
planners: RDFF, GPPP, and
Psm-rv

a Used version of the domain in
GPPP experiments without action
costs, consisting of 16 problems
b GPPP does not support action
costs

Domain RDFF GPPP Psm-rv

Blocksworld (34) 6.8 3 26

Depots (20) 6.2 8 6

Driverlog (20) 14 9 15

Elevators (30) 2.9 16a 30

Logistics (20) 5.8 20 20

Openstacks (30) 11.7 0b 30

Rovers (20) 14.7 10 18

Satellite (20) 10.8 16 11

Woodworking (30) 5.6 0b 24

Zenotravel (20) 6.1 20 13

Total (244) 84.6 102 193

rithms RDFF and GPPP. Both planners, similarly to Fmap, are state-space search planners.
RDFF [32] is based on distribution of A* algorithm with distributed heuristics with a vari-
able number of agents involved in heuristic estimation. Greedy Privacy Preserving Planner
(GPPP) [26] is based on an iterative deepening search in relaxed subproblems enhanced with
landmarks. Table 4 shows that Psm-rv outperforms both state-of-the-art algorithms,8 even
though GPPP solved more instances of Depots, Satellite, and Zenotravel domains.

Table 5 shows overall results of Psm-rv algorithm for all privacy settings. Unfortunately,
we are not aware of any planner that could be used to compare the performance on prob-
lems with internal goals. We can see that in some domains, increased privacy improves the
performance of the planner, while in others, the performance decreases. For example, in Satel-
lites problems, the most difficult goal is the final position pointing of a satellite (predicate
pointing). If this goal is internal, then the complexity of the problem decreases. The oppo-
site case is represented by Openstacks domain. When the goals are public, a producer (agent
manufacturer) can more easily create a plan fitting the requirements of a consumer (agent

8 We would like to thank Michal Štolba for evaluating RDFF and GPPP on our benchmarks.
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Table 5 Problem coverage of Psm-rv on benchmark domains with different privacy classifications

Domain Fmap Fmap� MA-Strips MA-Strips�

Blocksworld (34) 26 24 26 26

Depots (20) 3 4 6 4

Driverlog (20) 14 15 15 15

Elevators (30) 30 30 30 30

Logistics (20) 20 20 20 20

Openstacks (30) 30 12 30 26

Rovers (20) 16 14 18 18

Satellite (20) 9 18 11 17

Woodworking (30) 27 22 24 23

Zenotravel (20) 18 16 13 16

Total (244) 193 175 193 195

Number of problems in each domain is in parenthesis

Fig. 11 Performance of Psm-rv with different privacy classifications measured by the number of iterations
and amount of communication. Values are averages over those problems solved by all the planners. Number
of the problems considered for each domain is in parenthesis

manager). Internal goals improve the performance with MA-Strips classifications, but the
effect on Fmap classifications is the opposite. The best overall coverage is forMA-Strips�

with 195 solved problems out of 244 problems. This shows that increase of internal facts
does not only support privacy, but it can also improve performance (Fig. 11).

10 Conclusions

We have proposed a sound and complete approach for privacy preserving multiagent plan-
ning with external actions. It combines compilation for a classical planner with a compact
representation of local plans. A compact representation of local plans in the form planning
state machines (PSM) allows us to effectively implement desired operations, namely PSM
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intersection and public projection. Improving the planner with distributed delete-relaxation
heuristics (Psm-r) and approximative plan analysis (Psm-v) proved to be effective in prac-
tice. Each of the improvements helps to solve a particular class of problems, and we have
shown that both the improvements can be combined together without impairing each other
(Psm-rv). Experimental evaluation revealed that Psm-rv outperforms state-of-the-art plan-
ner FMAP by more than 8%. The improvements also reduced required communication by
decreasing the number of iterations needed to solve benchmark problems. Private goals were
added to the planner by a compilation scheme providing transformation of private goals to
public ones without loss of privacy.

We have performed analysis of common multiagent planning benchmarks from the per-
spective of different privacy classifications. An indisputable advantage of our approach is
that it can be used under different privacy classifications which has been confirmed by exper-
iments. The result is that Psm-rv is best performing on the privacy classification defined by
MA-Stripswith private goals, that is, on the classification which contains the lowest amount
of public facts out of the tested classifications. Usability of our planner with different privacy
classifications allowed us to directly compare our approach with other planners designed par-
ticularly for MA-Strips privacy classification with public goals. The result is that Psm-rv
outperforms state-of-the-art planners RDFF and GPPP.

The proposed planning approach constitutes a generic schemewhich can be extendedwith
other improvements and heuristics. While two such extensions were presented in this work,
other extensions can be introduced to target most recent challenges in multiagent planning.
The extensions targeting planning with a pair-wise visibility of facts, planning in a lifted
form, and planning with joint actions are left for future work. With these extensions, we
believe the presented approach becomes a scalable multiagent planner necessary to tackle
real-world problems.

Acknowledgments This research was supported by the Czech Science Foundation (Grant No. 13-22125S).

Appendix: Proofs of main theorems

Theorem 1 Public plan σ of Π is extensible if and only if σ is α-extensible for every agent
α.

Proof (⇒). When σ is extensible, there is π ∈ sols(Π) such that π � � = σ . Let α be
arbitrary but fixed. Let us construct plan πα of Π � α from π by removing internal actions
of agents other than α and by applying projection to the remaining actions obtaining πα =
〈a � α : a ∈ π and a ∈ pub-actions(Π) ∪ int-actions(α)〉. Clearly πα � � = σ because
πα preserves the order of public actions. To prove πα ∈ sols(Π � α), we first observe that
no action b internal for β 
= α can change state s of Π in a way observable by α, that is,
γ (s, b) � α = s � α. Hence, the sequence of states (of Π) which proves π ∈ sols(Π) can
be easily transformed to a sequence of states of (Π �α) which proves πα ∈ sols(Π � α).
Thus σ is α-extensible. (⇐) For every agent αi , σ is αi -extensible and thus there is some
local solution πi such that πi ∈ sols(Π � αi ) and πi � � = σ . When more than one local
solutions exist, we can choose an arbitrary from them. Now we construct a solution π of Π

from local solutions πi ’s as follows. We split each πi at the positions of public actions from
σ , and we join the corresponding internal parts of different plans together. Internal actions
of different agents cannot interact through a shared fact (otherwise this fact would be public

123



614 J. Tožička et al.

and these actions would be public too), and thus, we can join different internal parts in any
order, preserving only the order of actions of individual agents.

Then we construct π of Π from σ by translating ids from σ to corresponding actions of
Π and by adding the joined parts between corresponding public actions in σ .

Clearly π � � = σ and π ∈ sols(Π). Hence, σ is extensible. ��
Lemma 3 Let Π be a classical Strips problem, let Γ be a PSM of Π , and let π ∈ sols(Π).
Then Γ ⊕ π is correctly defined and accept(Γ ) ∪ {π} ⊆ accept(Γ ⊕ π).

Proof Let us prove that Γ ⊕ π is correctly defined as specified by Definition 5. Properties
(1)–(3) are trivial. Property (4) is satisfied because π ∈ sols(Π) and hence G ⊆ sn where
sn is the last state from Definition 7. It follows from Definition 7 that both PSMs are defined
on the same alphabet and that Γ is a sub-automaton of Γ ⊕π . Hence, clearly accept(Γ ) ⊆
accept(Γ ⊕π). Moreover, the sequence of states s0, . . . , sn from Definition 7 proves that
π ∈ accept(Γ ⊕ π). Hence, the claim. ��
Lemma 4 Let Π � α be a local problem of agent α and let Γ be a PSM of Π � α. Then Γ � �

is a public PSM of Π and accept(Γ � �) = {π � � : π ∈ accept(Γ )}.
Proof Let Δ = Γ � �. Let δΓ be the transition function of Γ and let δΔ be the transition
function of Δ. Let us prove the inclusions (⊆) and (⊇) separately.

(⊆) Let σ ∈ accept(Δ) and let σ = 〈id1, . . . , idn〉. Let s0, . . . , sn be the sequence of
states ofΔwhich proves σ ∈ accept(Δ). Nowwe can sequentially process these actions and
construct a sequence of action ids π ′ such that π ′ ∈ accept(Γ ) and π ′ � � = σ as follows.
Thanks to the integer labels, we can unambiguously translate every state of Δ to the state of
Γ using function ρ−1. Let ti = ρ−1(si ) for 0 ≤ i ≤ n. We start with empty π ′. We know that
the transition from si−1 to si labeled by idi has been added to Δ by line 17 of Algorithm 3.
Hence, there is state r of Γ such that r ∈ int-closure(ti−1) and δΓ (r, idi ) = ti . Hence,
there has to be a (possibly empty) sequence of internal action ids 〈id′

1, . . . , id
′
l〉which proves

r ∈ int-closure(ti−1). We simply append 〈id′
1, . . . , id

′
l , idi 〉 to π ′. In this way, we construct

π ′ by sequential processing of all action ids from σ . We know that s0 is the initial state of Δ

and also that t0 is the initial state of Γ . It holds that π ′ � � = σ because all the actions from σ

were added to π ′ in the right order and the additionally added actions are internal. To prove
the claim, it is now enough to check that π ′ ∈ accept(Γ ). When tn is an accepting state of
Γ , we are done. Otherwise, sn is marked as an accepting state of Δ by line 19 and therefore
there exists some accepting state r ′ of Γ such that tn ∈ int-closure(r ′). Finally, we append
internal action ids which prove tn ∈ int-closure(r ′) to π ′. Thus π ′ ∈ accept(Γ ) and hence
the claim.

(⊇) Letπ ∈ accept(Γ ) and let σ = π � �.We simulate the planπ = 〈id1, . . . , idn〉 in the
state space of Γ . We shall show that this simulation directly corresponds to the simulation of
σ in Δ. Let s0, . . . , sn be the sequence of states of Γ which proves π ∈ accept(Γ ). Clearly
the initial state of Γ (that is, s0) is translated by ρ to the initial state of Δ. For a transition
from si−1 to si labeled by idi in Γ , we distinguish two following two cases. Either (1) idi
is public or (2) internal. If idi is public, it is trivially added by line 17 to Δ and thus we can
follow the corresponding transition in Δ. If idi is internal, we find the first transition with
public action δ(s j−1, id j ) → s j , j > i . Note that all internal actions are removed when
doing a public projection. Thus, we can proceed similarly to the previous case having virtual
transition from δ(si−1, idi ) → s j with the only difference that now the needed transition is
added because s j ∈ int-closure(s). It can happen that no such index j exists, i.e., the plan π

ends with a sequence of internal actions. In that case, the state ρ(si−1) is going to be added
to the goal states at line 19. ��
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Lemma 5 The intersection Δ1 ∩ Δ2 of two public PSMs Δ1 and Δ2 of Π is a correctly
defined public PSM of Π and the following holds.

accept(Δ1 ∩ Δ2) = accept(Δ1) ∩ accept(Δ2)

Proof Let Δ1 = 〈�, S1, I, δ1, F1〉 and Δ2 = 〈�, S2, I, δ2, F2〉. Let Δ0 = Δ1 ∩ Δ2. Let
us first prove that the Δ1 ∩ Δ2 is a correctly defined PSM of MA-Strips problem Π as
specified in Definition 9. Properties (1) to (3) are trivially fulfilled. Property (4) is proved by
Definition 12 (2) and property (5) by Definition 12 (3). Now let us prove the inclusions (⊆)
and (⊇) separately.

(⊆) Let σ = 〈id1, . . . , idn〉 be a public plan such that σ ∈ accept(Δ0). Let
〈s0, l0〉, . . . , 〈sn, ln〉 be the sequence of states which proves σ ∈ accept(Δ0). Thanks to the
distinctiveness property of an injective function ·, we can find ik and jk such that lk = ik · jk
for every 0 ≤ k ≤ n. It holds that 〈sn, in〉 ∈ F1 and 〈sn, jn〉 ∈ F2 by Definition 12 (3). Hence,
the sequence of states 〈s0, i0〉, . . . , 〈sn, in〉 proves that σ ∈ accept(Δ1) by Definition 12 (2).
Similarly, σ ∈ accept(Δ2) and hence the claim.

(⊇) Let Δ0 = 〈�, S0, I, δ1, F0〉. Let σ = 〈id1, . . . , idn〉 be a public plan such that
σ ∈ accept(Δ1) ∩ accept(Δ2) Let 〈s0, i0〉, . . . , 〈sn, in〉 be the sequence of states which
proves σ ∈ accept(Δ1) and let 〈q0, j0〉, . . . , 〈qn, jn〉 be the sequence of states which proves
σ ∈ accept(Δ2). We know that 〈s0, i0〉 = 〈q0, j0〉 = I . Hence, it is easy to check by
Definition 9 (4) that sk = qk for all 0 ≤ k ≤ n. Also we know that 〈sn, in〉 ∈ F1 and
〈sn, jn〉 = 〈qn, jn〉 ∈ F2. Hence, 〈sn, in · jn〉 ∈ F0 by Definition 12 (3). Now the sequence
of states 〈s0, i0 · j0〉, . . . , 〈sn, in · jn〉 proves that σ ∈ accept(Δ0) by Definition 12 (2) and
hence the claim. ��

Theorem 2 Let Π be anMA-Strips problem and Δ = PsmPlanComplete(Π). It holds
that accept(Δ) = {π � � : π ∈ sols(Π)}.

Proof LetΓα denote the completePSMofΠ � α andΔα = Γα � �. Let us prove the inclusions
(⊆) and (⊇) separately.

(⊆) Let σ ∈ accept(Δ). Then σ ∈ accept(Δα) for every α by Lemma 5. Hence,
for every α there is πα ∈ accept(Γα) such that σ = πα � � by Lemma 4. By Lemma 2
πα ∈ sols(Π � α) and thusσ isα-extensible for everyα.Hence,σ is extensible byTheorem1.

(⊇) Let π ∈ sols(Π) and σ = π � �. Hence, σ is extensible and thus also α-extensible
for every α by Theorem 1. Hence, for every α there is πα ∈ sols(Π � α) with πα � � = σ .
Clearly πα ∈ accept(Γα) by Lemma 2 and thus σ ∈ accept(Δα) by Lemma 4. Thus
σ ∈ accept(Δα) for all α and hence the claim by Lemma 5. ��

Theorem 4 Let Π be anMA-Strips problem, let α be an agent of Π , and let σ be a public
plan of Π . Then σ is α-extensible iff sols(Π �α σ ) 
= ∅.

Proof (⇒) Let σ be α-extensible. Hence there is π ∈ sols(Π � α) such that π � � = σ .
Clearly π contains only public actions in the order given by σ . The rest are internal actions
ofα.We constructπ0 fromπ by replacing public actions by their respective landmark actions.
It is easy to verify that π0 ∈ sols(Π �α σ ).

(⇐) Let π ∈ sols(Π �α σ ). Clearly π � � = σ . Let us construct π0 be translating
landmark actions back to their original actions. It still holds π0 � � = σ , and it is easy to
check that π0 ∈ sols(Π � α). Hence, σ is α-extensible. ��
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2007, Jan received an EPSRC scholarship to undertake a Ph.D. study
at Heriot-Watt University in Edinburgh under the supervision of Dr.
Joe Wells and Prof. Fairouz Kamareddine. His Ph.D. thesis was suc-
cessfully defended with no corrections in 2010. His research interests
include automated reasoning, automated planning, multiagent systems,
process calculi, and type systems.

123



618 J. Tožička et al.
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