
Knowl Inf Syst (2016) 48:429–463
DOI 10.1007/s10115-015-0884-x

REGULAR PAPER

CloFAST: closed sequential pattern mining using sparse
and vertical id-lists

Fabio Fumarola1 · Pasqua Fabiana Lanotte1 ·
Michelangelo Ceci1 · Donato Malerba1

Received: 11 August 2014 / Revised: 20 July 2015 / Accepted: 5 October 2015 /
Published online: 20 October 2015
© Springer-Verlag London 2015

Abstract Sequential pattern mining is a computationally challenging task since algorithms
have to generate and/or test a combinatorially explosive number of intermediate subse-
quences. In order to reduce complexity, some researchers focus on the task of mining closed
sequential patterns. This not only results in increased efficiency, but also provides a way to
compact results, while preserving the same expressive power of patterns extracted by means
of traditional (non-closed) sequential pattern mining algorithms. In this paper, we present
CloFAST, a novel algorithm for mining closed frequent sequences of itemsets. It combines
a new data representation of the dataset, based on sparse id-lists and vertical id-lists, whose
theoretical properties are studied in order to fast count the support of sequential patterns, with
a novel one-step technique both to check sequence closure and to prune the search space.
Contrary to almost all the existing algorithms, which iteratively alternate itemset extension
and sequence extension, CloFAST proceeds in two steps. Initially, all closed frequent item-
sets are mined in order to obtain an initial set of sequences of size 1. Then, new sequences are
generated by directly working on the sequences, without mining additional frequent item-
sets. A thorough performance study with both real-world and artificially generated datasets
empirically proves that CloFAST outperforms the state-of-the-art algorithms, both in time
and memory consumption, especially when mining long closed sequences.

Keywords Sequential pattern mining · Closed sequences · Data mining · Itemset

B Michelangelo Ceci
michelangelo.ceci@uniba.it

Fabio Fumarola
fabio.fumarola@uniba.it

Pasqua Fabiana Lanotte
pasquafabiana.lanotte@uniba.it

Donato Malerba
donato.malerba@uniba.it

1 Department of Computer Science, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-015-0884-x&domain=pdf

430 F. Fumarola et al.

1 Introduction

Since its introduction [1], sequential pattern mining has become a fundamental data mining
task with a large spectrum of applications, including Web mining [15], classification [9],
finding copy-paste bugs in large-scale software code [16] and mining motifs from biological
sequences [21].

In sequential patternmining, input data are a set of sequences, called data sequences. Each
data sequence is an ordered list of transactions, where each transaction is a set of literals,
called itemset. Typically, the order of transactions in the list is based on the time-stamp
associated with each transaction, although other non time-related orderings are possible. The
output of sequential pattern mining is sequential patterns, each of which consists of a list of
items. The problem is to find all sequential patterns with a user-specified minimum support
(or frequency), which is defined as the percentage of data sequences that contain the pattern.

If comparedwith themore common problem of frequent patternmining, sequential pattern
mining is computationally challenging because,when solving this problem, a combinatorially
explosive number of intermediate subsequences have to be generated and/or tested [13]. In
fact, although algorithms presented in the literature are relatively efficient [2,18,20,24,25],
when they are used to mine long sequences, time and space scalability becomes increasingly
critical. This is especially true for low values of the support threshold.

To alleviate this problem, research in sequential pattern mining has made progress in two
directions: (i) efficient methods for mining only the set of closed sequential patterns and
(ii) efficient methods for pruning the search space and exploiting specifically designed data
structures.

As for (i), many studies pinpoint the idea that for mining frequent sequential patterns,
one should not mine all the frequent sequences [11,17,22,23]. In particular, they propose
mining the closed sequential patterns, where a sequential pattern α is closed if it has no
proper supersequence β with the same support. Intuitively, since all the subsequences of a
frequent sequence are also frequent, mining the set of closed sequential patterns may help
avoid the generation of unnecessary subsequences, thus leading to more compact results and
saving computational time and space costs.

As for (ii), many algorithms avoid maintaining the set of already generated closed
sequences during the mining process [23]. Pruning of the search space and closure checking
typically exploit multiple pseudo-projected databases [22] (i.e., databases of sequences gen-
erated from a single sequence prefix), which are designed to be efficiently queried. However,
pseudo-projected databases require significant time and space to be created and queried,
thus limiting not only the capability of the algorithms to mine large datasets with long data
sequences, but also the capability of the algorithm to process dense data sequences (i.e., data
sequences whose itemsets contain many items).

Several approaches (e.g., ClaSP [12] and SPADE [25]) attempt to overcome the limits
of pseudo-projected databases by exploiting a vertical representation formalism. However,
they all start with 1-itemset sequences and extend them by iteratively alternating sequence
extension, i.e., appending an itemset to a sequence, and itemset extension, i.e., adding an
item to an itemset in the sequence. In this way, a frequent itemset mining step is required at
each iteration, with a computational cost that does not scale well with the size of frequent
sequences.

In this paper, we propose CloFAST (Closed FAST sequence mining algorithm based
on sparse id-lists), a novel algorithm to mine closed sequences from large databases of
long sequences. It extends and revises the algorithm FAST [19] that extracts only frequent

123

CloFAST: closed sequential pattern mining using sparse and ... 431

sequences. In particular, CloFAST, similarly to FAST, combines a new data representation
of the dataset (sparse id-list and vertical id-list [19]) to fast count the support of sequential
patterns. However, differently from FAST, it exploits the properties of sparse id-lists and of
vertical id-lists, in order to define a novel one-step technique for sequence closure checking
and search space pruning. Similarly to BIDE [22], CloFAST, during the mining process,
does not need to maintain the set of already mined closed sequences [23] to prune the search
space and to check whether newly discovered frequent sequential patterns are closed.

CloFAST does not build pseudo-projected databases and does not need to scan them. The
initial dataset of sequences of transactions is read once for all to create both sparse id-lists and
vertical id-lists, which are two distinct indexes loaded in the main memory. Sparse id-lists
store the position of the transactions which contain a given itemset, while vertical id-lists
store the position of a given sequential pattern in the input sequences.

CloFAST uses sparse id-lists to mine closed frequent itemsets and to enumerate the search
space, while it uses vertical id-lists to generate the closed sequence patterns. The support
of itemsets and sequences is efficiently computed from the sparse id-lists and the vertical
id-lists, without requiring additional database scans. Moreover, in order to check the (non-
)closure of a considered sequential pattern α and to consequently prune the search space, we
propose a novel technique, called backward closure checking, which checks whether a new
sequence pattern β, obtained by adding a new item/itemset at any position (not necessarily
at the end) in α, has the same support as α. In this case, α cannot be considered closed.

Finally, CloFAST mines closed frequent itemsets only at the beginning of the mining
process, in order to obtain an initial set of sequences. New sequences are then generated by
directly working on the sequences, without generating frequent itemsets.

The contributions of this paper are the following:

1. We propose a two-step process that performs (i) closed itemset mining, and (ii) closed
sequential pattern discovery. The two steps only work on sparse id-lists and vertical
id-lists, thus gaining efficiency both in time and space.

2. We study formal properties of sparse id-lists and vertical id-lists, which can be used for
closed sequential pattern mining.

3. We propose an efficient backward closure checking which works on sparse id-lists and
vertical id-lists.

4. We present a new pruning method, performed during the backward closure checking,
which removes non-promising enumerations during the generation of closed sequential
patterns.

5. We theoretically prove the correctness and completeness of closed sequential patterns
generated by both CloFASTwith the backward closure checking technique and CloFAST
with pruning.

6. We present empirical evidence that CloFAST outperforms competing algorithms on sev-
eral real-world and artificially generated sequence datasets.

The rest of the paper is organized as follows. In Sect. 2, the problem of closed frequent
sequence mining is defined. Related work is introduced in Sect. 3. Sections4 and 5 focus
on the data structures used to enumerate the search space and for efficient support counting.
The CloFAST algorithm and the vertical id-list pruning method are described in Sect. 6.
Experimental results and their related discussion are reported in Sect. 7. Finally, conclusions
are drawn and future work is outlined.

123

432 F. Fumarola et al.

2 Problem definition and background

Let us consider a sequence database SDB of customer transactions. In particular, a sequence
represents the (ordered) list of transactions associated with a customer and each transaction
consists of a set of items purchased. Each sequence is uniquely identified by a sequence
identifier (sequence-id or SID), while each transaction in the sequence is uniquely identified
by a transaction identifier (transaction-id or TID). The size of SDB (|SDB|) corresponds to the
number of sequences (i.e., the number of customers) in the sequence database. In Table1, we
report an example of SDB with three sequences (i.e., |SDB| = 3): the first sequence contains
five transactions, the second sequence contains two transactions, while the third sequence
contains three transactions.

More formally, let I = {i1, i2, . . . , in} be a set of distinct items, which can be sorted
according to some lexicographic ordering≤l (e.g., alphabetic ordering).A customer sequence
S is a list of transactions, S = 〈t1, t2, . . . , tm〉, where each t j ⊆ I denotes the set of
items bought in the jth transaction. The size |α| of a sequence α is the number of item-
sets (transactions) in the sequence. A sequence α = 〈a1, a2, . . . , am〉 is a subsequence
of a sequence β = 〈b1, b2, . . . , bn〉, if and only if integers i1, i2, . . . , im exist, such that
1 ≤ i1 < i2 < · · · < im ≤ n and a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , am ⊆ bim . We say that β is a
supersequence of α or that β contains α.

Example 1 The sequence β = 〈{a, b}, {c}, {d, e}〉 is a supersequence of α = 〈{a}, {d}〉
because {a} is a subset of {a, b} and {d} is a subset of {d, e}. On the contrary, β is not a
supersequence of λ = 〈{c, d}〉, since the itemset {c, d} is not contained in any itemset of β.

Given a sequenceβ, its absolute support in SDB is the number of sequences in SDBwhich
contain β, while its relative support is the absolute support divided by |SDB|. Henceforth,
β : s will denote the sequence β and its absolute support s, and the term support will refer
to the absolute support, unless otherwise specified.

Given two sequences β and α, if β is a supersequence of α and their absolute (or relative)
support in SDB is the same, we say that β absorbs α. A sequential pattern α is closed if no
proper sequence β that absorbs α exists.

The problem of closed sequence mining is formulated as follows: Given a sequence
database SDB and a minimum support threshold min_sup, find all the closed sequential
patterns in SDB, such that their support in SDB is at least min_sup. Generated patterns are
called closed frequent sequential patterns.

Example 2 Table 1 shows an example of a sequence database. If min_sup = 2, the com-
plete set of closed frequent sequences consists of only four sequences: 〈{a, b, f }, {d}〉 : 2,
〈{a, b, f }, {e}〉 : 2, 〈{e}, {a}〉 : 3, 〈{e}, {a}, {d}〉 : 2, while the total number of frequent
sequences is 26.

The algorithm proposed in this work uses two data structures, called sparse id-list (SIL)
and vertical id-list (VIL), recently introduced in [19] for frequent sequence mining. They

Table 1 Example of a sequence
database (SDB)

SID Sequence

1 〈{a, b, f }, {d}, {e}, {a}, {d}〉
2 〈{e}, {a}〉
3 〈{e}, {a, b, f }, {b, d, e}〉

123

CloFAST: closed sequential pattern mining using sparse and ... 433

Fig. 1 From left to right a the sparse id-lists for itemset {b}, b the sparse id-lists for itemset {a, b}, c the
database of sequences

Fig. 2 a sparse id-list for the itemset {a}; b sparse id-list for the itemset {e}; c vertical id-list for the sequence
〈{a}〉; d vertical id-list for the sequence 〈{e}〉; e vertical id-list for the sequence 〈{a}, {e}〉

are an optimized representation of the database, since their size is bound by the size of the
input dataset. The concept of id-list was first introduced by SPADE [2], where an id-list of a
sequence α was defined as the list of all input customer-id and transaction-id pairs containing
α in the database. In the following, we formally introduce them.

Let SDB be a sequence database of size n (i.e., |SDB| = n) and S j ∈ SDB the j th customer
sequence (j ∈ {1, 2, . . . , n}).
Definition 1 (Sparse id-list) Given an itemset t ⊆ 2I , its sparse id-list, denoted as SILt , is
a vector of size n, such that for each j = 1, . . . , n

SILt [j] =
{
the list of the ordered transaction-ids of t in S j if S j contains t
null otherwise

Example 3 Figure 1a shows the SILa and SILa,b of the itemsets {a} and {a, b}, respectively.
The values represent the position of the relative itemset in the database in Table 1. Other
examples of SILs for the same database are reported in Fig. 2a, b.

Definition 2 (Vertical id-list) Given a sequence α, whose last itemset is i , its vertical id-list,
denoted as VILα , is a vector of size n, such that for each j = 1, . . . , n

VILα[j] =
{
the transaction-id of i in the first occurrence ofα in S j if S j containsα

null otherwise

Example 4 Figure 2c–e show some VILs. In particular, Fig. 2e shows the VILα of the
sequence α = 〈{a}, {e}〉. Values in VILα represent the ending position of the first occur-
rence of the sequence α in the sequences S j of Table 1. In particular, the first element (value
3) represents the position of the first occurrence of {e}, after {a} ({e} is the last itemset in α),
in the first sequence. The second element is null since α is not present in the second sequence.

123

434 F. Fumarola et al.

The third element (value 3) represents the position of the first occurrence of {e} (after {a})
in the third sequence.

3 Related work

To the best of our knowledge, CloSpan [23], BIDE [22], ClaSP [12] and COBRA [14] repre-
sent the state of the art in closed sequential pattern mining. CloSpan is based on the candidate
maintenance and test approach, which generates a candidate set for closed sequential pat-
terns, enumerates the search space and then performs post-pruning. It uses the equivalence
of projected databases to stop the search and prune the search space. The basic idea is that if
a sequence β is a supersequence of a discovered sequence α and the number of items in the
corresponding projected databases is the same, then the projected databases are equal and
it is possible to stop the search of any descendant of α, since both α and β have the same
support.

Wanget al. [22] proposedBIDEas an alternative solutionwhichhas the advantageof avoid-
ing candidate maintenance. They presented the bidirectional extension schema to generate
closed sequences andBackScan to prune the search space. The bidirectional extension schema
is based on the idea that a sequence α = 〈a1, a2, . . . , am〉 is not closed if an item/itemset a′
exists such that it can be used to extend α to a new sequence β, having the same support as
α. In particular, β can be obtained from α through either a forward extension (adding a new
item/itemset after am) or a backward extension (adding a new item/itemset before a j , with
1 ≤ j ≤ m). If no such item/itemset exists, then α is closed. BIDE does not keep track of
any candidate closed sequential patterns for sequence closure checking. This means that it
needs multiple scans of the projected databases for both the bidirectional closure checking
and the BackScan pruning.

Both CloSpan and BIDE adopt the PrefixSpan [18] approach in the mining phase. Pre-
fixSpan is a pattern-growth divide-and-conquer algorithm that grows sequences by itemset
extension and sequence extension. In particular, PrefixSpan grows a prefix pattern to obtain
longer sequential patterns by building and scanning its projected database. Although frequent
sequences in the projected databases are enumerated to reduce computational complexity,
its time complexity is strictly related to the size of the projected databases. For databases
with long sequences and large transactions, discovering the local frequent itemsets for each
projected database could become an expensive process.

These limitations have been overcome by both SPADE [25] and SPAM [2], which work on
more efficient data structures. Improvements are obtained by using a vertical database/bitmap
representation (id-lists) of the database for both itemsets and sequences. In this way, both
itemset extension and sequence extension steps are executed by joining/ANDing operations
between vertical/bitmap representation of sequence candidates. Experimental results pre-
sented in [2,12] show that both SPAM and SPADE outperform PrefixSpan on large datasets,
because they avoid the Prefixspan cost for local frequent itemset mining.

The approach used by SPADE has been recently extended in ClaSP [12] for closed sequen-
tial pattern mining. In particular, ClaSP exploits the concept of a vertical database format to
obtain closed sequences without making several scans of the input database. According to the
authors, this significantly improves performances over existing algorithms such as CloSpan.
Drawing inspiration from this observation, we decided to exploit both sparse and vertical id-
lists (SILs and VILs) to fast count the support of sequential patterns in CloFAST. Contrary
to SPADE and ClaSP, where the large size of the id-lists negatively affects the computational

123

CloFAST: closed sequential pattern mining using sparse and ... 435

time of the joins, in CloFAST both the itemset extension and the sequence extension are
based on SILs and VILs, which can be efficiently used in support counting, sequence closure
checking, and search space pruning (see Sect. 6) without performing temporal joins.

Note that all previously referenced algorithms follow the same enumeration strategy:
patterns are generated on the basis of the lexicographic ordering and this ordering is then
used both in item extension and in sequence extension. However, in general, this pattern-
growth strategy may present two drawbacks: redundant itemset extension and expensive
“matching cost” in the generation of projected databases.

To explain the first drawback (redundant itemset extension), we report a simple example.
Consider a database of two sequences:

SDB = [〈 {a, b}, {a, b, c}, {a, b} 〉, 〈 {a, b, c}, {a, b}, {a, b}〉].
In this case, finding the closed sequence 〈 {a, b}, {a, b}, {a, b}〉 generally requires three
item extensions of {a}with {b} and three sequence extensions which add {a} to the sequence.
Graphically, the following steps are typically necessary:

�→ 〈 {a} 〉 → 〈 {a, b} 〉 �→ 〈 {a, b}, {a} 〉 → 〈 {a, b}, {a, b} 〉 �→ 〈 {a, b}, {a, b}, {a} 〉
→ 〈 {a, b}, {a, b}, {a, b} 〉

where → indicates the itemset extension and �→ indicates the sequence extension. However,
if we discover that item {a} is not closed (since {a, b} absorbs {a}), then we can directly
perform sequence extensions of {a, b}, instead of generating item extensions of {a}. This
means that only the following operations are necessary:

�→ 〈 {a, b} 〉 �→ 〈 {a, b}, {a, b} 〉 �→ 〈 {a, b}, {a, b}, {a, b} 〉
Obviously, this requires a preliminary closed frequent itemset mining step.

The second drawback (expensive matching cost) is due to queries on (previously gener-
ated) projected databases, in order to obtain, after pattern-growth, new projected databases.
This process in not trivial since we are working on databases of sequences and a query means
a complete scan of the previously generated projected database. Moreover, it is noteworthy
that both itemset extension and sequence extension require the generation of a new projected
database.

COBRA attempts to overcome these two drawbacks. Instead of extending a pattern by iter-
atively alternating (i) itemset extension and (ii) sequence extension, it separates the twophases
and generates closed frequent itemsets before mining closed sequential patterns. Sequences
are extended by only performing sequence extension. Therefore, the closed sequence mining
is composed of three consecutive phases: (i) search for all closed frequent itemsets; (ii) trans-
formation of the original dataset into a horizontal format (similar to projected databases);
(iii) enumeration of closed sequential patterns.

It is noteworthy that this approach is not equivalent to mining all closed frequent itemsets,
then encoding different itemsets as different symbols and finally applying any (non-closed)
sequence patternmining algorithm (à laAprioriAll [1], for sequential patternmining). Indeed,
the notions of supersequence/subsequence used to identify closed sequences are based on
the notions of superset/subset of itemsets, which cannot be evaluated after encoding. Conse-
quently, the enumeration of closed sequential patterns cannot be based only on input closed
itemsets, but it requires additional information extracted during the phase of mining closed
itemsets.

CloFAST follows the same approach as COBRA. The difference is that COBRAgenerates
all the sequences of the same length and then performs an expensive post-pruning (called

123

436 F. Fumarola et al.

ExtPruning) to discard non-closed sequences, while CloFAST applies an online (i.e., during
the sequence generation phase) pruning strategywhich operates on vertical id-lists.Moreover,
the computation of the pattern support in COBRA requires the identification of the first
occurrence of the itemset in each sequence, while in CloFAST it is performed by simply
counting the non-null elements in the vertical id-list of the pattern. This means that COBRA
has to analyze sequences, whereas CloFAST does not.

4 The closed itemset enumeration tree and the closed sequence
enumeration tree

In this section, we present the two main data structures used in CloFAST, that is, the closed
itemset enumeration tree (CIET) and the closed sequence enumeration tree (CSET). The for-
mer is used to store closed frequent itemsets,while the latter is used to store the closed frequent
sequential patterns. Similar to the lexicographic sequence tree introduced in CloSpan [23],
we assume that a lexicographic ordering ≤l exists in the set of items I . This ordering, as
explained in [23], can be extended for sequences composed of itemsets, by exploiting the
concepts of sub/superset and sub/supersequence (see Sect. 2). For the sake of simplicity, we
will use the same notation ≤l for this extension of the ordering.

4.1 Closed itemset enumeration tree (CIET)

Similar to a set enumeration tree [26], the CIET is an in-memory data structure that allows us
to enumerate the complete set of closed frequent itemsets. It is characterized by the following
properties: (1) each node in the tree corresponds to an itemset, and the root is the empty itemset
(∅); (2) if a node corresponds to an itemset i , its children are obtained by itemset extensions
from i ; and (3) the left sibling of a node precedes the right sibling in the lexicographic order
(see Fig. 3 for an example).

Formally, this tree structure is defined as follows:

– the root node of the tree is labeled with ∅;
– the first level enumerates the frequent 1-item itemsets (i.e., itemsets with a single item

in I) according to the ordering ≤l ;
– for other levels, nodes represent frequent k-item itemsets, with k > 1. Each node is

constructed by merging the itemset of its parent node with the itemset of a sibling of its
parent node.

Onlynodes for (candidate) closed itemsets are added to theCIET. Inspiredby the classification
of the nodes in Moment [8], we label each node in the CIET as:

– intermediate: the node represents a subset of a closed itemset represented in one of its
descendant nodes;

– unpromising: the node represents a subset of a closed itemset represented in other
branches of the tree;

– closed: a node is labeled as closed if it represents a closed itemset.

Figure3 shows an example of a CIET for the database in Table 1, when min_sup = 2.
Each node contains a frequent itemset and its corresponding support. CloFAST traverses the
CIET in a depth-first search order. Only the descendants of the nodes labeled as closed or
intermediate are explored. Indeed, descendants of an unpromising node can be pruned since
they cannot represent additional closed itemsets. To check whether or not a certain node

123

CloFAST: closed sequential pattern mining using sparse and ... 437

Fig. 3 CIET for our running example. Nodes with thick borders represent closed itemsets. Nodes with dashed
borders represent unpromising nodes. The remaining nodes represent intermediate nodes

corresponding to an itemset i should be labeled as unpromising, CloFAST needs to know
whether there is a frequent itemset j , such that j absorbs i but does not descend from i . For
this purpose, a hashmap (i.e., a structure that maps keys to values) is used to store the set
of the closed frequent itemsets associated with a support value, which represents the key of
the hashmap. It is noteworthy that nodes labeled as closed can be changed to intermediate
during the tree construction.

4.2 Closed sequence enumeration tree (CSET)

The mined set of closed itemsets is used in the construction of the CSET, which enumerates
the complete search space of closed sequences, similarly to the sequence tree described
in [19]. For the CSET, it is possible to define the following properties: 1) each node in the
tree corresponds to a sequence, and the root corresponds to the null sequence (�) and 2) if
a node corresponds to a sequence s, its children are obtained by a sequence extension of s.

This tree has the following structure:

– the root node of the tree is labeled with �;
– nodes at the first level represent candidate closed sequences of size 1, whose unique

element is either (i) a closed frequent itemset corresponding to a node labeled as closed
in the CIET or (ii) an itemset labeled as intermediate in the CIET for which its SIL is
different from the SIL of its closed descendant node;

– nodes at higher first levels represent sequences of size greater than 1. Each node can
be constructed in two ways: (i) by adding to the sequence of its parent node u the last
itemset of the sequence in a sibling of u and (ii) by adding to the sequence of its parent
node u the last itemset of the sequence in u itself. The latter guarantees that sequences
containingmultiple repeated occurrences of the same item/itemset are not discarded (e.g.,
〈{a, b, f }, {a, b, f }〉 in Example 5). In any case, only nodes for frequent and (candidate)
closed sequences are added to the tree.

According to the previous definition, two sibling nodes of a CSET correspond to two distinct
sequences of itemsets, α = 〈a1, a2, . . . , am〉 and β = 〈b1, b2, . . . , bm〉, such that am �= bm

and ∀i = 1, . . . , m − 1 : ai = bi .
Each node in the closed sequence enumeration tree can be labeled as: (i) closed, (ii)

non-closed and (iii) pruned.

123

438 F. Fumarola et al.

Fig. 4 CSET for our example. Nodes with thick borders represent (candidate) closed sequences. Nodes with
dashed borders represent pruned nodes. Remaining nodes represent non-closed sequences

Figure4 shows an example of CSET for the database in Table 1 with min_sup = 2. Each
node in the figure contains a frequent sequence and its corresponding support. Different
borders (thick, dashed or plain) are used for different labeled nodes.

CloFAST builds the CSET in a depth-first search order. Each node in the CSET is consid-
ered for sequence extension. In order to exemplify how nodes at the second and at subsequent
levels are constructed, we report the following example:

Example 5 Consider the sequence extension of node 2 in Fig. 4. In this case, the candidate
sequences are: 〈 {a, b, f }, {d} 〉, 〈 {a, b, f }, {a} 〉, 〈 {a, b, f }, {e} 〉, 〈 {a, b, f }, {a, b, f } 〉.
Obviously, not all of them are frequent sequences and are added to the CSET.

5 Properties of SILs and VILs for efficient mining of closed sequential
patterns

In this section, we present several properties of VIL and SIL data structures which can be
profitably exploited by the sequential pattern mining algorithm.

Proposition 1 Let α = 〈a1, . . . , am〉, such that VILα[j] �= null. Then, for each i=1, . . .,
m − 1, VIL〈a1,...,ai 〉[j] < VIL〈a1,...,ai ,ai+1〉[j].

Proof It follows from VIL definition.
�

Proposition 2 Let α = 〈a1, . . . , ai 〉, ε = 〈ai+1, . . . , am〉, VILαε[j] �= null. Then,
VILα[j] �= null.

Proof It follows from the VIL definition.
�

These two propositions express two necessary conditions on the VIL structure, when the j th
sequence in SDB contains α or the composed sequence αε.

Proposition 3 Let α = 〈a1, . . . , ai 〉, ε = 〈ai+1, . . . , am〉, VILαε[j] �= null, γ any sequence.
If VILγ [j] = VILα[j], then VILγ ε[j] �= null.

123

CloFAST: closed sequential pattern mining using sparse and ... 439

Proof Let p = VILγ [j] = VILα[j], 〈b1, . . . , bp, bp+1, . . . , br 〉, r ≥ m, be the j th sub-
sequence in SDB. From the VIL definition, it follows that the subsequence 〈b1, . . . , bp〉
contains both α and γ . Moreover, the subsequence 〈bp+1, . . . , br 〉 contains ε. Therefore, the
j th sequence in SDB also contains γ ε, i.e., VILγ ε[j] �= null.
�

This proposition expresses an important property related to the containment of composed
sequences. If the j th sequence in SDB contains α, αε and γ , and the position of the last
itemset in α coincides with the position of the last itemset in γ , then the j th sequence also
contains γ ε.

Proposition 4 Let α = 〈a1, . . . , ai 〉, VILα[j] �= null, γ = 〈a1, . . . , ai−1, b〉, VILγ [j] �=
null, β = 〈a1, . . . , ai−1, b, ai 〉. If VILγ [j] < VILα[j], then VILβ [j] = VILα[j].

Proof It is obvious from the VIL definition and construction of β.
�

Proposition 4 states that if the j th sequence of the SDB contains two sequences of size i ,
say α and γ , which differ only in the last itemset, then VILγ [j] < VILα[j] is a sufficient
condition to prove that the j th sequence also contains the extended sequence β of size i + 1,
obtained by juxtaposing ai to γ .

Proposition 5 Let α = 〈a1, . . . , ai 〉, ε = 〈ai+1, . . . , am〉, γ = 〈a1, . . . , ai−1, b〉,
VILγ [j] �= null, β = 〈a1, . . . , ai−1, b, ai , ai+1, . . . , am〉. If VILαε[j] �= null and VILγ [j] <

VILα[j], then VILβ [j] �= null.

Proof From proposition 2 and VILαε[j] �= null, it follows that VILα[j] �= null. Since the
conditions for proposition 4 hold, it follows that VIL〈a1,...,ai−1,b,ai 〉[j] = VILα[j]. From
proposition 3, it follows that VILβ [j] �= null.
�

Proposition 6 Let α = 〈a1, . . . , ai 〉, ε = 〈ai+1, . . . , am〉, γ = 〈a1, . . . , ai−1, b〉, ai ⊂ b,
β = 〈a1, . . . , ai−1, b, ai+1, . . . , am〉. If VILαε[j] �= null and VILγ [j] = VILα[j], then
VILβ [j] �= null.

Proof It follows straightforwardly from proposition 3.
�

For the sake of computational efficiency, our implementation of the VIL does not maintain
the transaction-ids, but points to the related SILs. In particular, VILα[j] points to SILi [j] if
the transaction-id i belongs to VILα .

Before building the CSET, the SILs of all frequent itemsets are incrementally computed.
SILs for itemsets of size 1 are built during the first database scan. Then, SILs of itemsets of
size greater than 1 are built during the itemset extension step (see Sect. 5.1).

In contrast, VILs are associated with frequent sequences and are built during the sequence
extension step (seeSect. 5.2). Initially, for each sequenceα of size 1, VILα is straightforwardly
computed from SILt , where t is the only closed itemset in α. In particular, for each j ∈
{1 . . . n}, VILα[j] is the first value of the list SILt [j].
Example 6 Figure 2c shows theVILα of the 1-itemset sequenceα = 〈{a}〉. The valueVILα[j]
corresponds to the transaction-id of the first occurrence of the itemset {a} in the sequence
S j , which is actually stored in SIL{a}[1] (see Fig. 2a). Therefore, VILα = [1, 2, 2].
The computation of the VILs for sequences of size greater than 1 is explained in Sect. 5.2.

123

440 F. Fumarola et al.

5.1 I-step: using SILs

The itemset extension step (I-Step) is executed during the construction of the CIET. Suppose
we have two sparse id-lists SILi1 (for the itemset i1) and SILi2 (for the itemset i2) and we
want to extend the itemset i1 with items in i2. The SIL of i1 ∪ i2 (SILi1∪i2) can be obtained by
simultaneously scanning all the rows of SILi1 and SILi2 . In particular, for each row j , only
the transaction-ids which are found in both SILi1 [j] and SILi2 [j] are inserted in SILi1∪i2 [j].
Thus, SILi1∪i2 represents the occurrences of the itemset i1 ∪ i2 in the database.

For each itemset i , its support can be efficiently computed by counting the non-null vector
elements in the SILi . This can be done during the construction of the SILi at no additional
cost.

Example 7 Consider the running example in Fig. 1c. Figures 2a and 1a show the sparse
id-lists for itemsets {a} and {b}. Figure 1b displays the sparse id-list for the itemset {a, b}. It
contains for the first list (in row 1) only the element with value 1, for the second list the value
null, and for the list in row 3 only the element with value 2. The support of itemset {a, b} is
2, that is, the number of rows whose values are different from null.

5.2 S-step: using VILs

Consider two sibling nodes in the CSET and their corresponding sequences α =
〈a1, a2, . . . , am〉 andβ = 〈b1, b2, . . . , bm〉. By constructing theCSET,we have that am �= bm

and ∀i = 1, . . . , m − 1 : ai = bi . The sequence extension step (S-step) of α using β aims
at both constructing a new sequence γ = 〈a1, a2, . . . , am, bm〉 by appending bm to α, and
computing VILγ from VILα and VILβ .

The computation of VILγ proceeds as follows. If either VILα[j] or VILβ [j] are null, i.e.,
α and β do not occur together in the j th sequence in SDB, then VILγ [j] is set to null, since
γ cannot occur in the sequence itself. If both VILα[j] and VILβ [j] are non-null, we have to
check that an occurrence of am that precedes an occurrence of bm in the j th sequence exists.
Procedurally, this is performed as follows. While VILβ [j] �= null &&1 VILα[j] ≥ VILβ [j],
the reference to SIL{bm }[j] stored in VILβ [j] is used to right-shift to the next transaction-id in
SIL{bm }[j]. At the end, if VILα[j] < VILβ [j], the transaction-id found (possibly after some
right-shifts) in SIL{bm }[j] is stored in VILγ [j] (check succeeded); otherwise VILγ [j] is set
to null (check failed).

During the S-Step, only closed itemsets are considered in the sequences. This guarantees
a significant reduction in the search space.

Example 8 Consider the database in Fig. 1c. Let Fig. 2c, d be the VILs for the sequences
α = 〈{a}〉 and β = 〈{e}〉, respectively. Figure 2e shows the VIL of sequence γ = 〈{a}, {e}〉
resulting from an S-step on α using β.

– The initial values of VILα[1] and VILβ [1] are 1 and 3, respectively. Since VILα[1] <

VILβ [1], VILγ [1] = 3.
– The initial values of VILα[2] and VILβ [2] are 2 and 1, respectively. Since VILα[2] ≥

VILβ [2], the reference to SIL{e}[2] stored in VILβ [2] is used to identify the next
transaction-id of {e} (Fig. 2b). Since this value does not exist, VILγ [2] = null.

– The initial values of VILα[3] and VILβ [3] are 2 and 1, respectively. Since VILα[3] ≥
VILβ [3], the reference to SIL{e}[3] stored in VILβ [3] is used to identify the next
transaction-id of {e}, i.e., 3. This means that VILγ [3] = 3.

1 Here && denotes the shotcut AND predicate.

123

CloFAST: closed sequential pattern mining using sparse and ... 441

In the next section, the importance of both the I-step and the S-step for theCloFAST algorithm
is explained.

6 CloFAST: the algorithm

In this section, we describe the CloFAST algorithm (see Algorithm 1) and the one-step
technique used to simultaneously check for both sequence closure and sequence pruning.

With the first database scan, CloFAST finds the frequent 1-itemsets and builds their sparse
id-lists (line 2). Then, it simultaneously discovers the closed frequent itemsets and builds their
sparse id-lists (line 4). This is achieved by building a CIET, based on a modified version of
the algorithm FAST [19], which integrates the marking and pruning technique proposed in
Moment [8].

The first level of theCSET is initialized in lines 5–12. Each node in the first level represents
a (candidate) closed sequence of size 1, whose unique element is a closed frequent itemset.
The VILs of the nodes at the first level are straightforwardly computed from the SILs of the
closed frequent itemsets. Starting from the first level, the nodes in the CSET are considered
for sequence extension (lines 13–16) according to a depth-first search strategy.

During the mining process, the current set of closed sequential patterns is stored in the
CSET. At the end, CloFAST returns the complete set of closed sequential patterns in the
CSET.

Algorithm 1 CloFAST(SDB, min_sup)
Input: Sequence database SDB, int min_sup
Output: Complete set of closed freq. sequences CFS;

Data: CSET T=new Tree(), Frequent Items FI, Closed Frequent Itemset CFI, Node n;
1: // Identify frequent 1-itemsets and build their SILs;
2: FI = loadFrequentSILs(SDB, min_sup);
3: // Identify closed frequent itemsets and their SILs
4: CFI= mineClosedFItemset(FI, min_sup);
5: for each cfi ∈ CFI do
6: // Create VILc f i from SILc f i
7: vil=createVil(cfi);
8: // Create CSET node associated to cfi
9: n= createNode(cfi,vil);
10: labelNodeAs(n,“closed”);
11: addChildNode(T,root(T),n);
12: end for
13: for each child ∈ children(T,root(T)) do
14: // start the depth first search
15: sequenceExtension(T,child,min_sup);
16: end for
17: return closedSequentialPatterns(T);

Algorithm 2 describes the sequence extension step for an input node n. It first tests
whether n is closed and/or can be pruned (line 1). This is achieved by means of the
checkClosureAndPrune method detailed in the next subsections. If n is not pruned
(line 2), for each of its siblings including itself, the S-step is executed, in order to gener-
ate its children sequences (lines 6–20). Only the new frequent sequences are stored in the
CSET, together with their correspondingVILs (denoted as v3 in the algorithm). If a generated
sequence has the same support as that represented in n, then n is labeled as non-closed (lines

123

442 F. Fumarola et al.

11–13); otherwise it is labeled as closed by default (it is indeed a candidate closed frequent
sequence). In lines 21–23, the sequence extension step is recursively applied to each child of
n.

Algorithm 2 SequenceExtension(T, n, min_sup)
Input: CSET T, Node n, int min_sup;
Data: Node u, newNode, child; VIL v1,v2,v3; Sequence newSequence; int supp
1: checkClosureAndPrune(n, T);
2: if pruned(n); then
3: return
4: end if
5: v1 = Vil(n);
6: for each u ∈ siblings(T,n) do
7: v2 = Vil(u);
8: (v3,supp) = S-Step(v1,v2); // create the new vertical id-list and compute its support
9: if supp ≥ min_sup then
10: if supp = support(v1); then
11: labelNodeAs(n,“nonClosed”);
12: end if
13: // create new CSET node
14: newSequence =extend(sequence(n), sequence(u));
15: newNode = createNode(newSequence, v3);
16: labelNodeAs(newNode,“closed”);
17: addChildNode(T, n, newNode);
18: end if
19: end for
20: for each child ∈ children(T, n); do
21: sequenceExtension(T, child, min_sup);
22: end for

6.1 Backward closure checking

Inspired by BIDE [22], we aim at pruning the search space by exploiting a closure checking
schemawhich, besides the forward construction of the CSET, operates in a backward fashion.
Closure checking is important since it is useless to further explore a node if this node, and
its descendants could be absorbed by nodes present in other paths of the tree.

The intuition behind the backward solution is that it would lead to first check sequences in
the tree which are more “similar” to the sequence α to be evaluated (same head, same length,
closer in the tree). This means that, if a sequence which absorbs α exists, the backward
closure checking is faster than a classical top-down solution. If there is no such sequence,
the two approaches are equivalent.

Methods for pruning frequent closed itemsets have already been presented in the literature
[8]. However, search space pruning in closed frequent sequence mining is trickier than in
closed frequent itemset mining. Indeed, while a depth-first-search-based closed itemset min-
ing algorithm can safely stop growing a prefix itemset as soon as it finds that this itemset can
be absorbed by another closed itemset already generated, a closed sequencemining algorithm
needs additional checks. This is due to both the possible presence of multiple instances of
the same itemset in a sequence and to the ordering among the itemsets in the sequence.

Pruning is rather complex in BIDE, since it is based on pseudo-projected databases. On
the contrary, CloFAST takes advantage of the VIL data structures, which convey essential
information for pruning. Indeed, it is useless to expand a node n if, in other branches of the tree

123

CloFAST: closed sequential pattern mining using sparse and ... 443

a node exists that has the same VIL as n and represents a sequence which is a supersequence
of that represented in n.

This is described in Algorithm 3. Given a CSET node n representing a sequence
α = 〈a1, a2, . . . , am〉, checkClosureAndPrune first checks whether α is closed. If
not, it checks whether n can be safely pruned. As defined in Sect. 2, α is non-closed if any
supersequence β of α exists that absorbs α. This definition can be used for backward closure.

Algorithm 3 checkClosureAndPrune(n, T)
Input: Node n, CSET T;
Data: Node u; List siblings ; VIL vilU, vilP;
1: i = level(n);
2: n′= parent(T,n);
3: repeat
4: vilP = Vil(n′);
5: children = children(T, n′);
6: for each u ∈ children do
7: vilU = Vil(u);
8: // check if last itemset of u contains the i-th itemset of n
9: if contains(lastItemset(u), itemset(n,i)) then
10: if itemsetClosure(vilU, path(n′, n)) then
11: labelNodeAs(n,“nonClosed”);
12: if earlyTermination(vilU,vilP) then
13: labelNodeAs(n,“pruned”);
14: end if
15: return;
16: end if
17: end if
18: if sequenceClosure(vilU, path(n′, n)) then
19: labelNodeAs(n,“nonClosed”);
20: if earlyTermination(vilU,vilP) then
21: labelNodeAs(n,“pruned”);
22: end if
23: return;
24: end if
25: end for
26: i= i-1;
27: n′ = parent(T,n′);
28: until n′ �= root(T);

Definition 3 (Backward Closure) Let α = 〈a1, a2, . . . , am〉 be a frequent sequence of size
m. Then, α is non-closed in backward closure if for some i ∈ {1 . . . m} an itemset b exists,
such that one of the following two conditions holds:

1. ai ⊂ b and 〈a1, . . . , ai−1, b, ai+1, . . . , am〉 has the same support as α (itemset closure);
2. 〈a1, . . . , ai−1, b, ai , . . . , am〉 has the same support as α (sequence closure).

Given the sequence α represented in the node n, Algorithm 3 identifies an itemset b which
allows us to check whether α is non-closed in backward closure or not. The search can be
safely restricted to the last itemset of the sequences represented in the siblings of either
n or its ancestors. This is done by using only the CSET, which is climbed level-by-level,
starting from the direct parent n′ of n (line 2) and considering each child u of n′ (line 6). The
algorithm identifies candidate sequences in the form of γ = 〈a1, . . . , ai−1, b〉, represented
in u. Such candidate sequences are then used in order to evaluate the support of either

123

444 F. Fumarola et al.

Fig. 5 Partial view of the CSET for the dataset in Fig. 1c

Fig. 6 Partial view of the CSET
for the dataset in Fig. 1c

β = 〈a1, . . . , ai−1, b, ai+1, . . . , am〉, if ai ⊂ b, or β = 〈a1, . . . , ai−1, b, ai , . . . , am〉, in any
case. It is noteworthy that, during the identification of candidate sequences in the form of γ ,
neither is the CSET modified nor are new sequences evaluated. Moreover, the computation
of the support of the sequences β only exploits VILs, as we will explain later.

Examples 9 and 10 clarify these aspects for the two cases in Definition 3.

Example 9 (Itemset closure) Consider the dataset in Fig. 1c and the sequence α = 〈{a}, {d}〉
represented in node 7 of Fig. 5. CloFAST examines at the first step (level i = 2) the sequence
γ = 〈{a}, {e}〉 represented in node 8 (sibling of 7). The last itemset of γ (i.e., {e}) does not
contain the last itemset of α (i.e., {d}), so the itemset closure cannot be checked. CloFAST
moves at the previous level (i = 1) and checks the itemset closure of α over the itemset {a}
using the children of the CSET’s root (nodes 2, 5, 6, 9). Given γ = 〈{a, b, f }〉 (node 2),
since the last itemset of γ contains the last but one itemset of α (i.e., {a}), CloFAST checks
whether the supersequence β = 〈{a, b, f }, {d}〉 can absorb α. In that case, α is labeled as
non-closed.

Example 10 (Sequence closure) Consider the dataset in Fig. 1c and the sequence α =
〈{e}, {d}〉 (see node 12 in Fig. 6). CloFAST examines at the first step (level i=2) the chil-
dren of the parent of α, i.e., the sequence γ = 〈{e}, {a}〉 (node 10). By inserting {a}, the
last itemset of sequence γ , between the itemsets {e} and {d} of α, we obtain the sequence
β = 〈{e}, {a}, {d}〉 (node 11), which absorbs α. Thus, α is labeled as non-closed.

123

CloFAST: closed sequential pattern mining using sparse and ... 445

As previously mentioned, backward closure is verified by only working on the CSET and
VILs. Algorithmically, the predicate contains (line 9) checks whether the i th itemset of α
is a proper subset of the last itemset in γ . In this case, the predicate itemsetClosure is
executed to check whether β absorbs α. If the itemsetClosure is false, CloFAST checks
the sequenceClosure predicate (line 18).

In order to explain how backward closure is verified in CloFAST,we define two predicates,
namely shiftSC (shift sequence closure) and shiftIC (shift itemset closure). The former (latter)
works on the VILs and SILs to check whether whenever the j th sequence in SDB contains
α, it also contains the supersequence β constructed as in Definition 3—case 2 (case 1).
Obviously, the opposite is always true, i.e., whenever the j th sequence in SDB contains the
supersequence β, it also contains the subsequence α. Therefore, if either shiftSC or shiftIC
hold for each j , then α and β have the same support, i.e., β absorbs α (or α is non-closed).

Definition 4 (shiftSC) Letα = 〈a1, . . . , ai−1, ai , . . . am〉 be the frequent sequence forwhich
we intend to verify sequenceClosure (at the i th level), δ = 〈a1, . . . , ai−1, ai 〉 be the
(m − i)th ancestor of α and γ = 〈a1, . . . , ai−1, b〉 be a sibling of δ. Let the j th sequence
in SDB contain α, i.e., VILα[j] �= null. Then, the predicate ShiftSC, which takes as input
both VILγ [j] and the list of the VILs stored in the path from δ to α,2 is recursively defined
as follows:

shiftSC(VILγ [j], [VILδ[j], VIL〈a1,...,ai+1〉[j], VIL〈a1,...,ai+2〉[j], . . . , VILα[j]])

=

⎧⎪⎪⎨
⎪⎪⎩

true if

⎛
⎝ VILγ [j] < VILδ[j]

∨ ∃tai ∈ SILai [j], tai �= null such that(
VILγ [j] < tai ∧ shiftSC(tai , [VIL〈a1,...,ai+1〉[j], . . . , VILα[j]]))

⎞
⎠

false otherwise

Thus, shiftSC checks whether VILγ [j] < VILδ[j], i.e., b, the last itemset of γ , can precede
ai , the last itemset of δ in the j th sequence. If so, from proposition 5 the j th sequence in SDB
contains the supersequence β = 〈a1, . . . , ai−1, b, ai , . . . am〉. If not, the check is repeated
on a virtual shift to the next transaction-id in the list SILai [j]. This amounts to determin-
ing an alternative value, if any, for VILδ[j], such that VILβ [j] �= null, i.e., the sequence
〈ai+1, . . . am〉 can be juxtaposed to 〈a1, . . . , ai−1, b, ai 〉 by preserving the containment rela-
tionship for the j th sequence.

If the conditions stated in Definition 4 are satisfied for all non-null values of VILα , then α

is labeled as non-closed.

Definition 5 (shiftIC) Let α = 〈a1, . . . , ai−1, ai , . . . am〉 be the frequent sequence for which
we intend to verify the itemsetClosure (at the i th level), δ = 〈a1, . . . , ai−1, ai 〉 be the
(m − i)th ancestor of α and γ = 〈a1, . . . , ai−1, b〉 be a sibling of δ, such that ai ⊂ b. Then,
the predicate ShiftIC, which takes as input VILγ [j] and the list of the VILs stored in the path
from δ to α, is defined as follows:

shiftIC(VILγ [j], [VILδ[j], VIL〈a1,...,ai+1〉[j], VIL〈a1,...,ai+2〉[j], . . . , VILα[j]])

=

⎧⎪⎪⎨
⎪⎪⎩

true if

⎛
⎝ VILγ [j] = VILδ[j]

∨ ∃tai ∈ SILai [j], tai �= null such that(
tai = VILγ [j] ∧ shiftSC(tai , [VIL〈a1,...,ai+1〉[j], . . . , VILα[j]]))

⎞
⎠

false otherwise

2 In order to simplify the notation, we will use the term sequence to identify the CSET node that contains the
sequence itself.

123

446 F. Fumarola et al.

Fig. 7 Example of itemset
closure for sequence
α = 〈{a}, {d}〉. On the left of
each node the corresponding VIL
is shown

Thus, shiftIC checks whether VILγ [j] = VILδ[j], i.e., the last itemset of δ can be replaced
by the last itemset of γ . If so, from proposition 6 the j th sequence in SDB contains the
supersequence β = 〈a1, . . . , ai−1, b, ai+1, . . . am〉. If not, the check is repeated on a virtual
shift to the next transaction-id in the list SILai [j], which amounts to determining an alternative
value, if any, for VILδ[j] such that VILβ [j] �= null.

It is noteworthy that the definition of shiftICdepends on shiftSC, sinceweneed to check that
the rest of the sequence 〈ai+1, . . . am〉 can be juxtaposed to 〈a1, . . . , ai−1, b〉 by preserving
the containment relationship for the j th sequence. If the conditions stated in Definition 5 are
satisfied for all non-null values of VILα , then α is labeled as non-closed.

Since shiftSC and shiftIC coincide, apart from the test on the VILs (< for shiftSC and =
for shiftIC), we show an example only for the shiftIC predicate.

Example 11 Consider the following database SDB:

1. 〈{a}, {d}, {a, b, f }, {d}〉,
2. 〈{a}, {c}〉,
3. 〈{a}, {d}, {a, b, f }, {d}〉,
and the sequence α = 〈{a}, {d}〉. A partial view of the corresponding CSET is reported
in Fig. 7. According to the definition of itemsetClosure, α is non-closed if, for each
j ∈ [1, . . . , n] such that VILα[j] �= null, the predicate shiftIC is true. Since at level 2 (last
level) there is no child whose last itemset can replace the last itemset of α, CloFAST moves
up to the previous level and analyzes the children of the root. At this level, CloFAST checks
whether the first itemset of α, i.e., {a}, can be replaced by the last itemset of the sequence
γ , i.e., {a, b, f }. Consider the first sequence, i.e., j = 1. Since VILδ[1] = 1 differs from
VILγ [1] = 3, CloFAST checks whether it is possible to shift to the next transaction-id in the
list SIL{a}[1]. This leads to a virtual “shifting” of transaction-ids of VILδ[j] until VILδ[1] =
VILγ [1] is satisfied. This is true since SIL{a}[1] = [1, 3]. As a second step, CloFAST checks
that the “new” value of VILδ[1], i.e., 3, is less than VILα[1], i.e., 2. Since this check fails,
CloFAST performs a virtual “shifting” ofVILα[1] using SILd [1] = [2, 4] and obtains a “new”
value of VILα[1], namely 4, such that VILδ[1] < VILα[1] (3 < 4). Since for each j such that
VILα[j] �= null, i.e., j =1,3, the predicate shiftIC holds, α is labeled as non-closed.

The theoretical motivation for itemset closure checking originates from the following theo-
rem.

Theorem 1 (itemsetClosure) Let

– SDB be a sequence database,

123

CloFAST: closed sequential pattern mining using sparse and ... 447

– α = 〈a1, . . . , ai−1, ai , . . . am〉 be the frequent sequence in SDB to be checked for itemset
closure on the i th itemset ai ,

– δ = 〈a1, . . . , ai−1, ai 〉 be the (m − i)th ancestor of α in the CSET,
– γ = 〈a1, . . . , ai−1, b〉 be a sibling of δ such that ai ⊂ b, and
– β = 〈a1, . . . , ai−1, b, ai+1, . . . am〉 be a supersequence of α.

If:

∀ j = 1, . . . , n : (VILα[j] �= null ⇒ shiftIC(VILγ [j], [VILδ[j], . . . , VILα[j]])) (1)

then β absorbs α.

Proof By definition of shiftIC, if VILα[j] �= null and shiftIC(VILγ [j], [VILδ[j], . . . ,
VILα[j]])) = true, then VILβ [j] �= null.

Thus, sequences that contain α also contain β. Vice versa, since β is a supersequence of
α, sequences that contain β also contain α. This means that the support of α is the same as
the support of β, i.e., β absorbs α.
�
Theorem 2 provides sufficient conditions for sequence closure checking.

Theorem 2 (sequenceClosure) Let

– SDB be a sequence database,
– α = 〈a1, . . . , ai−1, ai , . . . am〉 be the frequent sequence in SDB to be checked for

sequence closure on the i th itemset ai ,
– δ = 〈a1, . . . , ai 〉 be the (m − i)th ancestor of α,
– γ = 〈a1, . . . , ai−1, b〉 be a sibling of δ and
– β = 〈a1, . . . , ai−1, b, ai , . . . am〉 be a supersequence of α.

If:

∀ j = 1, . . . , n : (VILα[j] �= null ⇒ shi f t SC(VILγ [j], [VILδ[j], . . . , VILα[j]])) (2)

then β absorbs α.

Proof The proof is analogous to that of Theorem 1.
�
6.2 Pruning

If a node n is labeled as non-closed, then it is evaluated for pruning (Algorithm 3, lines 12–13
and 21–22). Indeed, it is possible that a non-closed sequence can still be profitably used for
generating closed sequences. As described in Example 11, the sequence α = 〈{a}, {d}〉 is
non-closed because β = 〈{a, b, f }, {d}〉 absorbs α. However, it can be used to generate, in
sequence extension, the closed sequence 〈{a}, {d}, {a, b, f }〉, which cannot be generated if
the subtree rooted in the node associated with the sequence α is pruned.

On the other hand, there are cases in which non-closed sequences cannot lead to the
generation of closed sequences. In these cases, their corresponding nodes should be labeled
as pruned, in order to prevent CloFAST from generating further unpromising patterns. The
following proposition provides the theoretical basis for pruning.

Proposition 7 Let α = 〈a1, a2, . . . , am〉 be a frequent sequence, β = 〈b1, b2, . . . , bp〉 a
supersequence of α and N the number of the elements in the VILα which differ from the corre-
sponding transaction-ids in the VILβ . If N = 0, i.e., VILα = VILβ , then for the two sequence
extensions γ = 〈a1, a2, . . . , am, c1, c2, . . . , cq〉 and δ = 〈b1, b2, . . . , bp, c1, c2, . . . , cq〉,
VILγ = VILδ .

123

448 F. Fumarola et al.

Proof By induction on q .

– Base case: q = 0. Trivial.
– Induction step: q > 0. Consider the two sequences α′ = 〈a1, a2, . . . , am, c1, c2, . . . ,

cq−1〉 and β ′ = 〈b1, b2, . . . , bp, c1, c2, . . . , cq−1〉. By construction, β ′ is a superse-
quence of α′. If N = 0, by inductive hypothesis, VILα′ = VILβ ′ . If we juxtapose
the same itemset cq to both sequences, the VILs of the two extended sequences
γ = 〈a1, a2, . . . , am, c1, c2, . . . , cq〉 and δ = 〈b1, b2, . . . , bp, c1, c2, . . . , cq〉, will still
be the same, i.e., VILγ =VILδ .

�
It is noteworthy that γ and δ have the same support. Since δ is a supersequence of γ , then δ

absorbs γ . Therefore, it is useless to generate the extensions of α, since they will be absorbed
by the sequences generated from β (early termination condition).

In CloFAST, this early termination condition is efficiently checked during both the itemset
closure and sequence closure phases (lines 12, 20) at no additional cost. In particular, if for
each j such that VILα[j] �= null, the predicates shiftIC or shiftSC are satisfied without
applying the virtual “shifting,” then the node representing α can be labeled as pruned.

Example 12 Consider the itemset closure described in Example 9 and depicted in Fig. 5.
At the first level (i = 1), CloFAST applies the ShiftIC predicate having as arguments the
VIL of node 2 (γ = 〈{a, b, f }〉) and the VILs of the path between nodes 6 (δ = 〈{a}〉)
and 8 (α = 〈{a}, {d}〉). Since, for each j such that VILα[j] �= null (i.e., j = 1 and
j = 3), VILγ [j] = VILδ[j] (in particular, VILγ = VILδ = [1, 2, 2]), then the sequence β =
〈{a, b, f }, d〉 exists that has the same VIL as α and will generate the same supersequences
as α. For this reason, node 2, which represents the sequence α, can be labeled as pruned.

Recalling that the backward closure is verified by only working on VILs, the time com-
plexity of Algorithm 3 is O(d · |SDB|), where d is the depth of the tree. Therefore, the
backward closure can be efficiently checked in practical cases characterized by relatively
small values of d .

7 Experiments

In order to empirically evaluate CloFAST, in this section we report the experimental results
on both real-world and synthetic datasets. We implemented CloFAST in Java and compared
it with BIDE, ClaSP and CloSpan provided by the Java framework SPMF [10].3 The exper-
imental setting is inspired by [22] and aims at evaluating:

– Efficiency Efficiency is evaluated both in terms of running time (seconds) and memory
consumption (Gb) on sparse and dense datasets. Following [12], we define the density as
the ratio between the average number of items in an itemset and the number of different
items.When this value is small, the generated dataset is considered sparse, whereas when
this ratio is high, the dataset is considered dense. We compare CloFAST efficiency both
on synthetic and real datasets.

– Scalability CloFAST is compared with the above-cited algorithms by linearly increasing
the number of input sequences. We report the results in terms of running time (seconds)

3 Unfortunately, we were not able to compare CloFAST with COBRA, which is not publicly available.
Moreover, the algorithm description provided in [14] does not provide enough details to unambiguously
re-implement the system.

123

CloFAST: closed sequential pattern mining using sparse and ... 449

Table 2 Parameters used in the
IBM data generator

In the definition of S and I, a
sequence is considered maximal
if it is not a subsequence of any
other frequent sequence [25]

Parameter Description

D Number of sequences (*103)

C Average number of itemsets per sequence

T Average number of items per itemset

S Average length of maximal sequences

I Average size of itemsets in maximal sequences

N Number of different items (*103)

and memory consumption (MB). Scalability is only evaluated on artificially generated
datasets.

– Effectiveness of the CloFAST optimization technique CloFAST is compared with FAST
which does not implement the backward closure checking and pruning techniques. We
report results in term of running time (seconds), memory consumption (GB) and number
of mined frequent patterns. This comparison is performed on real datasets.

All the results reported in this section are obtained with a machine with a 4-core 2.4GHZ
Intel Xeon processor, running Ubuntu 12.04 Server edition with 32GB of main memory.
In order to facilitate the replication of the experiments, the system and all the consid-
ered datasets can be downloaded at the following hyperlink: http://www.di.uniba.it/~ceci/
micFiles/systems/CloFAST/.

Before presenting the results obtained, we describe the datasets used in the experiments.

7.1 Dataset description

The synthetic datasets used for our experiments were obtained using the IBM data generator
[1]. This dataset generator has been used in most sequential pattern mining studies [1,12,18,
25]. Generated datasets contain random sequences of itemsets which can be easily controlled
by the user. In particular, the generator allows the user to specify several parameters which
regulate, among other aspects, the number of sequences, the average number of transactions
per sequence and the number of different items. The detailed list of parameters used in
this evaluation is listed and explained in Table 2. The parameter values are reported in the
following subsections and depend on the specific purpose of each empirical evaluation.

We also compared the algorithms on real datasets, that is, Gazelle, Snake, MSNBC and
Pumsb. For all the datasets, except Snake, we also considered variants which are commonly
used in the literature. We indicate such variants with the star (*) suffix. The properties of
all the real datasets used in our experiments are reported in Table3 and described in the
following:

– Gazelle (BMS-WebView-1) is a dataset used in the KDDCup-2000 competition and,
basically, it includes a set of page views done by users on the gazzelle.com e-commerce
web site. Product pages viewed in one session are considered an itemset, and differ-
ent sessions for one user define the sequence. Gazelle* represents another version of
the dataset proposed in the KDDCup-2000 competition and used in past studies on
sequential patternmining [22]. Both datasets are considered sparse datasets. Gazzellewas
downloaded from www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php,
while Gazzelle* was downloaded from the KDD Cup 2000 Web site.

– MSNBC is a dataset of click-stream data (from the UCI repository). They are collected
from logs of www.msnbc.com and news-related portions of www.msn.com for the entire
day of September 28, 1999. Each sequence in the dataset corresponds to page views

123

http://www.di.uniba.it/~ceci/micFiles/systems/CloFAST/
http://www.di.uniba.it/~ceci/micFiles/systems/CloFAST/
http://gazzelle.com
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
www.msnbc.com
www.msn.com

450 F. Fumarola et al.

Table 3 Properties of the real datasets considered for the experiments

Dataset #Seq. Avg length Max length #Items Density

Gazelle 59,601 2.51 267 497 0.002

MSNBC 989,818 4.70 14,795 17 0.06

Pumsb 49,046 50.48 63 2088 0.0005

Gazelle* 29,369 2.98 651 1423 0.0007

Snake* 163 6.62 61 21 0.04

MSNBC* 31,790 13.33 100 17 0.06

Pumsb* 9230 50.49 61 1676 0.0006

of a user during that 24-h period. Each transaction in the sequence corresponds to a
user’s request for a page. MSNBC was downloaded from http://archive.ics.uci.edu/ml/
datasets/MSNBC.com+Anonymous+Web+Data, while MSNBC* has been downloaded
from www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php.

– Snake is a biological dataset which contains 192 Toxin-Snake protein sequences and 20
unique items. This Toxin-Snake dataset is about a family of eukaryotic and viral DNA
binding proteins and was used in [22]. For our experiments, only sequences containing
more than 50 itemswere kept. This filtering is performed in order tomake the datasetmore
uniform (because the original Snake dataset contains only a few very short sequences and
many long sequences). The dataset obtained (called Snake*) contains 163 long sequences
with an average of 60.62 items. This dataset is not publicly available.

– Pumsb contains census data for population and housing from PUMS (Public Use Micro-
data Sample) [3]. Both Pumsb and Pumsb* were downloaded from http://fimi.ua.ac.be/
data/.

7.2 Results: efficiency of CloFAST on synthetic datasets

As previously stated, to test the efficiency of CloFAST, we adopted the schema based on
sparse and dense datasets proposed byGomariz et al. [12]. They showed how the performance
of the sequential pattern mining algorithms largely depends on the database density, and they
introduced a definition of density based on T/N (see Table 2). When T/N is small, the
generated dataset is sparse, while when T/N grows, the dataset tends to be dense.

To evaluate and compare the efficiency of the algorithms, we considered four con-
figurations. In the first, we fixed D = 5 (number of transactions ∗103), C = 10 (the
sequence length), T = 10 (number of items in an itemset) and varied N (the number of
different items). We obtained the datasets D5C10T10N2.5S6I4, D5C10T10N1.6S6I4 and
D5C10T10N1S6I4. In the second, we fixed D = 50, C = 20, N = 2.5 and varied T ,
obtaining the datasets D50C20T10N2.5S6I4, D50C20T20N2.5S6I4, D50C20T30N2.5S6I4
and D50C20T40N2.5S6I4, which are denser than the datasets belonging to the first config-
uration.

In Fig. 8, we compare CloFAST with ClaSP, BIDE and CloSpan in terms of the running
time (in seconds) and memory consumption (in GB), according to the first dataset config-
uration and varying the support threshold. In terms of running time (graphics are reported
in logarithmic scale), CloFAST generally outperforms all the other systems, especially for
low support values, when the number of frequent sequences is higher. By increasing the

123

http://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data
http://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/

CloFAST: closed sequential pattern mining using sparse and ... 451

Fig. 8 Running times (in seconds) andmemory consumption (in GB) varying N = {2.5, 1.6, 1} andmin_sup.
Results are obtained with D = 5, C = 10 and T = 10. a D5C10T10N2.5S6I4, b D5C10T10N1.6S6I4, c
D5C10T10N1S6I4, d D5C10T10N2.5S6I4, e D5C10T10N1.6S6I4, f D5C10T10N1S6I4

density of the dataset (i.e., by decreasing N), the advantage of CloFAST over the other three
algorithms becomes more evident. Since the higher density is directly related to the number
of frequent sequences, we can conclude that the higher the number of frequent sequences,
the more competitive (in running time) the proposed algorithm. Notably, the time efficiency
of CloFAST is not obtained at the cost of higher memory consumption, which remains com-
parable to that of CloSpan. For highly dense datasets and for small values of the support
threshold, the worst performing system is BIDE. This is probably related to the fact that, for
dense datasets, the size of the projected databases does not shrink during the mining process.
The situation is more favorable to BIDE for very sparse datasets and for small values of the
support threshold, thus confirming the conclusions reported in [22].

In Fig. 9, we show the results obtained according to the second dataset configuration (i.e.,
by varying T) and setting the support threshold to 0.4. They confirm the discussion reported

123

452 F. Fumarola et al.

Fig. 9 Running times (in seconds) and memory consumption (in GB) varying T/N = {4, 8, 12, 16}. Results
are obtained with min_sup = 0.4, D = 50, C = 20, N = 2.5

for Fig. 8, particularly that CloFAST outperforms the algorithms BIDE, ClaSP and CloSpan
when the density of the datasets increases. It is noteworthy that ClaSP does not return results
with the dataset D50C20T40N2.5S6I4 (T/N = 16), since it consumes all the assigned
memory (fixed to 32GB).

Moreover, the efficiency of CloFAST with distinct density values is evaluated by vary-
ing the number of itemsets in the sequences (C). In Fig. 10, we show the running time and
memory consumption of the considered algorithms using a third and a fourth dataset con-
figuration. For the sparsest configuration (T = 2.5, N = 10, D = 20), we compare the
performances obtained with four datasets (D20C20T2.5N10S6I4, D20C40T2.5N10S6I4,
D20C60T2.5N10S6I4, D20C80T2.5N10S6I4) and 2 support thresholds. For the densest
configuration (T = 20, N = 4, D = 10), we obtained the datasets D10C20T20N5S6I4,
D10C40T20N5S6I4, D10C60T20N5S6I4, D10C80T20N5S6I4 and showed the results only
for one support threshold. We observe that for the densest configuration, it was not possible
to test lower support thresholds, due to the extremely large number of frequent sequences.
The results show that, in general, by increasing the number of itemsets in the sequences
(C), CloFAST shows lower running times than other systems. This behavior is more evi-
dent for the more complex task of mining dense datasets with a high number of itemsets in
the sequences (and a high number of frequent patterns). In this case, CloFAST outperforms
competitors by one order of magnitude (see Fig. 10c), while keeping memory consumption
under control (see Fig. 10f). Concerning this last aspect, we observe again a good behavior
of CloSpan in terms of memory consumption. This effect is explained by the efficient way
CloSpan stores internal data structures (integer vectors), which allows it to save memory at
the price of higher running times (note that running times are expressed in logarithmic scale,
while memory consumption is expressed in linear scale).

Finally, we selected one experiment from the first, the second and the fourth config-
uration (median of values of other parameters) and varied S and I , obtaining the datasets
D5C10T20N1.6S[2..10]I[2..10], D50C20T20N2.5S[2..10]I[2..10] and D10C60T20N5S
[2..10]I[2..10]. In this way, it was possible to evaluate how the parameters S and I affected the
computation time on the selected datasets. In Figs. 11 and 12, we report the results obtained.
From the twelve heatmaps, we can conclude that CloFast has the same trend as other algo-
rithms but, coherently with the results reported before, it is the best performing in the case of
dense datasets. In particular, on dense datasets, CloFast outperforms competitors by a good
margin when the values of I and S are small (top-left corner of the heatmap), i.e., when the
number of frequent patterns is higher.

123

CloFAST: closed sequential pattern mining using sparse and ... 453

Fig. 10 Running times (in seconds) and memory consumption (in GB) varying C = {20, 40, 60, 80}. Results
are obtained with D = 20,min_sup = 0.05, T = 2.5 (sparse); D = 20, min_sup = 0.1, T = 2.5
(sparse); D = 10, min_sup = 0.4, T = 20 (dense). a D20C[20-80]T2.5N10S10I1.25 min_supp =
0.05, b D20C[20-80]T2.5N10S10I1.25 min_supp = 0.1, c D10C[20-80]T20N5S6I4 min_supp = 0.4, d
D20C[20-80]T2.5N10S10I1.25 min_supp = 0.05, e D20C[20-80]T2.5N10S10I1.25 min_supp = 0.1, f
D10C[20-80]T20N5S6I4 min_supp = 0.4

7.3 Results: efficiency of CloFAST on real datasets

The results obtained on real datasets generally confirm the observations drawn from the
experiments performed on synthetic datasets. In particular, the running times shown in Fig.13
confirm that CloFAST outperforms all the other methods when the support threshold is low,
i.e., the number of frequent patterns is high. In particular, forMSNBC,MSNBC* and Snake*,
which are the densest datasets (see Table3), CloFAST clearly shows the best performance in
running time. We note that for the datasets Pumbs and Pumbs*, it is difficult to appreciate
the difference between CloFAST, ClaSP and CloSpan, since the high running time of BIDE

123

454 F. Fumarola et al.

Fig. 11 Running times (in seconds) varying S = {2, 4, 6, 8, 10} and I = {2, 4, 6, 8, 10}. Results are obtained
with D = 5, C = 10, T = 10, N = 1.6, min_sup = 0.05 (small and sparse); D = 10, C = 60, T = 20,
N = 5, min_sup = 0.7 (dense)

123

CloFAST: closed sequential pattern mining using sparse and ... 455

Fig. 12 Real datasets: running times. Missing values correspond to out-of-memory errors (>32GB). a
Gazelle, b MSNBC, c Pumsb, d Gazelle*, e Snake*, fMSNBC*, g Pumbs* (logarithmic scale)

123

456 F. Fumarola et al.

flattes the other results. Nevertheless, we confirm that for these two datasets, CloFAST is the
fastest algorithm (Fig. 12).

Concerning memory consumption, CloFAST is among the best performing methods for
almost all the datasets (see Fig. 14). Some differences between CloFAST and ClaSP can be
appreciated for two datasets with a large number of closed patterns (294,386 for MSNBC*
with min_sup = 0.005, 1,300,529 for Snake* with min_sup = 0.5). Both algorithms use a
vertical representation of the data. However, a closer look at the results reveals that, while
for MSNBC* CloFAST is at a disadvantage compared to ClaSP, due to the large number of
null values stored in VILs, for Snake* our internal representation is effective and CloFAST
is the only method which does not incur in out-of-memory errors (the limit is 32GB).

7.4 Scalability

In order to evaluate the scalability of CloFAST with respect to other competitive sys-
tems, we performed experiments on synthetic datasets by varying the number of input
sequences. In particular, by keeping constant other parameters of the data generator
(C = 20, T = 20 and N = 2.5), we varied D, obtaining datasets with a different
number of sequences (i.e., the following configurations were used: D50C20T20N2.5S6I4,
D100C20T20N2.5S6I4, D150C20T20N2.5S6I4, D200C20T20N2.5S6I4, D250C20T20N
2.5S6I4, D300C20T20N2.5S6I4).

The results shown in Fig. 15 indicate that by increasing the number of sequences, CloFAST
significantly outperforms ClaSP and BIDE, both in terms of running time and in terms of
memory consumption.The comparisonbetweenCloFASTandCloSpan reveals thatCloFAST
outperforms CloSpan (although the difference is not impressive) in terms of running time.
As concerns memory consumption, CloFAST outperforms CloSpan only when the number
of sequences is less than 150,000. This is not surprising, since the value of the density is not
high (T/N = 8), and CloFAST is more effective when the density increases (see Fig. 9).

7.5 Effectiveness of closure checking and pruning

In this subsection, we investigate the effectiveness of the closure checking and of the pruning
strategy implemented in CloFAST and when they come into play. To this aim, we consider
three real-world datasets (i.e., Snake*, Pumbs and Pumbs*) and four synthetic datasets with
different characteristics .We compare the results of CloFASTwith those of FAST [19], which
does not perform closure checking and pruning (Fig. 16).

The results reported in Fig. 16 confirm, as expected, that CloFAST is able to prune a higher
percentage of frequent sequences when input sequences are long and when the number of
input sequences increases (Snake* vs. Pumbs/Pumbs*). By comparing the results obtained
with Pumbs and Pumbs*, we notice that benefits of CloFAST are more evident when the
number of input sequences increases (the main difference between Pumbs and Pumbs* is in
the number of sequences). Obviously, the percentage of pruned frequent sequences directly
reflects on the running time and on the memory consumption. In particular, when the differ-
ence between the number of closed patterns and the number of frequent patterns increases,
CloFAST shows a proportional improvement in terms of both running times and memory
consumption. This is more evident for small values of the support threshold.

Experiments on synthetic datasets aimed at evaluating how the closure check and pruning
performs when the number of frequent sequences in the underlying model changes. In partic-
ular, by keeping unchanged the values of D,C , T and N , we can compare the results obtained
with different values of S and I , which regulate the average length of maximal sequences

123

CloFAST: closed sequential pattern mining using sparse and ... 457

Fig. 13 Real datasets: memory consumption. Missing values correspond to out-of-memory errors (>32GB).
a Gazelle, bMSNBC, c Pumsb, d Gazelle*, e Snake*, fMSNBC*, g Pumbs*

123

458 F. Fumarola et al.

Fig. 14 Running times (in seconds) and memory consumption (in GB) varying D = 50, 100, 150, 200, 250,
300. Results are obtained with C = 20, T = 20, N = 2.5 and min_sup = 0.4. Missing values correspond to
out-of-memory errors (>32GB)

Fig. 15 Running times (in seconds) varying S = {2, 4, 6, 8, 10} and I = {2, 4, 6, 8, 10}. Results are obtained
with D = 50, C = 20, T = 20, N = 2.5,min_sup = 0.4

and the average size of itemsets in maximal sequences, respectively. When S is small and I is
large, the underlying patterns are very similar to each other and multiple sequences covered
by the same pattern are likely to be generated, thus leading to better opportunities for pruning.
The results (see Fig. 17) show that with a small value of S and high value of I , CloFAST
is able to prune the search space significantly, thus greatly outperforming FAST in terms of
running times, at minor additional memory costs.

123

CloFAST: closed sequential pattern mining using sparse and ... 459

Fig. 16 Fast and CloFast comparison on real datasets. a Snake* time, b Snake* patterns, c Snake* memory,
d Pumbs time, e Pumbs patterns, f Pumbs memory, g Pumbs* time, h Pumbs* patterns, i Pumbs* memory

8 Conclusions

In this paper, we have presented CloFAST, a novel algorithm for mining closed frequent
sequences without candidate maintenance. It exploits (i) sparse id-lists and vertical id-lists
for fast counting the support of sequential patterns and (ii) a novel one-step technique to
check sequence closure and to prune the search space. In this way, CloFAST is also able to
mine long closed sequences by reducing the effort required for space exploration, support
counting and search space pruning.

A thorough experimental study with both artificial and real datasets shows that CloFAST
outperforms in running times the state-of-the-art algorithms, especially for low support values
and for dense datasets, i.e., when the number of frequent sequences is high. Notably, the time
efficiency of CloFAST is not obtained at the cost of higher memory consumption, which
remains comparable to, if not better than, that of other systems (e.g., CloSPAN). For some
critical datasets, CloFAST is the only system that returns a result within the fixed memory
size constraints. A comparison with its predecessor FAST, which does not perform closure
checking and pruning, shows that CloFAST is more efficient both in time and memory

123

460 F. Fumarola et al.

Fig. 17 Fast and CloFast comparison on synthetic datasets

consumption, thus providing a way to compact results, while preserving the same expressive
power of discovered patterns.

Our work opens up some important avenues for future work. In particular, CloFAST can
be profitably used in sequence prediction, by exploiting descriptive patterns for prediction
purposes, as in associative classification [4]. This extension would provide an alternative
way to face sequence classification both in biological domains [6] and in process mining
applications [5], which are characterized by either very long sequences dense datasets. An

123

CloFAST: closed sequential pattern mining using sparse and ... 461

additional extension of CloFAST could be in the explicit consideration of noise in data,
similarly to what was suggested in [7].

Acknowledgments We thank P. Fournier-Viger for kindly providing the Snake dataset. We also thank Lynn
Rudd for reading through the paper. We would like to acknowledge the support of the European Commission
through the projectMAESTRA—Learning fromMassive, IncompletelyAnnotated, andStructuredData (Grant
number ICT-2013-612944). Finally, this work is in partial fulfillment of the requirements of the Italian project
VINCENTE PON02 00563 3470993 “A Virtual collective INtelligenCe ENvironment to develop sustainable
Technology Entrepreneurship ecosystems.” The authors also wish to thank Lynn Rudd for her help in reading
the manuscript.

References

1. Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the eleventh international
conference on data engineering, ICDE ’95. IEEE Computer Society, Washington, DC, pp 3–14

2. Ayres J, Flannick J, Gehrke J, Yiu T (2002) Sequential pattern mining using a bitmap representation.
In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data
mining, KDD ’02. ACM, New York, NY, pp 429–435

3. Burdick D, Calimlim M, Flannick J, Gehrke J, Yiu T (2005) MAFIA: a maximal frequent itemset algo-
rithm. IEEE Trans Knowl Data Eng 17(11):1490–1504

4. Ceci M, Appice A (2006) Spatial associative classification: propositional vs structural approach. J Intell
Inf Syst 27(3):191–213

5. Ceci M, Lanotte PF, Fumarola F, Cavallo DP, Malerba D (2014) Completion time and next activity
prediction of processes using sequential pattern mining. In: Dzeroski S, Panov P, Kocev D, Todorovski L
(eds) Discovery science—17th international conference, DS 2014, Bled, Slovenia, October 8–10, 2014.
Proceedings, volume 8777 of Lecture Notes in Computer Science, Springer, pp 49–61

6. Ceci M, Loglisci C, Salvemini E, D’Elia D, Malerba D (2011) Mining spatial association rules for
composite motif discovery. In: Bruni R (ed) Mathematical approaches to polymer sequence analysis and
related problems. Springer, Berlin, pp 87–109

7. Cerf L, Besson J, Nguyen K-N, Boulicaut J-F (2013) Closed and noise-tolerant patterns in n-ary relations.
Data Min Knowl Discov 26(3):574–619

8. Chi Y, Wang H, Yu PS, Muntz RR (2006) Catch the moment: maintaining closed frequent itemsets over
a data stream sliding window. Knowl Inf Syst 10:265–294

9. Exarchos TP, Tsipouras MG, Papaloukas C, Fotiadis DI (2008) A two-stage methodology for sequence
classification based on sequential pattern mining and optimization. Data Knowl Eng 66:467–487

10. Fournier-Viger P (2014) SPMF: a sequential pattern mining framework. http://www.
philippe-fournier-viger.com/spmf/index.php. Accessed 08 Aug 2014

11. Fradkin D, Moerchen F (2010) Margin-closed frequent sequential pattern mining. In: Proceedings of the
ACM SIGKDD workshop on useful patterns, UP ’10. ACM, New York, NY, pp 45–54

12. Gomariz A, Campos M, Marín R, Goethals B (2013) ClaSP: an efficient algorithm for mining frequent
closed sequences. In: Pei J, Tseng VS, Cao L, Motoda H, Xu G (eds) PAKDD (1), vol 7818 of Lecture
Notes in Computer Science. Springer, Berlin, pp 50–61

13. Han J (2005) Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc., San Francisco
14. Huang K-Y, Chang C-H, Tung J-H, Ho C-T (2006) COBRA: closed sequential pattern mining using bi-

phase reduction approach. In: Tjoa AM, Trujillo J (eds) DaWaK, vol 4081 of Lecture Notes in Computer
Science. Springer, Berlin, pp 280–291

15. Jingjun Zhu GG, Wu Haiyan (2010) An efficient method of web sequential pattern mining based on
session filter and transaction identification. J Netw 5(9):1017–1024

16. Li Z, Lu S, Myagmar S, Zhou Y (2006) Cp-miner: finding copy-paste and related bugs in large-scale
software code. IEEE Trans Softw Eng 32:176–192

17. Masseglia F, Poncelet P, Teisseire M (2009) Efficient mining of sequential patterns with time constraints:
reducing the combinations. Expert Syst Appl Int J 36:2677–2690

18. Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M (2001) PrefixSpan: mining sequen-
tial patterns by prefix-projected growth. In: Proceedings of the 17th international conference on data
engineering. IEEE Computer Society, Washington, DC, pp 215–224

19. Salvemini E, Fumarola F, Malerba D, Han J (2011) FAST sequence mining based on sparse id-lists. In:
Kryszkiewicz M, Rybinski H, Skowron A, Ras ZW (eds) ISMIS, vol 6804 of Lecture Notes in Computer
Science, Springer, Berlin, pp 316–325

123

http://www.philippe-fournier-viger.com/spmf/index.php
http://www.philippe-fournier-viger.com/spmf/index.php

462 F. Fumarola et al.

20. SongS,HuH, Jin S (2005)HVSM: a new sequential patternmining algorithmusing bitmap representation.
In: Li X, Wang S, Dong Z (eds) Advanced Data Mining and Applications, vol 3584, Lecture Notes in
Computer ScienceSpringer, Berlin Heidelberg, pp 455–463

21. Turi A, Loglisci C, Salvemini E, Grillo G, Malerba D, D’Elia D (2009) Computational annotation of
UTR cis-regulatory modules through frequent pattern mining. BMC Bioinform 10:1–12. doi:10.1186/
1471-2105-10-S6-S25

22. Wang J, Han J, Li C (2007) Frequent closed sequenceminingwithout candidatemaintenance. IEEETrans.
Knowl. Data Eng. 19:1042–1056

23. Yan X, Han J, Afshar R (2003) CloSpan: mining closed sequential patterns in large datasets. In: SDM,
pp 166–177

24. Yang Z, Kitsuregawa M (2005) LAPIN-SPAM: an improved algorithm for mining sequential pattern. In:
22nd international conference on data engineering workshops, vol 0, pp 1222

25. ZakiMJ (2001) SPADE: an efficient algorithm formining frequent sequences.MachLearn 42(1–2):31–60
26. Zhang X, Dong G, Ramamohanarao K (2000) Exploring constraints to efficiently mine emerging patterns

from large high-dimensional datasets. In: Proceedings of the sixthACMSIGKDDinternational conference
on Knowledge discovery and data mining (KDD ’00). ACM, New York, 310–314. http://dx.doi.org/10.
1145/347090.347158

Fabio Fumarola Ph.D., is a research assistant at the Department
of Computer Science of the University of Bari, Italy. He was visit-
ing researcher at the University of Illinois at Urbana Champaign. He
also worked as lead data scientist at Angelo Investment Group on big
data applied to game analytics. He was awarded a prize by the Apu-
lia Region for the project “WhereToLive” on social security monitor-
ing through big data mining solutions. His research mainly concerns
data stream mining, web information harvesting, and big data. He co-
authored more than 20 papers on referred journal and conferences and
a book on Data Mining Techniques in Sensor Networks.

Pasqua Fabiana Lanotte is a Ph.D. student of Computer Science at
University of Bari, Italy. Her research interests are sequential pattern
mining, Web mining and information extraction. She received her Mas-
ter degree in Computer Science at University of Bari, and she is cur-
rently a visiting scholar of Computer Science at University of Illinois,
Urbana-Champaign. She was awarded a prize by the Apulia Region for
the project “WhereToLive” on social security monitoring through big
data mining solutions.

123

http://dx.doi.org/10.1186/1471-2105-10-S6-S25
http://dx.doi.org/10.1186/1471-2105-10-S6-S25
http://dx.doi.org/10.1145/347090.347158
http://dx.doi.org/10.1145/347090.347158

CloFAST: closed sequential pattern mining using sparse and ... 463

Michelangelo Ceci Ph.D., is an assistant professor at the Depart-
ment of Computer Science, University of Bari, Italy. His main research
interests are in data mining and machine learning. He was a visiting
researcher at the University of Bristol (U.K.) and at the JSI (SLO).
He has published more than 140 papers in refereed journals and con-
ferences. He is responsible for a research unit of the MAESTRA EU
project and of several national projects. He has served in the Pro-
gram Committee of many conferences, including: IEEE ICDM, IJCAI,
ECMLPKDD. He is member of the editorial boards of: IJSNM, IJDSN,
IJDATS and JAIS. He has been the program co-chair of five workshops
and DS2016, the organizing committee chair of SEBD 2007 and mem-
ber of the editorial board of the ECMLPKDD 2014 and 2015 journal
tracks.

Donato Malerba is a full professor at the Department of Computer
Science of the University of Bari Aldo Moro. His research activity
mainly concerns data mining, machine learning, data science and big
data. He has published more than 200 papers in international journals
and conference proceedings. He received the IBM Faculty Award for
the year 2004. He is responsible for a research unit of several European
and national projects. He is the Director of the CINI National Lab on
Big Data and a member of the Board of Directors of the Big Data Value
Association.

123

	CloFAST: closed sequential pattern mining using sparse and vertical id-lists
	Abstract
	1 Introduction
	2 Problem definition and background
	3 Related work
	4 The closed itemset enumeration tree and the closed sequence enumeration tree
	4.1 Closed itemset enumeration tree (CIET)
	4.2 Closed sequence enumeration tree (CSET)

	5 Properties of SILs and VILs for efficient mining of closed sequential patterns
	5.1 I-step: using SILs
	5.2 S-step: using VILs

	6 CloFAST: the algorithm
	6.1 Backward closure checking
	6.2 Pruning

	7 Experiments
	7.1 Dataset description
	7.2 Results: efficiency of CloFAST on synthetic datasets
	7.3 Results: efficiency of CloFAST on real datasets
	7.4 Scalability
	7.5 Effectiveness of closure checking and pruning

	8 Conclusions
	Acknowledgments
	References

