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Abstract Heterogeneous information networks have drawn much attention in recent years
due to their significant applications, such as text mining, e-commerce, social networks, and
bioinformatics. Clustering different types of objects simultaneously based upon not only
their relations of the same type, but also the relations between different types of objects can
improve the clustering quality mutually. In this paper, we propose a general model, in which
both the homogeneous andheterogeneous relations are considered simultaneously, to describe
the structure of the heterogeneous information networks and devise a novel parametric free
multi-type overlapped clustering approach. In this model, different types of relations between
different types of objects are represented by a group of matrices. In this way, we transfer
the multi-type clustering problem into the information compression problem. Subsequently,
greedy search approaches, which aim at describing the group of relational matrices with least
bits, are proposed.Moreover, by discovering the discriminative clusters among different types
of objects, we devise effective parameter-free strategies to discover either overlapping or non-
overlapping structure among different types of clusters. Extensive experiments on real-world
and synthetic data sets demonstrate our methods are effective and efficient.
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1 Introduction

Clustering is one of the fundamental data mining tasks and has been studied for many years.
Traditional network clusteringmethods [1,35,41,42,49]mainly focus on the relations among
the same type of objects in homogeneous networks. However, in many real-world applica-
tions, such as text mining, e-commerce, social networks, and bioinformatics, there are many
different types of objects interacting with each other and forming a heterogeneous infor-
mation network. Usually, one type of objects interacts with another type of objects in a
heterogeneous information network. And different objects have relations with each other.
Moreover, the relations exist not only among objects within the same type, but also among
objects of different types. In this case, information from different views reflects relationship
of different types of objects and helps understand the structure of the network. Some cases
of such application scenarios are as follows.

In a scientific digital library, such as DBLP,1 the relations among different authors, papers,
conferences, and other related textual objects form a heterogeneous information network. In
this heterogeneous information network, different authors co-author with each other on some
papers. Each paper cites some other related papers and publishes on a specific conference.
Moreover, the topic of each paper is described by the related textual objects such as title,
keywords, and abstract. In this heterogeneous network, each type of objects can provide
additional information on the other types of objects. For instance, if we want to cluster the
authors into different communities, which have similar research interests, it is not enough
by only considering the co-author relations among authors. It is not unusual for an author
mainly focused on artificial intelligence to co-author a paper with another author who is
mainly interested in data mining. In such a case, on the one hand, if we only consider the
co-author relations and drop other relation information such as relations between papers and
conferences in the heterogeneous information network, we will lose the important research
field information. On the other hand, if we cluster the authors by considering not only the
co-author relations, but also the relations among different types of objects such as authors,
papers, and conferences, the clustering quality can be improved greatly since different types of
objects provide information from different views.More concretely, the textual information of
each paper indicates the topic of this paper, and the conference, where the paper is published,
provides information of the research field of this paper. Making use of such information
improves the quality of author communities.

Clustering different types of objects in heterogeneous information networks is very impor-
tant, but the task is very challenging. Firstly, clustering objects in heterogeneous information
networks is different from the traditional clustering in homogeneous networks and cannot be
accomplished by the traditional clustering methods. That is because different types of objects
mayhave different types of relations. In otherwords,we need to consider not only the relations
among objectswithin same type, but also the relations among objects of different types.More-
over, an appropriate framework to unify different types of objects and relations is not only
critical, but also challenging. Secondly, most of the existing clustering methods [6,8,30,32]
for heterogeneous information networks assume that the number of clusters in different
types of objects is given. Nonetheless, these parameters are often difficult to obtain in reality.
Designing an approach, which does not require user-specified parameters, is quite challeng-
ing yet much desired. Thirdly, overlapping cluster structures exist in not only homogenous
networks, but also heterogeneous information networks. Discovering the overlapping struc-
ture in heterogeneous information networks can further improve the clustering quality, but

1 http://www.informatik.uni-trier.de/ley/db/.
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has been neglected by most existing multi-type clustering methods [6,8,17,23,25,30,32]
in heterogeneous information networks. How to make use of different information from
different types of objects and design an appropriate overlapping strategy is significant and
challenging.

We notice that co-clustering a bipartite graph can get higher clustering quality than clus-
tering two types of the objects of the bipartite separately in most situations [7,10,48]. That
is because the clustering results of one type of objects can be enhanced by making use of the
information of the other type of objects during the co-clustering process, and vice versa. If
we can co-cluster different relation matrices of the heterogeneous network simultaneously
considering not only the homogeneous links but also the heterogeneous links, the information
of different types of objects can be used to enhance the quality of multi-type clustering.

In this paper, we study the problem of clustering in heterogeneous information networks.
We first propose a general model to unify the heterogeneous information network, which
contains both homogeneous and heterogeneous relations. Then, we encode the heterogeneous
network by the MDL approach [4]. Through designing an appropriate objective function, we
transfer the clustering problem into the problem of minimizing the total information used to
describe the heterogeneous network. Subsequently, two greedy search methods, which are
used to optimize the objective function, are designed. In order to discover the discriminative
clusters in different types of objects, we devise a density guided principle, based on which a
novel multi-type clustering method which can support either overlapping or non-overlapping
clustering is proposed. To the best of our knowledge, we explore the first work on overlapping
multi-type clustering in heterogeneous networks.

The rest of the paper is organized as follows. We introduce the related works in Sect. 2.
In Sect. 3, we give our problem formulation. In Sect. 4, three different clustering methods
for heterogeneous information networks are proposed. We analyze the time complexity of
our proposed methods in Sect. 5. In Sect. 6, we present the experimental results. Next, a case
study is presented in Sect. 7. We compare the running time of different methods in Sect. 8.
Finally, we conclude in Sect. 9.

2 Related work

Traditional network clustering methods mainly focus on homogeneous networks [12,18,19,
26,34,36,39]. Many clustering approaches were proposed based on various criteria includ-
ing modularity [35], normalized cut [42], structural density [49], and partition density [1].
Modularity defines the objective function as the substraction of the sum of inner link density
and the sum of outer link density of the clusters. Since optimizing the modularity is NP-hard
[35], many heuristic approaches were proposed. Such approaches include greedy agglomer-
ation [46], spectral clustering [41], simulated annealing [20], sampling techniques [40], etc.
Besides, there are some clustering methods based on the attributes of the nodes in homoge-
nous network. One of the most famous algorithms is k-means. Tsai et al. [45] proposed a
feature weight self-adjustment mechanism for k-means clustering. Tian et al. [44] proposed
OLAP-style aggregation approaches to summarize large graphs by grouping nodes based on
user-selected attributes and relationships.

If we view the heterogeneous information networks from different aspects, they are con-
structed by different types of bipartite graphs. Since co-clustering methods are often used for
mining the clustering structures for bipartite graphs, we firstly study the related co-clustering
algorithms [29]. Co-clustering makes use of the adjacency matrix of a bipartite graph and
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clusters two types of objects simultaneously by exploiting the clear duality between rows
and columns of the adjacency matrix [13,33]. Dhillon [13] proposed a spectral co-clustering
algorithm. In this algorithm, the second left and right singular vectors of an appropriately
scaled matrix are computed to yield ideal co-clusters. Dhillon and Guan [14] viewed the
adjacency matrix of the bipartite graph as an empirical joint probability distribution of two
discrete randomvariables.Given the number of clusters in each type of objects, the co-clusters
can be easily detected by maximizing the mutual information between the clustered random
variables. Banerjee et al. [3] proposed a general co-clustering model, in which the approx-
imation error was measured by a large class of loss functions called Bregman divergences.
Then, a new minimum Bregman information (MBI) principle was introduced to general-
ize the maximum entropy and standard least square principles. This general framework is
an extension of some existing co-clustering methods, such as [10,15], as the special cases
of this model. Chakrabarti et al. [7] viewed the process of co-clustering as the problem of
how to condense the matrix with the least bits. By minimizing the total information used
to describe the matrix, the co-clusters can be detected effectively. Later, Papadimitriou et
al. [38] extended this method to the hierarchical situation.

Co-clustering is also very popular for analyzing the gene expression data. Cho et al. [10]
used the mean squared residue score as the criterion of the result of co-clustering. Then,
two different functions for measuring the residue were designed. Cheng and Church [9]
proposed the sequential biclustering model. Based on this model, an algorithm, which finds
out the co-clusters iteratively, was devised. Later, Lazzeroni and Owen [28] proposed a plaid
model for directly finding the overlapping co-clusters, but cannot identifymultiple co-clusters
simultaneously. Recently, Wang et al. [48] proposed a method similar to k-means by making
use of the correlations between users and tags in social media. However, this method is
only tailored for social media domain and is ineffective for the general case of overlapping
structures.

Some clustering models focused on heterogeneous networks were also proposed [2,43].
Wang et al. [47] presented ReCom to improve the quality of clusters through the iterative rein-
forcement process. Gao et al. [16] designed an algorithm named consistent bipartite graph
co-partitioning (CBGC) based on consistency theory. Because CBGC takes semi-definite
programming to solve the clustering problem, it is very time-consuming and does not fit for
large-scale data sets. Later, Gao et al. [17] extended the pairwise information theoretic model,
which was proposed by Dhillon and Guan [14], to heterogeneous networks, and proposed
a star model to describe the structure of the heterogeneous network. However, in this star
model, the homogenous relations among the objects of the same type were not considered.
Long et al. [32] formulated the multi-type clustering as collective factorization on the rela-
tionalmatrices and proposed spectral relational clustering (SRC). Since SRC requires solving
the eigenvector problem, the space and time consumptions are very high. Another follow-up
model devised by Long et al. [31] is relational summary network (RSN) model for clustering
multi-type objects in heterogeneous networks by making use of Bregman divergences. Based
on pairwise interactions between variables, Bekkerman andMccallum [5] aimed at maximiz-
ing the sum of the mutual information between clustered random variables and introduced a
multi-type distributional clustering approach namedMDC. Another work of Bekkerman and
Jeon [6] is combinatorial Markov random field (CMRF) algorithm. In this approach, each
type of objects is viewed as a single combinatorial random variable of Markov random field.
However, the theoretical proof of the effectiveness and correctness of CMRF is not presented.
Ienco et al. [25] devised a co-clustering method for heterogeneous networks by optimizing
Goodman–Kruskal’s τ which was used to describe the quality of co-clustering results. Chen
et al. [8] proposed a semi-supervised nonnegative matrix factorization framework (NMF) for
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Table 1 Comparison for related works

Homogeneous Bipartite Heterogeneous

Non-overlapping with parameters [34,41,44,45] [3,7,9,10,13–15,33] [2,5,8,17,31,32,43,47]

Non-overlapping parameter-free [12,20,35,39,40,46] [7,38] [6,23,25]

Overlapping with parameters [36] [28,48] None

Overlapping parameter-free [18,19,49] [29] None

heterogeneous networks. This work extended nonnegative matrix factorization to multi-view
data and was shown to be effective. However, in order to learn a Mahalanobis matrix, the
“must” link and “cannot” link information have to be provided in advance.

Though this paper is partly inspired by Chakrabarti et al. [7], it is still very different
from it. Firstly, the model used in Ref. [7] can only fit for bipartite graphs. As we known,
heterogeneous information networks are more common exists in our real world. But, the
heterogeneous information networks, which includemore different types of objects andmore
complex network structures, aremuch harder to impress than traditional bipartite graphs. This
paper proposes a more general model which can fit for almost all types of heterogeneous
information networks. Secondly, the algorithms used on Ref. [7] can only fit for mining
clusters in bipartite graph. But the clustering structure in heterogeneous network is much
more difficult to discover. This paper further improves the original two greedy co-clustering
algorithms to heterogeneous networks and uses them for mining the cluster structures in
heterogeneous information networks. Moreover, it not only provides the theoretical analysis
but also the experimental results to improve the effectiveness and efficiency of our algorithms.
Thirdly, to the best of our knowledge, this paper explores the first work on overlapping
algorithm for heterogeneous information networks.

We notice that most of the existing multi-type clustering methods [6,8,17,32] need to
provide the number of clusters for each type of objects and cannot cluster the networks in
which both the homogeneous and heterogeneous relations exist. Besides, none of thesemulti-
type clustering methods [8,23,25,32] can detect the overlapping structures in heterogeneous
networks. We present the comparison of our related works in Table 1.

3 Problem formulation

3.1 Problem statement

A heterogeneous information network is denoted as an undirected and unweighted graph
G = (V,R), whereV = {V i }ki=1 represents a set of different types of objects,R = {Rs,t }ks,t=1
represents a set of link relation matrices between different types of objects. Each |V s |×|V t |,
binary matrix Rs,t ∈ R (1 ≤ s ≤ t ≤ k) describes the link relations between the objects of
type T s and type T t . Specifically, if s equals to t , Rs,t stands for the homogenous relations
among objects of the same type. Otherwise, Rs,t denotes the heterogeneous relations between
objects of type T s and T t . Moreover, if object vsp ∈ V s has a link with object vtq ∈ V t , the
element at the pth row and qth column in relation matrix Rs,t (s ≤ t) equals to 1. Otherwise,
it equals to 0.

We give an common example of heterogeneous information network in Fig. 1. In this
heterogeneous information network, we have three different types of object sets V 1 =
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Fig. 1 A heterogeneous network
with three different types of
objects

{v11, v12, v13, v14, v15, v16}, V 2 = {v21, v22, v23, v24} and V 3 = {v31, v32, v33, v34, v35}. The homoge-
nous relation existing in V 1 is described by R1,1, while the heterogeneous relations between
V 1, V 2, and V 3 are described by matrix R1,2 and R1,3, respectively. The details of relation
matrices R1,1, R1,2, and R1,3 are as follows:

R1,1=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, R1,2=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
1 1 1 0
1 1 0 0
0 0 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, R1,3=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Given a heterogeneous information network, we aim at clustering different types of objects
into different clusters based on the link relations with regard to not only the homogenous
types but also the heterogeneous types.

We give the main notation system of this paper in Table 2.

3.2 Problem transformation

Inspired by Chakrabarti et al. [7], Papadimitriou et al. [37,38], we view the process of multi-
type clustering as condensing the whole heterogeneous network without information loss.
Since a heterogeneous information network is described by a group of relation matrices, the
objective of clustering the heterogeneous network turns intominimizing the total information
used to describe the group of relation matrices. In order to accomplish this objective, given
a heterogeneous network G = (R,V), we first concatenate the related relation matrices
into larger ones based on the row dimensions they shared. An example of this process in
a heterogeneous information network of four types of objects is given in Fig. 2. In this
heterogeneous information network (shown in Fig. 2a), we assume that the objects of the
same type have the homogeneous links, and the objects between different types of objects
have heterogeneous links. Then, based on the ascending order of the object type indices,
we get 4 new matrices (shown in Fig. 2b) by concatenating the relation matrices into larger
ones. In order to further condense the group of relation matrices, we adjust the position of
the rows and columns of the group of concatenated relation matrices. Then, we describe each
concatenated matrix by a two-part code, which is schema description complexity and code
length.
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Table 2 Main notation system

Symbol Definition

V = {V i }ki=1 Set of different types of objects in G
R = {Rs,t }ks,t=1 Link relation matrices between different types of objects in G
G = (V,R) Heterogeneous information network

Rs,t ∈ R Link relations between the objects of types T s and T t

T i The i th type of objects

{Ψi }ki=1 Schema in the concatenated relation matrices

J i Set of clusters of type T i

J ip The pth cluster in J i

Ri, jp,q Link relations between the specified p-th group
of objects of type T i and the specified qth
group of objects of type T j

ni, jp and ni, jq Row and column dimension of Ri, jp,q , respectively

N (Ri, jp,q ) Number of elements in matrix Ri, jp,q

H(Ri, jp,q ) Binary Shannon entropy for matrix Ri, jp,q
Ts (R) Cost for encoding the schema of R
Tc(R) Cost for encoding all of the sub-matrices in R
T (R) Cost for encoding R
T (R) Objective function for encoding matrix R with the least bits

Nh(Ri, jp,q ) Number of elements whose value equal to h in Ri, jp,q

Ph(Ri, jp,q ) Density of “h” in Ri, jp,q
w(p, q, j) Discriminative column objective function

w′(q, p, j) Discriminative row objective function

Before presenting the encoding schema in detail, we introduce the notation system used in
this paper as follows. There are k types of objects, e.g., T 1, T 2, . . . , T k in the heterogeneous
network. For each type of T i , there are mi objects will be clustered into li clusters. Let us
suppose {Ψi }ki=1 represents the schema of adjustment in the concatenated relation matrices,
e.g., Ψi : {1, 2, . . . ,mi } → {1, 2, . . . , li }(1 ≤ i ≤ k). J i denotes the set of clusters of type
T i , and J ip denotes the pth cluster in J i . Besides, Ri, j

p,q(1 ≤ i ≤ j ≤ k, 1 ≤ p ≤ li , 1 ≤ q ≤
l j ) stands for the sub-matrix created by the elements at the crossing of pth group of rows

and the qth group of columns in the relation matrix Ri, j . Moreover, ni, jp and ni, jq denote the

row and column dimensions of Ri, j
p,q , respectively. From the view of objects, Ri, j

p,q expresses
the link relations between the specified pth group of objects of type T i and the specified qth
group of objects of type T j .

3.2.1 Description complexity for schema

Encoding the whole schema information includes the following six parts. We first need to
record the number of types of objects, which costs log∗ k bits [15].
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(a) (b)

Fig. 2 General model for a heterogeneous information network with four types of objects and the corre-
sponding concatenated relation matrices. a The different relations among different types of objects. b The
concatenated relation matrices

Secondly, we need to record the row dimensions and column dimensions of all the con-
catenated relation matrices. Since the column dimension of concatenated relation matrix is
combined by different relation matrices, the column dimension of each concatenated rela-
tion matrix needs to be recorded separately. Therefore, encoding the dimension information
of all of the concatenated relation matrices costs

∑k−1
t=0

∑k
i=t+1(log

∗ mi ) bits.2 Thirdly,
encoding the permutations of rows and columns in the concatenated relation matrices costs∑k−1

t=0
∑k

i=t+1(m
i�logmi�) bits. Fourthly, encoding the number of groups, which stand for

the number of clusters, i.e., li (1 ≤ l ≤ k), in different dimensions of the relation matri-
ces costs

∑k−1
t=0

∑k
i=t+1�logmi� bits. Fifthly, if we assume the mapping of mi objects into

li clusters is equally likely, recording the number rows or columns in all of the groups
belonging to T i type, i.e., the number of objects within each cluster of the same type T i ,

costs
⌈
log

(
mi

mi
1,...,mi

li

)⌉
bits. Consequently, encoding all the numbers of rows or columns

in all of concatenated relation matrix groups costs
∑k−1

t=0
∑k

i=t+1

⌈
log

(
mi

mi
1,...,mi

li

)⌉
bits.

Finally, recording the number of 1’s of each sub-matrix Ri, j
p,q costs �log(ni, jp ni, jq + 1)� bits,

where ni, jp and ni, jq are the row and column dimensions of Ri, j
p,q , respectively. Therefore,

recording the total 1’s of all the sub-matrices in the concatenated relation matrices costs the∑k−1
t=0

∑k
i=t+1

∑k
j=i

∑li
p=1

∑l j
q=1�log(ni, jp ni, jq + 1)� bits.

In total, encoding the schema of the concatenated relation matrices costs Ts(R) bits that
equal to summing all above values and is described as follows.

Ts(R) = log∗ k +
k−1∑
t=0

k∑
i=t+1

(
log∗ mi

)
+

k−1∑
t=0

k∑
i=t+1

(
mi

⌈
logmi

⌉)

+
k−1∑
t=0

k∑
i=t+1

⌈
logmi

⌉
+

k−1∑
t=0

k∑
i=t+1

⌈
log

(
mi

mi
1,...,m

i
li

)⌉

+
k−1∑
t=0

k∑
i=t+1

k∑
j=i

li∑
p=1

l j∑
q=1

⌈
log(ni, jp ni, jq + 1)

⌉

(1)

2 All logarithms are based on 2 in this paper.
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3.2.2 Code length for concatenated matrices

Assume that each element in sub-matrix Ri, j
p,q is independent and identically distributed

(IID) drawn from a Bernoulli distribution [7]. According to the Shannon entropy the-
ory, encoding sub-matrix Ri, j

p,q costs N (Ri, j
p,q)H(Ri, j

p,q) bits, where N (Ri, j
p,q) denotes the

number of elements in Ri, j
p,q and H(Ri, j

p,q) denotes the entropy of Ri, j
p,q . Hence, it takes∑li

p=1

∑l j
q=1 N (Ri, j

p,q)H(Ri, j
p,q) bits to describe all sub-matrices in Ri, j . Therefore, encoding

all of the sub-matrices in the concatenated relation matrices costs Tc(R) bits described as
follows:

Tc(R) =
k−1∑
t=0

k∑
i=t+1

k∑
j=i

li∑
p=1

l j∑
q=1

N
(
Ri, j
p,q

)
H
(
Ri, j
p,q

)

=
k−1∑
t=0

k∑
i=t+1

k∑
j=i

li∑
p=1

l j∑
q=1

1∑
h=0

Nh(R
i, j
p,q) log

⎛
⎝ N

(
Ri, j
p,q

)

Nh

(
Ri, j
p,q

)
⎞
⎠

=
k−1∑
t=0

k∑
i=t+1

k∑
j=i

li∑
p=1

l j∑
q=1

1∑
h=0

Nh

(
Ri, j
p,q

)
log

⎛
⎝ 1

Ph
(
Ri, j
p,q

)
⎞
⎠

(2)

where Nh(R
i, j
p,q) represents the number of elements whose value equal to h in Ri, j

p,q and

Ph(R
i, j
p,q) represents the density of “h” in Ri, j

p,q .

3.2.3 Objective function

To conclude, encoding the set of relation matrices R of the heterogeneous information net-
work G = (V,R) costs T (R) bits described as:

T (R) = Ts (R) + Tc (R)

= log∗ k +
k−1∑
t=0

k∑
i=t+1

(
log∗ mi

)
+

k−1∑
t=0

k∑
i=t+1

(
mi

⌈
logmi

⌉)

+
k−1∑
t=0

k∑
i=t+1

⌈
logmi

⌉
+

k−1∑
t=0

k∑
i=t+1

⌈
log

(
mi

mi
1,...,m

i
li

)⌉
(3)

+
k−1∑
t=0

k∑
i=t+1

k∑
j=i

li∑
p=1

l j∑
q=1

⌈
log

(
ni, jp ni, jq + 1

)⌉

+
k−1∑
t=0

k∑
i=t+1

k∑
j=i

li∑
p=1

l j∑
q=1

1∑
h=0

Nh

(
Ri, j
p,q

)
log

⎛
⎝ 1

Ph
(
Ri, j
p,q

)
⎞
⎠

For the simplicity of the discussion, in the rest of the paper, we focus on a basic type of
heterogeneous network, i.e., star structure heterogeneous information network, in which the
homogenous relation only exists within the objects of the central type, and the heterogeneous
relations exist between the objects of the central type and the other types. That is to say, only
R1, j needs to be considered as Ri, j (i 	= 1) equals to zero. However, all of the following
discussions of the paper can be easily extended to our general model. An example of the
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star structure heterogeneous information network is shown in Fig. 1. As a result, we have
Eq. (4) for computing the total bits used to describe the star structure heterogeneous network
G = (V, R).

T (R) = log∗ k +
k∑

i=1

(
log∗ mi

)
+

k∑
i=1

(
mi�logmi�

)

+
k∑

i=1

⌈
logmi

⌉
+

k∑
i=1

⌈
log

(
mi

mi
1,...,m

i
li

)⌉

+
k∑
j=1

l1∑
p=1

l j∑
q=1

⌈
log

(
n1, jp n1, jq + 1

)⌉

+
k∑
j=1

l1∑
p=1

l j∑
q=1

1∑
h=0

Nh

(
R1, j
p,q

)
log

⎛
⎝ 1

Ph
(
R1, j
p,q

)
⎞
⎠

(4)

We notice that the first to the fourth terms in Eq. (4) are constant. The more important
part is the last term of Eq. (4), which is used to describe the code length of the concatenated
matrix, which dominates the whole equation. Moreover, the larger scale of the heterogeneous
information network, the more dominant of the last term in Eq. (4). Therefore, we give our
objective function as follows.

T (R) = min

{
k∑
j=1

l1∑
p=1

l j∑
q=1

1∑
h=0

Nh

(
R1, j
p,q

)
log

(
1

Ph
(
R1, j
p,q

)
)}

(5)

In Fig. 3, we give two different multi-type clustering results for the heterogeneous infor-
mation network in Fig. 1. Obviously, the multi-type clustering result in Fig. 3b is much better
than the multi-type clustering result in Fig. 3a. That is because the clusters in Fig. 3b not
only have the dense connection among homogeneous objects, e.g., the clusters on object set
V 1, but also have the dense connection among heterogeneous objects, e.g., the clusters on
object sets V 2 and V 3. If we only consider the homogeneous relation of Fig. 1, the quality
of clustering result in Fig. 3a is acceptable. However, if we consider both the homogeneous
and heterogeneous relations of Fig. 3, the quality of multi-type clustering in Fig. 3a, such as
the clusters in object sets V 2 and V 3, is not so attractive.

We notice that, on the one hand, based on the multi-type clustering result of Fig. 3a, the
total bits computed by Eq. (5) are 64.1. On the other hand, based on the multi-type clustering
result of Fig. 3b, the total bits computed by Eq. (5) are 27.3, which is much less than the
bits based on the multi-type clustering result in Fig. 3a. This demonstrates that the lesser the
value of Eq. (5), the better multi-type clustering results in the corresponding heterogeneous
information network. Hence, our objective function provides a good criterion for the quality
of the multi-type clustering in the heterogeneous information network.

4 The framework of multi-type clustering in heterogeneous information
network

Given the objective function in Eq. (5), finding the best schema, i.e., a set of {Ψi }ki=1, in a
heterogeneous information network is NP-hard. That is because it is even NP-hard to find the
best schema in the bipartite graph [7,10]. Therefore, we design local schema search (LSS-H)
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(a) (b)

Fig. 3 Two different types of clustering results on the heterogeneous information network shown in Fig. 1. a
One possible clustering result only based on the homogeneous relation. b The clustering result based on both
homogeneous and heterogeneous relations

and global schema search (GSS-H) to find the appropriate optimization in the heterogeneous
information network. LSS-H minimizes the objective function based on the assumption that
the numbers of clusters for different types of objects, i.e., {li }ki=1, are given, while for GSS-H,
the numbers of clusters for different types of objects are discovered automatically. Based on
the appropriate optimization discovered by LSS-H or GSS-H, the overlapping schema search
(OSS-H), which is used to detect the overlapping structures of clusters, is proposed.

4.1 Local schema search

In the algorithm of LSS-H, we assume the set of relation matrix of the heterogeneous infor-
mation network, i.e., {R1, j }kj=1, and the number of clusters for each type of objects in the
heterogeneous information network, i.e., li (1 ≤ i ≤ k), is given. Initially, we concatenate
the relation matrices R1,1, R1,2, . . . , R1,k to form a m1 × ∑k

i=1 m
i matrix R1,...,k . Then,

we initialize the schema {Ψi }ki=1 by randomly assigning mi (1 ≤ i ≤ k) objects of T i type
into li clusters. This initialization step also incurs the adjustment of rows and columns in the
concatenated relation matrix R1,...,k . In order to minimize the objective function described
by Eq. (5) and get the appropriate optimization schema, we adjust the columns and rows of
R1,...,k by iteratively performing the following steps.

Firstly, at iteration t , we fix the row mapping, i.e, Ψ
(t)
1 , of (R1,...,k)(t). Then, for each

column c in each relation matrix, i.e., (R1, j )(t)(2 ≤ j ≤ k), we compute the new column
group Ψ

(t+1)
j (c) for column c by the equation below:

Ψ
(t+1)
j (c) = arg min

1≤q≤l j

⎧⎨
⎩−

l1∑
p=1

1∑
h=0

Nh(cp) log

(
Ph

((
R1, j
p,q

)(t)
))⎫⎬

⎭ (6)

where cp represents the pth part of column c split by the row mapping Ψ
(t)
1 . Next, we assign

column c into the new column groupΨ
(t+1)
j (c), which reduces the value of objective function.

Secondly, at iteration (t+1), except for the columnmapping, i.e.,Ψ (t+1)
1 , of relationmatrix

(R1,1)(t+1), we fix all of the column mappings, i.e., Ψ (t+1)
i (2 ≤ i ≤ k), in the concatenated

matrix (R1,...,k)(t+1). Then, for each row r of the concatenated matrix (R1,...,k)(t+1), we
assign row r into the new row group Ψ

(t+2)
1 (r) computed by
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Ψ
(t+2)
1 (r) = arg min

1≤p≤l1

⎧⎨
⎩−

k∑
j=1

l j∑
q=1

1∑
h=0

Nh

(
r1, jq

)
log

(
Ph

((
R1, j
p,q

)(t+1)
))

−
l1∑

q=1

1∑
h=0

Nh

(
r1,1q

)
log

(
Ph

((
R1,1
p,q

)(t+1)
))

+
1∑

h=0

2Nh(dr,r ) log

(
Ph

((
R1,1

p,Ψ (t+1)
1 (r)

)(t+1)
))

−
1∑

h=0

log

(
Ph

((
R1,1
p,p

)(t+1)
))}

(7)

where r1, j (1 ≤ j ≤ k) is the part of row r located in relation matrix (R1, j )(t+1), r1, jp is the

pth part of r1, j spliced by column mapping Ψ
(t+1)
j (2 ≤ j ≤ k), and dr,r is the element at

the crossing of row r1,1 and column c1,1. Here, c1,1 is the symmetrical column of r1,1 in
(R1,1)(t+1). Because R1,1 is symmetrical matrix that reflects the homogeneous relation of
object type T 1, the mapping Ψ

(t+1)
1 is also operated on the column dimension of (R1,1)(t+1)

in the concatenated matrix (R1,...,k)(t+1).
We keep inmind that there are two types of relationmatrices, which form the concatenated

relation matrix. The first one is symmetric matrix R1,1, which describes the central type of
objects in the star schema. This type of matrix reflects the link relation between the same
type of objects. The second type of matrices such as R1,2, R1,3, . . ., R1,k are asymmetric,
which describe the relations between different types of objects in the heterogeneous network.
Then, two types of relation matrices form the concatenated matrix R1,...,k according to the
rule described in Fig. 2b. Hence, it is easy to understand that in Eq. (7), the first term denotes
the cost of shifting row r to the new row group Ψ

(t+1)
1 (r), while the second term denotes the

cost of shifting column c, which is symmetrical to row r in (R1,1)(t+1), to the new column
group Ψ

(t+1)
1 (r), and the last two terms are the “double-counting” of the element dr,r in

(R1,1)(t+1).
The above two steps are repeated iteratively until the convergence of the objective function.

The description of LSS-H is presented inAlgorithm1. ForAlgorithm1,we have the following
theorems.

Theorem 1 At iteration t (t ≥ 1), assigning any column c of the relationmatrix (R1, j )(t)(2 ≤
j ≤ k) into the new column group Ψ

(t+1)
j (c) defined by Eq. (6) decreases the objective

function, i.e.,

T
(
R(t+1)

)
≤ T

(
R(t)

)
.

Proof

T (R(t)) =
k∑
j=1

l1∑
p=1

l j∑
q=1

1∑
h=0

Nh

((
R1, j
p,q

)(t)
)
log

⎛
⎜⎜⎝

1

Ph

((
R1, j
p,q

)(t)
)

⎞
⎟⎟⎠

=
k∑
j=1

l1∑
p=1

l j∑
q=1

1∑
h=0

⎡
⎢⎣

∑

c:Ψ (t)
j (c)=q

Nh(cp)

⎤
⎥⎦ log

⎛
⎜⎜⎝

1

Ph

((
R1, j
p,q

)(t)
)

⎞
⎟⎟⎠
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=
k∑
j=1

l j∑
q=1

∑

c:Ψ (t)
j (c)=q

⎡
⎢⎢⎣

l1∑
p=1

1∑
h=0

Nh(cp) log

⎛
⎜⎜⎝

1

Ph

((
R1, j
p,q

)(t)
)

⎞
⎟⎟⎠

⎤
⎥⎥⎦

(1)
≥

k∑
j=1

l j∑
q=1

∑

c:Ψ (t)
j (c)=q

⎡
⎢⎢⎢⎢⎣

l1∑
p=1

1∑
h=0

Nh(cp) log

⎛
⎜⎜⎜⎜⎝

1

Ph

((
R1, j

p,ψ(t+1)
j (c)

)(t)
)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

(8)

=
k∑
j=1

l j∑
q=1

∑

c:Ψ (t+1)
j (c)=q

⎡
⎢⎢⎢⎢⎣

l1∑
p=1

1∑
h=0

Nh(cp) log

⎛
⎜⎜⎜⎜⎝

1

Ph

((
R1, j

p,ψ(t+1)
j (c)

)(t)
)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

=
k∑
j=1

l1∑
p=1

l j∑
q=1

1∑
h=0

⎡
⎢⎣

∑

c:Ψ (t+1)
j (c)=q

Nh(cp)

⎤
⎥⎦ log

⎛
⎜⎜⎝

1

Ph

((
R1, j
p,q

)(t)
)

⎞
⎟⎟⎠

=
k∑
j=1

l1∑
p=1

l j∑
q=1

1∑
h=0

Nh((R
1, j
p,q)

(t+1)) log

⎛
⎜⎜⎝

1

Ph

((
R1, j
p,q

)(t)
)

⎞
⎟⎟⎠

(2)
≥

k∑
j=1

l1∑
p=1

l j∑
q=1

1∑
h=0

Nh((R
1, j
p,q)

(t+1)) log

⎛
⎜⎜⎝

1

Ph

((
R1, j
p,q

)(t+1)
)

⎞
⎟⎟⎠

= T (R(t+1))

In the above deduction of E. (8), inequality (1) holds for the Eq. (6), and inequality (2)
holds for the nonnegativity of the Kullback–Leibler distance.

Theorem 2 At iteration (t + 1)(t ≥ 1), assigning any row r of the concatenated matrix
(R1,...,k)(t+1) into the new row group Ψ

(t+1)
1 (r) defined by Eq. (7) decreases the objective

function, i.e.,

T
(
R(t+2)

)
≤ T

(
R(t+1)

)
.

Proof The proof of Theorem 2 is very similar to Theorem 1, and the proof is omitted due to
space limitation.

Theorem 3 The objective function defined in Eq. (5) converges to a local minimization.

Proof On the one hand, the lower bound of the objective function is 0. That is because any
relation matrix needs at least 0 bits to describe its code length. On the other hand, Theorems 1
and 2 guarantee the objective function keeps not increasing during the iterative process in
Algorithm 1. Hence, considering these two respects, the objective function converges to a
local minimization in Algorithm 1.
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Input : Relation matrix set {R1, j }kj=1;

Cluster number set {li }ki=1.

Output : Appropriately optimal schema {Ψi }ki=1

1 Concatenate all relation matrices in {R1, j }kj=1 to form a m1 ×∑k
i=1 m

i matrix R1..k ;

2 Set t = 0; Initialization {Ψ (t)
i }ki=1 ;

3 Update (R1..k )(t) according to {Ψ (t)
i }ki=1;

4 repeat

5 Fixing the row mapping Ψ
(t)
1 for (R1..k )(t) ;

6 foreach (R1, j )(t)(2 ≤ j ≤ k) in (R1..k )(t) do
7 foreach column c in (R1, j )(t) do

8 Compute column mapping Ψ
(t+1)
j (c) according to Equation(6) ;

9 end
10 end

11 Ψ
(t+1)
1 ← Ψ

(t)
1 ;

12 Update (R1..k )(t+1) according to {Ψ (t+1)
j }kj=2 ;

13 Fixing the column mapping set {Ψ (t+1)
i }ki=2 for (R1..k )(t+1) ;

14 foreach row r in (R1..k )(t+1) do

15 Compute row mapping Ψ
(t+2)
1 (r) according to Equation(7) ;

16 end

17 {Ψ (t+2)
j }kj=2 ← {Ψ (t+1)

j }kj=2 ;

18 Update (R1..k )(t+2) according to Ψ
(t+2)
1 ;

19 t = t + 2 ;
20 until convergence;

Algorithm 1: Local schema search (LSS-H)

4.2 Global schema search

GSS-H takes a top-down greedy search strategy to automatically detect the clusters for each
type of objects. The description of GSS-H is presented in Algorithm 2. Similar to LSS-H, all
of the relation matrices R1, j are concatenated to form a m1 ×∑k

i=1 m
i matrix R1,...,k at the

beginning. Then, each type of objects is initialized as a single cluster. In other words, for each
relation matrix R1, j in R1,...,k , all of the columns in R1, j form a single-column group, and
all of the rows in R1,...,k form a single-row group. Each iteration of GSS-H can be divided
as the following steps.

Initially, at iteration t , for a specific type of cluster set, let say J j (1 ≤ j ≤ k), we add
a new empty cluster J j

l j+1–J
j . Then, we select the cluster which has the maximum average

code length per object among all clusters in J j . For clusters of T j (2 ≤ j ≤ k) type, we
compute the column cluster index q, whose cluster has the average maximum code length
per object by Eq. (9). Since the objects of T 1 type have relations with all of the other types
of objects, the cluster index p, whose cluster has the maximum average entropy per object,
is computed by Eq. (10).

q = arg max
1≤q≤l j

l1∑
p=1

1∑
h=0

Nh

((
R1, j
p,q

)(t)
)
log 1

Ph

((
R1, j
p,q

)(t)
)

n1, jq

(9)
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Input : Relation matrix set {R1, j }kj=1

Output : Appropriately optimal schema {Ψi }ki=1;

Cluster number set {li }ki=1

1 Concatenate relation matrices {R1, j }kj=1 to form a m1 ×∑k
i=1 m

i matrix R1,...,k ;

2 Set t = 0; l1 = l2 · · · = lk = 1;

3 Initialization {Ψ (t)
i }ki=1 according to {li }ki=1;

4 Update (R1,...,k )(t) according to {Ψ (t)
i }ki=1;

5 repeat
6 foreach cluster set J j (1 ≤ j ≤ k) do
7 repeat

8 Add an empty cluster J j
l j+1 to J j ;

9 if j > 1 then
10 Compute index q by Eq. (9) ;
11 MeaFunc ←Eq. (11) ;
12 else
13 Compute index q by Eq. (10) ;
14 MeaFunc ←Eq. (12) ;
15 end

16 Randomly select half of the objects from J j
q and place them into J j

l j+1 ;

17 Switching(J j
q , J j

l j+1, MeaFunc) ;

18 Update (R1..k )(t) and l j ;

19 {Ψ (t+1)
i }ki=1 ← LSS((R1..k )(t), {li }ki=1) ;

20 Update (R1..k )(t+1) ;
21 t = t + 1 ;
22 until the total cost does not increase;
23 end
24 until convergence;

Algorithm 2: Global schema search (GSS-H)

p = arg max
1≤p≤l1

k∑
j=1

l j∑
q=1

1∑
h=0

Nh

((
R1, j
p,q

)(t)
)

1

Ph

((
R1, j
p,q

)(t)
)

n1,1p
(10)

Subsequently, we randomly choose half of the objects from J j
q and move them into the

new cluster J j
l j+1. In order tomake the objects in J j

q have denser linking relation and decrease
the total code length, we evaluate the decrease in objective function by moving any object
c ∈ J j

q to the new cluster J j
l j+1. In this test, we need to consider clusters of T j (2 ≤ j ≤ k)

type and clusters of T 1 type separately. For clusters of T j type, the decrease in objective
function by moving object c from cluster J j

q to cluster J j
l j+1 is computed by

�T
c→

(
J j
l j+1

)(t) =
l1∑
p=1

{
N

((
R1, j
p,q

)(t)
)
H

((
R1, j
p,q

)(t)
)

+ N

((
R1, j
p,l j+1

)(t)
)
H

((
R1, j
p,l j+1

)(t)
)
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− N

((
R1, j
p,q

)(t)

−c

)
H

((
R1, j
p,q

)(t)

−c

)

− N

((
R1, j
p,l j+1

)(t)

+c

)
H

((
R1, j
p,l j+1

)(t)

+c

)}
(11)

where (R1, j
p,q)

(t)
−c is the matrix R1, j

p,q without column c, and (R1, j
p,l j+1)

(t)
+c is the matric R1, j

p,l j+1

with column c at iteration t . Different from the clusters of T j (2 ≤ j ≤ k) type, the decrease
in total code length by moving object r ∈ J 1p to J 1l1+1 can be computed by the following
equation.

�T
r→

(
J 1l1+1

)(t) =
k∑
j=1

l j∑
q=1

{
N

((
R1, j
p,q

)(t)
)
H

((
R1, j
p,q

)(t)
)

+ N

((
R1, j
l1+1,q

)(t)
)
H

((
R1, j
l1+1,q

)(t)
)

− N

((
R1, j
p,q

)(t)

−r

)
H

((
R1, j
p,q

)(t)

−r

)

− N

((
R1, j
l1+1,q

)(t)

+r

)
H

((
R1, j
l1+1,q

)(t)

+r

)}

(12)

All of the objects in J j
q or J 1p , whose assignment can decrease the objective function, are

assigned into the newcluster J j
l j+1 or J

j
l1+1. Similar adjustment is also repeated for each object

Input : Cluster Jp and cluster Jq ;
Measure function MeaFunc.

Output : Cluster J ′
p and Cluster J ′

q which has less total code length than Jp and Jq

1 Initialize each c ∈ Jp and c′ ∈ Jq as unvisited ;
2 repeat
3 foreach c ∈ Jp ∩ c.visi ted == f alse do
4 ΔTc→Jq ← MeaFunc(c, Jq , Jp) ;

5 if ΔTc→Jq > 0 then
6 Move c from Jp to Jq ;
7 c.visi ted = true ;
8 else
9 foreach c′ ∈ Jq ∩ c′.visi ted == f alse do

10 ΔTc′→Jp ← MeaFunc(c′, Jp, Jq ) ;

11 if ΔTc′→Jp > 0 then
12 Move c′ from Jq to Jp ;
13 c′.visi ted = true ;
14 else
15 break ;
16 end
17 end
18 end
19 end
20 until each c ∈ Jp and c′ ∈ Jq have been visited;
21 J ′

p ← Jp ; J ′
q ← Jq ;

22 return J ′
p, J

′
q ;

Algorithm 3: Switching
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c′ ∈ J j
l j+1 or r ′ ∈ J 1l1+1. The detail description of switching objects between two clusters

is given in Algorithm 3. This split process makes the number of clusters of T j (1 ≤ j ≤ k)
type increase from l j to (l j + 1).

Finally, the LSS-H is applied to further adjust the assignment of objects among different
clusters. The above three stages are repeated iteratively until the total coding cost of the
heterogeneous information network does not increase any more. Then, we choose another
type of cluster set and continue the above steps.

All of the above steps are repeated until the convergence of the objective function. We
notice that the convergence of GSS-H can be guaranteed. On the one hand, the splitting
process (steps 8–17) in Algorithm 2 decreases the objective function. That is because split-
ting a matrix decreases the total code length has already been proved in [7]. Moreover, the
process of switching objects. i.e., Algorithm 3, also decreases the total code length. On the
other hand, each LSS-H further (step 19) decreases the objective function. Since the total
code length dominates the whole coding cost of the heterogeneous information network, the
continuous decreasing in the code length converges the total coding cost to a local optimiza-
tion. Thus, Algorithm 2 decreases the objective function at each iteration and converges to a
local optimization.

4.3 Overlapping schema search

As we can see, LSS-H and GSS-H co-cluster different types of objects simultaneously in
two different situations, respectively. In other words, after the non-overlapping multi-type
clustering processes, the objects which have closer relations in the heterogeneous network
are co-clustered together, while the objects which have the looser relations are separated
into different clusters. From the viewpoint of the relation matrix, this process makes some
sub-matrices of the relation matrix very dense and the other sub-matrices very sparse. In
order to clearly explain our overlapping strategy, a single relation matrix R1, j (2 ≤ j ≤ k),
before and after the multi-type clustering, is given in Fig. 4a and b, respectively.

It is clear that there are four row clusters of T 1 type and four column clusters of T j ( j > 1)
type in Fig. 4b.We notice that, for any pair of row clusters, theremust be some pairs of blocks,
in which each pair of block is in the same column group, having relatively opposite density.
That is because, for any pair of row clusters, if any pair of blocks in the same column group
have very similar density, the two row clusters have to be merged to form a single-row cluster
during the multi-type clustering process, because the objects in these two row clusters have

(a) (b)

Fig. 4 A relation matrix before and after multi-type clustering. a Original matrix, b co-clustered matrix
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similar link relations between different column objects. Similar principle also holds for any
pair of column clusters. For example, in Fig. 4b, it is obvious that we cannot find any pair of
row clusters, in which all of the blocks in the same column group have very similar density. In
other words, there are at least one pair of blocks, which are in the same column group, having
relatively opposite density. Otherwise, the two row clusters should be combined. We notice
that, compared to the other column objects, column objects located in P3 and P5 have denser
links with the row objects of the first row clusters. Moreover, column objects located in P5
are more important than those column objects in P3 for distinguishing the first row clusters
from other row clusters. That is because, firstly, P5 has higher density than P3, which means
the column objects located in P5 have closer relation with the row objects of the first row
cluster than these column objects located in P3. Secondly, from the viewpoint of different
row clusters, the link relation between the column objects in P5 and row objects in the first
row clusters is very close, while the link relation between the column objects in P5 and row
objects of the other row clusters is relatively loose. However, this situation is different for
block P3. In other words, even though the row objects of the first row cluster have relative
close relation with the column objects located in P3, the objects in the third and fourth row
clusters also have very close relation with the column objects in P3. For example, P6 is
almost as dense as P3, while P4 is even much denser than P3. Similar analysis process tells
us that the column objects in P1 are more important than column objects in P2 for separating
the second row cluster from the other row clusters, and row objects in P4 are more important
than row objects in P3 for separating the second column clusters from the other column
clusters. The above density analysis process is referred to as the density guided principle for
discriminative clusters.

Given a co-clustered relation matrix R1, j (1 ≤ j ≤ k), we measure the importance of
objects in row cluster J 1p(1 ≤ p ≤ l1) for separating column cluster J j

q (1 ≤ q ≤ l j ) from
the other column clusters by using discriminative column objective function as follows:

w(p, q, j) = P1
(
R1, j
p,q

)
− 1

l j

l j∑
i=1

P1
(
R1, j
p,i

)
(13)

where P1(R
1, j
p,q) measures the density of “1” in the sub-matrix R1, j

p,q .
Symmetrically, we have discriminative row objective function, which is described in

Eq. (14), for evaluating the importance of objects in column cluster J j
q (1 ≤ q ≤ l j ) for

separating row cluster J 1p(1 ≤ p ≤ l1) from the other row clusters.

w′ (q, p, j) = P1
(
R1, j
p,q

)
− 1

l1

l1∑
i=1

P1
(
R1, j
i,q

)
(14)

Obviously, both w(p, q, j) and w′(q, p, j) range from −1 to 1. In fact, w(p, q) reflects
the contribution of the links between objects in cluster J 1p and objects in cluster J j

q for the
cohesion of the objects in cluster Jq . Moreover, the larger value of w(p, q) means the more

contribution of the links between objects in J 1p and objects in J j
q for the forming of cluster

J j
q . For example, in Fig. 3b, if we consider all of the clusters of T 1 type, i.e., {v11, v12, v13},

{v14, v15, v16}, and the second cluster of T 2 type, i.e., {v23, v24}, we get w(1, 2, 2) = − 5
6 and

w(2, 2, 2) = 5
6 . That is to say, compared to the links between objects in {v11, v12, v13} and

objects in {v23, v24}, the links between objects in {v14, v15, v16} and objects in {v23, v24} contribute
more for objects v23 and v24 to form a cluster. Similar analysis can be easily applied to
w′(q, p, j).
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Definition 1 (Discriminative column cluster) For a heterogeneous information network G =
(V,R), given the row cluster J 1p ∈ J 1(1 ≤ p ≤ l1) and the column cluster J j

q ∈ J j (2 ≤
j ≤ k, 1 ≤ q ≤ l j ), the cluster J j

q is defined as the discriminative column cluster of row

cluster J 1p iff. J j
q contributes to the distinction of row cluster J 1p from the other row cluster

J 1b (b 	= p ∩ 1 ≤ b ≤ l1), i.e., w(p, q, j) ≥ 0.

Definition 2 (Discriminative row cluster) For a heterogeneous information network G =
(V,R), given the column cluster J j

q ∈ J j (2 ≤ j ≤ k, 1 ≤ q ≤ l j ) and the row cluster
J 1p ∈ J 1(1 ≤ p ≤ l1), the cluster J 1p is defined as the discriminative row cluster of column

cluster J j
q iff. J 1p contributes to the distinction of column cluster J j

q from the other column

cluster J j
d (d 	= q ∩ 1 ≤ d ≤ l j ), i.e., w′(q, p, j) ≥ 0.

Consequently, for any column object c ∈ J j
q (2 ≤ j ≤ k) of the star-structured hetero-

geneous information network, we use Eq. (15) to evaluate whether object c should also be
placed into another cluster J j

t (1 ≤ t ≤ l j ∩ t 	= q) or not.

Eoc(c, t) =
∑
f ∈F1

w( f, t, j)
(
P1
(
c f
)− P1

(
R1, j

f,t

))

=
∑
f ∈F1

⎛
⎝P1

(
R1, j

f,t

)
− 1

l j

l j∑
i=1

P1
(
R1, j

f,i

)⎞⎠(
P1
(
c f
)− P1

(
R1, j

f,t

))
(15)

where c f represents the elements at the crossing of column c and f th row group of R1,1, and
F1 is the index set of discriminative row clusters in R1,1, i.e., F1 = { f |w( f, t, j) ≥ 0, 1 ≤
f ≤ l1}. If Eoc(c, t) ≥ 0, column objects c will not only be placed into its original column
cluster J j

q , but also placed into the column cluster J j
t . From Eq. (15), we know that only the

discriminative column clusters take part in the computation of row cluster in the overlapping
process. Moreover, we notice that it is possible for (P1(c f ) − P1(R

1, j
f,t )) to be negative. If in

this case, it means the link density between column object c and objects in row cluster J j
f is

lower than the link density between objects in column cluster J j
t and objects in row cluster

J j
f .

In a star-structured heterogeneous information network, the objects of T 1 type have two
kinds of link relations, which are homogeneous link relation among themselves and the
heterogeneous link relations between objects of T j (2 ≤ j ≤ k) type, respectively. Thus,
given the relation matrices R1,1, . . . , R1,k , we have Eq. (16) for evaluating whether the row
objects r ∈ J 1p need to be placed into row cluster J 1s .

Eor (r, s) =
k∑
j=1

∑
f ∈Fj

w′( f, s, j)
(
P1
(
r f
)− P1

(
R1, j
s, f

))

=
k∑
j=1

∑
f ∈Fj

(
P1
(
R1, j
s, f

)
− 1

l1

l1∑
i=1

P1
(
R1, j
i, f

))(
P1
(
r f
)− P1

(
R1, j
s, f

))
(16)

where r f is the interest of row r , f th is the column group of R1, j , and Fj is the index set of
discriminative column clusters in R1, j , i.e., Fj = {w′(s, f, j) ≥ 0, 1 ≤ f ≤ l j }.
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The detail of OSS-H is given in Algorithm 4. The second input parameter, i.e., {li }ki=1, is
optional if we call GSS-H for detecting the non-overlapping schema. Besides, the order of
calculating the overlapping row objects and overlapping column objects does not change the
final cluster structures, since going through the row clusters and column clusters is solely
based on the non-overlapping schema {Ψi }ki=1.

Input : Relation matrix set {R1, j }kj=1;

Cluster number set {li }ki=1 (optional).

Output : Overlapping clusters set {J i }ki=1

1 Call LSS-H({R1, j }kj=1, {li }ki=1) or GSS-H({R1, j }kj=1) for detecting non-overlapping schema {Ψi }ki=1
;

2 foreach cluster set J j (1 ≤ j ≤ k) do

3 foreach cluster J j
q ∈ J j do

4 foreach object v ∈ J j
q do

5 foreach t (1 ≤ t ≤ l j ∩ t 	= q) do
6 if j == 1 then
7 isOverlap ← Eor (v, t) ;
8 else
9 isOverlap ← Eoc(v, t) ;

10 end
11 if isOverlap ≥ 0 then

12 Copy object v into cluster J j
t ;

13 end
14 end
15 end
16 end
17 end

Algorithm 4: Overlapping schema search (OSS-H)

5 Time complexity analysis

The computational complexity of LSS-H is O(N1(R1,...,k) · I · L), where I is the number
of iteration of LSS-H, and L is the total number of clusters, i.e., L = ∑k

j=1 l j . The analysis
process is as follows. Firstly, at each iteration, adjusting a single-column c to the best column
groupΨ

(t+1)
j (c) in Eq. (6) is O(N1(c) · l j ). Then, adjusting all of the columns in R1, j , which

corresponds to steps 7 ∼ 9, is O(N1(R1, j ) ·l j ). Thus, adjusting all of columns in each matrix
of the edge types, i.e., R1, j (2 ≤ j ≤ k), is O(

∑k
j=2 N1(R1, j ).l j ). Secondly, adjusting

all of the rows in R1,...,k (steps 14–16) is O(N1(R1,k) · l1). In total, each iteration costs
O(
∑k

j=2 N1(R1, j )·l j +N1(R1,...,k)·l1), which can be rewritten as O(N1(R1,...,k)·∑k
j=1 l j ).

Therefore, the computational complexity of LSS-H is O(N1(R1,...,k)I
∑k

j=1 l j ).

The computational complexity of GSS-H is O(k · N1(R1,...,k) · L2). At each iteration of
GSS-H, the time spent on Swi tching function is O(N (R1, j )). Moreover, at t th iteration ,
the time spent on LSS-H is O(N1(R1,...,k)I (t) ∑k

j=1 l
(t)
j ), where l(t)j is the number of type T j

clusters at t th iteration, and I (t) is the number of iterations of LSS-H in t th iteration ofGSS-H.
Usually, I (t) is<30 in practice. If we ignore the number of iterations of LSS-H, each iteration
of GSS-H costs O(N1(R1,...,k)

∑k
j=1 l

(t)
j ). Hence, it costs O(N1(R1,...,k)(

∑k
j=1 l j )·l j ) from
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step 7 to step 22 for each iteration of GSS-H. Finally, the total time complexity of GSS-H is
O(k · N1(R1k) · (

∑k
j=1 l j )

2).
OSS-H calls LSS-H or GSS-H for searching the appropriately optimal schema at differ-

ent input situations. Moreover, going through each object in the heterogeneous information
network and computing its overlapping function, i.e., steps 2–17, cost O(

∑k
i=1 m

i ), which is
lower than the computational complexity of LSS-H andGSS-H. Therefore, the computational
complexity of OSS-H is the same with LSS-H or GSS-H.

6 Experiments

In this section, we empirically demonstrate the effectiveness and efficiency of our proposed
methods. We apply our methods to two important tasks, multi-type clustering for non-
overlapping cluster structures and multi-type clustering for overlapping cluster structures
in the heterogeneous information network. Moreover, we compare our methods with three
state-of-art algorithms, which are NMF [8], SRC [32], and CMRF [6]. The description of the
compared algorithms is presented in Sect. 2. For NMF and SRC, we have the same standard
inputs. However, for CMRF, there are a list of parameters need to be set. In this paper, we
carefully set the parameters according to the instruction of the source code provided by the
original author. Specifically, the search strategies used for CMRF are “divisive” for objects
of central type and “agglomerative” for objects of edge types, respectively. Each experiment
is repeated 10 times, and the average is reported.

6.1 Data set description

6.1.1 Synthetic data sets

We generate the synthetic data set based on the real-world data set Classic3.3 Classic3 con-
tains three types of documents, which are MEDLINE (medical journals), CISI (information
retrieval), andCRANFIELD (aerodynamics). The documents andwords form a binarymatrix
of 3891× 5896. In order to get the non-overlapping multi-type objects, we randomly choose
1000 documents from each type of documents and form a document-word matrix. Then, we
take the “splitting strategy,” which is also used in [25], to split the words. Concretely, we
randomly permute the columns of the document-word matrix. Subsequently, we averagely
divide the columns into two groups. Each group of columns is assumed as a type of objects.
Consequently, we get two document-word matrices, which describe the relations of three
types of objects.

In order to further get the overlapping multi-type objects, firstly we randomly pick 1000
documents of each type. Then, we randomly choose two documents, let say di and d j , from
two different types of documents T i and T j (i 	= j). Next, we merge the two documents
together to form a new document di j , which is annotated with both T i and T j . The number
of new generated documents is controlled by overlapping percentage parameter, i.e., OV%.
Finally, all of the documents are split and generated two document-word matrices as we
discussed above.

3 http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets.
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6.1.2 Real-world data sets

We used two real-world data sets for non-overlapping multi-type clustering. The first one
is Newsgroup,4 which contains 20 groups of documents from 20 news groups. The second
data set is from [21],5 which is a composition of oh15, re0, and WAP. Particularly, oh15 is
from OHSUMED collection, which is a subset of MEDLINE database and contains 23,445
documents indexed by 14,321 non-overlapping categories; re0 is the Reuters-21578 text
categorization collection; WAP is from WebACE Project, and each document is a web page
listed in one of the hierarchical categories of Yahoo. We create three new data sets for
each group of real-world data set. Hence, we get six real-world data sets in total. Since the
compared method SRC needs to solve eigenvectors of the relation matrix, which consumes
very high memory and CPU resources, we carry out feature selection to choose the top
1000 words by mutual information for Newsgroup. Each data set mentioned above forms a
heterogeneous information network described the relations among words, documents, and
categories [8,17,30,32].

We also used two real-world data sets for overlapping multi-type clustering. The first one
is,3Sources6 which describes 948 news articles covering 416 distinct news stories. Among
these stories, 169 are reported in all three sources, 194 in two sources, and 53 in a single
news source. All of the stories are annotated with at least one of the six topical labels, e.g.,
business, entertainment, health, politics, sport, technology. We create three groups of sub-
data sets denoted as T1, T2, and T3 from 3Sources data set. The second real-world data set
is the DBLP7 data set, which contains 28,702 authors who published papers on the specified
20 conferences of computer sciences including KDD, VLDB, AAAI, etc. Each author is
described by a set of words which are extracted from the titles and abstracts of these papers
published by this author.

Besides, in this data set, the homogeneous relations exist between different authors, and
the heterogeneous relations exist among authors, conference, and words. Since we neither
know the ground truth of the size of communities (clusters) nor the number of communities
(clusters) of this data set, andmoreover, only ourmethods among all of the comparedmethods
can capture homogeneous links, we use DBLP data set for a case study.

Except for the DBLP data set, the detailed description of the real-world data sets used in
this paper is given in Table 3. We notice that the standard text preprocessing, such as stop
word removal and stemming, has already been applied to all of these data sets.

6.2 Evaluation metrics

In order to evaluate our experimental results in a subjectively and comprehensive way, we use
three different metrics to measure the performance of all compared methods. AssumeC1 and
C2 are two different coverings of the given network. The first metric is omega [11], which
is a generalization of the well-known adjusted Rand index (ARI) [24] used for partitions of
disjoint clusters. Different from ARI, omega can not only be used to measure the similarity
of non-overlapping coverings, but also can be used to measure the similarity of overlapping
coverings. The definition of omega is as follows.

4 http://people.csail.mit.edu/jrennie/20Newsgroups/.
5 http://www-users.cs.umn.edu/han/data/.
6 http://mlg.ucd.ie/datasets.
7 http://www.cs.uiuc.edu/homes/sun22/data/.
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Omega(C1,C2) = Omegau (C1,C2) − Omegae (C1,C2)

1 − Omegae (C1,C2)

Omegau (C1,C2) = 1

N

mmax∑
j=0

|t j (C1) ∩ t j (C2)|

Omegae (C1,C2) = 1

N 2

mmax∑
j=0

|t j (C1)| · |t j (C2)|

(17)

where Omegau is the unadjusted omega index, and Omegae is the expected omega index.
mmax = max(m(C1),m(C2)) is the larger number of clusters existing in C1 or C2. N =
n(n − 1)/2 is the number of all possible pairs in n nodes, and t j (Ci ) is the set of node pairs
which occur j times together in a cluster of covering Ci (i = 0, 1). In the special case of
non-overlap covering, omega is degenerated to ARI. Notice that this metric can take negative
values. When Omega(C1,C2) = 1, we have identical coverings. This metric is also used in
[19,22].

The second metric used in this paper is purity. In order to compute purity, each cluster is
assigned to the majority class of objects in the cluster. The metric is computed by counting
the number of object assigned correctly divided by the max number of objects between
coverings C1 and C2. In order to compare the purity between the overlapping covering and
non-overlapping covering, we extend the definition of purity as follows.

Purity(C1,C2) = 1

n

∑
i

max
j

∣∣∣Ci
1 ∩ C j

2

∣∣∣ (18)

where n = max{∑i |Ci
1|,
∑

j |C j
2 |}. Besides, Ci

1 stands for the i th cluster of covering C1,

and C j
2 stands for the j th cluster of covering C2. If the ground truth of the clusters have

overlapping structures, both disjointed covering and incorrect overlapping covering will be
penalized by purity.

The third metric is normalized mutual information (NMI), which is proposed by Lanci-
chinetti et al. [27]:

NMI (C1,C2) = 1 − 1

2

(
H(C1|C2)norm + H (C2|C1)norm

)

H (C1|C2)norm = 1

|C1|
∑
k

minl∈{1,2,...,|C2|} H
(
Ck
1 |Cl

2

)

H
(
Ck
1

) (19)

H (C2|C1)norm = 1

|C2|
∑
k

minl∈{1,2,...,|C1|} H
(
Ck
2 |Cl

1

)

H
(
Ck
2

)

where H(C1|C2) and H(C2|C1) are conditional entropies; |C1| and |C2| are the number of
clusters in C1 and C2, respectively; and C j

i means the i th cluster in covering C j . The value
of NMI ranges from 0 to 1. The higher value of NMI means the more similar between two
coverings C1 and C2. We notice that this measurement is also commonly used in many other
papers [48].

6.3 Non-overlapping multi-type clustering

We give the results of non-overlapping multi-type clustering for the synthetic data set based
onClassic3 in Table 4. The number of clusters for the document is given, i.e., l1 = 3. Since the
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number of clusters for each type of words is available, we report all of the three metric scores,
i.e., omega, purity, and NMI, under different numbers of word clusters, i.e., l2 = 15, 20, 25.
The same number of clusters for the two types of word objects is set, e.g., l2 = l3. From
Table 4, it is clear that both LSS-H and NMF gain very high scores, while CMRF achieves
the relative lowest scores on all of the three metrics under different numbers of word clusters.
Furthermore, LSS-H outperformsNMF slightly on purity scores and achieves almost average
10% higher scores on both omega and NMI than NMF. This demonstrates that, compared to
the other three methods, LSS-H can detect clusters with much higher quality on Classic3.

Themetric scores of different methods on data sets of N1, N2, and N3, which are extracted
fromNewsgroup, are given inFigs. 5, 6, and 7, respectively. In this group of experiments, three
different types of objects, which are words, documents, and categories, form a heterogeneous
information network. Similar to Classic3, all of the compared methods are evaluated under

Table 4 Metric scores for
compared methods on Classic3
data set

Metrics l2(l3) NMF SRC CMRF LSS-H

Omega 15 0.852 0.650 0.571 0.906

20 0.840 0.761 0.592 0.891

25 0.808 0.772 0.581 0.914

Purity 15 0.935 0.895 0.695 0.947

20 0.923 0.904 0.689 0.952

25 0.924 0.913 0.704 0.934

NMI 15 0.783 0.579 0.519 0.844

20 0.752 0.663 0.491 0.859

25 0.751 0.680 0.501 0.863
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Fig. 5 Metric score comparisons between different methods on data set N1. a Omega, b purity, c NMI
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Fig. 7 Metric score comparisons between different methods on data set N3. a Omega, b purity, c NMI

different numbers of word clusters. We notice that both LSS-H and GSS-H perform very
well on all three data sets generated from Newsgroup. As GSS-H is parameter-free multi-
type clustering method, it is not surprising to find that the plot of GSS-H is a horizontal
line in all cases. Despite without given any knowledge of the number of clusters for each
type of objects, it is worth to point out that GSS-H achieves high cluster quality on data
set N1. Furthermore, we notice that GSS-H gets the highest omega and purity scores on
N3 data set. This indicates that GSS-H has excellent performance on searching the most
appropriate number of clusters for each type of objects in the heterogeneous information
network.

According to Table 3, we know that the ground truth of the number of document clusters
in N1, N2, and N3 is 3, 4, and 3, respectively. In this group of experiments, GSS-H discovers
3, 5, 3 document clusters in N1, N2, and N3, respectively, which are very close to the ground
truth. We carefully examine the content of clusters discovered by GSS-H in N2, and we find
that GSS-H divides the documents of the third category into two clusters.

Besides, LSS-H outperforms all of the compared methods over all of the three metric
scores on data set N2. From the further analysis of this group of experiments, we know that
CMRF outperforms NMF on data sets of N1 and N2. SRC gains the relatively lowest scores
on all of three data sets. An interesting phenomenon is that NMF achieves very high purity
scores but relatively low scores on omega and NMI on data set N3. We carefully analyze
the content of the clusters discovered by NMF on data set N3. We find that the detected
clusters are very unbalanced. In other words, the number of documents in one cluster is
much more than the rest of clusters, which greatly deviates from the ground truth of this
data set. This demonstrates that, compared to most existing works [8,32] which only use one
single metric for evaluating the experimental multi-type clustering results, our results are
more comprehensive, since we analyze the experimental results more subjectively by using
three different metrics at the same time.

The experimental results of the comparedmethods on data setsW1,W2, andW3 are given
in Figs. 8, 9, and 10, respectively. Once again, both GSS-H and LSS-H perform very effec-
tively. More concretely, compared to the other methods, GSS-H achieves the highest scores
on all of three metrics on data set W1, while both GSS-H and LSS-H gain the average higher
scores on data sets W2 and W3. We also observe that CMRF achieves a very comparative
scores, which is even higher than LSS-H but lower than GSS-H, over all of three metrics on
data set W1. However, the clustering quality of CMRF decreases greatly on data sets W2 and
W3. Another observation is that the performance of NMF and SRC is not as stable as LSS-H,
GSS-H, and CMRF. This point is especially obvious on data set W1. Besides, compared to
the first group of data sets, SRC performs much better on this group of data sets, especially
on data set W3.
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Fig. 10 Metric score comparisons between different methods on data set W3. a Omega, b purity, c NMI

6.4 Overlapping multi-type clustering

The experimental results of the compared methods on Classic3-based overlapping data sets
are given in Tables 5, 6, and 7, respectively. In this synthetic data set, we test the performance
of the compared methods under different numbers of word clusters and different overlapping
percentages, which are controlled by parameter OV%. It is clear that OSS-H, which can
discover the overlapping structure in heterogeneous information network, outperforms the
other compared methods under different overlapping percentages. That is because OSS-H is
able to discover the overlapping structure, but the rest of compared methods, i.e., NMF, SRC,
and CMRF, is not able to detect the overlapping structure of the clusters in heterogeneous
information networks.We notice that, in order to fairly compare the accuracy with each other,
OSS-H calls LSS-H since the number of clusters is provided.

Another interesting observation on Classic3-based overlapping data set is that all of these
three metric scores, i.e., omega, purity, and NMI, of the compared methods decrease with
the increase in overlapping percentage of documents. One possible reason for this phenom-
enon is the increasing overlapping cluster structure makes the cluster structure become more
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Table 5 Omega scores for
compared methods on Classic3
with different overlap
percentages

OV% l2(l3) NMF SRC CMRF OSS-H

5 15 0.806 0.630 0.537 0.896

20 0.810 0.731 0.532 0.895

25 0.788 0.733 0.532 0.903

10 15 0.739 0.620 0.507 0.854

20 0.737 0.595 0.500 0.850

25 0.731 0.652 0.508 0.854

15 15 0.686 0.605 0.465 0.752

20 0.687 0.499 0.467 0.763

25 0.674 0.530 0.469 0.775

20 15 0.619 0.392 0.464 0.726

20 0.615 0.561 0.469 0.731

25 0.613 0.562 0.473 0.740

Table 6 Purity scores for
compared methods on Classic3
with different overlap
percentages

OV% l2(l3) NMF SRC CMRF OSS-H

5 15 0.915 0.845 0.645 0.946

20 0.913 0.884 0.647 0.943

25 0.900 0.884 0.644 0.944

10 15 0.867 0.827 0.625 0.932

20 0.868 0.815 0.627 0.930

25 0.869 0.833 0.625 0.933

15 15 0.832 0.808 0.604 0.860

20 0.836 0.760 0.605 0.866

25 0.835 0.771 0.612 0.874

20 15 0.798 0.720 0.536 0.881

20 0.796 0.688 0.534 0.875

25 0.796 0.701 0.535 0.886

complicated and harder to be detected for all of the compared methods. The other possible
reason is the number of hybrid document, which originally belongs to two different types of
documents, is increasing with the overlapping percentage getting higher. In other words, the
ground truth for the number of clusters in Classic3 is changing from three to six. However,
even in the more complicated situations, e.g., OV% = 20, OSS-H still achieves the highest
scores over all three metrics.

The three different types ofmetric scores of the comparedmethods on data sets T1, T2, and
T3, which are extracted from on 3Source, are reported in Figs. 11, 12, and 13, respectively.
In this group of data sets, the high word dimension and overlapping cluster structures make
the task of detecting the correct cluster very challenging for all of the compared methods.
However, even in this case, OSS-H still achieves comparative performance. Concretely, OSS-
H achieves the average highest scores over all three metrics on data sets T1 and T2.We notice
that, when the number of word cluster is small, the performance of OSS-H is not as good
as when the number of word cluster is larger. Moreover, the performance changing point for
OSS-H is 15 for data set T1 and six for data set T2. The reason for this phenomenon is that
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Table 7 NMI scores for
compared methods on Classic3
with different overlap
percentages

OV% l2(l3) NMF SRC CMRF OSS-H

5 15 0.725 0.555 0.479 0.834

20 0.732 0.653 0.481 0.839

25 0.718 0.660 0.488 0.859

10 15 0.660 0.557 0.434 0.787

20 0.661 0.541 0.425 0.783

25 0.663 0.585 0.433 0.798

15 15 0.626 0.533 0.426 0.704

20 0.623 0.443 0.415 0.713

25 0.614 0.483 0.400 0.724

20 15 0.563 0.543 0.392 0.684

20 0.569 0.513 0.384 0.670

25 0.573 0.516 0.375 0.657
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Fig. 12 Metric score comparisons between different methods on data set T2. a Omega, b purity, c NMI

our overlapping strategy for OSS-H has a close relation with the number of clusters, and
the appropriate number of clusters provides higher accuracy information for detecting the
overlapping cluster structures. We also notice that NMF does poorly on T2, while CRFM
performs badly on T1.

Since all of the six types of documents in Reuter data source are covered in T3, whose
overlapping cluster structure is even harder to detect than T1 and T2, GSS-H is called in OSS-
H. We notice that, in data set T3, neither the number of document clusters nor the number
of word clusters is provided, OSS-H still outperforms the rest of other compared methods.
This further demonstrates the effectiveness of OSS-H for discovering the overlapping cluster
structures.
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Table 8 Most overlapping authors appear in 17 different author clusters

Alon Halevy, Amr El Abbadi, Beng Chin Ooi, Baruch Awerbuch, Christos Faloutsos,
C. Lee Giles, David J. DeWitt, Divesh Srivastava, Divyakant Agrawalm, D. R. Karger, Dimitris
Papadias, Gerhard Weikum, George Varghese, Hari Balakrishnan, Hans-Peter Kriegel, Hector
Garcia-Molina, Heikki Mannila, H. V. Jagadish, Ion Stoica, J. D. Ullman, Jennifer Widom,
Jeffrey F. Naughton, Jiawei Han, Jian Pei, Joseph M. Hellerstein, Jon Kleinberg, Johannes
Gehrke, Krithi Ramamritham, Minos N. Garofalakis, Michael J. Carey, Michael J. Franklin,
NickKoudas, Phillip B.Gibbons, PhilipYu, Piotr Indyk, Prabhakar Raghavan, RajeevMotwani,
Rakesh Agrawal, Ravi Kumar, Rajeev Rastogi, Raghu Ramakrishnan, Scott Shenker, Serge
Abiteboul, S. Muthukrishnan, Surajit Chaudhuri, Vipin Kumar, W. Bruce Croft, Wei-Ying Ma,
Wei Wang, Yossi Azar, . . . (total: 154)

7 Case studies

However, only OSS-H can automatically discover the overlapping clustering structures in the
heterogeneous information networkswith homogeneous links andheterogeneous information
links. We conduct case studies on DBLP data set, where the homogeneous relations exist
among authors and the heterogeneous relations exist among authors, words, and conferences.

In this data set, OSS-H discovers four clusters in conference field, 12 clusters in words
field, and 17 clusters in author field, respectively. We notice that the number of clusters in the
conference field detected by OSS-H is exactly the same with the number of research fields
where the 20 conferences come from. This demonstrates that OSS-H performs very well on
clustering conference field. We also carefully analyze the contents of the author clusters and
word clusters. We assign the IDs ranges from one to 17 to the different author clusters. We
note that the authors in clusters one, two, and three are mainly interested in database field,
authors in clusters 4, 7, and 11 are mainly focusing on artificial intelligence field, and authors
in clusters 5, 6, 8, and 10 are mainly from machine learning field, while the rest of author
clusters are mainly active in information retrieval. We observe that many authors appear in
more than one author clusters. This illustrates that many authors published papers in more
than one research area. Usually, the more clusters the author appears in, the wider research
fields and collaborating fields the author has. According to the H-index value,8 we list the
top 50 among all of the 154 most overlapped authors in Table 8. We know that H-index is
always used to present the achievement of a researcher. Table 8 reflects the phenomenon that
the active and fruitful authors always have relatively extensive cooperation network and wide
research interest, which fits for the fact of the real world.

8 http://arnetminer.org/.
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Table 9 Shared words and exclusive words in column cluster 2 and column cluster 11

Media, structure, models, graph, detection,
topic, predict, hash, cluster, matches,
attribute, spaces, experimentally, online,
supervised, pruning, system, feature, label
Gaussian, probabilistic, statistical,
semi-supervised, . . .

Web, information, semantic, XML, retrieval,
engine, search, language, sentence, query,
extract, feedback, bootstrap, negative,
rank, name, entity, keyword, . . .

Community, mining, social, pattern, streams,
outliers, uncertainty, classify, path, flow,
influence, evolution, workflow,
association, itemset, networks, . . .

(a) (b)

Fig. 14 Distribution of overlapping authors/words on DBLP data set. a Overlapping authors distribution, b
overlapping words distribution

In order to further verify the quality of the word clusters, in Table 9, we give the words
only appear in word cluster 2 in the first row of right column and the words only appear in
cluster 11 in the second row of right column, while the words appear in both word clusters 2
and 11 are placed in the left column of Table 9. We find the words contained in word cluster
2 are more frequently used by authors from information retrieval field, while the words in
cluster 11 are often used by authors from data mining field. Moreover, the set of words shared
by both word cluster 2 and word cluster 11 are more frequently used by authors from both
information retrieval and data mining areas.

In Fig. 14, the distribution of the number of overlapping authors is given. For a specified
point (x, y) in Fig. 14a, it means y authors appear in x different author clusters. An interesting
phenomenon is observed that the distribution of the number of overlapping authors and the
number of clusters obey power-law distribution. As shown in Fig. 14b, a similar phenomenon
is also observed in the distribution of overlapping words. This further illustrates that most of
the authors focus on one research field, and most of the words have very strong context.

8 Running time comparison

We conduct running time comparison on DBLP data set for its large size. Since NMF, SRC,
and CMRF cannot capture the homogeneous relations in DBLP data set, we only extract
the heterogeneous links, which are the links among authors, conferences, and words, from
DBLP data set for running time comparison. Moreover, for NMF, SRC, CMRF, and LSS-H,
we feed the number of clusters of each type discovered by GSS-H directly.
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Fig. 15 Running time
comparison between different
methods on DBLP data set
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The running time for different methods is shown in Fig. 15. Not surprisingly, NMF, SRC,
and CMRF cost much more time than our proposed methods, which are LSS-H, GSS-H, and
OSS-H. That is because, on the one hand, the time complexity of NMF is O(I T kNcNp),
SRC is O(I T (max(Nc, Np)

3) + kNcNp), and CMRF is O(I T (max(N 3
c , N 3

p))), where I is
the number of iterations, N is the number of data types, k = max(kc, kp) is the maximum
number of clusters in all data types, and Nc is the number of features in the central data
type, and Np is the maximum feature dimension among all different types of objects in the
heterogeneous information network [6,8,32]. On the other hand, as we analyzed in Sect. 5,
the time complexity of LSS-H, GSS-H, and OSS-H is linear to the number of links in the
heterogeneous information network. Hence, our methods are more appropriate for large data
sets. Even though GSS-H is based on LSS-H and need to invoke LSS-H multiple times for
automatically discovering the optimal number of clusters of each type, the running time of
GSS-H is still much less than that of NMF, SRC, andCMRF.We also notice that SRC needs to
solve the eigenvectors of the relational matrices which is very memory intensive, so it is hard
to be used for the large-scale data sets. From these results, we know that our proposedmethods
provide a much more efficient way for clustering heterogeneous information networks than
existing state-of-the-art methods.

9 Conclusion

Multi-type clustering on heterogeneous information networks is critical and significant for
discovering the cluster structures of the heterogeneous information networks. In this paper,we
proposed a general model for the heterogeneous information network that can be parameter-
free and support overlapping multi-type clustering. In this model, both the homogeneous
relations and heterogeneous relations are considered simultaneously. By condensing the
group of relation matrices, which are used to describe the relations of different types of
objects, we transfered the multi-type clustering problem into the information compressing
problem. Then, two greedy search algorithms, i.e., LSS-H and GSS-H, were devised. LSS-
H can discover different types of clusters with the knowledge of the number of clusters
in each type of objects in the heterogeneous information network, while GSS-H invokes
LSS-H many times and can discover the number of clusters automatically in each type of
objects when detecting the cluster structures of the heterogeneous information network.
By distinguishing the discriminative clusters of the heterogeneous information network,
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a novel overlapping multi-type clustering algorithm OSS-H was proposed. Experimental
results demonstrated our proposed methods outperform state-of-the-art methods for multi-
type clustering on heterogeneous information networks.
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