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Abstract Class imbalance is a significant issue in practical classification problems. Impor-
tant countermeasures, such as re-sampling, instance-weighting, and cost-sensitive learning
have been developed, but there are limitations as well as advantages to respective approaches.
The synthetic re-sampling methods have wide applicability, but require a vector representa-
tion to generate additional instances. The instance-based methods can be applied to distance
space data, but are not tractable with regard to a global objective. The cost-sensitive learning
can minimize the expected cost given the costs of error, but generally does not extend to non-
linear measures, such as F-measure and area under the curve. In order to address the above
shortcomings, this paper proposes a nearest neighbor classification model which employs
a class-wise weighting scheme to counteract the class imbalance and a convex optimiza-
tion technique to learn its weight parameters. As a result, the proposed model maintains the
simple instance-based rule for prediction, yet retains a mathematical support for learning
to maximize a nonlinear performance measure over the training set. An empirical study is
conducted to evaluate the performance of the proposed algorithm on the imbalanced distance
space data and make comparison with existing methods.

Keywords Class imbalance · Weighted nearest neighbor classifier · Structural classifier

1 Introduction

Class imbalance is a common issue in practical classification problems. Its disruptive effects
over a wide range of algorithms have motivated an increasing amount of research in recent
years [1,2]. A large imbalance in the number of instances causes classification algorithms
to over-generalize for the class that accounts for the majority of the training set. Typically,
an affected classifier achieves good overall accuracy but performs poorly with regard to
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the minority class, e.g., in receiver operation characteristics (ROC) and F1-measure. It is
especially problematic when the primary interest is on the minority class, e.g., credit card
frauds, network attacks, hotspots, or diseases [3]. The effects of class imbalance in various
algorithms have been elaborated in the past literature [1,2].

Previous studies on this topic have shown many useful countermeasures against class
imbalance, and many are based on one of three major approaches re-sampling, instance-
based learning, and cost-sensitive learning. Re-sampling is an intuitive approach to adjust the
balance of class distributions, and synthetic over-sampling, in particular, has been shown to
improve many classification algorithms [1,4]. Synthetic instances are typically generated by
interpolation, i.e., linearly combining, existingminority instances. For interpolation, the input
data need to be represented as a vector of attributes without nonlinear dependencies. In some
applications, however, the input is given as pair-wise similarities or has a domain-specific
structure. For example, the time series data consist of sequentially structured attributes, and
the popular distance measure based on warping generates a pair-wise dissimilarities [5].

Another intuitive approach to the class imbalance problem is to emphasize the minority
class with larger weights. In recent studies, the nearest neighbor algorithms with instance-
weighting have been proposed for classifying imbalanced data [6,7]. The minority instances
are given larger weights in the voting of the k-nearest neighbors to compensate for their
sparsity. Many of the instance-weighting approach can exploit pair-wise dissimilarities and
thus can be applied tometric or distance space data.Meanwhile,many instance-based learning
employs a bottom-up approach,withwhich the global objective is difficult to keep track. Their
parameter selection mostly relies on heuristics, e.g., choosing weights to maximize precision
and recall over a local subset, but for nonlinear performance measures [6], optimizing over
individual subsets does not assure improvement in the global performance. Furthermore,
choosing the size or the range of the local subset adds to the problem of model selection.

In many applications where the class imbalance occurs, the cost of misclassifying the
minority class is larger than that of others, which is a motivation for employing the cost-
sensitive learning (CSL), such asMetaCost [8] and cost-sensitive boosting [9], on imbalanced
data. However, the exact costs of errors are often unknown in practice, in which case general
objective functions, such as F1 and area under the ROC curve (AUROC), are used to evaluate
the performance. These nonlinear measures are not tractable in the CSL framework.

To summarize, the issues that limit current approaches against class imbalance are (1)
addressing a non-vector representation, e.g., distance space data, (2) learning optimal model
parameters, and (3) handling of nonlinear performance measures for the minority class. The
motivation of this work is to develop a classificationmodel that can address these three issues.

In this paper, an extension of the nearest neighbor classifier with a class-wise weighting
scheme is proposed to counter the class imbalance. Themathematical part of this work shows
the relation between the proposed model and a margin-based structural classifier [10,11] in
a dissimilarity-based feature space. Finally, a training algorithm that can directly optimize a
nonlinear performance measure with regard to the weight parameters of the proposed model
is presented. The proposed model makes predictions by a simple weighted nearest neighbor
rule, but gains effectiveness and efficiency from learning its parameters in a convex optimiza-
tion problem, as opposed to using local heuristics or validation for a discrete grid search.
Furthermore, an extension of the dissimilarity-based representation is proposed to exploit
additional information on the class structure of the data, while maintaining the consistency
with the optimization technique. An empirical study is presented to evaluate the proposed
method on a collection of imbalanced datasets and to compare with existing models.

The rest of this paper is organized as follows. Section 2 discusses the related work on
class imbalance, and Sect. 3 illustrates the motivation of this work. Sections 4 and 5 describe
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the proposed algorithm and the empirical results, respectively. The conclusion of this paper
is presented in Sect. 6.

2 Related work

2.1 Re-sampling on imbalanced data

When a population is dominated by a majority class, it causes a strong bias for the statistical
learning algorithms to over-generalize for that class. A biased model can reduce both the
empirical risk over the training data and the complexity of the hypothesis, thus is difficult to
avoid. The problem of class imbalance is mostly discussed in the two-class setting, and the
minority and the majority classes are also referred to as the positive and the negative classes,
respectively.

Various means to counteract the bias of imbalanced data have been proposed in the past
literature [1,2]. In effect, they expand the decision boundaries for the minority class to
reduce type-II errors, i.e., the misclassification of the minority class instances. Three major
approaches: re-sampling, instance-weighting, and cost-sensitive learning, have been covered
extensively in previous work.

Re-sampling adjusts the class distribution typically by over-sampling the minority class
instances or under-sampling the majority class instances. Other types of re-sampling include:
random, informed, and synthetic sampling [4]. Statistical re-sampling methods such as boot-
strapping can also enhance margin-based classifiers in imbalanced settings [12,13]. The
synthetic over-sampling is one of the most popular methods in this topic due to its affin-
ity with many classification algorithms. There is a rich literature on integrating synthetic
over-sampling into training of support vector machines and ensemble classification mod-
els [13–15].

Typically, synthetic instances are generated by linear combinations of the minority class
samples to interpolate and make up for the sparsity of the class. In order to linearly combine
the instances, their representation needs to be a vector of identical dimensionality and void of
nonlinear dependencies between attributes. Subsequently, its applications to domains where
input is represented in a distance space is limited.

In [5], a synthetic over-sampling method for metric and distance space data called SVM
with ghost points (SVM-GP) has been proposed. In SVM-GP, each synthetic minority
instance is embedded to the distance matrix as a pair of a row and a column that satis-
fies the triangle inequalities for every triplets of instances. The augmented distance matrix
is used as a pre-computed distance kernel for training the SVM. The advantage of SVM-GP
over the standard SVM was shown empirically in [5].

2.2 Instance-weighting and bottom-up approaches

Instance-based learning algorithms have drawn interest in the early studies on class imbal-
ance [16], and recent studies have also reported the effectiveness of the extended nearest
neighbor algorithms on imbalanced data [6,7]. In [7], a k-nearest neighbor algorithm with a
weighted voting model called Class Confidence Weighted k-NN (CCWkNN) algorithm has
been proposed. In order to counteract the imbalance, CCWkNN gives larger weights to the
minority class instances based on the class conditional probability. While the assumption of
a generative model is powerful, probabilistic modeling is usually difficult in cases where the
instance-based techniques are employed. For example, useful transformations for time series
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classification, such as dynamic time warping and discrete Fourier transform, are difficult to
use with a generative model.

The bottom-up approaches for building classification models are generally guided by
the performance at a local scale. The Exemplar-based k-nearest neighbor algorithm (ENN)
[6] employs an instance selection technique [17] to expand the decision boundary around
pivotal positive class instances, which are selected based on the local evaluation of precision
and recall. In [18], a bottom-up rule induction called BRACID is introduced for building a
rule-based classifier. BRACID generates rules from sets of k-nearest neighbor examples and
accumulates those with the best performance measures. In general, learning the model from
local subsets is computationally cheaper, but does not accumulate to an optimal performance
globally. The size or the extent of the local subsets significantly affects the performance in
the bottom-up approach and usually requires validation for tuning.

In [19], a nearest neighbor classifier based on a weighted non-parametric density estimate
has been proposed for classifying imbalanced data. Based on the relation between the non-
parametric density model and a margin-based classifier, the training algorithm for the weight
parameters were derived. However, its formulation only supported the binary classification
problem where the number of neighbors k was 1. This formulation is extended in this paper
to address general cases where the number of classes is more than 2 and k > 1.

2.3 Performance optimizing learning

In the topic of information retrieval, optimization problems for nonlinear performance mea-
sures such as F1 and AUC have drawn strong interests in relation to search engines and
recommendation systems [20–22]. However, convex optimization techniques are imple-
mented for specific problems and do not easily transfer to others. For example in [22], a
structural support vector machine (SVM) for optimizing the AUROC and F1 has been devel-
oped, but its optimization technique based on a cutting-plane algorithm does not extend to
distance and pre-computed kernels. The structural classifier proposed in this paper addresses
the distance space data based on the formulation of the weighted nearest neighbor density
estimation.

3 Illustration of motivation

This section first reviews the basic concept of non-parametric density estimation, underlying
the nearest neighbor classification. Secondly, the impact of class imbalance on the near-
est neighbor algorithm and the motivation of this work are introduced using an illustrative
example.

3.1 k-Nearest neighbor density model

The k-nearest neighbor density estimation is related toKernel density estimation (KDE) using
a uniform kernel, with automatically chosen parameters [23]. It is one of the nonparametric
density estimationmethodswhich is important in practice for building a classifier. Thepopular
k-nearest neighbor algorithm is considered a variation of this model, where k-neighbors
are selected from the mixture of classes, with identical behaviors in binary classification
problems.

LetX denote a set of n points, each taking a class value c ∈ {c1, . . . , cm}. Let us consider
a sphere centering on a point x ∈ X and encloses k points. In the following, it is referred to
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as the k-radius sphere and its volume is denoted by Vk(x). The k-nearest neighbor density
estimate of p(x) is

p(x) = k − 1

nVk(x)
(1)

It was shown in [23] that asymptotically, Eq. (1) gives an unbiased estimate of p(x) for large
k.

The conditional density of a point given a class is estimated in the same manner. Let ni
denote the total number of points of ci , and Vi,k(x) the volume of the sphere containing k
points of ci , respectively. The conditional density is

p(x |ci ) = k − 1

ni Vi,k(x)
(2)

Based on the probability density estimates, we can design a classifier that selects the class
with the maximum posterior probability. The class probability given x can be compared by
substituting the class prior p(ci ) = ni

n and (2) to the Bayes rule

p(ci |x) ∝ p(x |ci )p(ci ) = 1

n

k − 1

Vi,k(x)
(3)

The maximum posterior class ĉ is written as

ĉ = argmax
c∈{ci }mi=1

p(c|x) (4)

and from (3), ĉ is equivalent to cî , where

î = argmin
i

Vi,k(x)2 − 10 (5)

Note that k − 1 is independent of class and thus removed from the maximization.

3.2 The nearest neighbor classification with class imbalance

Figure 1 illustrates an artificial dataset which has a pervasive majority class. The blue and
red dots indicate the instances of the majority and the minority classes, respectively. The
rectangular region, indicated by the red dashed line in Fig. 1, contains the minority class
examples and is magnified in Fig. 2. Figure 2 shows the decision function of the nearest
neighbor algorithm over the magnified region, which reduces to a Voronoi diagram. It shows
that the presence of the majority class can induce type-II errors for a non-generalizing model
such as the nearest neighbor algorithm. Note that type-II errors occur even with more precise
means of density estimation. For example, KDE using a smooth kernel function produces a
slightly smoother but similar decision boundaries as long as equal emphases are placed on
the majority and the minority instances.

Reviewing the effect of imbalancewith regard to the formulation in Sect. 3.1, it came to our
attention that the conditional density estimate in (2) in particular is substantially susceptible.
That is, the conditional density of the majority class p(x |ci ) and p(x) are estimated over
regions of similar sizes, while the minority class uses a much larger k-radius. It can thus lead
to an under-estimation of the density for the latter. Learning the adjustments for the above
discrepancy in density estimation is the main approach of this paper.
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Fig. 1 2-Dimensional
imbalanced data

Fig. 2 The nearest neighbor rule
on imbalanced data

4 Class-wise nearest neighbor classification

This section describes the proposed method for minimizing the non-linear performance loss
over the imbalanced data. First, a non-parametric density model with weighting, which
emphasizes the importance of the minority instances, is introduced. Secondly, the problem of
learning the weight parameters from the training data is formulated. Thirdly, the procedure
for minimizing the non-linear performance loss is proposed. Finally, the implementation
detail of the learning algorithm is presented.

4.1 Weighted density model

LetX denote a set of n points. Each point takes a class value from {c1, . . . , cm}. Let us refer
to the sphere, which centers on x and has the smallest radius containing at least k instances
of class ci , as the class-wise k-radius sphere of ci . Such a sphere and its volume is denoted
by Si,k(x) and Vi,k(x), respectively. Figure 3 shows an illustration of the k-radius spheres for
the imbalanced data. The ⊕’s and �’s indicate the minority and the majority class instances,
respectively. The solid and dashed circles indicate the class-wise k-radius and the original k-
radius. The class-wise k-radius of the minority class is usually larger than that of the majority
class as shown in this example.
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Fig. 3 The class-wise k-radius
spheres

xx

S x,3

S 1,3 x

The key intuition to compensate for the sparseness of the minority class is to employ an
adjusted k-radius volume in place of Vi,k . Let us define the adjusted volume Ṽi,k using a
positive coefficient βi , as follows:

Ṽi,k(x) = 1

βi
Vi,k(x) (6)

The value of βi corresponds with the sparseness of the class, i.e., for the majority class, the
weight is close to 1 as the k-radius is similar to its class-wise k-radius. Meanwhile, since the
class-wise k-radius of the minority class is much larger than the k-radius, the βi is set to a
larger value.

The posterior class membership based on the adjusted volume is given as follows:

ĉ = argmax p(ci |x) = argmax
βi

Vi,k(x)
(7)

In the density-based classification algorithms [24], the inverse of Vi,k(x) is considered
the density of a point x , and Vi,k(x) is commonly approximated by the distance to the
kth-nearest neighbor Dk(x). Based on this approximation, (7) can be seen as a weighted k-
nearest neighbor classifier.We refer to this model as the weighted class-wise nearest neighbor
(WCNN) classifier. The procedure of classifying a new instance x in the WCNN classifier is
as follows:

• For each class ci , compute the distance to its kth-nearest instance of class ci in the training
data Di,k(x) as an approximation of Vi,k(x)

• Compute the maximum posterior class

ĉ = argmax
ci

βi

Di,k(x)
= argmin

ci

Di,k(x)

βi
(8)

Compared to the nearest neighbor density model in Sect. 3.1, Eq. (8) expands the decision
boundaries of the minority class based on the set of weights {βi }mi=1.

4.2 Discriminative formulation of the WCNN classifier

Let us first define the training of the WCNN classifier in the two-class case. Let x denote an
input, not necessarily of a vector form,whose approximation of the k-radius volume Ṽi,k(x) is
available. A vector representation of an instance x based on the class-wise k-radius volumes
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is defined as follows

v = (v1, . . . , vm) =
(
Ṽ1,k(x), . . . , Ṽm,k(x)

)
(9)

where m denote the number of classes.
The majority and the minority classes, denoted by ci and c j , are assigned the class values

−1 and +1, respectively. If the approximation is positive and monotonic, it can be shown
that

Theorem 1 For a binary classification problem, the maximum posterior class estimate of
the new instance x, in (4), can be given by a discriminative function with a linear decision
boundary in a following form.

f (v;w) = sgn(wv) (10)

For the proof of Theorem 1, the following lemma is derived with regard to the posterior
class probabilities introduced in Sect. 3.1,

Lemma 1 The decision function based on the logarithmic ratio of the posterior class
probabilities p(ci |x), p(c j |x) and one based on that of the class-wise k-radius volumes
Vi,k(x), Vj,k(x) are equivalent, i.e.,

sgn

(
log

p(c j |x)
p(ci |x)

)
= sgn

(
log

Vi,k(x)

Vj,k(x)

)
(11)

The proof is straightforward and is omitted here.
Combining the result of Theorem 1 with the approximation of the k-radius volume using

the distance to the kth-nearest neighbor

Ṽi,k(x) = Di,k(x)

βi
(12)

with the weight βi results in the following model

argmax
c

p(c|x) = sgn
(∑

cq∈{ci ,c j } − cqvq
)

(13)

= argmax
c

⎛
⎝−c

∑
cq∈{ci ,c j }

cq
Dq,k(x)

βq

⎞
⎠ (14)

Equation (14) is a linear classifier based on the class-wise nearest neighbor distancesDq,k . It
is parametrized by βq and returns an identical output as the nearest neighbor classifier when
βq = 1 for all q . Using a greedy algorithm with such an initial solution, the learned model
can perform at least as well as the nearest neighbor classifier.

Let us now extend Theorem 1 to the general case where multiple majority and/or minority
classes exist. It is assumed that the classes can be divided into sets of majority and minority
classes. The distinction of the two sets is usually not a critical issue as the cardinality of each
class is apparent from the training set. Additionally, since the target class is a minority in
most cases, non-target, intermediate-sized classes can be included in the majority set without
harm. Finally, the effect of class imbalance among minority classes is limited in practice as
minority classes are commonly not pervasive in the data.

Under the above assumption, the class imbalance between multiple majority and minor-
ity classes can be accounted for by comparing the class memberships separately among the
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majority and the minority classes, and then comparing the highest conditional density esti-
mates from each group. The key intuition is to implement such a decision function with a
structural classifier [10,11].

In [11], the structural classifier is defined as a classification model with multiple input
and output variables. The general form of the decision function of a structural classifier is
comprised of an inner product of a linear discriminant function and an optimizer over the
class variable Y , which replaces the sign function used in the binary case. In the following,
a decision function f of above form, which returns a maximum posterior class based on the
nearest neighbor density estimate, is derived.

Let M = {i}mi=1 and N = {− j}nj=1 denote the class values of majority and minority,
respectively, and d(x) the distance-based representation of x

d(x) = (D1,k(x), . . . ,Dm+n,k(x))

Let î, ĵ denote the classes of highest posterior estimates from themajority and theminority,
respectively. They relate to the log ratio of posteriors between aminority and amajority classes
as

(î, ĵ) = arg min
j∈N max

i∈M log
p(i |x)
p( j |x) (15)

The maximum posterior estimate ĉ is either î or ĵ , thus rewritten as

ĉ = argmax
c∈M∪N

log p(c|x) (16)

=
⎧
⎨
⎩
î if sgn

(
log p(î |x)

p( ĵ |x)
)

= 1

ĵ otherwise
(17)

Since Lemma 1 stands for all combinations of (i, j) ∈ M ×N , the decision function based
on the log posterior ratio is rewritten using the vector of adjusted volumes as

sgn

(
log

p(i |x)
p( j |x)

)
= sgn

(
Ṽi,k(x) − Ṽ j,k(x)

)
(18)

= sgn
(
(ui − u j )

�v
)

(19)

where ui is a unit vector whose i th element is 1.
Let G denote the log ratio of the posteriors G(i, j) = log p(i |x)

p( j |x) and φ an optimizer which
selects one input of G.

φ(i, j) =
{
i if sgn(G(i, j)) = 1

j otherwise
(20)

From (19) and (20), (17) can be rewritten as

argmax
c∈M∪N

log p(c|x) = φ

((
uî − u ĵ

)�
v
)

(21)

Furthermore, the discriminant function F is written in a inner product form as

F(x;w) = (uî − u ĵ )
�v (22)

= Dî,k(x)

βi
− D ĵ,k(x)

β j

= 〈w, Ψ (d(x))〉 (23)
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where w = (β−1
1 , . . . , β−1

m+n) and Ψ is the feature function

Ψ (x) =
(
uî − u ĵ

)�
d(x)

Note that î and ĵ are both functions of x .
From (21) and (23), it follows that

Theorem 2 the maximum posterior estimate is given by a decision function f defined by a
linear discriminant function and an optimizer φ, of the following form.

f (d;w) = φ (〈w, Ψ (d)〉) (24)

Compared to the binary case in (14), the sign function is replaced by the optimizer φ and the
nearest neighbor distance is replaced by the feature function Ψ in (24). Let us refer to the
structural classifier of the above form as the Structural Nearest Neighbor (SNN) classifier.

The prediction of the SNN classifier is computed in a modified procedure of the nearest
neighbor density estimation and replicates that of the WCNN classifier in the multiclass
problem.

Given a new instance x ,

• Select a majority class ci , for which the distance between its kth-nearest instance and x
is smallest, from the majority classes M .

• Select a minority class c j , for which the distance between its kth-nearest instance and x
is smallest, from the minority classes N .

• Based on the approximate density Di,k(x) and Di,k(x), select the maximum posterior

estimate between ci and c j , such that ĉ = argminc∈{i, j}
Dc,k
βc

The weight parameters of the WCNN classifier emphasizes a minority class relative to each
majority class, i.e., the emphasis on a minority class i against a majority class j is quantified
in the pair of weights (βi , β j ). The output ĉ is identical to that of (17) when βq = 1 for all
q . Learning w is a quadratic programming problem as described in the next section.

4.3 Learning SNN classifier with nonlinear performance loss

In [22], the structural SVM was proposed for problems where the loss is nonlinear, i.e., not
decomposable to the predictions on individual instances. For reference, the typical formula-
tion of learning the structural SVM is shown in Appendix 1. In this section, the training of the
SNN classifier to optimize a nonlinear performancemeasure is formulated as a quadratic pro-
gramming problem. Its approximate solution can be obtained by extending the algorithm for
the structural SVM learning. For the sake of conciseness, this section focuses on the binary
classification problem. The intuition for addressing more than one majority and minority
classes is similar, but due to its length, the detail is deferred to Appendix 2.

Let (x1, y1), . . . , (xη, yη)denote the training datawhere y takes a class value from {−1, 1}.
x itself does not need to be a feature vector, but its representation based on the distances to
the nearest neighbor of respective classes, d(x), must be available. The input feature is
represented as X = (d(x1), . . . ,d(xη)) and the output as y = (y1, . . . , yη) respectively.

In [11], the intuition for optimizing a nonlinear performance loss is to formulate the
decision function such that the input and the output of all instances can be considered in each
constraint of the quadratic programming problem. To this end, X is considered an instance
of the multivariate input variable X and y an instance of the multivariate output variable Y .
Further, the loss function Δ is associated with the nonlinear measures, e.g., AUC or F1, as
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the loss in the performance given an arbitrary prediction y′ compared to the one given the
correct output y. Δ is thus written as a function of y and y′,Δ(y′, y).

Let us define the feature function Ψ of the variables X and Y as

Ψ (X, Y ) =
η∑

i=1

yi

[
1 0

0 −1

]
d(xi ) (25)

The discriminant function can be written in a linear form as

F(X, Y ;w) = 〈w, Ψ (X, Y )〉
where w is the weight vector w = (β+1, β−1). The decision function f , which chooses the
output y with the maximum margin, is written as follows:

f (X;w) = argmax
Y

F(X, Y ;w)

= argmax
Y

η∑
i=1

yi (w�d(xi )) (26)

The decision function for individual input, f ′, is obtained by decomposing the summation
in (26) for each d

f ′(X;w) = argmax
y∈{1,−1}

y(w�d) (27)

with the same form as (14).
In [10], the minimization of the loss Δ with regard to a linear decision function in the

form of (26) is formulated as a quadratic programming problem.

Problem 1

min
w,ξ≥0

1

2
‖w‖2 + Cξ (28)

subject to ∀z ∈ {−1, 1}η\{y},
〈w, Ψ (z, X)〉 − 〈w, Ψ (Y, X)〉 ≥ Δ(z, Y ) − ξ (29)

where z = (z1, . . . , zη) denotes the vector of predictions on the output variable and ξ is the
slack variable that sets the upper-bound on the loss.

Equation (28) is the minimization of the loss Δ subject to the constraints on the margins
in the feature space and is solved by a cutting-plane method [10]. The detail of the algorithm
is described in Sect. 4.5.

Equation (1) reformulates the nearest neighbor classification of distance space data as a
quadratic programming problem. WCNN gains a significant advantage from optimizing the
weight parameters, as opposed to selecting a combination of parameter values by validation.
Furthermore, the capacity to handle multiclass problems, as shown in the next section, allows
us to exploit additional information on the class structure with an extended distance feature
representation.

4.4 Supplementary component features

From its definition in Sect. 4.2, the SNN classifier addresses an m-class classification prob-
lem in anm-dimensional distance feature space. When respective classes are generated from
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single components, searching for an m-dimensional mapping that separates the class com-
ponents well is a viable approach. In practice, however, one class may be comprised of more
than one components. Particularly, in problems with class imbalance, the majority class is
often a mixture of unannotated components. It can cause a high perplexity in the distance
feature space and prevent effective training of the WCNN classifier.

An intuitive countermeasure for such a problem is to recognize distinct subcomponents as
sub-classes and include them in the distance features. To this end, we introduce a clustering
procedure that extracts the subcomponent structure from the training data. We design a
supervised clustering, which exploits the label on the training instances to identify significant
subcomponents comprised of instances from only one class.

Given a training data X and labels y taking a class value from C = {ci }mi=1,

1. Generate a hierarchical tree H of X by single-linkage clustering.
2. Extract all subtrees of H with λ or more leaves that are of the same class. Let us refer to

these subtrees as uniform subtrees.
3. Eliminate all uniform subtrees that are a subtree of another uniform subtree.
4. Generate a distance representation of x ,

d′(x) = (D1,k(x), . . . ,Dm+|U |,k(x)),

where Dm+ j,k denotes distance from x to its kth-nearest leaf in the j th LUS.

The aim in step 3 is to eliminate insignificant components, which is also essential for
efficiency. Let us refer to the subtrees remaining after the elimination in Step 3 as the largest
uniform subtrees (LUS) and denote the set of LUS’s by U . Each LUS represents a uniform
subcomponent within a class, and λ is a parameter specifying the minimum number of leaves
in LUS. Its value should be chosen such that the probability of the partition forming by
chance is negligible. For practical problems, λ larger than at least 30 is suggested. Note
that the purpose of clustering is to decompose each class into its subcomponents and not to
estimate the mixture model or the number of components accurately.

Based on the input labels and partitioning, a high-dimensional feature space for SNN is
defined such that the outputs of the SNN and the WCNN classifiers remain consistent. A
new set of labels y′ is generated by replacing the class value of each leaf of the j th LUS
with cm+ j . Each new label takes a value from C ′ = {c1, . . . , cm+|U |}. The new training data
X ′ = {d′(x)} and y′ replace X and y as the input for the SNN classifier. Let u j denote
the j th LUS and y′(u j ), the vector of class values of u j in y′. The SNN classifier can repli-
cate the output of the WCNN classifier using (X , y) ∪ (u1, y′(u1)), . . . , (u|U |, y′(u|U |))
as the training examples. The supplementary labels allow the SNN classifier to assign
different relative importance to the subcomponents in the majority class. The predic-
tions on the new labels can be associated with a class in the original labels without
confusion.

The clustering procedure described above is related to data cleaning [25]. That is, the
label is used passively for identifying agreements in the clustering structure and the class
structure, which is referred to as the class-clusters [1]. There is a distinction from constrained
clustering with cannot-link constraints [26,27], which actively exploit labels for discovering
the cluster structure. Limiting the use of supervising information in the exploratory learning
phase is justifiable, since the proposed method makes more sophisticated use of the labels in
the subsequent learning and feature selection process.
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Algorithm 1WCNN Learning Algorithm with Supplementary Component Features

1: INPUT: Pair-wise dissimilarity matrix of training data D = [
d(xi , x j )

]
N×N , labels Y = {yi }Ni=1, k-

radius, precision ε

2: OUTPUT: LUS U , weight vector w = (β−1
1 , . . . , β−1

υ )

3: function ExtractLUS(·): extract largest uniform subtrees of λ or more leaves from single-linkage clustering
tree

4: METHOD:
5: Initialize m ←(# of class values)
6: U ←ExtractLUS(D), υ = #U
7: for i = 1, . . . , N do
8: Generate di = (D1,k (xi ), . . . , Dm,k (xi ), . . . , Dm+υ,k (xi )) and compute the feature function Ψ (25)
9: end for
10: Z = ∅
11: repeat
12: Find z ∈ {1,−1}N which incurs the maximum violation when substituted to (29)
13: if the violation exceeds the tolerable precision ε then
14: Update Z ← Z ∪ {z}
15: Compute w by minimizing (28)
16: end if
17: until The violation is within the precision ε

18: return U ,w

4.5 Algorithm and discussions

The pseudocode of the WCNN learning algorithm is presented in Algorithm 1. Lines 7–9
describe the mapping of pair-wise dissimilarities to the supplementary component feature
space. Lines 10–17 describe the iterative cutting-plane method for solving Problem 1.

To make predictions on the test instances with the supplementary labels, the class labels
are replaced by them in the testing procedure. Given a predicted subcomponent, one can
match the supplementary label to the class of the original label.

The complexity of the WCNN classifier is discussed separately for the training phase
and the testing phase. In training, the complexity of solving for optimal w is a polynomial
order [28]. With regard to the testing phase, the complexity of the WCNN algorithm is in the
same order as the k-nearest neighbor algorithm. One may achieve O(log n) given an ideally
balanced binary search tree.

5 Empirical results

Our empirical study focuses on the distance space data with class imbalance, where previous
studies on the type of data have been limited due to the difficulty of the re-sampling methods.
For mapping the time series data to the distance feature space, a domain-specific distance
measure called dynamic time warping (DTW) is used. In the following experiment, all input
data are given in the form of pair-wise DTW distances.

5.1 Data description

Table 1 shows the summaryof thefive time series benchmarks used in this experiment.Control
Chart [29] and CBF functions [30] are synthetic datasets used as benchmarks inmany studies.
Lightning is an oft-used real-world dataset, which comprises lightning transients recorded
by an orbital satellite.
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Table 1 Summary of time series datasets

Control chart CBF Person activity Characters Lightning

Series length 60 129 [21:147] [124:171] 3181

Minority class Increase/decrease Bell Falling g/q 2/3/4

Up-shift/down-shift Funnel Lying-down y/z

Ratio of minority 0.167 0.100 0.148/0.0905 0.250 0.140/0.116/0.157

n-Fold 2 5 10 5 10

Two other real-world time series data from UCI machine learning repository [31] were
also included. The Character Trajectories dataset contains pen-tip trajectories of single pen-
down characters captured at 200Hz with a tablet PC. The trajectories of each character have
been pre-formatted to the same length. In order to focus on substantially difficult tasks, four
mutually similar characters were selected: g, q, y, and z, to set up the classification problems.

The Localization Data for Person Activity dataset consists of 3D coordinates recorded by
sensor tags [32]. Four tags were worn on both ankles, the belt, and the chest of a person,
respectively. Their coordinates were transmitted at 10Hz, while the person performed multi-
ple activities. Each coordinate is annotated with a time-stamp and a label indicating one of 11
activities performed during a session. Five people participated in the test, and five sessions
were recorded for each person. This experiment focuses on the sequences of activities where
walking is followed by falling and lying-down. They are important for the discriminative task
in monitoring applications, as they indicate potential risk and a change of state, respectively.

5.2 Baseline methods and evaluation

Baselines were comprised of methods taking pair-wise dissimilarity input and those taking
vector input. For the first group, the pair-wise DTW distances were computed as their input.
For the second group, the time series in vector forms was given directly as their input.

The first group includes the ENN [6] algorithm, SVM-kNN [33], and SVM-GP [5]. The
two SVM methods use the DTW distance matrix as pre-computed kernels. SVM-GP imple-
ments a synthetic over-sampling by local embedding in the pre-computed kernel matrix.
SVM-kNN is a hybridization of the support vector machine and the k-nearest neighbor algo-
rithm, which has a similar effect as under-sampling in an imbalanced setting. The nearest
neighbors and the approximations of the k-radius volumes were computed using DTW.

The second group includes synthetic over-sampling methods: SMOTE [34] and SMOTE-
Boost [35] and a cost-sensitive learning framework MetaCost [8]. Some of the nearest
neighbor-based algorithms, e.g., CCWkNN [6], which builds probabilistic generative models
and the large margin nearest neighbor algorithm [36] which uses an affine transform, also
require vector representations and belong to this group.

The synthetic over-sampling methods were evaluated with standard classifiers, and the
results with the best average performances, which were the RBF kernel SVM and Random
Forest [37], respectively, are reported. For the MetaCost framework, the C4.5 decision tree
was used as theweak learner following the setting in [6], and the relative cost ofmisclassifying
the minority class instances was set to the inverse of the class ratio, shown in Table 1.

The k-nearest neighbor algorithms were run using k = 1, 3, 5, and SVMkNN were run
using k = 5, 10, 20. In this paper, the best results of the respective baseline methods are
reported. The implementation of LibSVM[38]was used for training SVMwith pre-computed
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distance kernel. The SNN classifier was trained to minimize AUC using an implementation
based on SVM-light.1 k = 3 was chosen for the k-radius from a preparatory experiment
using an independent dataset.

In previous studies, the area under the ROC Curve has been widely used as the evaluation
measure for imbalanced classification problems. However, [39] has reported that AUROC
yields an optimistic view of the expected loss in some cases and suggested the use of the
area under the precision-recall curve (AUPRC). AUPRC is primarily used for comparisons
in this study. For the Control Chart data, we follow previous work with the default split of
train/test sets and use two-fold cross-validation. Depending on the total number of minority
class examples, other datasets were split randomly into 5 or 10 folds for cross-validation, so
that each class was divided evenly between the folds and there were at least 20 minority class
examples in each fold. Maintaining the number of minority class examples in the test fold
is important when evaluating F-measure and AUPRC, e.g., the recall reduces to a discrete
value when there is only one positive example.

For each baseline, the signed-rank test is performed with an alternative hypothesis that
the median AUC of WCNN is greater. Note that the purpose of each test is to compare the
proposed algorithm with a baseline method individually and not to rank all methods in order.
With regard to the statistical tests for comparing different classifiers, in [40], the signed-rank
test and the Mann-Whitney test were compared in a controlled experiment, and the latter was
reported to be more powerful. However, the use of a more conservative test is justified for
this study as significant differences between the methods were detected.

5.3 Results

Table 2 summarizes the AUPRC values. The first column shows the minority classes of
respective problems. The second column shows the rank of WCNN regarding AUC. The
asterisk after the rank indicates that there is a tie with one or more columns. Rest of the
columns show the AUC values of the baseline methods. The largest value on each row is
indicated in bold.

In Table 2, the SVM-GP shows the highest averages among the baseline methods over
the artificial datasets. No baseline methods exhibited a clear advantage over others in the
real-world datasets, but the first group, using pair-wise distance input, shows a slight overall
advantage to the second group. This advantage may be gained from the use of DTW, as
reported in previous studies on time series classification. Meanwhile, the WCNN algorithm
achieved the best AUPRC in 15 of 17 datasets with the worst rank of 3. The p values of the
signed-rank tests are shown on the bottom row. For example, the p values of the hypothesis
that the median AUPRC of WCNN is less than or equal to that of SVMkNN is 0.362%. In
all tests, the null hypotheses were rejected with 0.5% confidence level.

5.4 Scale analysis and graphical examination

This section presents analyses on additional properties of the proposed method. First, a
scale analysis, which evaluates the performances of the proposed method under larger class
imbalance, is presented. Secondly, the distance feature spaces and the prediction model are
graphically examined.

The scale analysis is conducted using an artificial dataset, CBF functions, with which the
ratio of the minority class instances is controllable. The ratio of the minority class instances
were changed from 0.0066, 0.016, 0.032, to 0.062. Figure 4 illustrates AUCs at respective

1 http://svmlight.joachims.org.
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Table 2 Summary of area under the precision-recall curve

Minority class Rank WCNN SVMkNN ENN SVMGP SMOTE+RF SMOTEBoost MetaCost

Increase 1 0.999 0.902 0.952 0.992 0.889 0.965 0.746

Decrease 1 0.997 0.917 0.961 0.984 0.903 0.953 0.678

Up-shift 1 0.997 0.906 0.927 0.972 0.841 0.956 0.548

Down-shift 1 0.999 0.872 0.928 0.952 0.734 0.951 0.601

Bell 1* 1.00 0.955 0.989 1.00 0.983 0.844 0.942

Funnel 1 1.00 0.910 0.990 0.947 0.823 0.553 0.567

Falling 1 0.592 0.470 0.371 0.470 0.506 0.574 0.461

Lying-down 1 0.541 0.488 0.480 0.479 0.343 0.474 0.528

HW-g 1 0.984 0.894 0.944 0.950 0.856 0.879 0.765

HW-q 1 0.995 0.984 0.990 0.990 0.952 0.978 0.940

HW-y 3 0.918 0.892 0.943 0.939 0.861 0.847 0.794

HW-z 1 0.985 0.963 0.981 0.981 0.922 0.942 0.872

L2 1 0.805 0.590 0.394 0.373 0.639 0.570 0.574

L3 1 1.00 0.787 0.975 0.850 0.838 0.557 0.746

L4 2 0.904 0.875 0.900 0.912 0.704 0.579 0.521

Mean rank – 1.3 4.3 3.5 2.7 5.1 4.9 6.2

p-value (×100) – – 0.0362 0.143 0.419 0.0446 0.0666 0.0363

Fig. 4 AUC values versus minority class ratio

ratios. The x-axis indicate the ratio of the minority class instances in log scale, and the y-
axes correspond to the AUC values. The AUROC and the AUPRC values are indicated by
� and �, respectively. It is shown that AUPRC decreases with the minority class ratio, but
is still very potent at the minority class ratio of 1:150. The rate of decrease is linear to the
log ratio, suggesting that the proposed method can be robust for very small minority class
ratios. Figure 4 also indicates that the value of AUROC may provide an optimistic view of
the performances in imbalanced data.

For graphical analyses, we select two datasets, on which the proposed method achieved
the highest and the lowest AUCs in Sect. 5.3: CBF function and Person Activity. The distance
feature space for the two datasets is illustrated in Figs. 5 and 6, respectively.
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Fig. 5 2-D projections of the distance feature spaces (CBF)
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Fig. 6 2-D projections of the distance feature space (person activity)

In Fig. 5, three plots on the left column illustrate the same set of test instances. The
instances of Cylinder, Bell, and Funnel classes are shown by +,�, and ×. There are three
distance features, which represent the weighted distance from the nearest Cylinder, Bell, or
Funnel class instances, indicated as: DCylinder, DBell, or DFunnel, respectively. The x- and y-
axes on each plot correspond to a different combination of features. The rectangular regions
in the left column is magnified in the plot to the right. The dashed line in each plot shows the
boundary where the two weighted distances are equivalent, i.e., for the instances below the
boundary, the class corresponding to the y-axis is closer and for the instances the boundary
line, the class corresponding to the x-axis is closer.

In Fig. 5, the class distributions in the distance feature space are well-separated overall,
making the baseline performances are high as shown in Sect. 5.3. However, there exist
some perplexities or overlaps in Fig. 5, from the generative noise. The proposed method can
improve on the baseline performances by learning the weights, which adjusts the dashed
lines, to optimize AUPRC.

The two instances of � with underscores are highlighted for further examination. These
target class instances are selected in particular because the k-NN algorithm, which is very
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Table 3 Comparison of AUC with/without SCF (control chart)

ID Setup WCNN with SCF Without SCF

Positive (+1) Negative (−1) AUROC AUPRC AUROC AUPRC

i Cyc, Inc, Dnw Nrm, Dec, Upw 0.977 0.977 0.666 0.722

ii Nrm, Inc, Dec Cyc, Upw, Dnw 0.994 0.987 0.874 0.798

iii Nrm, Dnw Cyc, Inc, Dec, Upw 1.00 0.998 0.605 0.659

iv Cyc, Inc Nrm, Dec, Upw, Dnw 0.980 0.972 0.697 0.740

robust for CBF data as described in [41], err on them. The errors occur because their nearest
Funnel class training instance is closer to them than the nearest Bell class training instance.

In the WCNNmodel, meanwhile, the nearest majority class between the Cylinder and the
Funnel classes is first chosen. The plots on the top row show that these instances are closer to
the funnel class. Its distance is then compared to the distance to the minority class, i.e., Bell.
The plots on the bottom row shows that the two instances are closer to a Bell class instance
than Funnel; therefore, these instances are correctly classified by WCNN.

Figure 6 illustrates the two-dimensional projections of the person activity dataset to the
distance feature space. Four combinations of features are selected for the sake of concise-
ness, and the distinction is limited to Falling and all other classes for comprehension. The
class distribution is highly perplexed for this dataset as shown in Fig. 6, and the baseline
performance is much lower as a result. The training of WCNN was still able to improve the
performance on such data as shown in Sect. 5.3.

5.5 Analysis on supplementary component features

In this section, we attempt to demonstrate the merit of the supplementary component features
(SCF) for WCNN using artificial and real-world datasets. The performance of the WCNN
classifier without SCF was used as the baseline for comparison. In order to show the effect
of SCF explicitly, classes with distinct subclasses, which are the primary motivation of SCF,
were generated in the artificially dataset. From the control chart dataset, the class values
normal (Nrm), cyclic (Cyc), increasing (Inc), decreasing (Dec), upward-shift (Upw), and
downward-shift (Dnw) were reassigned to either positive (+1) or negative (−1) classes. The
re-assignment setups are shown in the first three columns of Table 3. The setupswere designed
such that each class comprises distinctly different patterns. No modifications were made on
the time series of the Control Chart data. The two real-world datasets, Person Activity and
Character Trajectories, were used without modification on the label or the time series data.
The settings for cross-validation and the distance function were kept from Sect. 5.3.

The parameter of SCF, the minimum size of the largest uniform subtrees, λ, was set to 30
as suggested in Sect. 4.4. That is, clusters with more than λ leaves contributed to the distance
features used by WCNN. The rest of the procedure is the same with and without SCF.

The results on the artificial datasets are shown in Table 3. The fourth and fifth columns
show the AUC values of WCNN with SCF and the last two columns show the baseline
performances. The higher values of AUPRC and AUROC are indicated in bold. Table 4
summarizes the performances on the real-world datasets. The baseline performances are
indicated as ‘w/o SCF’. The higher values are indicated in bold.

In Table 3, the AUC values of the baseline show significant drop from the empirical results
in Sect. 5.3. A graphical analysis in the distance feature space showed that the distributions of
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Table 4 Comparison of AUPRC with/without SCF (real-world datasets)

Falling Lying-down HW-g HW-q HW-y HW-z

WCNN with SCF 0.593 0.629 0.984 0.994 0.920 0.985

WCNN w/o SCF 0.592 0.541 0.984 0.995 0.918 0.985

the positive and the negative classes largely overlap, which can be attributed to the perplexity
of similarities between subclass patterns of majority and minority classes. For example in
setup (i), Increasing and Upward-shift classes, which are respectively re-assigned to posi-
tive or negative classes, are similar to each other than to the other subclasses in the same
class. Meanwhile with SCF, the WCNN classifiers maintained competitive AUC. Examining
the clustering output, LUS corresponding to respective subclasses were identified, and the
perplexity of the distance feature space were contained as a result.

In Table 4, a substantial improvement was made on the Lying-down class of the Person
Activity dataset, for which the AUC was originally low. There were also small differences
in two classes of the Character Trajectory dataset. No substantial decline from the baseline
were observed.

In a well-prepared dataset, there is unlikely to be distinct subclasses of a minority class.
However, majority classes often are unannotated in practice, and identifying substantial
subcomponents in them invariably help reduce the loss of information when the pair-wise
distance input is transferred to a distance feature space. Given that no detriments from using
SCF were observed in the empirical results on the real-world data, we believe that the use of
SCF with WCNN can be beneficial while carefully managing the possible demerits such as
overfitting from generating trivial and too many distance features.

6 Conclusion

This paper proposed an extension of the nearest neighbor density estimation with a class-
wise weighting to address the issues of class imbalance. Further, an optimization problem
for learning the weights with respect to a nonlinear performance measure over the training
set was presented. The resulting model has a strong mathematical support for performance
optimization based on the formulation of a structural classifier proposed in this paper and
maintains as much applicability to distance-based data as the instance-based model.

In the empirical study, the proposed method outperformed other methods for imbalanced
distance space data consistently. The results indicate that the introduction of the optimization
technique can contribute to a significant advantage for problems with this type of represen-
tation.

An important principle in the proposed approach is addressing the main problem, optimiz-
ing the performancemeasure over theminority class, directly rather than dividing the problem
in two parts: balancing the class distribution of the data, then learning the classifier. Note that
it is not our claim that the instance-weighting approach has an inherent advantage over other
approaches for class imbalance. In fact, the intuitions for avoiding the over-generalization to
the majority class are similar to the re-sampling approach. The key difference is the convex
optimization technique for training its parameter vectors in relation to the global objective. In
our view, the advantage of avoiding the computationally and knowledge intensive alternative
of a grid of search by validation is substantial in practice.
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Appendix 1: Structural SVM learning

A structural classifier addresses a problem with multivariate input or output variables that
are structured or dependent [10,11]. The dependency is captured in the max-margin learning
formulation using a feature function and an optimizer. The feature function Ψ generates an
arbitrary representation from a pair of input/output values (x, y). A discriminant function
F : X × Y → R is then defined as an inner product of a weight parameter w and Ψ

F(x, y;w) = 〈w, Ψ (x, y)〉 (30)

From F and the optimizer that selects a class over Y , the decision function f (x;w) is defined
as

f (x;w) = argmax
y

F(x, y;w) (31)

A typical example of the structural classifier is the multiclass SVM described in [11]. Let
{c j }nj=1 denote the class values and Λ(c j ) = e j the binary encoding of c j , i.e., a unit vector
whose j th element is 1. The feature function Ψ is defined as

Ψ (x, y) = x ⊗ Λ(y) (32)

where ⊗ denotes the tensor product.
Substituting the feature function (32) and a stack of vectors w = [w′

1, . . . ,w
′
p] as para-

meters into (30), the discriminant function produces a set of margins for respective classes.
Subsequently, the class predicted by (31) is the class with the largest margin.

Training of the structural classifier is formulated in a quadratic programming problem [10].
Given the training samples {(xi , yi )}ηi=1,

Problem 2

argmin
w,ξ≥0

1

2
‖w‖2 + Cξ

subject to ∀i,∀y �= yi ,

〈w, Ψ (xi , yi )〉 − 〈w, Ψ (xi , y)〉 ≥ 1 − ξ (33)

An approximated solution of Problem 2 can be obtained by a cutting-plane algorithm [22].

Appendix 2: Multiclass formulation of SNN classifier

This section describes the formulation of SNN classifier learning with multiple majority and
minority classes. Similar to the binary classification problem described in Sect. 4.2, the main
intuition is to maximize the margin between the correct input and all other cases through the
constrained minimization of the �2-norm.

LetM = {i}mi=1 andN = {m+ j}nj=1, denote the class values of themajority andminority
classes, respectively. Note that the class values ofN differ from Sect. 4.2. For mathematical
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convenience, a matrix notation W is introduced to represent the weights considered in the
selection of the nearest neighbors among different classes. The relation between W and the
weight vector w is defined as follows:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

M

M ′
1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(m+n)×(m+n)

(34)

where

M =
[

wi

w j

]

m×n

, M ′ =
[

w j

wi

]

n×m

W can be computed automatically from eachw and is not shown in the main content to avoid
the overuse of notations.

Let us define the decision function of an individual input as follows:

f ′(X;W ) = argmax
y∈M∪N

W�(u(y) � d) (35)

where � denotes the Hadamard product and u(y) the unit vector which has 1 at yth position.
In (35), the yth row of W is considered in choosing the nearest neighbor. From the

definition ofW , the weights are equivalent among the minority classes if y ∈ M . Otherwise,
i.e., y ∈ N , the weights are equivalent among the majority classes.

The decision functions for the structural input is written as a summation of f ′,

f (X;W ) = argmax
Y

∑
h

W� (u(yh) � d(xh)) (36)

Based on (36), let us define the feature function Ψ as follows

Ψ (X, Y ) =
η∑

h=1

u(yh) � d(xh)

and the discriminative function F as a matrix product of W and Ψ .

F(X, Y ;W ) = W�Ψ (X, Y )

Using Ψ and F , (36) is rewritten in the same form as (26)

f (X;W ) = argmax
Y

F(X, Y ;w) (37)

From (37), the constrained �2-norm minimization problem is formulated as follows.

Problem 3

min
w,ξ≥0

1

2
‖w‖2 + Cξ

subject to ∀z ∈ (M ∪ N )η\{y}
W�Ψ (z, X) − W�Ψ (Y, X) ≥ Δ(z, Y ) − ξ (38)

Problem 3 can be solved by the cutting-plane method described in Sect. 4.
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