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Abstract Domain adaptation (DA) is a new learning framework dealing with learning prob-
lems where the target test data are drawn from a distribution different from the one that has
generated the learning source data. In this article, we introduce self-labeling domain adap-
tation boosting (SLDAB), a new DA algorithm that falls both within the theory of DA and
the theory of Boosting, allowing us to derive strong theoretical properties. SLDAB stands in
the unsupervised DA setting where labeled data are only available in the source domain. To
deal with this more complex situation, the strategy of SLDAB consists in jointly minimizing
the empirical error on the source domain while limiting the violations of a natural notion
of pseudo-margin over the target domain instances. Another contribution of this paper is
the definition of a new divergence measure aiming at penalizing models that induce a large
discrepancy between the two domains, reducing the production of degenerate models. We
provide several theoretical results that justify this strategy. The practical efficiency of our
model is assessed on two widely used datasets.

Keywords Boosting · Domain adaptation · Transfer learning

1 Introduction

In the classic machine learning setting, training and test data are supposed to come from the
same statistical distribution. However, it is worth noting that this assumption does not hold in
many real applications challenging common learning theories such as the PAC model [44].
To cope with such situations, a new machine learning framework has been recently studied
leading to the emergence of the theory of domain adaptation (DA) [5,29]. A standard DA
problem can be defined as a situation where the learner receives labeled data drawn from a
source domain (or even from several sources [28]) and very few or no labeled points from the
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target distribution. DA arises in a large spectrum of applications, such as in computer vision
[32], speech processing [26,38], natural language processing [8,12], etc. During the past few
years, new fundamental results opened the door for the design of theoretically well-founded
DA algorithms. In this paper, we focus on the scenario where the training set is made of
labeled source data and unlabeled target instances. To deal with this more complex situation,
several solutions have been presented in the literature (see, e.g., surveys [31,37]). Among
them, instance weighting-based methods are used to deal with covariate shift where the
labeling functions are supposed to remain unchanged between the two domains. On the other
hand, feature representation approaches aim at seeking a domain invariant feature space by
either generating latent variables or selecting a relevant subset of the original features. A third
class of approaches, called iterative self-labeling methods, consists in iteratively inserting
target examples, which have been labeled, in the learning set.

In this paper, our objective is to propose a new approach, taking advantage of both fea-
ture representation and iterative self-labeling approaches. The idea is to iteratively learn a
large margin linear hyperplane in a new projection space. We present a novel DA algorithm
which takes its origin from both the theory of boosting [17] and the theory of DA. Let us
remind that boosting (via its well known AdaBoost algorithm) iteratively builds a com-
bination of weak classifiers. At each step, AdaBoost makes use of an update rule which
increases (resp. decreases) the weight of those instances misclassified (resp. correctly clas-
sified) by previous classifiers. It is worth noting that boosting has already been exploited
in DA methods but mainly in supervised situations where the learner receives some labeled
target instances. In [13], TrAdaBoost uses the standard weighting scheme of AdaBoost
on the target data, while the weights of the source instances are monotonically decreased
according to their margin. A generalization of TrAdaBoost to multiple sources is presented
in [50]. On the other hand, some boosting-based approaches relax the constraint of having
labeled target examples.However, they are proposed in the context of semi-supervised ensem-
ble methods, i.e. assuming that the source and the target domains are (sufficiently) similar
[6,27].

In this paper, we present self-labeling domain adaptation boosting (SLDAB), a boosting-
likeDAalgorithmwhichboth optimizes the source classification error andmargin constraints
over the unlabeled target instances. However, unlike state of the art self-labelingDAmethods,
SLDAB aims at also reducing the divergence between the two distributions in the space of the
learned hypotheses. In this context, we introduce the notion of weak DA assumption which
takes into account ameasure of divergence. This classifier-inducedmeasure is exploited in the
update rule so as to penalize hypotheses inducing a large discrepancy. This strategy tends to
prevent the algorithm from building degenerate models which would, e.g., perfectly classify
the source data while moving the target examples far away from the learned hyperplane
(and thus satisfying any margin constraint). We present a theoretical analysis of SLDAB and
derive several theoretical results that, in addition to good experimental results, support our
claims.

The rest of this paper is organized as follows: after an overview on related work in DA in
Sect. 2 and an intuition about our work in Sect. 3; we give notations and definitions in Sect. 4.
SLDAB is presented in Sect. 5 and theoretically analyzed in Sect. 6. We then discuss the
way to compute the divergence between the source and target domains in Sect. 7. Finally, we
conduct two series of experiments and show practical evidences of the efficiency of SLDAB
in Sect. 8, before discussing about generalization guarantees in Sect. 9 and concluding in
Sect. 10.
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2 Related work in domain adaptation

We consider the binary classification problem in which we have a training set S ∪ T with S a
set of labeled data (x ′, y′) drawn from a source distribution S over Z = X × Y , where X is
the instance space and Y = {−1,+1} is the set of labels and T a set of unlabeled examples x
drawn from a target distribution T over X . We want to learn a classifier with an error rate εT
as low as possible over the target distribution. In this setting, the (unknown) generalization
source error of a hypothesis h ∈ H is defined as follows:

εS(h) = E(x ′,y′)∼S [�(h, (x ′, y′))],

where � : H × X × {−1,+1} → R
+ is a nonnegative loss function, while the (unknown)

generalization target error of h is:

εT (h) = E(x,y)∼T [�(h, (x ′, y′))].
2.1 Theoretical results in DA

In the past few years, DA has been widely studied from a statistical learning theory point of
view. Typically, these theoretical results take the form of upper bounds on the generalization
target error of h, which has been learned from the source data. To assess the adaptation diffi-
culty of a given problemat hand,Ben-David et al. introduce in [5] theH�H-divergence, noted
dH�H(S, T ), which is a measure between the source and the target distributions w.r.t.H. To
estimate this divergence, the authors suggest to label each source example of S with −1 and
each unlabeled example of T as +1 and train a classifier to discriminate between source and
target data. TheH�H-divergence is immediately computable from the error of the classifier
and a term of complexity which depends on the Vapnik–Chervonenkis dimension (VC-dim)
of the hypothesis space. Intuitively, if the error is low, we are thus able to easily separate
source and target data that means that the two distributions are quite different. On the other
hand, the higher the error, the less different S and T . The authors provide a generalization
bound for domain adaptation on εT (h) which generalizes the standard bound on εS(h) by
taking into account the H�H-divergence between the source and target distributions. More
formally:

εT (h) ≤ εS(h) + dH�H(S, T ) + λ, (1)

where λ is the error of the ideal joint hypothesis on the source and target domains (which
is supposed to be a negligible term if the adaptation is possible). Equation (1) expresses the
idea that to adapt well, the DA algorithm has to learn an hypothesis h which works well on
the source data while reducing the divergence between S and T .

Based on this work, Mansour et al. [29] introduce a new divergence measure called
discrepancy distance. Its empirical estimate is based on the Rademacher [3,25] complexity
(rather than the VC-dim) allowing the use of arbitrary loss functions leading to generalization
bounds useful for more general learning problems, such as in classification with SVMs or in
regression.

There also exists other theoretical works that have been made in the field of DA, such
as [30], which takes advantage of the robustness properties introduced in [46,48], together
with the notion of λ-shift between two distributions, to derive generalization bounds on the
target error.
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2.2 Algorithmic contributions

Following the underlying ideas of Eq. (1), many DA algorithms have been proposed in the
literature in different settings. We present in the following some of these approaches (for
more details, the interested reader may refer to the following surveys [22,31,35]).

2.2.1 Instance weighting

When the training examples, drawn in a biased manner, are not representative enough of
T , we have to face a problem of sample selection bias. Covariate shift describes the sam-
ple selection bias scenario where the prior distributions PS(x) and PT (x) differ but the
conditional probabilities are the same, i.e. PS(y|x) = PT (y|x).

Assuming that a certain mass of the source data can be used for learning the target exam-
ples, the domain adaptation can be done by resorting to a reweighting scheme of the data.
Some solutions have been proposed (e.g., see [20,42]) that use the ratio of the test and training
input densities. Roughly speaking, the idea is to increase the importance of source points
located into a region where there is a high density of target points. A learning process is
then launched on this reweighted training set, which is supposed to be much closer from the
target distribution than the unweighted one. In [15], the sample selection bias is corrected
by resorting to an entropy maximization, while in [43], the source data are reweighted while
minimizing the Kullback–Leibler-divergence between the source and target distributions.
Finally, in [7], a classifier is found as the solution of an optimization problem integrating the
covariate shift problem.

2.2.2 New feature representations

Rather than reweighting the source data, another way to handle DA problems consists in
changing the feature representation of the data to better describe shared characteristics of
the two domains S and T . We distinguish two different strategies: the first one assumes that
some features are generalizable, and thus they can be shared by both domains, while some
others are domain-specific. In this context, a feature selection algorithm which penalizes
or removes some features can be used to find the shared low-dimensional space. In [39],
the authors suggest to train a model maximizing the likelihood over the training sample
on a subset of the original features, minimizing the distance between the two distributions.
Another approach proposed in [4] tries to find a task-independent decision boundary in a
common space thanks to a nonlinear mapping of the features in each task. This methods
stands rather in a multi-task setting and requires labeled examples in each task, and thus
target labels in a two tasks setting.

The second strategy aims at learning new latent features. For example, Florian et al. [16]
proposed an algorithm that builds a model on the source domain and uses the predicted
labels as new features for both source and target data. In [9], the authors introduce the notion
of Structural Correspondence Learning (SCL). They identify the correspondence between
features of the two domains by modeling their correlations. In this case, the principle is to
project the examples from both domains into the same low-dimensional space, obtained by a
mapping of the original features as done for example with a Principal Component Analysis
(PCA). In [21], the authors use SCL in aMulti-Viewway. They first choosem bridge features,
as does SCL and then learn for each domain a correspondence between these bridge features
and the other features. Finally, a Multi-View Principal Component Analysis is applied to
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learn a low-dimensional space. In [14], a mapping is learned from the original n-dimensional
space to a new 3n-dimensional space, where the first n features are shared by both domains,
and the last n + n features are specific to the source and target domains respectively. Note
that in this work, the author makes use of a small but labeled set of target data.

Finally, a recent work by [33,34] tries to minimize theH-divergence in order to decrease
the generalization target error. The authors propose an approach based on the recent theory
of (ε, γ, τ )-good similarity functions [1,2], which aims to project examples in a new space
where each dimension represents the similarity to a learning example.

2.2.3 Iterative Self-labeling

In order to take advantage of the available unlabeled target data during the learning process,
iterative self-labeling methods use and label some of them with an hypothesis built from
source examples. Such target data are usually called semi-labeled examples. Then, a new
classifier is trained taking into account these semi-labeled data, thus considering information
from both domains. The main difficulty is to define the way of choosing the considered
target points (and the appropriate proportion). Intuitively, a good strategy would retain the
semi-labeled target data for which we have the greater confidence in their classification.
Perez et al. [36] introduce a two-step algorithm: first, a statistical model is learned from
the source domain. Then, using an extension of the EM algorithm, they estimate how these
source parameters change in the target set. The assumption is that large changes are less
likely to occur than small ones. Finally, they use this re-estimated model to learn a classifier
for the target domain. Other works have been proposed, based on co-training or self-training
methods [10].

The most famous self-labeling algorithm is certainly DASVM, introduced in [11], and
which was shown to be very competitive. The idea is to iteratively incorporate target samples
from T into the learning set to progressively modify an SVM classifier h. Despite good
practical results, DASVM is not theoretically founded. In a recent work, [18] has been
proposed a theoretical analysis on the necessary conditions ensuring the good behavior of
a self-labeling process. An algorithm is also introduced, using the (ε, γ, τ )-good similarity
functions [1,2], and specifically designed for an application on structured data.

In this paper, we try to take advantage of two categories of approaches in the same time,
by introducing an algorithm, SLDAB, which follows an iterative procedure by learning weak
classifiers with the help of target examples and finally combines all theses weak hypotheses
to obtain a hyperplane in a new space in which are projected both source and target data. We
give an intuition on our algorithm in the next section.

3 Intuition behind SLDAB

Let us recall that boosting aims to iteratively learn weak classifiers hn (typically, stumps) and
to make a linear combinations of all the classifiers regarding their relevance. In the classic
supervised classification setting, this relevance depends on the ability of hn to correctly label
source examples from the training set S drawn according to the current distribution DS

n . As
a recall, the final classifier FN

S , after N iterations, is defined as follows:

FN
S =

N∑

n=1

αnhn(x),

123



50 A. Habrard et al.

where αn = 1
2 ln

1−ε̂n(hn)
ε̂n(hn)

, and ε̂n = E(x,y)∼DS
n
[�(h, (x, y))].

In a geometric way, FN
S takes the form of an optimized hyperplane in the space corre-

sponding to the outputs of the classifiers hn .
In the DA setting, the adaptation of boosting is not straightforward. Indeed, the learning

set is made not only of a subset S of labeled source examples, but it also contains a subset
T made of unlabeled target samples. In this paper, we aim to use the same weak learners to
minimize both the empirical error on S while maximizing the margins on T . This strategy
consists in projecting both source and target examples in the same N -dimensional space (N
still being the number of iterations of the algorithm), while reducing the divergence between
the two domains in this new space.

If the learned hypotheses h1, . . . , hn, . . . , hN are the same for S and T , note that we aim
to optimize different weighting coefficients depending on the domain the example belongs
to. Indeed, if it seems natural (and theoretically founded) to keep minimizing the empirical
classification error on the labeled source examples, a different strategy has to be applied on
the target data for which we do not have access to the labels. We claim that the quality of an
hypothesis hn on the examples from T has to depend on its ability to minimize the proportion
of margin violations of the target examples. Therefore, our objective is to optimize a second

linear combination FN
T =

∑N

n=1
βnhn(x), where βn depends both on the example margin

and the divergence between S and T induced by hn .
In this context, SLDAB aims to jointly learn two separator hyperplanes in the same N -

dimensional space, common to source and target examples. The geometrical orientation of
FN
S and FN

T will depend on their ability to minimize respectively the empirical classification
error on S and the proportion of margin violations on T . Figure 1 illustrates this idea.

As previously stated, minimizing the classification error on S andmaximizing the margins
on T is not sufficient. Indeed, designing an algorithm only dedicated to optimize these two
criteria may lead to degenerate situations as illustrated in Fig. 2. We can see that along
the iterations the algorithm tends to increase the divergence between S and T by moving
away source and target data, while minimizing source classification errors and target margin
violations. This justifies the need of taking into account a divergence measure, depending on

Fig. 1 Illustration of the intuition behind SLDAB on theMoons database where the target data are generated
after a rotation of the source examples. Source and target examples are projected in the same N -dimensional
space, where the same N weak hypotheses are combined to get the final classifier. The only difference is about
the weights applied in the combination. For the source domain S (on the left), the α’s parameters are optimized
w.r.t. the classification error on S, while for the target distribution T (on the right), the β’s parameters are
learned w.r.t. the ability of the hypothesis to maximize the margins
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(a) (b)

Fig. 2 Illustration of the situation caused by degenerate hypotheses. a Describes the situation after the first
iteration. If no divergencemeasure is taken into account during the process, wemight face a situation illustrated
by b, where the conditions are fulfilled (low source classification error and important target margins), but in
which the divergence between the source and target distributions is higher and higher

the specific hypothesis hn , to prevent us from getting degenerate situations. In the next four
sections, we consider a generic definition of the divergence. We specifically focus on this
divergence in Sect. 7.

4 Definitions and notations

Let us recall that we dispose of a set S of labeled data (x ′, y′) drawn from a source distribution
S over Z = X × Y , where X is the instance space and Y = {−1,+1} is the set of labels,
together with a set T of unlabeled examples x drawn from a target distribution T over X .
Let H be a class of hypotheses and hn ∈ H : X → [−1,+1] a hypothesis learned from S
and T and their associated empirical distribution DS

n and DT
n .

We denote by gn ∈ [0, 1] a measure of divergence induced by hn between S and T . Our
objective is to take into account gn in our new boosting scheme so as to penalize hypotheses
that do not allow the reduction in the divergence between S and T . To do so, we consider
the function fDA : [−1,+1] → [−1,+1] such that fDA(hn(x)) = |hn(x)| − λgn , where
λ ∈ [0, 1]. fDA(hn(x)) expresses the ability of hn to not only induce large margins (a large
value for |hn(x)|), but also to reduce the divergence between S and T (a small value for
gn). λ plays the role of a trade-off parameter between the importance of the margin and the
divergence.

Let T−
n = {x ∈ T | fDA(hn(x)) ≤ γ }. If x ∈ T−

n ⇔ |hn(x)| ≤ γ + λgn . Therefore,
T−
n corresponds to the set of target points that either violate the margin condition (indeed, if

|hn(x)| ≤ γ ⇒ |hn(x)| ≤ γ +λgn) or do not satisfy sufficiently that margin to compensate a
large divergence between S and T (i.e. |hn(x)| > γ but |hn(x)| ≤ γ +λgn). In the same way,
we define T+

n = {x ∈ T | fDA(hn(x)) > γ } such that T = T−
n ∪ T+

n . Finally, from T−
n and

T+
n , we defineW+

n =
∑

x∈T+
n
DT
n (x) andW−

n =
∑

x∈T−
n
DT
n (x) such thatW+

n +W−
n = 1.

Let us remind that the weak assumption presented in [17] states that a classifier hn is a
weak hypothesis over S if it performs at least a little bit better than random guessing, that is
ε̂n < 1

2 , where ε̂n is the empirical error of hn over S w.r.t. DS
n . In this paper, we extend this

weak assumption to the DA setting.
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Definition 1 (Weak DA Learner) A classifier hn learned at iteration n from a labeled source
set S drawn from S and an unlabeled target set T drawn from T is a weak DA learner for T
if ∀γ ≤ 1:

1. hn is a weak learner for S, i.e. ε̂n < 1
2 .

2. L̂n = Ex∼DT
n
[| fDA(hn(x))| ≤ γ ] = W−

n <
γ

γ+max(γ,λgn)
.

Condition 1 means that to adapt from S to T using a boosting scheme, hn must learn
something new at each iteration about the source labeling function. Condition 2 takes into
account not only the ability of hn to satisfy the margin γ but also its capacity to reduce the
divergence between S and T . From Definition 1, it turns out that:

1. ifmax(γ, λgn) = γ , then γ
γ+max(γ,λgn)

= 1
2 andCondition 2 looks like theweak assump-

tion over the source, except the fact that L̂n < 1
2 expresses a margin condition, while

ε̂n < 1
2 considers a classification constraint. Note that if this is true for any hypothesis hn ,

it means that the divergence between the source and target distributions is rather small,
and thus the underlying task looks more like a semi-supervised problem.

2. if max(γ, λgn) = λgn , then the constraint imposed by Condition 2 is stronger (that is
L̂n <

γ
γ+max(γ,λgn)

< 1
2 ) in order to compensate a large divergence between S and T .

In this case, the underlying task requires a domain adaptation process in the weighting
scheme.

In the following, wemake use of this weakDA assumption to design a new boosting-based
DA algorithm, called SLDAB.

Algorithm 1 SLDAB
Input: a set S of labeled data and a set T of unlabeled data, a number of iterations N , a margin γ ∈ [0, 1],
a trade-off parameter λ ∈ [0, 1], l = |S|, m = |T |.
Output: two source and target classifiers HS

N and HT
N .

Initialization: ∀(x ′, y′) ∈ S, DS
1 (x ′) = 1

l , ∀x ∈ T, DT
1 (x) = 1

m .
for n = 1 to N do
Learn a weak DA hypothesis hn by solving Problem (2).
Compute the divergence value gn (see Sect. 7 for details).

αn = 1
2 ln 1−ε̂n

ε̂n
and βn = 1

γ+max(γ,λgn )
ln γW+

n
max(γ,λgn )W−

n

∀(x ′, y′) ∈ S, DS
n+1(x

′) = DS
n (x ′). e−αnsgn(hn (x ′)).y′

Z ′
n

.

∀x ∈ T , DT
n+1(x) = DT

n (x). e
−βn fDA(hn (x)).yn

Zn
,

where yn = sgn( fDA(hn(x))) if | fDA(hn(x))| > γ ,
yn = −sgn( fDA(hn(x))) otherwise,
and Z ′

n and Zn are normalization coefficients.
end for

∀(x ′, y′) ∈ S, FS
N (x ′) =

N∑

n=1

αnsgn(hn(x ′)),

∀x ∈ T, FT
N (x) =

N∑

n=1

βnsgn(hn(x)).

Final source and target classifiers: HS
N (x ′) = sgn(FS

N (x ′)) and HT
N (x) = sgn(FT

N (x)).
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5 SLDAB algorithm

The pseudo-code of SLDAB is presented in Algorithm 1. Starting from uniform distributions
over S and T , it iteratively learns a new hypothesis hn that verifies the weak DA assumption
of Definition 1. Note that this task is not trivial. Indeed, while learning a stump (i.e. a one-
level decision tree) is sufficient to satisfy the weak assumption of AdaBoost, finding an
hypothesis fulfilling Condition 1 on the source and Condition 2 on the target is more complex.
To overcome this problem,we present in the following a simple strategywhich tends to induce
hypotheses that satisfy the weak DA assumption.

First, we generate k
2 stumps that satisfy Condition 1 over the source and k

2 that fulfill

Condition 2 over the target. Then, we seek a convex combination hn =
∑

k
κkh

k
n of the k

stumps that satisfies simultaneously the two conditions of Definition 1. To do so, we propose
to solve the following convex optimization problem:

argmin
κ

∑

z=(x,y)∈S
DS
n (x)

[
−y

∑

k

κkh
k
n(x)

]

+
+

∑

x∈T
DT
n (x)

[
1 −

(
∑

k

κk fDA(hkn(x))

)]

+
(2)

where [1−x]+ = max(0, 1−x) is the hinge loss. Solving this optimization problem tends to
fulfill Definition 1. Indeed, minimizing the first term of Eq. (2) tends to reduce the empirical
risk over the source data, while minimizing the second term tends to decrease the number of
margin violations over the target data. Using the combination of several stumps thus allows
us to satisfy the two conditions, as illustrated in Fig. 3.

Note that in order to generate a simple weak DA learner, we start the process with k = 2.
If the optimized combination does not satisfy the weak DA assumption, we draw a new set
of k stumps. If the weak DA assumption is not satisfied after several tries, we increase the
dimension of the induced hypothesis hn . If despite the increase of k (limited to a given value),
no hypothesis is able to fulfill the DAweak learner conditions, the adaptation is stopped. The
pseudo-code of the algorithm seeking for weak DA hypotheses is described in Algorithm 2.

Once hn has been learned, the weights of the labeled and unlabeled data are modified
according to two different update rules. Those of source examples are updated using the
same strategy as that ofAdaBoost. Regarding the target examples, their weights are changed

Fig. 3 Illustration of the stumps combination. A single stump would not be sufficient to satisfy the two
conditions of Definition 1. This explains why we propose to combine several of them, as illustrated in this
figure, where the combination of h1n and h

2
n allows us to obtain aweak learner for DomainAdaptation, correctly

classifying most of the source examples and achieving in the same time large margins, with respect to γ and
λgn , on the target domain
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Algorithm 2 Conception of SLDAB weak learner
Input: a set S of size l of source labeled data, a set T of size m of target unlabeled data, a number k of
stumps to combine, a constant KMAX, a constant IMAX.
Output: a stumps combination.
k = 2
while k < KMAX do
for i = 0 to IMAX do
for j = 0 to k do
if j is odd then
Generate a stump fulfilling Condition 1 of Definition 1.

else
Generate a stump satisfying Condition 2 of Definition 1.

end if
end for
Solve Problem 2.
if The learned classifier fulfills the two conditions of Definition 1 then
Return the classifier.

end if
end for

end while
Interrupt iterative process.

according to their location in the space. If a target example x does not satisfy the condition
fDA(hn(x)) > γ , a pseudo-class yn = −sgn( fDA(hn(x))) is assigned to x that simulates
a misclassification. Note that such a decision has a geometrical interpretation: it means that
we exponentially increase the weights of the points located in an extended margin band of
width γ + λgn . If x is outside this band, a pseudo-class yn = sgn( fDA(hn(x))) is assigned
leading to an exponential decrease of DT

n (x) at the next iteration.

6 Theoretical analysis

In this section, we present a theoretical analysis of our approach. First, we derive a gener-
alization bound on the loss empirically minimized in Algorithm 2. This bound is deduced
from the proof of the algorithmic robustness of this algorithm. Then, we focus on theoretical
guarantees of SLDAB. Recall that the goodness of a hypothesis hn is measured by its ability
not only to correctly classify the source examples but also to classify the unlabeled target
data with a large margin w.r.t. the classifier-induced divergence gn . Provided that the weak
DA constraints of Definition 1 are satisfied, the standard results ofAdaBoost still hold on S
(because of Condition 1). In the following, we show that the loss L̂ HT

N
, which represents after

N iterations the proportion of margin violations over T (w.r.t. the successive divergences gn),
also decreases with N .

6.1 Consistency guarantees of Algorithm 2

Wepresent a theoretical analysis of Algorithm 2which aims at learning a convex combination
of stumps. Let us remind that this combination is the solution of the following minimization
problem:
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min
κ

∑

z=(x,y)∈S
DS
n (x ′)

[
−y

∑

k

κkh
k
n(x)

]

+
+

∑

x∈T
DT
n (x)

[
1 −

∑

k

κk

(
fDA[hkn(x)] − γ

)]

+
= min

κ

∑

z=(x,y)∈S
DS
n (x)�1(κ, z) +

∑

x∈T
DT
n (x)�2(κ, x) (3)

where:

– �1(κ, z = (x, y)) = [−y
∑

k κkhkn(x)
]
+

– and �2(κ, x) = [
1 − ∑

k κk
(
fDA[hkn(x)] − γ

)]
+.

The objective of this theoretical analysis is to derive a generalization bound on the
true loss R�1,�2 = Ez∈Z�1(κ, z) + Ex∈X�2(κ, x) according to the empirical loss R̂�1,�2 =
min

κ

∑
z=(x,y)∈S DS

n (x)�1(κ, z)+∑
x∈T DT

n (x)�2(κ, x), minimized by Algorithm 2 w.r.t. the

training source examples S and the training target examples T . Said differently, we aim at
analyzing the convergence (in terms of the number of training examples, that is |S| + |T |—
where |.| is the cardinality of the set) of the predicted combination of stumps as an estimate
of the true combination. This can be done into two steps: (i) Prove the algorithmic robustness
of Problem 3; (ii) use this robustness property to derive a generalization bound on R�1,�2 .

In the following, we propose a new definition of the algorithmic robustness as an extension
to the domain adaptation framework of that of introduced in [47].

Definition 2 (Algorithmic Robustness) Let A(κ, �1, �2) be an algorithm of first argument κ
trained from |S| labeled source examples ∈ S w.r.t. to a loss function �1 and |T | unlabeled
target examples ∈ T w.r.t. to a loss functions �2 . A(κ, �1, �2) is (M1, M2, ε(·))-robust, for
M1, M2 ∈ N and ε(·, ·) : (Z |S| × X |T |) → R, if Z = X × Y (resp. X ) can be partitioned
into M1 (resp. M2) disjoint sets, denoted by {Ci }M1

i=1 (resp. {Dj }M2
j=1), such that the following

holds for all S ∈ Z |S| and all T ∈ X |T |:

∀z ∈ S,∀z′ ∈ Z ,∀x ∈ T,∀x ′ ∈ X,∀i ∈ [M1],∀ j ∈ [M2] :
if z, z′ ∈ Ci , if x, x

′ ∈ Dj , then |�1(κ, z) + �2(κ, x) − �1(κ, z′) − �2(κ, x ′)| ≤ ε(S, T ).

Roughly speaking, an algorithm is robust if for any source test example z′ ∈ Z (resp.
target test example x ′ ∈ X ) falling in the same subset as a training example z ∈ S (resp.
x ∈ T ), the gap between the losses �1 (resp. �2) associated with z and z′ (resp. x and x ′) is
bounded. In other words, robustness characterizes the capability of an algorithm to perform
similarly on close train and test instances. The closeness of the instances is based on a
partitioning of Z and X in the sense that two examples are close if they belong to the same
region. In general, the partition is based on the notion of covering number [24] allowing one
to cover Z (resp. X ) by regions where the distance/norm between two elements in the same
region are no more than a fixed quantity ρ1 (resp. ρ2). The covering over the labeled set Z
is built as follows: first we consider a ρ1-cover over the instance X , then we partition Z by
considering one ρ1-cover over X for the positive instances and another ρ1-cover over X for
the negative instances ensuring that two examples in the same region belong to the same
class and the distance between them is no more than ρ1 (see [47,49] for details).

Theorem 1 Given a partition of Z into M1 subsets {Ci } such that the two labeled source
examples z = (xS, y), z′ = (x ′

S, y
′) ∈ Ci with y = y′ and given a partition of X into

M2 subsets {Dj } such that the two unlabeled target examples xT , x ′
T ∈ Dj , the opti-

mization problem 3 with constraints
∑

k κk = 1 (convex combination of the stumps) is
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(M1, M2, ε(S, T ))-robust with ε(S, T ) = ρ1 + ρ2, where ρ1 = supxS ,x ′
S∈Ci

||xS − x ′
S || and

ρ2 = supxT ,x ′
T ∈Dj

||xT − x ′
T ||.

Proof of Theorem 1
∣∣�1(κ, z) + �2(κ, z) − �1(κ, z′) + �2(κ, x ′)

∣∣

≤ ∣∣�1(κ, z) − �1(κ, z′)
∣∣ + ∣∣�2(κ, z) − �2(κ, x ′)

∣∣

≤
∣∣∣∣∣
∑

k

κk(h
k
n(xS) − hkn(x

′
S))

∣∣∣∣∣ +
∣∣∣∣∣
∑

k

κk( fDA[hkn(xT )] − fDA[hkn(x ′
T )])

∣∣∣∣∣ (4)

≤
∑

k

|κk | ·
∣∣∣hkn(xS) − hkn(x

′
S)

∣∣∣ +
∑

k

|κk | ·
∣∣∣ fDA[hkn(xT )] − fDA[hkn(x ′

T )]
∣∣∣ (5)

≤
∑

k

|κk | · ||xS − x ′
S || +

∑

k

|κk | · ||xT − x ′
T || (6)

≤ ρ1 + ρ2 (7)

We get Inequality (4) from the 1-lipschitzness of the hinge loss; Inequality (5) comes from
the classical triangle inequality; the first term of Inequality (6) is due to the 1-lipschitzness
of hkn(xS). Indeed, since h

k
n(xS) comes from a stump, it takes the form of xS − σ . Therefore,

|hkn(xS)−hkn(x
′
S)| = 1.|xS−x ′

S |. The second termof Inequality (6) is due to the 1-lipschitzness
of fDA[hkn(xT )] = |hkn(xT )|−λgn . Indeed, | fDA[hkn(xT )]− fDA[hkn(x ′

T )]| = ∣∣|xT | − |x ′
T |∣∣ ≤

1.
∣∣xT − x ′

T

∣∣. Finally, we get Inequality (7) due to the constraint of convex combination and
κk ≥ 0. �


We now give a PAC generalization bound on the true loss making use of the previous
robustness result. Let R�1,�2 = Ez∼S�1(κ, z) + Ex∼T �2(κ, x) be the true loss w.r.t. the
unknown distributions S and T .
Let R̂�1,�2 = min

κ

∑
z=(x,y)∈S DS

n (x)�1(κ, z) + ∑
x∈T DT

n (x)�2(κ, x) be the empirical loss

over the training sets S and T . Based on the results of [47,49], the proof requires the use
of the following concentration inequality over multinomial random variables allowing one
to capture statistical information coming from the different regions of the partitions of Z
and X .

Proposition 2 [45]Let (|N1|, . . . , |NM |)an i.i.d.multinomial randomvariablewith parame-
ters N = ∑M

i=1 |Ni | and (p(C1), . . . , p(CM )). By the Bretagnolle-Huber-Carol inequality

we have: Pr
{∑M

i=1

∣∣∣ |Ni |
N − p(Ci )

∣∣∣ ≥ λ
}

≤ 2M exp
(−Nλ2

2

)
, hence with probability at least

1 − δ,
M∑

i=1

∣∣∣∣
Ni

N
− p(Ci )

∣∣∣∣ ≤
√
2M ln 2 + 2 ln(1/δ)

N
. (8)

We are now able to present our generalization bound thanks to the following theorem.

Theorem 3 Considering that problem 3 is (M1, M2, ε(S, T ))-robust, for any δ > 0 with
probability at least 1 − δ, we have:

|R�1,�2 − R̂�1,�2 | ≤ 2max(ρ1, ρ2) + 2max(B1, B2)

√
2max(M1, M2) ln 2 + 2 ln(1/δ)

min(|S|, |T |) ,

where B1 (resp. B2) is an upper bound of the loss �1 (resp. �2).
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Note that in robustness bounds, the cover radius ρ1 (resp. ρ2) can bemade arbitrarily small
at the expense of larger values of M1 (resp. M2). As M1 and M2 appear in the second term,
which decreases to 0 when min(|S|, |T |) tends to infinity, this bound provides a standard
O

(
1/

√
min(|S|, |T |)) asymptotic convergence.

Proof of Theorem 3 Inspired from [47,49]

∣∣∣R�1,�2 − R̂�1,�2

∣∣∣

≤
∣∣∣∣∣∣
Ez∼S�1(κ, z) −

∑

z=(x,y)∈S
DS
n (x)�1(κ, z)

∣∣∣∣∣∣
+

∣∣∣∣∣Ex∼T �2(κ, x) −
∑

x∈T
DT
n (x)�2(κ, x)

∣∣∣∣∣

=
∣∣∣∣∣

M1∑

i=1

Ez∼S (�1(κ, z)|z ∈ Ci ) p(Ci ) −
∑

z∈S
DS
n (x)�1(κ, z)

∣∣∣∣∣

+
∣∣∣∣∣∣

M2∑

j=1

Ex∼T
(
�2(κ, x)|x ∈ Dj

)
p(Dj ) −

∑

x∈T
DT
n (x)�2(κ, x)

∣∣∣∣∣∣

≤
∣∣∣∣∣

M1∑

i=1

Ez∼S (�1(κ, z)|z ∈ Ci ) p(Ci ) −
M1∑

i=1

Ez∼S(�1(κ, z)|z ∈ Ci )
|Ni |
|S|

∣∣∣∣∣

+
∣∣∣∣∣

M1∑

i=1

Ez∼S(�1(κ, z)|z ∈ Ci )
|Ni |
|S| −

∑

z∈S
DS
n (x)�1(κ, z)

∣∣∣∣∣ (9)

+
∣∣∣∣∣∣

M2∑

j=1

Ex∼T
(
�2(κ, x)|x ∈ Dj

)
p(Dj ) −

M2∑

j=1

Ex∼T (�2(κ, x)|x ∈ Dj )
|N j |
|T |

∣∣∣∣∣∣

+
∣∣∣∣∣∣

M2∑

j=1

Ex∼T (�2(κ, x)|x ∈ Dj )
|N j |
|T | −

∑

x∈T
DT
n (x)�2(κ, x)

∣∣∣∣∣∣

=
∣∣∣∣∣

M1∑

i=1

Ez∼S (�1(κ, z)|z ∈ Ci )

∣∣∣∣
|Ni |
|S| − p(Ci )

∣∣∣∣

∣∣∣∣∣

+
∣∣∣∣∣∣

M2∑

j=1

Ex∼T
(
�2(κ, x)|x ∈ Dj

) ∣∣∣∣
|N j |
|T | − p(Dj )

∣∣∣∣

∣∣∣∣∣∣

+
∣∣∣∣∣∣

M1∑

i=1

∑

z j∈Ci

Ez∼S (�1(κ, z)|z ∈ Ci ) −
M1∑

i=1

∑

z j∈Ci

DS
n (x j )�1(κ, z j )

∣∣∣∣∣∣

+
∣∣∣∣∣∣

M2∑

j=1

∑

xi∈Dj

Ex∼T
(
�2(κ, x)|x ∈ Dj

) −
M2∑

j=1

∑

xi∈Dj

DT
n (xi )�2(κ, xi )

∣∣∣∣∣∣
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≤
∣∣∣∣∣max
z∼S

�1(κ, z)
M1∑

i=1

∣∣∣∣
|Ni |
|S| − p(Ci )

∣∣∣∣

∣∣∣∣∣ +
∣∣∣∣∣∣
max
x∼T

�2(κ, x)
M2∑

j=1

∣∣∣∣
|N j |
|T | − p(Dj )

∣∣∣∣

∣∣∣∣∣∣

+
∣∣∣∣∣∣

M1∑

i=1

∑

j∈Ni

max
z∈Ci

∣∣�1(κ, z j ) − �1(κ, z)
∣∣

∣∣∣∣∣∣
+

∣∣∣∣∣∣

M2∑

i=1

∑

j∈Ni

max
x∈Di

∣∣�2(κ, x j ) − �2(κ, x)
∣∣

∣∣∣∣∣∣

≤ ρ1 + B1

√
2M1 ln 2 + 2 ln(1/δ)

|S| + ρ2 + B2

√
2M2 ln 2 + 2 ln(1/δ)

|T | (10)

≤ 2max(ρ1, ρ2) + 2max(B1, B2)

√
2max(M1, M2) ln 2 + 2 ln(1/δ)

min(|S|, |T |) .

�

Inequality 9 is due to the triangle inequality. Inequality 10 comes from the application of

Proposition 2 and Theorem 1.

6.2 Upper bound on the empirical loss of SLDAB

Theorem 4 Let L̂ HT
N
be the proportion of target examples of T with a margin smaller than

γ w.r.t. the divergences gn (n = 1 . . . N) after N iterations of SLDAB:

L̂ HT
N

= Ex∼T [yFT
N(x) < 0] ≤ 1

|T |
∑

x∼T e−yFTN(x) = ∏N
n=1 Zn,

where y = (y1, . . . , yn, . . . , yN ) is the vector of pseudo-classes and FT
N(x) =

(β1 fDA(h1(x)), . . . , βN fDA(hN (x))).

Proof The proof is the same as that of [17] except that y is the vector of pseudo-classes
(which depend on λgn and γ ) rather than the vector of true labels. �

6.3 Optimal confidence values

Theorem 4 suggests the minimization of each Zn to reduce the empirical loss L̂ HT
N
over T .

To do this, let us rewrite Zn as follows:

Zn =
∑

x∈T−
n

DT
n (x)e−βn fDA(hn(x))yn +

∑

x∈T+
n

DT
n (x)e−βn fDA(hn(x))yn . (11)

The two terms of the right-hand side of Eq. (11) can be upper bounded as follows:

– ∀x ∈ T+
n , DT

n (x)e−βn fDA(hn(x))yn ≤ DT
n (x)e−βnγ .

– ∀x ∈ T−
n , DT

n (x)e−βn fDA(hn(x))yn ≤ DT
n (x)eβnmax(γ,λgn).

Figure 4 gives a geometrical explanation of these upper bounds.When x ∈ T+
n , theweights

are decreased. We get an upper bound by taking the smallest drop, that is fDA(hn(x))yn =
| fDA| = γ (see f min

DA in Fig. 4). On the other hand, if x ∈ T−
n , we get an upper bound by

taking the maximum value of fDA (i.e. the largest increase). We differentiate two cases: (i)
when λgn ≤ γ , the maximum is γ (see f max1

DA ), (ii) when λgn > γ , Fig. 4 shows that one
can always find a configuration where γ < fDA ≤ λgn . In this case, f max2

DA = λgn , and we
get the upper bound with | fDA| = max (γ, λgn).

Plugging the previous upper bounds in Eq. (11), we get:

Zn ≤ W+
n e−βnγ + W−

n eβn max (γ,λgn) = Z̃n . (12)
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Fig. 4 Upper bounds of the components of Zn for an arbitrary value γ = 0.5. When x ∈ T+
n , the upper

bound is obtained with | fDA| = γ (see the plateau f min
DA ). When x ∈ T−

n , we get the upper bound with

max (γ, λgn), that is either γ when λgn ≤ γ (see f
max1
DA ) or λgn otherwise (see f

max2
DA )

Deriving the previous convex combination w.r.t. βn and equating to zero, we get the optimal
values for βn in Eq. (11):1

∂ Z̃n

βn
= 0 ⇒ max (γ, λgn)W−

n eβn max (γ,λgn) = γW+
n e−βnγ

⇒ βn = 1
γ+max (γ,λgn)

ln γW+
n

max (γ,λgn)W
−
n

. (13)

It is important to note that βn is computable if

γW+
n

max (γ, λgn)W
−
n

≥ 1 ⇔ γ (1 − W−
n ) ≥ max (γ, λgn)W

−
n ⇔ W−

n <
γ

γ + max(γ, λgn)
,

that is always true because hn is a weak DA hypothesis and satisfies Condition 2 of Defini-
tion 1. Moreover, from Eq. (13), it is worth noting that βn gets smaller as the divergence gets
larger. In other words, a hypothesis hn of weights W+

n and W−
n (which depend on the diver-

gence gn) will have a greater confidence than a hypothesis hn′ of same weights W+
n′ = W+

n

and W−
n′ = W−

n if gn < gn′ .
Let max (γ, λgn) = cn × γ , where cn ≥ 1. We can rewrite Eq. (13) as follows:

βn = 1

γ (1 + cn)
ln

W+
n

cnW
−
n

, (14)

and Condition 2 of Definition 1 becomes W−
n < 1

1+cn
.

6.4 Convergence of the empirical loss

The following theorem shows that, provided the weak DA constraint on T is fulfilled (that
is, W−

n < 1
1+cn

), Zn is always smaller than 1 that leads (from Theorem 4) to a decrease in

the empirical loss L̂ HT
N
with the number of iterations.

1 Note that the approximation Z̃n used in Eq. (12) is essentially a linear upper bound of Eq. (11) on the range
[−1;+1]. Clearly, other upper bounds which give a tighter approximation could be used instead (see [40] for
more details).
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Theorem 5 If HT
N is the linear combination produced by SLDAB from N weak DA hypothe-

ses, then lim
N→∞ L̂ HT

N
= 0.

Proof Plugging Eq. (14) into Eq. (12) we get:

Zn ≤ W+
n

(
cnW−

n

W+
n

) 1
(1+cn )

+ W−
n

(
W+

n

cnW
−
n

) cn
(1+cn )

(15)

= (
W+

n

) cn
(1+cn )

(
W−

n

) 1
(1+cn )

(
c

1
(1+cn )
n + c

− cn
(1+cn )

n

)

= (
W+

n

) cn
(1+cn )

(
W−

n

) 1
(1+cn )

⎛

⎝cn + 1

c
cn

(1+cn )
n

⎞

⎠

= un × vn × wn, (16)

where un = (
W+

n

) cn
(1+cn ) , vn = (

W−
n

) 1
(1+cn ) and wn =

(
cn+1

c
cn

(1+cn )
n

)
. Computing the deriva-

tive of un , vn and wn w.r.t. cn , we get

∂un
∂cn

= lnW+
n

(cn + 1)2
(
W+

n

) cn
(1+cn ) ,

∂vn

∂cn
= − lnW−

n
(cn+1)2

(
W−

n

) 1
(1+cn ) , ∂wn

∂cn
− ln cn

(cn + 1)2
cn + 1

c
cn

(1+cn )
n

.

We deduce that

∂Zn

∂cn
=

(
∂un
∂cn

× vn + ∂vn

∂cn
× un

)
× wn + ∂wn

∂cn
× un × vn

= (
W+

n

) cn
(1+cn ) × (

W−
n

) 1
(1+cn ) ×

⎛

⎝cn + 1

c
cn

(1+cn )
n

⎞

⎠ × 1

(cn + 1)2
× (

lnW+
n − lnW−

n − ln cn
)

= (
W+

n

) cn
(1+cn ) × (

W−
n

) 1
(1+cn ) × c

−cn
(1+cn )
n

cn + 1
× (

lnW+
n − lnW−

n − ln cn
)
.

The first three terms of the previous equation are positive. Therefore,

∂Zn

∂cn
> 0 ⇔ lnW+

n − lnW−
n − ln cn > 0 ⇔ W−

n <
1

cn + 1
,

that is always true because of the weak DA assumption. Therefore, Zn(cn) is a monotonic

increasing function over [1, W+
n

W−
n

[, with:
– Zn < 2

√
W+

n W−
n (standard result of AdaBoost) when cn = 1,

– and lim
cn→ W+

n
W−
n

Zn = 1.

Therefore, ∀n, Zn < 1
⇔ lim

N→∞ L̂ HT
N

< lim
N→∞

∏N
n=1 Zn = 0. �


Let us now give some insight about the nature of the convergence of L̂ HT
N
. A hypothesis

hn is DA weak if W−
n < 1

1+cn
⇔ cn <

W+
n

W−
n

⇔ cn = τn
W+

n

W−
n

with τn ∈]W−
n

W+
n

; 1[. τn measures
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how close is hn to the weak assumption requirement. Note that βn gets larger as τn gets

smaller. From Eq. (16) and cn = τn
W+

n

W−
n
(that is W−

n = τn
τn+cn

), we get:

Zn <
(
W+

n

) cn
(1+cn )

(
W−

n

) 1
(1+cn )

⎛

⎝cn + 1

c
cn

(1+cn )
n

⎞

⎠

=
(
1 − τn

τn + cn

) cn
(1+cn )

(
τn

τn + cn

) 1
(1+cn )

⎛

⎝cn + 1

c
cn

(1+cn )
n

⎞

⎠

= c
cn

(1+cn )
n

(τn + cn)
cn

(1+cn )

.
τ

1
(1+cn )
n

(τn + cn)
1

(1+cn )

.
cn + 1

c
cn

(1+cn )
n

=
⎛

⎝ τ
1

1+cn
n

τn + cn

⎞

⎠ (cn + 1).

We deduce that

N∏

n=1

Zn = exp
N∑

n=1

ln Zn ≤exp
N∑

n=1

⎛

⎝ln

⎛

⎝

⎛

⎝ τ
1

1+cn
n

τn+cn

⎞

⎠ (cn + 1)

⎞

⎠

⎞

⎠=exp
N∑

n=1

(
1

1 + cn
ln τn+ln

(
cn + 1

τn + cn

))
.

Theorem 5 tells us that the term between brackets is negative (that is ln Zn < 0, ∀Zn).
Therefore, the empirical loss decreases exponentially fast toward 0 with the number of iter-
ations N . Moreover, let us study the behavior of ln Zn w.r.t. τn . Since Zn is a monotonic

increasing function of cn over [1, W+
n

W−
n

[, it is also a monotonic increasing function of τn over

[W−
n

W+
n

; 1[. In other words, the smaller τn the faster the convergence of the empirical loss L̂ HT
N
.

Figure 5 illustrates this claim for an arbitrarily selected configuration of W+
n and W−

n . It
shows that ln Zn , and thus L̂ HT

N
, decreases exponentially fast with τn .
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Fig. 5 Evolution of ln Zn w.r.t. τn
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7 Measure of divergence

The theoretical results in DA (e.g. [5,29]) state that a good adaptation is possible when the
mismatch between the two distributions is small while maintaining a good accuracy on the
source. In our algorithm, the latter condition is satisfied via the use of a standard boosting
scheme. Concerning the mismatch, we inserted in our framework a measure of divergence
gn , induced by hn . An important issue of SLDAB is the definition of this measure. A straight-
forward solution may consist in computing a divergence with respect to the considered class
of hypotheses, like the well-known H-divergence2 [5]. We claim that such a strategy is not
suited to our framework because SLDAB rather aims at evaluating the discrepancy induced
by a specific classifier hn . We propose to consider a divergence gn able to both evaluate the
mismatch between the source and target data and avoid degenerate hypotheses.

Algorithm 3 Computation of ˆPV (S, T ).
Input: S = {x ′

1, . . . , x
′
n}, T = {x1, . . . , xm }, ε > 0 and a distance d

1. Define the graph Ĝ = (V̂ = ( Â, B̂), Ê) where Â = {x ′
i ∈ S} and B̂ = {x j ∈ T }, Connect an edge ei j ∈ Ê

if d(x ′
i , x j ) ≤ ε

2. Compute the maximum matching on Ĝ
3. Su and Tu are the number of unmatched vertices in S and T , respectively
4. Output ˆPV (S, T ) = 1

2 (
Su
n + Tu

m ) ∈ [0, 1]

For the first objective, we use the recent Perturbed Variation measure [19] that evaluates
the discrepancy between two distributions while allowing small permitted variations assessed
by a parameter ε > 0 and a distance d:

Definition 3 [19] Let P and Q two marginal distributions over X , let M(P, Q) be the set
of all joint distributions over X × X with P and Q. The perturbed variation w.r.t. a distance
d : X × X → R and ε > 0 is defined by

PV (P, Q) = inf
μ∈M(P,Q)

Probaμ[d(P ′, Q′) > ε]

over all pairs (P ′, Q′) ∼ μ s.t. the marginal of P ′ (resp. Q′) is P (resp. Q).

A source example is thus matched with a target one if their distance is lower than ε, with
respect to distance d , as illustrated in Fig. 6a. Intuitively, two samples are similar if every
target instance is close to a source one w.r.t. d . This measure is consistent and the empirical
estimate ˆPV (S, T ) from two samples S ∼ P and T ∼ Q can be efficiently computed
by a maximum graph matching procedure summarized in Algorithm 3. In our context, we
apply this empirical measure on the classifier outputs: Shn = {hn(x ′

1), . . . , hn(x
′|S|)}, Thn =

{hn(x1), . . . , hn(x|T |)} with the L1 distance as d and use 1 − ˆPV (Shn , Thn ) as similarity
measure, as illustrated by Fig. 6b.

For the second point, we take the following entropy-based measure:

ENT (hn) = 4 × pn × (1 − pn)

2 The H-divergence is defined with respect to the hypothesis class H by:
suph,h′∈H

∣∣Ex∼T [h(x) �= h′(x)] − Ex ′∼S [h(x ′) �= h′(x ′)]∣∣, it can be empirically estimated by learn-
ing a classifier able to discriminate source and target instances [5].
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(a)

(b)

Fig. 6 Illustration of PV benefit in our divergence measure. The source examples are here represented by
black points, while target ones are in white. In a, a source example is matched with a target one, with respect
to the Euclidian distance, when they are closer than ε. In b, the two hypotheses h1 and h2 correctly separate
source data. However, when comparing the values returned by each of the hypotheses (as indicated at the
bottom of the figure), those of h1 allow us to match all source and target examples, while those of h2 do not.
Indeed, h1 correctly separates the two target classes, while h2 gives all target examples the same label

where pn3 is the proportion of target instances classified as positive by hn : pn =
∑|T |

i=1[hn(xi )≥0]
|T | . For the degenerate cases where all the target instances have the same class,

the value of ENT (hn) is 0, otherwise, if the labels are equally distributed, this measure is
close to 1.

Finally, gn is defined by 1 minus the product of the two previous similarity measures
allowing us to have a divergence of 1 if one of the similarities is null.

gn = 1 − (1 − ˆPV (Shn , Thn )) × ENT (hn).

8 Experiments

To assess the practical efficiency of SLDAB and support our claim of Sect. 4, we perform
two kinds of experiments, respectively, in the DA and semi-supervised settings. We use two
different databases. The first one,Moons [11], corresponds to two inter-twinning moons in a
2-dimensional space where the data follow a uniform distribution in each moon representing
one class (see Fig. 7a for the source domain and Fig. 7b for the target domain, after a

3 True labels are assumed well balanced, if not pn has to be reweighted accordingly.
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Fig. 7 Examples from theMoons database. a Describes examples from the source domain, while b contains
data from the target domain, obtained after a 30◦ rotation

30◦ rotation). The second one is the UCI Spam database,4 containing 4601 e-mails (2788
considered as “non-spams” and 1813 as “spams”) in a 57-dimensional space.

8.1 Domain adaptation

8.1.1 Moons database

In this series of experiments, the target domain is obtainedby rotating anticlockwise the source
domain, corresponding to the original data. We consider 8 increasingly difficult problems
according to 8 rotation angles from 20◦ to 90◦. For each domain, we generate 300 instances
(150 of each class). To estimate the generalization error, we make use of an independent test
set of 1000 points drawn from the target domain. Each adaptation problem is repeated 10
times and we report the average results obtained on the test sample without the best and the
worst draws.

We compare our approach with two non DA baselines: the standard AdaBoost, using
decision stumps, and a SVM classifier (with a Gaussian kernel) learned only from the source.
We also compare SLDAB with DASVM (based on a LibSVM implementation) and with a
reweighting approach for the co-variate shift problem presented in [20]. This unsupervised
method (referred to as SVM- W) reweights the source examples by matching source and
target distributions by a kernel mean matching process, then a SVM classifier is inferred
from the reweighted source sample. Note that all the hyperparameters are tuned by a 10-fold
cross-validation. Finally, to confirm the relevance of our divergence measure gn , we run
SLDABwith two different divergences: SLDAB-gn uses our novel measure gn introduced in
the previous section and SLDAB-H is based on theH-divergence. We tune the parameters of
SLDAB by selecting, through an exhaustive grid search in the range [0, 1] for both parameters
λ and γ , those able to fulfill Definition 1 and leading to the smallest divergence over the final
combination FT

N . As expected, the optimal λ grows with the difficulty of the problem.
Results obtained on the different adaptation problems are reported in Table 1. We can see

that, except for 20◦ (for which DASVM is—not significantly—slightly better), SLDAB-gn
achieves a significantly better performance (using a Student paired t test with α = 1%), espe-
cially on important rotation angles. DASVM that is not able to work with large distribution
shifts diverges completely. This behavior shows that our approach is more robust to difficult

4 http://archive.ics.uci.edu/ml/datasets/Spambase.
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Table 1 Error rates (in %) on moons, the Average column reports the means and standard deviations

Angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ Average

SVM 10.3 24 32.2 40 43.3 55.2 67.7 80.7 44.2 ± 0.9

AdaBoost 20.9 32.1 44.3 53.7 61.2 69.7 77.9 83.4 55.4 ± 0.4

DASVM 0.0 21.6 28.4 33.4 38.4 74.7 78.9 81.9 44.6 ± 3.2

SVM-W 6.8 12.9 9.5 26.9 48.2 59.7 66.6 67.8 37.3 ± 5.3

SLDAB-H 6.9 11.3 18.1 32.8 37.5 45.1 55.2 59.7 33.3 ± 2.1

SLDAB-gn 1.2 3.6 7.9 10.8 17.2 39.7 47.1 45.5 21.6 ± 1.2

Bold values indicate that the corresponding method outperforms all the others

(a) (b)

Fig. 8 a Loss functions on a 20◦ task. b Evolution of the global divergence

DA problems. Finally, despite good results compared to other algorithms, SLDAB-H does
not perform as well as the version using our divergence gn , showing that gn is indeed much
more adapted.

Figure 8a illustrates the behavior of our algorithm on a 20◦ rotation problem. First, as
expected by Theorem 5, the empirical target loss converges very quickly toward 0. Because
of the constraints imposed on the target data, the source error ε̂HS

N
requires more iterations

to converge than a classicalAdaBoost procedure. Moreover, the target error εHT
N
decreases

with N and keeps dropping even when the two empirical losses have converged to zero. This
confirms the benefit of having a low source error with large target margins.

Figure 8b shows the evolution throughout the iterations of the divergence gn of the com-

bination HT
n =

∑n

k=1
βkhk(x). We can see that our boosting scheme allows us to reduce

the divergence between the source and the target data, thus explaining the decrease in the
target generalization error observed on the figure.

Finally, Fig. 9a, b represent decision areas of inferred models on a 30◦ rotation
task. Examples are labeled negative in dark region and positive in bright one. Observ-
ing Fig. 9 allows us to see that the decision boundary learned on source domain (i.e.

HN
S = sign(

∑N

n=1
αnsign(hn(·)))) correctly classifies all the examples from the learn-

ing set. In Fig. 9b is reported the decision boundary learned by SLDAB on target domain (i.e.

HN
T = sign(

∑N

n=1
βnsign(hn(·)))). We can see that the rotation has been almost perfectly

learned. Let us recall that this boundary decision has been inferred without any informa-
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(a) (b)

Fig. 9 Illustration of the behavior of SLDAB in a 30◦ rotation task. a Decision boundary for HN
S on source

data. b Decision boundary for HN
T on target data

Table 2 Error rates on spams

Bold value indicates that the
corresponding method
outperforms all the others

Algorithm Error rate (in %)

SVM 38

AdaBoost 59.4

DASVM 37.5

SVM-W 37.9

SLDAB-H 37.1

SLDAB-gn 35.8

tion about target labels. These two decision boundaries show the benefit of two different
weighting schemes.

8.1.2 Spams database

To design a DA problem from this UCI database, we first split the original data in three
different sets of equivalent size. We use the first one as the learning set, representing the
source distribution. In the two other samples, we add a gaussian noise to simulate a different
distribution. As all the features are normalized in the [0,1] interval, we use, for each feature
n, a random real value in [−0.15,0.15] as expected value μn and a random real value in
[0,0.5] as standard deviation σn . We then generate noise according to a normal distribution
N (μn, σn). After having modified these two samples jointly with the same procedure, we
keep one as the target learning set, the other as the test set.

This operation is repeated 5 times. The average results of the different algorithms are
reported in Table 2. As for the moons problem, we compare our approach with the standard
AdaBoost and a SVM classifier learned only from the source. We also compare it with
DASVM and SVM- W. We see that SLDAB is able to obtain better results than all the other
algorithms on this real database. However, it is worth noting that using a Student paired-t
test, we get a p value equal to 16%. Therefore, even though SLDAB is better, the risk of
Type I for this second dataset is higher than for the Moons database. On the other hand, note
that SLDAB used with our divergence gn leads again to the best result.
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8.2 Semi-supervised setting

Our divergence criterion allows us to quantify the distance between the two domains. If its
value is low all along the process, this means that we are facing a problem that looks more
like a semi-supervised task. In a semi-supervised setting, the learner receives few labeled
and many unlabeled data generated from the same distribution. In this series of experi-
ments, we study our algorithm on two semi-supervised variants of the Moons and Spams
databases.

8.2.1 Moons database

We generate randomly a learning set of 300 examples and an independent test set of 1000
examples from the same distribution. We then draw n labeled examples from the learning
set, from n = 10 to 50 such that exactly half of the examples are positives, and keep the
remaining data for the unlabeled sample. The methods are evaluated by computing the error
rate on the test set. For this experiment, we compare SLDAB-gn with AdaBoost, SVM and
the transductive SVM T- SVM introduced in [23] which is a semi-supervised method using
the information given by unlabeled data to train a SVM classifier. We repeat each experiment
5 times and show the average results in Fig. 10a.

Our algorithm performs better than the other methods on small training sets and is com-
petitive to SVM for larger sizes. We can also note that AdaBoost using only the source
examples is not able to perform well. This can be explained by an overfitting phenom-
enon on the small labeled sample leading to poor generalization performances. Surprisingly,
T- SVM performs quite poorly too. This is probably due to the fact that the unlabeled
data are incorrectly exploited, with respect to the small labeled sample, producing wrong
hypotheses.

8.2.2 Spams database

We use here the same setup as in the semi-supervised setting for Moons. We take the 4601
original instances issued from the same distribution and split them into two sets: one third
for the training sample and the remaining for the test set used to compute the error rate. From

(a) (b)

Fig. 10 a Error rate of different algorithms on themoons semi-supervised problem according to the size of the
training set. b Error rate of different algorithms on the spam recognition semi-supervised problem according
to the size of the training set
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the training set, n labeled instances are drawn as labeled data, n varying from 150 to 300,
the remaining part is used as unlabeled data as in the previous experiment. This procedure is
repeated 5 times for each n, and the average results are provided in Fig. 10b.

All the approaches are able to decrease their error rate according to the size of the labeled
data (even if it is not significant for SVM and T- SVM), which is an expected behavior. SVM
and even more AdaBoost (that do not use unlabeled data), achieve a large error rate after
300 learning examples. T- SVM is able to take advantage of the unlabeled examples, with
a significant gain compared to SVM. Finally, SLDAB outperforms the other algorithms by
at least 10 percentage points. This confirms that SLDAB is also able to perform well in a
semi-supervised learning setting. This feature makes our approach very general and relevant
for a large class of problems.

8.3 On the usefulness of the divergence measure

Finally, in order to analyze the contribution of our divergence measure gn , we run SLDAB
in two settings: (1) where λ = 0, that is, the divergence gn is not taken into account; (2)
where λ > 0, that is, one penalizes hypotheses that generate a large divergence between
the source and target domains. As illustrated, by Fig. 11a on a 50◦ rotation problem using
the Moons database, as soon as the two domains in the DA problem are not close enough,
the absence of the divergence gn in SLDAB leads to degenerate hypotheses. Figure 11b
illustrates the behavior of the algorithm on the exact same task, while using a non-negative
value as λ. Even if the process is longer, because of the non-selection of some hypotheses
which do not fulfill the conditions induced by the divergence, we can see that there is a huge
gain in using gn , confirming the legitimacy of this novel measure and its usefulness in our
approach.

9 Discussion about generalization guarantees

The theoretical study introduced in Sect. 6 allowed us to derive several results about SLDAB.
It is worth noting that we did not derive any generalization result, even though the experi-
mental section has shown that the true risk actually decreases with the number of iterations of

(a) (b)

Fig. 11 Error rates obtained by the algorithm on a 50◦ rotation task: a evolution of the generalization target
error without taking into account the divergence measure gn (i.e. λ = 0). b Evolution of the generalization
target error, on the same experiment, using the divergence measure gn with a non-negative value of λ
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SLDAB. In this section, we explain why proving such generalization guarantees is complex
in this DA setting.

In boosting theory [41], let us recall that a generalization error bound has been introduced,
whose main advantage is not to depend on the number of iterations of the process in the
penalization term.

Theorem 6 [41] Let H be a class of classifiers with VC dimension dh. ∀δ > 0 and γ > 0,
with probability 1 − δ, any ensemble of N classifiers built from a learning set S of size |S|
drawn from a distribution S satisfies on the generalization error εHS

N
:

εHS
N

≤ P̂r x∼S[margin(x) ≤ γ ] + O

⎛

⎝
√

dh
|S|

log2(|S|/dh)
γ 2 + log(1/δ)

⎞

⎠ . (17)

This well-known theorem states that achieving a large margin on the training set (the
first term of the right-hand side) results in an improved bound on the generalization error,
considering γ , δ, |S| and dh fixed.Moreover, Schapire et al. [41] proved that withAdaBoost
this term decreases exponentially fast with the number N of classifiers. Applying Theorem 6
on the target error in our context, we get:

εHT
N

≤ P̂r x∼T [yFN
T (x) ≤ γ ] + O

⎛

⎝
√

dh
|S|

log2(|S|/dh)
γ 2 + log(1/δ)

⎞

⎠ . (18)

Unlike P̂r x∼S(margin(x) ≤ γ ) in Theorem 6, we are not able to compute the true value
of P̂r x∼T [yFN

T (x) ≤ γ ]: indeed, during our adaptation process, we make use of the pseudo-
labels to compute this loss but the true margin of an example would need the true label y.
However, it is possible to go around this problem, by noting that we can introduce our target
loss based on pseudo-labels thanks to the triangle inequality:

P̂r x∼T [yFN
T (x) ≤ γ ] ≤ P̂r x∼T [yFN

T (x) ≤ yFT
N(x)] + P̂r x∼T [yFT

N(x) ≤ γ ]
≤ P̂r x∼T [yFN

T (x) ≤ yFT
N(x)] + P̂r x∼T [yFT

N(x) ≤ γ ]
+ P̂r (x,y)∼S[yFS

N (x) ≤ γ ] − P̂r (x,y)∼S[yFS
N (x) ≤ γ ]

where y = (y1, . . . , yn, . . . , yN ) is the vector of pseudo-classes and FT
N(x) =

(β1 fDA(h1(x)), . . . , βN fDA(hN (x))). The term L̂HN
T

= P̂r x∼T [yFT
N(x) ≤ γ ] corresponds

to the empirical loss that we optimize with respect to the pseudo-labeled target examples
and P̂r (x,y)∼S[yFS

N (x) ≤ γ ] is the empirical loss optimized on the source instances. The
quantity P̂r x∼T [yFN

T (x) ≤ yFT
N(x)] can be seen as a term assessing the quality of pseudo-

labels found with respect to the true target labels and thus as a measure indicating when an
adaptation is possible. Then, following some recent results such as in [5], the objective would
be to bound the target error by the source error, the margin violations over the pseudo-labeled
target examples and our divergence measure computed between the two domains S and T .
This strategy would lead to a bound of the following form:

123



70 A. Habrard et al.

εDT (HN
T ) ≤ L̂ H N

S
+ L̂HN

T
+ div(S, T ) + λ� + O

⎛

⎝
√

d

|T |
log2(|T |/d)

γ 2 + log(1/δ)

⎞

⎠.

As expressed in many works in DA, reducing the generalization target error is equivalent
to reducing the empirical error, while decreasing the divergence between the two domains.
We know that the minimization of the empirical source error and the empirical loss over
pseudo-labeled target instances is ensured by our algorithm, but we are only able to observe
the empirical decrease in the global divergence between the two distributions,without proving
it. In our case, the difficult point is to be able to relate some terms involving the (pseudo)
margin violations proportion to our divergence between S and T .

10 Conclusion

Unsupervised domain adaptation is a very challenging problem where the learner has to fit a
model without having access to labeled target data. In this setting, we have introduced a new
boosting algorithm, namely SLDAB, which projects both source and target data in a new
N -dimensional space, where two source and target hyperplanes are optimized to minimize
the source training error and the proportion of target margin violations, respectively. We
derive several theoretical results showing that both loss functions decrease exponentially fast
with the number of iterations of boosting. Even though we could not derive formal results
with respective to the generalization target error, we have experimentally shown that our
strategy actually reduces the true risk. Moreover, we have shown that projecting both source
and target data in this common space leads to a reduction in the divergence between the
two domains. This way, SLDAB satisfies the two constraints imposed by the theoretical
domain adaptation frameworks: (1) reduce the source error and (2) decrease the discrepancy
between the two distributions. Another contribution of this paper takes the form of a new
divergence measure, easy to compute and that prevents SLDAB from building degenerate
hypotheses. Our experiments have shown that SLDAB performs well in a DA setting both on
synthetic and real data. Moreover, it is also general enough to work well in a semi-supervised
case, making our approach widely applicable. Despite several original contributions, this
work opens the door for further investigation. From a theoretical standpoint, proving that the
margin of the training examples increases or that the divergence between the two domains
actually decreases would allow us to derive generalization guarantees on the true target risk.
As pointed out in this paper, this task is complex because we do not have labeled target
examples. From an algorithmic point of view, the generation of weak DA hypotheses also
deserves a special attention. Even though solving Problem (2) tends to satisfy the weak DA
constraints, the procedure can take time and may be improved by, e.g., inducing oblique
induction trees in a DA way.

References

1. BalcanM-F, BlumA (2006)On a theory of learningwith similarity functions. In: Proceedings of ICML’06,
pp 73–80

2. Balcan M-F, Blum A, Srebro N (2008) Improved guarantees for learning via similarity functions. In:
Proceedings of COLT’08, pp 287–298

3. Bartlett PL, Mendelson S (2002) Rademacher and gaussian complexities: Risk bounds and structural
results. J Mach Learn Res 3:463–482

123



A new boosting algorithm for provably accurate unsupervised. . . 71

4. Becker C, Christoudias C, Fua P (2013) Non-linear domain adaptation with boosting. In: Proceedings of
NIPS’13, pp 485–493

5. Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, Vaughan J (2010) A theory of learning from
different domains. Mach Learn 79(1–2):151–175

6. Bennett K, Demiriz A, Maclin R (2002) Exploiting unlabeled data in ensemble methods. In: Proceedings
of KDD’02, pp 289–296

7. Bickel S, Brückner M, Scheffer T (2007) Discriminative learning for differing training and test distribu-
tions. In: Proceedings of ICML’07, ACM, New York, NY, USA, pp 81–88

8. Blitzer J, Dredze M, Pereira F (2007) Biographies, bollywood, boom-boxes and blenders: domain adap-
tation for sentiment classification. In: Proceedings of ACL’07

9. Blitzer J, McDonald R, Pereira F (2006) Domain adaptation with structural correspondence learning. In:
Proceedings of EMNLP’06, pp 120–128

10. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings
of the eleventh annual conference on Computational learning theory, Proceedings of COLT’98, ACM,
pp 92–100

11. Bruzzone L, Marconcini M (2010) Domain adaptation problems: a dasvm classification technique and a
circular validation strategy. IEEE Trans Pattern Anal Mach Intell 32:770–787

12. Chelba C, Acero A (2006) Adaptation of maximum entropy capitalizer: Little data can help a lot. Comput
Speech Lang 20(4):382–399

13. Dai W, Yang Q, Xue G, Yu Y (2007) Boosting for transfer learning. In: Proceedings of ICML’07,
pp 193–200

14. Daumé H III (2007) Frustratingly easy domain adaptation. In: Proceedings of ACL’07, pp 256–263
15. Dudík M, Schapire RE, Phillips SJ (2005) Correcting sample selection bias in maximum entropy density

estimation. In: Proceedings of NIPS’05
16. Florian R,HassanH, IttycheriahA, JingH,Kambhatla N, LuoX,NicolovN, Roukos S (2004)A statistical

model for multilingual entity detection and tracking. In: Proceedings of HLT-NAACL’04, pp 1–8
17. Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: Proceedings of ICML’96,

pp 148–156
18. Habrard A, Peyrache J-P, Sebban M (2013) Iterative self-labeling domain adaptation for linear structured

image classification. Int J Artific Intell Tools 22(5). doi:10.1142/S0218213013600051
19. Harel M, Mannor S (2012) The perturbed variation. In: Proceedings of NIPS’12, pp 1943–1951
20. Huang J, Smola A, Gretton A, Borgwardt K, Schölkopf B (2006) Correcting sample selection bias by

unlabeled data. In: Proceedings of NIPS’06, pp 601–608
21. Ji Y, Chen J, NiuG, Shang L, Dai X (2011) Transfer learning viamulti-view principal component analysis.

J Comput Sci Technol 26(1):81–98
22. Jiang J (2008) A literature survey on domain adaptation of statistical classifiers. Technical report, Com-

puter Science Department at University of Illinois, Urbana-Champaign
23. Joachims T (1999) Transductive inference for text classification using support vector machines. In: Pro-

ceedings of ICML’1999, ICML ’99, pp 200–209
24. Kolmogorov A, Tikhomirov V (1961) ε-entropy and ε-capacity of sets in functional spaces. Am Math

Soc Transl 2(17):277–364
25. Koltchinskii V (2001) Rademacher penalties and structural risk minimization. IEEE Trans Inf Theory

47(5):1902–1914
26. Leggetter C, Woodland P (1995) ‘Maximum likelihood linear regression for speaker adaptation of con-

tinuous density hidden markov models’. Comput Speech Lang 2:171–185
27. Mallapragada P, Jin R, Jain A, Liu Y (2009) Semiboost: Boosting for semi-supervised learning. IEEE T.

PAMI 31(11):2000–2014
28. Mansour Y, Mohri M, Rostamizadeh A (2008) Domain adaptation with multiple sources. In: Proceedings

of NIPS’08, pp 1041–1048
29. Mansour Y, Mohri M, Rostamizadeh A (2009) Domain adaptation: learning bounds and algorithms. In:

Proceedings of COLT’09
30. Mansour Y, Schain M (2012) Robust domain adaptation. In: Proceedings of ISAIM’12
31. Margolis A (2011) A literature review of domain adaptation with unlabeled data, Tec. Report, pp 1–42
32. Martínez A (2002) Recognizing imprecisely localized, partially occluded, and expression variant faces

from a single sample per class. IEEE T. PAMI 24(6):748–763
33. Morvant E, Habrard A, Ayache S (2011) Sparse domain adaptation in projection spaces based on good

similarity functions. In: Proceedings of ICDM’11, pp 457–466
34. Morvant E, Habrard A, Ayache S (2012) Parsimonious unsupervised and semi-supervised domain adap-

tation with good similarity functions. Knowl Inform Syst (KAIS) 33(2):309–349
35. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359

123

http://dx.doi.org/10.1142/S0218213013600051


72 A. Habrard et al.

36. Pérez Ó, Sánchez-MontañésMA (2007) A new learning strategy for classification problemswith different
training and test distributions. In: Proceedings of IWANN’07, pp 178–185

37. Quionero-Candela J, SugiyamaM, SchwaighoferA, LawrenceN (2009)Dataset shift inmachine learning.
MIT Press, Cambridge

38. Roark B, Bacchiani M (2003) Supervised and unsupervised pcfg adaptation to novel domains. In: Pro-
ceedings of HLT-NAACL’03

39. Satpal S, Sarawagi S (2007) Domain adaptation of conditional probability models via feature subsetting.
In: Proceedings of PKDD’07, pp 224–235

40. Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach
Learn 37(3):297–336

41. SchapireR, FreundY,Barlett P, LeeW(1997)Boosting themargin:Anewexplanation for the effectiveness
of voting methods. In: Proceedings of ICML’97, pp 322–330

42. Sugiyama M, Nakajima S, Kashima H, von Bünau P, Kawanabe M (2008) Direct importance estimation
with model selection and its application to covariate shift adaptation. In: Proceedings of NIPS’07

43. Tsuboi Y, KashimaH,Hido S, Bickel S, SugiyamaM (2009)Direct density ratio estimation for large-scale
covariate shift adaptation, Proceedings of JIP’09 17, pp 138–155

44. Valiant L (1984) A theory of the learnable. Commun ACM 27(11):1134–1142
45. van der Vaart A,Wellner J (1996)Weak convergence and empirical processes. Springer series in statistics.

Springer, Berlin
46. Xu H, Mannor S (2010a) Robustness and generalization. In: Proceedings of COLT’10, pp 503–515
47. Xu H, Mannor S (2010b) Robustness and generalization. In: Proceedings of COLT’10, pp 503–515
48. Xu H, Mannor S (2012a) Robustness and generalization. Mach Learn 86(3):391–423
49. Xu H, Mannor S (2012b) Robustness and generalization. Mach Learn 86(3):391–423
50. YaoY,DorettoG (2010) Boosting for transfer learningwithmultiple sources. In Proceedings of CVPR’10,

pp 1855–1862

Amaury Habrard received a Ph.D. in Machine Learning in 2004
from the University of Saint- Etienne. He was Assistant Professor at the
Laboratoire dInformatique Fondamentale of Aix- Marseille University
until 2011, where he received a habilitation thesis in 2010. He is cur-
rently Professor in the Machine Learning group at the Hubert Curien
laboratory of the University of Saint-Etienne. His research interests
include metric learning, transfer learning, online learning and learning
theory.

Jean-Philippe Peyrache received his Ph.D. in Machine Learning from
the University of Saint-Etienne (France) in 2014. His work focused
on transfer learning and domain adaptation problems using ensemble
methods like boosting. Until 2014, he has been member of the machine
learning team of the Hubert Curien laboratory.

123



A new boosting algorithm for provably accurate unsupervised. . . 73

Marc Sebban received a Ph.D. in Machine Learning in 1996 from
the University of Lyon 1. After four years spent at the French West
Indies and Guyana University as Assistant Professor, he got a posi-
tion of Professor in 2002 at the University of Saint-Etienne (France).
Since 2010, he is the head of the Computer Science, Cryptography
and Imaging department of the Hubert Curien laboratory. His research
interests focus on ensemble methods, metric learning, transfer learning
and more generally on statistical learning theory.

123


	A new boosting algorithm for provably accurate unsupervised domain adaptation
	Abstract
	1 Introduction
	2 Related work in domain adaptation
	2.1 Theoretical results in DA
	2.2 Algorithmic contributions
	2.2.1 Instance weighting
	2.2.2 New feature representations
	2.2.3 Iterative Self-labeling


	3 Intuition behind SLDAB
	4 Definitions and notations
	5 SLDAB algorithm
	6 Theoretical analysis
	6.1 Consistency guarantees of Algorithm 2
	6.2 Upper bound on the empirical loss of SLDAB
	6.3 Optimal confidence values
	6.4 Convergence of the empirical loss

	7 Measure of divergence
	8 Experiments
	8.1 Domain adaptation
	8.1.1 Moons database
	8.1.2 Spams database

	8.2 Semi-supervised setting
	8.2.1 Moons database
	8.2.2 Spams database

	8.3 On the usefulness of the divergence measure

	9 Discussion about generalization guarantees
	10 Conclusion
	References




